
2

Size Bounds for Factorised Representations of Query Results

DAN OLTEANU and JAKUB ZÁVODNÝ, University of Oxford

We study two succinct representation systems for relational data based on relational algebra expressions
with unions, Cartesian products, and singleton relations: f-representations, which employ algebraic factori-
sation using distributivity of product over union, and d-representations, which are f-representations where
further succinctness is brought by explicit sharing of repeated subexpressions.

In particular we study such representations for results of conjunctive queries. We derive tight asymptotic
bounds for representation sizes and present algorithms to compute representations within these bounds.
We compare the succinctness of f-representations and d-representations for results of equi-join queries, and
relate them to fractional edge covers and fractional hypertree decompositions of the query hypergraph.

Recent work showed that f-representations can significantly boost the performance of query evaluation
in centralised and distributed settings and of machine learning tasks.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational Databases,

Query Processing

General Terms: Theory, Algorithm Design

Additional Key Words and Phrases: succinct representation, data factorisation, conjunctive queries, size
bounds, hypertree decompositions, query evaluation

ACM Reference Format:

Olteanu, D., Závodný, J. 2015. Factorised Representations of Query Results. ACM Trans. Datab. Syst. 40, 1,
Article 2 (March 2015), 44 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Relational data is ubiquitous; methods for representing and storing relational data
are therefore of great importance to database systems. Several storage approaches
have been developed for relational data, including the standard row stores used by
most traditional relational database systems, column stores [Batory 1979; Boncz et al.
1999; Stonebraker et al. 2005], approaches based on horizontal partitioning [Agrawal
et al. 2004; Grund et al. 2010], and adaptive and declarative storage systems with a
high-level interface for describing the physical representation of data [Cudré-Mauroux
et al. 2009].

In this work, we study two succinct representation systems for relational data based
on relational algebra expressions with unions, Cartesian products, and singleton rela-
tions (i.e., unary relations with one tuple): f-representations, which employ algebraic
factorisation using distributivity of product over union, and d-representations, which
are f-representations where further succinctness is brought by explicit sharing of re-
peated subexpressions. The relationship between a relation encoded as a set of tuples
and an equivalent factorised representation is on a par with the relationship between
logic functions in disjunctive normal form and their equivalent nested formulas ob-
tained by algebraic factorisation. Similarly, the relationship between f-representations

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0362-5915/2015/03-ART2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:2 D. Olteanu and J. Závodný

and d-representations is on a par with the relationship between formulas and circuits
for logic functions.

Example 1.1. Consider the relation R = {(a, b, c) ∈ N
3 : 1 ≤ a < b < c ≤ 5} with

tuples (1, 2, 3), (1, 2, 4), etc. If we write 〈x〉 for the singleton relation {x}, the tuples of
R can be written as 〈1〉×〈2〉×〈3〉, 〈1〉×〈2〉×〈4〉, etc., and the relation R can be expressed
by the flat relational algebra expression

R = 〈1〉×〈2〉×〈3〉 ∪ 〈1〉×〈2〉×〈4〉 ∪ 〈1〉×〈2〉×〈5〉 ∪ 〈1〉×〈3〉×〈4〉 ∪ 〈1〉×〈3〉×〈5〉 ∪

〈1〉×〈4〉×〈5〉 ∪ 〈2〉×〈3〉×〈4〉 ∪ 〈2〉×〈3〉×〈5〉 ∪ 〈2〉×〈4〉×〈5〉 ∪ 〈3〉×〈4〉×〈5〉.

A more succinct factorised representation of R would be for example

R = 〈1〉×〈2〉×(〈3〉 ∪ 〈4〉 ∪ 〈5〉) ∪ (〈1〉 ∪ 〈2〉)×〈3〉×(〈4〉 ∪ 〈5〉) ∪ (〈1〉 ∪ 〈2〉 ∪ 〈3〉)×〈4〉×〈5〉.

Using d-representations, which use definitions to denote shared subexpressions, the
representation could be further compacted to

X := 〈1〉 ∪ 〈2〉;

Y := 〈4〉 ∪ 〈5〉;

R = 〈1〉×〈2〉×(〈3〉 ∪ Y) ∪ X×〈3〉×Y ∪ (X ∪ 〈3〉)×〈4〉×〈5〉. ✷

Both representation formalisms are complete for relational data in the sense that
they can represent any relation instance. Moreover, they allow for fast retrieval of
tuples of the represented relation: tuples can be enumerated with the same time com-
plexity (constant per tuple) as listing them from the relation. Factorised represen-
tations can nevertheless be exponentially more succinct than traditional flat repre-
sentations of relations as lists of tuples, e.g., in the presence of join dependencies and
multi-valued dependencies in the relations. Results of conjunctive queries exhibit such
dependencies and can be predictably factorised with an exponential succinctness gap
when compared to flat relational representations.

In this article, we consider classes of f-representations and d-representations
whose nesting structures are statically inferred from the query syntax. The nest-
ing structures are defined by so-called f-trees for f-representations and d-trees for
d-representations; they essentially exploit the join structure present in the query to
achieve succinct representations of query results. Within these classes, we show how
to define and effectively compute factorisations of asymptotically optimal size. Beyond
these classes, seeking optimality becomes hard, e.g., even finding large Cartesian prod-
ucts contained in a relation is NP-hard [Geerts et al. 2004] and for logical formulas the
general problem of algebraic minimisation is known to be Σp2-complete [Buchfuhrer
and Umans 2008]. Furthermore, using f-trees and d-trees, factorisations of query re-
sults can be computed directly from the input database, without first computing the
result in flat relational form.

Factorisations lie at the foundation of a new kind of data management systems, with
relations at the logical layer and succinct, factorised representations at the physical
layer. They are of immediate relevance to practical settings where relations represent-
ing query results are used as input for subsequent processing or are shipped over the
network in a distributed system. In such cases, a significant performance gain can be
brought by the small size of factorised data when compared to its equivalent flat rela-
tional representation. We next exemplify this with three distinct works that essentially
rely on data factorisation to achieve scalability and improve performance.

The FDB centralised main-memory query engine supports queries with selections,
projections, joins, aggregates, and ordering on f-representations [Bakibayev et al. 2012;
Bakibayev et al. 2013]. Experiments with FDB show that f-representations can boost
the performance of relational query processing by orders of magnitude in cases of flat

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:3

input and factorised output or of query processing on factorised materialised views.
The performance gap closely follows the size gap between flat and factorised represen-
tations for input and/or output data.

Recent work [Rendle 2013] applied factorisations to predictive modelling where fea-
ture vectors are computed by joining large tables. Whereas standard learning algo-
rithms cannot scale to very large design matrices, exploiting repeating patterns in the
design matrix as done by factorising equi-join results turns out to be key to scalability.

The F1 distributed database system that backs Google’s AdWords business uses a
restricted form of f-trees called hierarchical clustered schema [Shute et al. 2013]. In
F1, scalability of both OLAP and OLTP workloads is mainly achieved by this factori-
sation, which increases data locality for common access patterns. The input tables are
pre-joined and clustered following the nesting structure of an f-tree defined by existing
key-foreign key constraints. The data is then partitioned across servers into factorisa-
tion fragments (called clusters) rooted at different tuples of the root table. Query pro-
cessing is distributed, with intermediate results being shuffled between F1 nodes. We
envisage further use of factorisations in the context of distributed database systems,
where communication cost can be reduced by shipping small f-representations of in-
termediate query results. In contrast to generic compression techniques such as gzip,
which are commonly used to mitigate network communication cost in distributed sys-
tems like F1, f-representations exploit the query structure to achieve arbitrarily better
compression ratios, while still preserving the relational nature of the compressed data
and thus supporting queries in the compressed domain.

Factorised representations also naturally capture existing relational decompositions
proposed in the literature: lossless decompositions defined by join dependencies, as in-
vestigated in the context of normal forms in database design [Abiteboul et al. 1995],
conditional independence in Bayesian networks [Pearl 1989], factorisations of prove-
nance polynomials of query results [Olteanu and Závodný 2011] used for efficient
computation in probabilistic databases [Olteanu and Huang 2008; Sen et al. 2010],
and Cartesian product decompositions of relations as studied in the context of incom-
plete information [Olteanu et al. 2006]. These existing decomposition techniques can
be straightforwardly used to supply data in factorised form.

We study in this article the foundations of factorised representations, establishing
the following properties:

— Factorised representations form a complete representation system for relational
data. The tuples of a factorised representation with or without definitions can be
enumerated with delay linear in the size of its schema and thus constant with re-
spect to data complexity (Section 4).

— We introduce classes of factorised representations with the same nesting
structures: these are so-called f-trees for f-representations, and d-trees for d-
representations (Section 5). For a given conjunctive query, we can infer which f-trees
and d-trees factorise all possible results of that query (Section 6).

— For any conjunctive query Q, there exist rational numbers s(Q) and s�(Q) such that
for any input database D, the result Q(D) has an f-representation of size O(|D|s(Q))

and a d-representation of size O(|D|s
�(Q)). These bounds complement the known

bound O(|D|ρ
∗(Q)) for the size of the flat relational result Q(D), where ρ∗(Q) is the

fractional edge cover of an equi-join query Q. Our size bounds are asymptotically
optimal within the class of factorisations defined by f-trees and d-trees (Section 7).

— Factorised representations for results of conjunctive queries can be computed di-
rectly from the query and the input database. For equi-join queries we give worst-
case optimal algorithms: an f-representation of Q(D) can be computed in time

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:4 D. Olteanu and J. Závodný

O(|D|s(Q) log |D|) and a d-representation in time O(|D|s
�(Q) log |D|) with respect to

data complexity (Section 8).
— For results of equi-join queries, we quantify the succinctness gap between flat rela-

tions, f-representations, and d-representations, using the corresponding parameters
ρ∗(Q), s(Q) and s�(Q). We show that 1 ≤ s�(Q) ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|, where the
factor between s(Q) and s�(Q) is at most logarithmic in the size of the schema, while
the factor between ρ∗(Q) and s(Q) can be as large as |Q| (Section 9).

— Finally, factorisation of equi-join query results using f-trees and d-trees is closely
related to path decompositions and tree decompositions of the query. We give a two-
way translation between d-trees and tree decompositions showing that s�(Q) equals
the fractional hypertree width of Q, and a one-way translation from f-trees to path
decompositions showing that s(Q) is at least the fractional hyperpath width of Q
(Section 9).

To improve readability, the proofs of several formal statements in this article are
deferred to the electronic appendix.

2. RELATED WORK

Factorised representations were originally introduced in [Olteanu and Závodný 2012].
This article extends that landscape with factorised representations with definitions,
provides full proofs for all claims, and places the factorisability parameters s(Q) and
s�(Q) within the picture of other known query parameters relevant to query decompo-
sitions. This work on factorisability of relations and query results lies at the foundation
of a new kind of database systems that present relations at the logical layer and use
equivalent but more succinct factorised representations at the physical layer. Recent
work shows how to evaluate basic query operators including selection, projection, join,
aggregation and ordering on factorised representations, and how such representations
can boost the performance of query processing in relational databases in case of large
input, intermediate, or final results [Bakibayev et al. 2012; Bakibayev et al. 2013].

Equivalent to the special case of factorised representations over f-trees are gener-
alised hierarchical decompositions (GHDs) and compacted relations over compaction
formats. Existing work establishes the correspondences of GHDs to functional and
multi-valued dependencies [Delobel 1978], and characterises selection conditions with
disjunctions that can be performed on the compacted relations in one sequential
pass [Bancilhon et al. 1982], but questions of succinctness have not been addressed.
Nested and non-first normal form relations [Makinouchi 1977; Jaeschke and Schek
1982; Abiteboul and Bidoit 1986] are also structurally equivalent to factorised rep-
resentations over f-trees, but are proposed as an alternative data model and not as
a representation system for standard relation. Later work on nested relations [Oz-
soyoglu and Yuan 1987] also considers the representation of a single flat relation by
a nested relation, and infers possible nesting structures from join and multi-valued
dependencies. This complements our results in Section 6, which characterise possible
nesting structures for the results of a conjunctive query.

Various relational representation systems are subsumed by factorised representa-
tions of bounded depth. World-set decompositions in incomplete databases [Olteanu
et al. 2006] and OR-objects that represent large spaces of possibilities or choices in
design specification [Imielinski et al. 1991] are equivalent to products of unions of
products of singletons. A polynomial-time factorisation algorithm has been proposed
for decomposing a relation into a product of unions of products of singletons [Olteanu
et al. 2006]. Products of unions of singletons are studied under different names (rect-
angles, bicliques in binary relations, n-sets, formal concepts) and several representa-
tion systems are based on unions of products of unions of singletons, such as gener-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:5

alised disjunctive normal forms (GDNFs) studied as succinct presentations of inputs
to CSPs [Chen and Grohe 2010], tilings of databases by bicliques, and n-sets or formal
concepts [Geerts et al. 2004; Cerf et al. 2009]. The lazy, symbolic representation of the
Cartesian product of two sets, which is used by factorised representations to avoid ea-
ger materialisation of all pairs of elements from the two sets, has been also recently
used in the design of the GMP functional programming library for SQL-like processing
on multisets [Henglein and Larsen 2010].

In relational databases, eliminating redundancy caused by join dependencies and
multi-valued dependencies is traditionally addressed by normalising the relational
schema [Kent 1983]. The trade-offs of using normalisation vs. factorisation in rela-
tional database systems are discussed in recent work [Bakibayev et al. 2013]. Rep-
resentation systems for relations based on join decompositions include minimal con-
straint networks [Gottlob 2012], but for these data retrieval (tuple enumeration) is
NP-hard. Tuple enumeration is constant time for acyclic queries [Bagan et al. 2007],
in which case the input database together with the query already serve as a compact
representation of the result. Decompositions of the query hypergraph, measuring the
“degree of acyclicity” of the query, are traditionally used for classifying the tractability
of Boolean queries and constraint satisfaction problems [Gottlob et al. 2000; Grohe and
Marx 2006]. We draw a close connection of factorisations to hypertree decompositions
in Section 9.

Representations utilising algebraic factorisation are not restricted to relational data.
In the context of relational databases, factorisation can also be applied to provenance
polynomials [Green et al. 2007] that describe how individual tuples of a query result
depend on tuples of the input relations [Olteanu and Závodný 2011]. Algebraic and
Boolean factorisations were considered for succinct representations of Boolean func-
tions [Brayton 1987] and are closely related to binary decision diagrams, Boolean cir-
cuits and other representations of Boolean functions.

3. PRELIMINARIES

Databases. We consider relational databases with named attributes. An attribute A
is any symbol, a schema S is a set of attributes and a tuple t of schema S is a mapping
from S to a domain D. A relation R over S is a set of tuples of schema S. A database D

is a collection of relations. The size |R| of R is the number of its tuples; the size |D| of
D is the sum of the sizes of its relations.
Queries. We consider conjunctive queries Q written in relational algebra form:

πP(σψ(R1 × . . .×Rn)),

where R1, . . . , Rn are distinct relation symbols over disjoint schemas S1, . . . ,Sn, ψ is
a conjunction of equalities of the form A1 = A2 with attributes A1 and A2, and the
projection list P is a subset of

⋃

i Si. Two attributes of Q are equivalent if they are
transitively equal in the selection condition ψ. The equivalence class A of an attribute
A is the set consisting of A and of all attributes equivalent to A. The attributes in P
are called the head attributes. If P =

⋃

i Si we can drop the projection πP and Q is

called an equi-join query. The equi-join of Q is the query Q̂ = σψ(R1 × . . . × Rn). The
size of Q is |Q| = n.

To simplify notation, we require that all relation symbols are distinct and have dis-
joint schemas. To capture queries with self-joins, we assume without loss of generality
that mappings of relation symbols to database relations, as well as a correspondence
between the attributes of relation symbols mapped to the same database relation, are

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:6 D. Olteanu and J. Závodný

given together with the query.1 The database D then only contains one relation in-
stance for each set of relation symbols mapped to the same database relation. We thus
consider queries with self-joins, though avoid the explicit use of aliases and renaming
operators in the algebraic expressions.

The hypergraph of a query Q has one node for each attribute class of Q and one
hyperedge containing all nodes with attributes of R for each relation symbol R. For
any graph or hypergraph H , V (H) denotes the set of nodes of H and E(H) the set of
edges of H .
Restrictions. For a conjunctive query Q = πP(σψ(R1 × . . . × Rn)) and a set S ⊆ P ,
the S-restriction of Q is the equi-join query QS = σψS

(RS1 × · · · × RSn), where ψS and
RSi are ψ and Ri respectively, restricted to the attributes in the equivalence classes of
attributes in S.

An S-restriction DS of a database D, with respect to the query Q, is constructed by
projecting each relation of D onto the attributes in the equivalence classes of attributes
in S. Following our simplification in case Q has self-joins, we first create a separate
copy of each relation instance for each relation symbol referring to it before taking
the projection. (Different relation symbols referring to the same relation instance may
have different attributes equivalent to some attribute in S.)

Example 3.1. Consider relations R, S, and T over the schemas {A,B}, {B′, C′}, and
{C′′, A′′} respectively. For a query Q = σB=B′,C′=C′′,A′′=A(R × S × T) and the set X =
{A,B}, the X-restriction of Q is the query QX = σB=B′,A′′=A(R

X × SX × TX), where
RX , SX and TX are over schemas {A,B}, {B′} and {A′′}. For any database D with
relations R, S and T, the X-restriction with respect to Q contains the relations R,
S
X = πB′(S), and T

X = πA′′(T). The X-restriction of any projection query πPQ is the
same as the X-restriction of Q (as long as X is a subset of P). ✷

The S-restriction QS of Q only enforces the equality conditions from Q on attributes
equivalent to S, and is in this sense less selective than Q. The result of QS on the
restricted database DS can thus contain more tuples than the projection πS(Q(D)).

PROPOSITION 3.2. Let Q be a query, D be a database, and QS,DS be their S-
restrictions for a subset S of the head attributes of Q. Then, |πS(Q(D))| ≤ |QS(DS)|.

Proposition 3.2 serves as a useful upper bound on the size of a projection by the size
of an equi-join, and is used to establish our main upper bound result. See the electronic
appendix for a detailed proof.
Dependencies. Factorisation of relations is possible whenever the values of two at-
tributes are independent of each other, i.e., knowing the value of one does not restrict
the set of possible values of the other. Next we define the notion of independence of
attributes, and show that in a query result independence of attributes can be inferred
statically from the query.

Two disjoint groups of attributes A and B of a relation R are called independent con-
ditioned on another group of attributes C, disjoint with A and B, if R is a natural join
RA ✶C RB of two relations RA and RB with attributes including A and B respectively.
A and B are independent if they are independent conditioned on the empty set. If two
attributes are not conditionally independent, they are dependent.

Example 3.3. Consider the relation R = {(a, b, c) : a ≤ b, a ≤ c} over the schema
{A,B,C} and domain {1, 2}. No two attributes of R are independent because R can-
not be written as a product of two relations with non-empty schemas. However, in the

1The size of such mapping is at most linear in the size of the query and its schema, and hence does not
impact the complexity analysis.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:7

relation π{B,C}R = {1, 2} × {1, 2}, the attributes B and C are independent. In R, at-
tributes B and C are independent conditioned on A, because R = RB ✶A RC where
RB = {(a, b) : a ≤ b} and RC = {(a, c) : a ≤ c}. Finally, attributes A and B are
dependent in R, since R cannot be written as a join of two relations on C. ✷

In case the relation R is the result of a conjunctive query Q, we can deduce specific
dependency information by static analysis of Q. For a query Q, two head attributes A
and B are Q-dependent if any of the following statements hold:

— they belong to the same relation in Q,
— there is a chain of relations R1, . . . , Rk in Q such that A is in the schema of R1, B is

in the schema of Rk, and each successive Ri and Ri+1 are joined on an attribute that
does not belong to the projection list P and neither does any equivalent attribute,

— A is equivalent to A′ and B is equivalent to B′ where A′ and B′ are Q-dependent.

PROPOSITION 3.4. Two attributes A and B are Q-dependent for a query Q if and
only if there exists a database D for which A and B are dependent in the relation Q(D).

Computational model. We use the uniform-cost RAM model where the values of the
domain D as well as the pointers into the database are of constant size.

4. FACTORISED REPRESENTATIONS

In this section we introduce the central concepts studied in this work: two succinct
representation systems for relational data. The basic idea is to represent relations
symbolically as expressions in a fragment of relational algebra consisting of union,
Cartesian product, and so-called singleton relations, which are unary relations with
one tuple. We call such representations factorised representations or f-representations,
since they employ algebraic factorisation to nest products and unions and hence ex-
press combinations of values symbolically. Further succinctness can be achieved by
introducing symbolic references into the representations, so that repeated subexpres-
sions can be defined only once and referred to several times. Factorised representations
with definitions are called d-representations.

4.1. Factorised Representations

Factorised representations of relations are defined as typed relational algebra expres-
sions consisting of unions, Cartesian products, and singleton relations [Olteanu and
Závodný 2012].

Definition 4.1. A factorised representation, or f-representation for short, over a
schema S is a relational algebra expression of one of the following forms.
— ∅, representing the empty relation over schema S,
— 〈〉, representing the relation consisting of the nullary tuple, if S = ∅,
— 〈A :a〉, representing the unary relation with a single tuple with value a, if S = {A}

and a is a value in the domain D,
— (E1 ∪ · · · ∪ En), representing the union of the relations represented by Ei, where

each Ei is an f-representation over S,
— (E1 × · · · × En), representing the Cartesian product of the relations represented by
Ei, where each Ei is an f-representation over some schema Si such that S is the
disjoint union of all Si.

The expressions 〈A :a〉 are called singletons of type A (or A-singletons for short) and
the expression 〈〉 is called the nullary singleton. ✷

We write JEK for the relation represented by an f-representation E. Different f-
representations can represent the same relation, two f-representations E1 and E2 over
the same schema are equivalent if JE1K = JE2K.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:8 D. Olteanu and J. Závodný

Example 4.2. The f-representation (〈A :a1〉 ∪ 〈A :a2〉) × (〈B :b1〉 ∪ 〈B :b2〉) over the
schema {A,B} represents the relation {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} over {A,B}. ✷

Any relation has at least one f-representation, the so-called flat f-representation that
is a (possibly empty) union of products of singletons, where each product of singletons
represents a distinct tuple in the relation. This property of the representation system
is called completeness; factorised representations are hence a complete representation
system for relational data.

Any f-representation has a parse tree whose internal nodes are unions and products,
and whose leaves are singletons or empty relations. Relational algebra expressions
and their parse trees are equivalent ways of describing f-representations, we use them
interchangeably in this article. Relational algebra expressions are better suited for
readability in text; their parse trees are better suited for formal analysis, proofs and
algorithms. Parentheses in relational expressions are omitted when this helps clarity.

Example 4.3. The f-representation (〈A :a1〉 ∪ 〈A :a2〉) × (〈B :b1〉 ∪ 〈B :b2〉) has the
parse tree:

×

∪

〈A :a1〉 〈A :a2〉

∪

〈B :b1〉 〈B :b2〉 ✷

4.2. Factorised Representations with Definitions

We now introduce the representation system of factorised representations with defini-
tions, called d-representations. While f-representations eliminate redundancy in rela-
tions by expressing products of unions of expressions symbolically instead of a union of
products of expressions, they may still contain multiple copies of the same expression
that cannot be removed by further factorisation. This redundancy can be eliminated
by defining (and physically storing) the subexpression only once and referring to this
definition (using a pointer to the single stored copy) at each of its occurrences in the
representation.

Definition 4.4. A factorised representation with definitions, or d-representation for
short, is a set of named expressions {N1 := D1, . . . , Nn := Dn}, where each name Ni
is a unique symbol and each Di is an expression with products, unions, singletons and
names of other expressions. Formally, an expression over a schema S is of one of the
following:
— ∅, representing the empty relation over S,
— 〈〉, representing the relation consisting of the nullary tuple, if S = ∅,
— 〈A :a〉, representing the unary relation with a single tuple with value a, if S = {A}

and a is a value in the domain D,
— (E1∪· · ·∪En) representing the union of the relations represented by Ei, where each
Ei is an expression over S,

— (E1 × · · · ×En), representing the Cartesian product of the relations represented by
Ei, where each Ei is an expression over schema Si such that S is the disjoint union
of all Si.

— a name Ni of another expression Di over S, representing the same relation as Di.
The schema of a d-representation is the schema of its first expression D1. We require
that each Di only contains names Nj with j > i, and that each name Nj with j > 1 is
used at least once. In this article, unless explicitly defined otherwise, the name of an
expression Di will always be �Di (read: a pointer to Di). ✷

Any d-representation D over a schema S represents a relation JDK over S. For any
d-representationD consisting of expressions D1, . . . , Dn, we can start with the root ex-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:9

pression D1 and repeatedly replace the names �Dj by the expressions Dj until we ob-
tain a single expression without names, i.e., an f-representation. This f-representation
is called the traversal of D, and D represents the same relation as its traversal.

Any f-representation E can be identified with the d-representation {E}: E is the
traversal of {E} and they represent the same relation. Therefore, d-representations
also form a complete representation system for relational data.

Just as any f-representation has a parse tree, any d-representation has a directed
acyclic parse graph, which can be constructed as a collection of the parse trees of the
constituent expressions, in which any leaf corresponding to a reference �Dj is identi-
fied with the root of the parse tree of expressionDj . The traversal of a d-representation
viewed as a parse graph is constructed by listing its nodes in depth-first order with-
out marking them as visited (thus possibly listing some nodes multiple times). More
precisely, for any node N with edges to nodes C1, . . . , Cn, let traversal(N) be a tree with
a copy of N as a root and traversal(C1), . . . , traversal(Cn) as children subtrees; then
traversal of a d-representation D is traversal(root(D)).

Similar to f-representations, we use relational expressions with definitions and
parse graphs as interchangeable ways to describe d-representations.

Example 4.5. Consider the relation Rn over schema {A1, . . . , An} whose tuples are
all binary sequences (a1, . . . , an) with no two consecutive zeros. The d-representation
consisting of

D1,0 = 〈A1 :0〉, D1,1 = 〈A1 :1〉 and

Dk,0 = �Dk−1,1 × 〈Ak :0〉, Dk,1 = (�Dk−1,0 ∪
�Dk−1,1)× 〈Ak :1〉 for k = 2, . . . , n,

and root D = �Dn,0 ∪ �Dn,1, represents the relation Rn.2 This can be seen by showing
inductively over k that Dk,d represents the relation σAk=d(Rk). Depicted below is the
parse graph of D, and the parse tree of its traversal, for the case n = 2.

∪

×

〈A2 :0〉

×

∪

〈A1 :0〉 〈A1 :1〉

〈A2 :1〉

∪

×

〈A1 :1〉 〈A2 :0〉

×

∪

〈A1 :0〉 〈A1 :1〉

〈A2 :1〉

✷

Since f-representations are d-representations, all definitions and results for arbi-
trary d-representations mentioned in the sequel also apply to f-representations. We
next introduce several notions that are used later.

Definition 4.6. A d-representation is normal if
— it contains no empty relation or nullary singleton as a subexpression, unless it is

itself the empty relation or the nullary singleton,
— all its products are at least binary, and
— no child of a union is a union. ✷

The first condition in Definition 4.6 ensures that an expansion of a normal d-repre-
sentation into a flat representation is a union of well-formed tuples.

Definition 4.7. By expanding a (non-empty, non-nullary) normal f-representation
using the distributivity of product over union, we obtain an equivalent flat f-
representation that is a union of products of non-nullary singletons, which we call

2In Definition 4.4 the expressions Di of a d-representation are indexed by natural numbers i = 1, . . . , n, but
any partial order with a least element is sufficient and can be re-indexed by consecutive naturals.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:10 D. Olteanu and J. Závodný

monomials. The monomials of a normal d-representation are those of its traversal. A
normal d-representation is deterministic if its monomials are all distinct. ✷

The monomials of a normal d-representation correspond to the tuples of the relation
obtained by interpreting the d-representation under bag semantics. For a deterministic
d-representation D the monomials are all distinct and hence they also correspond to
the tuples of its relation JDK under set semantics. In Section 4.4 we show that the
tuples of a normal and deterministic d-representation can be enumerated with time
delay proportional to the tuple size and independent of the number of tuples.

4.3. Representation Size

The size of a d-representation is determined by the total length of the expressions,
when stored as a set of factorised expressions, and by the number of its nodes plus
the number of its edges, when stored as a parse graph. Both measures are within a
constant factor of each other; we will next use the former one. A further size measure
is the number of singleton nodes in the representation.

Definition 4.8. The size |E| of a d-representation E is the total number of its single-
tons, empty set symbols, unions, products, and occurrences of expression names. The
number of singletons in E is denoted by ‖E‖. ✷

Although any relation has a flat f-representation, nested f-representations can be
exponentially more succinct than their equivalent flat f-representations, where the
exponent is the size of the schema.

Example 4.9. The f-representation (〈A1 :0〉 ∪ 〈A1 :1〉) × . . . × (〈An :0〉 ∪ 〈An :1〉) has
2n singletons, while any equivalent flat f-representation has n · 2n singletons. ✷

By deduplicating common subexpressions, d-representations can represent relations
even more succinctly than their traversal f-representations. This size reduction is sim-
ilar in spirit to the reduction in representation size for Boolean circuits when compared
to equivalent Boolean formulas.

Example 4.10. The d-representation D from Example 4.5 has size O(n), while the
size of its traversal is exponential in n since only the singleton 〈A1 :1〉 occurs Fn times
(Fn denotes the nth Fibonacci number). ✷

We will further study representation succinctness in Sections 7 and 9.

4.4. Constant-delay Enumeration of Encoded Records

Examples 4.9 and 4.10 show that f-representations and d-representations can be expo-
nentially smaller than the relations they represent. The records of a relation encoded
as a normal deterministic d-representation, or its f-representation traversal, can nev-
ertheless be enumerated with the same complexity as listing them from the relation.

THEOREM 4.11. The tuples of a normal deterministic d-representation D over a
schema S can be enumerated with O(|S|) delay and space.

PROOF. We assume that the d-representation is stored as a parse graph, but any
representation allowing constant-time enumeration of elements of unions and prod-
ucts is sufficient.

Enumeration algorithm. We explore the d-representationD using depth-first search.
For each union, we follow the edge to its first child, and construct a list L of nodes
visited in pre-order. We then repeat the following.
(1) We output the product of all singletons in L.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:11

(2) We find the last union node U in the list L for which its child C in L is not its last
child. If such U exists, we remove all nodes after C from L and replace C by the next
child of U . If such U does not exist, we terminate.

(3) We explore D using depth-first search. For each union in L, we follow the edge to
its child in L, and for each union not in L we follow the edge to its first child. We
update the list L to a list of nodes visited in pre-order during the search.
Termination. If we order the nodes of traversal(D) in pre-order, by each repetition

of step (3) the list L becomes lexicographically greater. Since there are finitely many
possible lists L, the algorithm terminates.

Correctness. The tuples of a deterministic d-representation are the same as its mono-
mials. Each monomial of a given normal d-representation D is a product of the sin-
gletons reached by recursively exploring D, choosing one child at each union and all
children at each product. Any choice of children at the unions of D corresponds to a
monomial of D, therefore, each product output in step (1) is a monomial of D. Con-
versely, for any monomial m of D, consider the choice of children at each union that
generates m, and let Lm be the pre-ordered list of nodes visited by a depth-first search
of D that only follows the chosen children at each union. During the execution of the
enumeration algorithm, the first union of L will cycle through its children, so eventu-
ally the child of the first union in L will be identical to Lm. The first time this happens,
all other unions in Lm will have their first child in Lm. The next union in L is then the
same as in Lm, and at some point its child in L will be identical to Lm. By induction
we can show that at some point, all unions in L will have the same children in L as
in Lm, hence L and Lm will be identical, and m will be output in the next execution of
step (1). Moreover, since L strictly increases under lexicographic order, each monomial
is only output once.

Delay and Space. For any choice of children at the unions, we reach exactly |S| sin-
gletons; one for each attribute. Since the products are at least binary, we reach at most
|S| − 1 of them, and since there are no directly nested unions, the number of reached
unions is O(|S|). The size of L is therefore O(|S|), and steps (1) and (2) of the algo-
rithm take time O(|S|). The initial depth-first search takes time linear in the number
of explored nodes, which is O(|S|). The same holds for the depth-first search in step
(3). Its choices of children at unions are at first dictated by the list of nodes L, but the
nodes in L are listed in pre-order, so each can be accessed in constant time during the
search.

Note that O(|S|) delay is optimal since each tuple has size O(|S|); the same time
delay is achieved when listing the tuples from a readily materialised list. With respect
to data complexity (where the schema size is constant), we thus enumerate the tuples
with constant delay and space.

5. F-TREES AND D-TREES

In this section we introduce classes of normal f-representations and d-representations
with uniform nesting structures, called f-trees and d-trees respectively. Similar to re-
lational schemas, f-trees and d-trees specify the set of attributes of the represented re-
lation. In addition, they encode structural information that acts as a data-independent
factorisation pattern for f-representations and d-representations. In the next sections,
we define the space of possible f-trees and d-trees for any result of a given query Q
and show how to efficiently find representations that have optimal sizes within such
classes. While size optimality of succinct representations is in general hard to achieve
as it draws back to minimality of logic functions using algebraic factorisation [Brayton
1987], we are able to give such optimality results for representations within the classes
of f-trees and d-trees, where the expensive computation depends only on the size of

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:12 D. Olteanu and J. Závodný

these small class descriptions and not on the size of the data. Furthermore, recent
work showed that f-trees can effectively guide query processing on f-representations
as they give a measure for how expensive structural transformations of representa-
tions can be [Bakibayev et al. 2012; Bakibayev et al. 2013].

We next give exact conditions under which a relation admits an f-representation over
a given f-tree (or d-representation over a given d-tree) and precisely characterise such
representations if they exist. We also give algorithms to compute these representations
in quasilinear time complexity.

5.1. F-trees for F-representations

We first introduce f-trees, which define the schemas as well as the nesting structures
of f-representations.

Definition 5.1. An f-tree over a schema S is a rooted forest with each node labelled
by a non-empty subset of S such that each attribute of S occurs in exactly one node. ✷

An f-tree dictates the nesting structure of an f-representation: the shape of the f-tree
specifies a hierarchy of attributes by which we group the tuples of the represented re-
lation in the f-representation. We group the tuples of the relation by the values of the
attributes labelling the root, factor out the common value in each group, and then con-
tinue recursively on each group using the attributes lower in the f-tree. Branching into
several subtrees denotes (conditional) independence of attributes in the different sub-
trees; this leads to a product of f-representations over the individual subtrees. For each
node, all attributes labelling the node have equal values in the represented relation.

Definition 5.2. We say that an f-representation E is over a given f-tree T if it sat-
isfies the following:
— If T is empty, then E = ∅ or E = 〈〉.
— If T is a single node labelled by {A1, . . . , Ak}, then

E =
⋃

a〈A1 :a〉 × · · · × 〈Ak :a〉

where the union
⋃

a is over a collection of distinct values a.
— If T is a single tree with a root labelled by {A1, . . . , Ak} and a non-empty forest U

of children, then

E =
⋃

a〈A1 :a〉 × · · · × 〈Ak :a〉 × Ea

where each Ea is an f-representation over U and the union
⋃

a is over a collection of
distinct values a.

— If T is a forest of trees T1, . . . , Tk, then

E = E1 × · · · × Ek

where each Ei is an f-representation over Ti. ✷

Example 5.3. Consider a relation with schema {A,B,C} and domain D = {1, . . . , 5}
that represents the inequalities A < B < C, as in Example 1.1. An f-representation of
this relation over the following f-tree is given next.

B

A C

〈B :2〉 × 〈A :1〉 × (〈C :3〉 ∪ 〈C :4〉 ∪ 〈C :5〉) ∪

〈B :3〉 × (〈A :1〉 ∪ 〈A :2〉) × (〈C :4〉 ∪ 〈C :5〉) ∪

〈B :4〉 × (〈A :1〉 ∪ 〈A :2〉 ∪ 〈A :3〉)× 〈C :5〉. ✷

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:13

Example 5.4. An f-representation over a disconnected f-tree (forest) is a prod-
uct decomposition of the represented relation. For example, the f-representation
(〈A :a1〉 ∪ 〈A :a2〉) × (〈B :b1〉 ∪ 〈B :b2〉) from Example 4.2 is over the f-tree consisting
of two disconnected root nodes A and B. ✷

For a given f-tree T over a schema S, not all relations over S have an f-representation
over T since the subexpressions over subtrees that are siblings in T must appear
in a product and this may not be possible for all relations. However, in case an f-
representation over a given f-tree exists, it is unique up to the commutativity of prod-
uct and union, and we characterise it precisely in the following section.

Example 5.5. The relation {〈1, 1, 1〉, 〈2, 1, 2〉} over schema {A,B,C} does not admit
an f-representation over the f-tree from Example 5.3, since any such f-representation
must essentially be of the form 〈B :1〉 ×EA ×EC , where EA is a union of A-values and
EC is a union of C-values. ✷

PROPOSITION 5.6. Any f-representation over an f-tree is normal and deterministic.

PROOF. The normality condition is syntactic and easy to prove: from Definition 5.2
of an f-representation E over an f-tree T , E contains no ∅ or 〈〉 unless it is ∅ or 〈〉 itself,
there are no directly nested unions, and all expressions in Definition 5.2 can be parsed
so that all products have at least two arguments.

Determinism can be proven by bottom-up induction over T . For any node A, any f-
representation over A is deterministic as it is a union of 〈A :a〉 for distinct values a. For
a single tree T with root A and forest of children U , any f-representation Ea over U is
deterministic by the induction hypothesis, and hence the f-representations 〈A :a〉 ×Ea
are all deterministic and disjoint for different a. Hence any f-representation over T of
the form

⋃

a〈A :a〉×Ea is also deterministic. Finally, any f-representation over a forest
T1, . . . , Tk is a product of f-representations over the Ti. Each of these is deterministic
by the induction hypothesis, and the product of deterministic f-representations over
disjoint schemas is deterministic.

We next introduce notations concerning f-trees. For any node A of an f-tree T , TA
denotes the subtree of T rooted at A. By a subtree of T we mean a subtree of the form
TA for some A. By a forest of T we mean a set {TB} of all children B of some node
in T or of all roots B of T .We denote by anc(A) the set of all attributes at nodes that
are ancestors of A in T , and by path(A) the set of attributes at the ancestors of A
and at A. We overload the function anc to also retrieve the set of ancestor attributes
of attributes, subtrees and forests. The node containing an attribute A or attributes
{Ai} is denoted by A and we speak interchangeably of an f-tree node and of its set of
attributes. For any node A = {A1, . . . , Ak}, we use the shorthand 〈A :a〉 for the product
〈A1 :a〉 × · · · × 〈Ak :a〉. Finally, we use shorthands such as πA, πTA

or πU to mean the
projection on the attributes of a node A, a subtree TA or a forest U , and anc(A) = t to
mean the selection condition ∧B∈anc(A)B = t(B), which enforces that tuples agree with
t on the attributes anc(A).

Example 5.7. In the left f-tree in Figure 1 on page 18, path(C) is the union of all
attribute sets at nodes on the root-to-leaf path ending at C: path(C) = A ∪ B ∪ C =
{AR, AS , AT , BR, BS , C}. The tree TB has root B = {BR, BS} and children C = {C} and
D = {D}. ✷

5.2. Constructive Definition of F-representations over F-trees

For any relation R and any f-tree T over the same schema, we now explicitly define
an f-representation T (R). We then prove that T (R) is the unique f-representation of

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:14 D. Olteanu and J. Závodný

R over T , if one exists. The constructive characterisation of T (R) is used later in this
article to reason about the representability of query results by f-representations, to
construct f-representations algorithmically and to derive bounds on their size.

As the basic building block of T (R), we first define f-representations E(R,X , t) over
subtrees or forests X of T and (context) tuples t over attributes anc(X). They are com-
puted from relations πXσanc(X)=tR, which are vertical-horizontal partitions of R, but
may not necessarily represent them exactly. We then specify conditions under which
each E(R,X , t) indeed represents the relation πXσanc(X)=tR and show how their com-
position into the f-representation T (R) represents the relation R.

Definition 5.8. Let T be an f-tree and R a relation over the same schema. Let T (R)
be the expression E(R, T , 〈〉), where for any subtree or forest X in T , and any tuple t
over anc(X), the expression E(R,X , t) is defined recursively as follows.
— For any leaf A,

E(R, TA, t) =
⋃

a∈A〈A :a〉,

where A = πA1σanc(A)=tR and A1 ∈ A.
— For any subtree TA with root A and children T1, . . . , Tk,

E(R, TA, t) =
⋃

a∈A〈A :a〉 × E(R, {T1, . . . , Tk}, t× 〈A :a〉),

where A = πA1σanc(A)=tR and A1 ∈ A.
— For each non-empty forest {T1, . . . , Tk},

E(R, {T1, . . . , Tk}, t) = E(R, T1, t)× · · · × E(R, Tk, t).

— For T empty, E(R, T , 〈〉) is ∅ if R = ∅ and 〈〉 otherwise. ✷

The f-representation T (R) represents the relation R if (i) the attributes at the same
node of T always have equal values, and (ii) each time the recursive definition of
E(R,X , t) encounters branching in T , the respective partition of the relation can be
written as a product of relations represented by the individual branches. We next for-
malise this intuition.

Definition 5.9. An f-tree T is valid for a relation R over the same schema if
— for each node A of T , the attributes of A have equal values in all tuples of R, and
— for each forest U = {T1, . . . , Tk} of T and each t ∈ πanc(U)(R), the relation
πU (σanc(U)=t(R)) is a product of projections πTi

(σanc(U)=t(R)) to Ti. ✷

PROPOSITION 5.10. A relation R has an f-representation over an f-tree T iff T is
valid for R. Any f-representation of R over T is equal to T (R) up to commutativity of
product and union.

Example 5.11. For the relation R = {(a, b, c) : a < b < c} over {1, . . . , 5}, and the
f-tree T with root B and children A and C, as given in Example 5.3, we have

E(R,A, 〈B :2〉) = 〈A :1〉, E(R, C, 〈B :2〉) = 〈C :3〉 ∪ 〈C :4〉 ∪ 〈C :5〉, and

E(R, {A, C}, 〈B :2〉) = 〈A :1〉 × (〈C :3〉 ∪ 〈C :4〉 ∪ 〈C :5〉),

and similarly for E(R, {A, C}, 〈B :3〉) and E(R, {A, C}, 〈B :4〉). The expression

E(R, T , 〈〉) is the union
⋃4
b=2E(R, {A, C}, 〈B :b〉). Moreover, the relation π{A,C}(σB=2R)

is a product of projections 〈A :1〉 and (〈C :3〉 ∪ 〈C :4〉 ∪ 〈C :5〉) to A and C respectively,
and similarly for B = 3 and B = 4. Therefore, T is valid for R, and T (R) = E(R, T , 〈〉)
is the unique f-representation of R over T , fully shown in Example 5.3.

For R
′ = {〈1, 1, 1〉, 〈2, 1, 2〉} from Example 5.5 and the same f-tree T ,

E(R′
,A, 〈B :1〉) = 〈A :1〉 ∪ 〈A :2〉, E(R′

, C, 〈B :2〉) = 〈C :1〉 ∪ 〈C :2〉, and

E(R′
, {A, C}, 〈B :1〉) = (〈A :1〉 ∪ 〈A :2〉)× (〈C :1〉 ∪ 〈C :2〉),

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:15

with E′(R, T , 〈〉) = E′(R, {A, C}, 〈B :1〉). However, the relation π{A,C}(σB=1R
′) =

〈A :1〉× 〈C :1〉 ∪ 〈A :2〉× 〈C :2〉 is not the product of projections to A and C, so T is
not valid for R

′ and JT (R′)K 6= R
′. ✷

5.3. D-trees for D-representations

D-trees are f-trees where we make explicit the dependencies of attributes. This
(in)dependency information can be effectively used to detect repetitions of expres-
sions in f-representations, and construct d-representations where the repetitions are
avoided, hence increasing the succinctness of the representation.

Definition 5.12. A d-tree T � is an f-tree T in which each node A is annotated by a
set of attributes key(A) such that
— key(A) ⊆ anc(A),
— key(A) is a union of nodes, and
— for any child B of A, key(B) ⊆ key(A) ∪ A. ✷

The set key(A) specifies the ancestor attributes of A on which the attributes in the
subtree rooted at A may depend. Naturally, if B is a child of A and TA may only de-
pend on key(A), then TB may only depend on key(A) ∪ A, this is stipulated by the last
condition in Definition 5.12. For an example d-tree see, e.g., Figure 4 right on page 35.

In the sequel, we always denote by T � a d-tree and by T its underlying f-tree. All
notation for f-trees carries over to d-trees. We also define key(TA) = key(A) for any
subtree TA, and key(U) =

⋃

i key(Ti) for any forest U of subtrees {Ti}.

5.4. Constructive Definition of D-representations over D-trees

We now explicitly define the d-representation T �(R) for a d-tree T � and relation R.
The d-representation is defined similarly to the f-representation T (R), except now
the expressions D(R,X , t) only depend on t ∈ key(X) instead of t ∈ anc(X). We also
establish conditions on the relation R under which the d-representation over T � exists,
and show that f-representations over f-trees are a special case of d-representations
over d-trees.

Definition 5.13. Let T � be a d-tree and R a relation over the same schema. We
define T �(R) to be the set of expressions D(R,X , t) for all subtrees or forests X in T
and all t ∈ πkey(X)(R), where the expressions D(R,X , t) are defined as follows:
— For any leaf A,

D(R,A, t) =
⋃

a∈A〈A :a〉,

where A = πA1σkey(A)=tR and A1 ∈ A.
— For any subtree TA with root A and a forest of children U = {T1, . . . , Tk},

D(R, TA, t) =
⋃

a∈A〈A :a〉 × �D(R,U , πkey(U)(t× 〈A :a〉)),

where A = πA1σkey(A)=tR and A1 ∈ A.
— For any non-empty forest {T1, . . . , Tk},

D(R, {T1, . . . , Tk}, t) =
�D(R, T1, πkey(T1)t)× · · · × �D(R, Tk, πkey(Tk)t).

If T is empty, then T �(R) is the set consisting of the expression D(R, T , 〈〉) that is ∅ if
R = ∅ and 〈〉 otherwise. ✷

The definition of T �(R) is the same as T (R) except that its expressions are not
inlined recursively but only referenced in other expressions, and all expressions
E(R,X , t) whose context t agree on the values of key(X) have been replaced by a single
expression D(R,X , πkey(X)t). If all replaced expressions E(R,X , t) were indeed equal

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:16 D. Olteanu and J. Závodný

to D(R,X , πkey(X)t), then the traversal of T �(R) is T (R) and they represent the same
relation. We next specify a precise condition on R and T � when this happens.

Definition 5.14. A d-tree T � is valid for a relation R if
— T is valid for R and
— for any node A and any tuples t1, t2 over anc(A) such that πkey(A)(t1) = πkey(A)(t2),

it holds that πTA
(σanc(A)=t1(R)) = πTA

(σanc(A)=t2(R)).

The first condition ensures that T (R) represents R and the second condition ensures
that the traversal of T �(R) is T (R). This is formalised in the following proposition.

PROPOSITION 5.15. If T � is valid for R, then T �(R) is a d-representation of R and
its traversal is T (R).

A d-representation is normal (deterministic) if its traversal is normal (respectively
deterministic). Since any f-representation T (R) is normal and deterministic, by Propo-
sition 5.15 it follows that any d-representation T �(R) is normal and deterministic.

If T is a valid f-tree for a relation R, the annotation key(A) = anc(A) for all nodes A
yields a valid d-tree T �, the subexpressions D(R,X , t) of T �(R) correspond one-to-one
to the subexpressions E(R,X , t) of T (R), and each D(R,X , t) is used at most once, so
there is no sharing of subexpressions. F-representation over f-trees are thus a special
case of d-representations over d-trees.

Example 5.16. Consider the relation R = {(a, b, c) : 1 ≤ a < b < c ≤ 5} from
Example 5.3 and the f-tree T2 with root A, child B, and its child C. The corresponding
f-representation is (singleton types omitted)

T2(R) = 〈1〉×
(

〈2〉×(〈3〉 ∪ 〈4〉 ∪ 〈5〉) ∪ 〈3〉×(〈4〉 ∪ 〈5〉) ∪ 〈4〉×〈5〉
)

∪

〈2〉×
(

〈3〉×(〈4〉 ∪ 〈5〉) ∪ 〈4〉×〈5〉
)

∪

〈3〉×〈4〉×〈5〉,

where the expressions E(R, C, 〈1, 3〉) = E(R, C, 〈2, 3〉) = (〈4〉 ∪ 〈5〉) and E(R, C, 〈1, 4〉) =
E(R, C, 〈2, 4〉) = E(R, C, 〈3, 4〉) = 〈5〉 are equal because the possible values of C are
determined by the value of B, independent of A.

We can set key(A) = ∅, key(B) = A and key(C) = B to obtain the d-tree T �

2 , for which

D(R, C, 〈B :2〉) := 〈C :3〉 ∪ 〈C :4〉 ∪ 〈C :5〉,

D(R, C, 〈B :3〉) := 〈C :4〉 ∪ 〈C :5〉,

D(R, C, 〈B :4〉) := 〈C :5〉,

D(R, T2B, 〈A :1〉) := 〈B :2〉×�
D(R, C, 〈B :2〉 ∪ 〈B :3〉×�

D(R, C, 〈B :3〉 ∪ 〈B :4〉×�
D(R, C, 〈B :4〉),

D(R, T2B, 〈A :2〉) := 〈B :3〉×�
D(R, C, 〈B :3〉 ∪ 〈B :4〉×�

D(R, C, 〈B :4〉),

D(R, T2B, 〈A :2〉) := 〈B :4〉×�
D(R, C, 〈B :4〉), and

D(R, T2, 〈〉) := 〈A :1〉×�
D(R, T2B, 〈A :1〉 ∪ 〈A :2〉×�

D(R, T2B, 〈A :2〉 ∪

〈A :3〉×�
D(R, T2B, 〈A :3〉).

Then T �

2 (R) consists of the above expressions with root D(R, T2, 〈〉). Note for example
that the expression (〈C :4〉 ∪ 〈C :5〉) with two singletons is repeated twice in T2(R), but
in T �

2 (R) it is defined only once as D(R, C, 〈B :3〉) and then referred to symbolically. ✷

5.5. Computing F-representations and D-representations

We show that for any relation R and a d-tree T � valid for R, the constructive Defini-
tion 5.13 of the d-representation T �(R) can be converted into an algorithm computing

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:17

T �(R) with quasilinear data complexity (Proposition 5.17). The result naturally sub-
sumes the case of f-representations over f-trees and is asymptotically optimal up to the
logarithmic factor (with respect to data complexity).

PROPOSITION 5.17. Given a relation R over schema S and a d-tree T � valid for R,
the d-representation T �(R) can be computed in time O(|R| · log |R| · |S| · |T |2).

PROOF. By Definition 5.13, the d-representation T �(R) consists of the following ex-
pressions. For each subtree TA and any t ∈ πkey(A)(R) we have

D(R, TA, t) =
⋃

a∈A〈A :a〉 × �D(R,U , πkey(U)(t× 〈A :a〉)),

where A = πAσkey(A)=tR, and U is the forest of children of A (if U is empty, the ex-
pression D(R,U , ·) is omitted). For each forest U of sibling subtrees T1, . . . , Tk and any
t ∈ πkey(U)(R) we have

D(R,U , t) = �D(R, T1, πkey(T1)t)× · · · × �D(R, Tk, πkey(Tk)t).

Algorithm. For any node A, sort the entire relation R by key(A) ∪ A, so that it is
grouped by key(A), and the groups corresponding to t ∈ πkey(A)R are grouped by A,
the subgroups corresponding to πAσkey(A)=tR. All expressions D(R, TA, t) can be con-
structed from this information in one linear pass through R. Similarly, for any forest
U , group the entire relation by key(U), and in one pass through R, construct the expres-
sion D(R,U , t) for each t ∈ πkey(U)(R). In the implementation, index the expressions
D(R,X , t) only by X and t, as R is the same for all expressions. To create a parse
graph of the d-representation, construct a parse graph of each expression separately,
insert all expression names into an associative map, and redirect all edges ending at a
reference �D to the root of D.

Running time. The relation has |R| tuples of size |S| each. Sorting the relation thus
takes time O(|R|·log |R|·|S|). Constructing each reference �D(R,X , t) takes timeO(|S|)
and there are O(|T |) references in each expression. There are at most |R| expressions
computed in each linear pass. There is one linear pass for each node and forest in T ,
so the total running time of the algorithm is O(|R| · log |R| · |S| · |T |2). Each operation
in an associative map of O(|R| · |T |2) names takes time O(log |R|+ log |T |), so creating
the parse tree does not increase the time complexity.

6. FACTORISABILITY OF QUERY RESULTS

In this section we study the factorisability of results of conjunctive queries using f-
representations and d-representations over f-trees and respectively d-trees. In partic-
ular, for any conjunctive query Q, we characterise the f-trees (d-trees) over which all
results of Q admit an f-representation (and respectively a d-representation). This al-
lows us to choose an f-tree or a d-tree for representing a query result by static analysis
of the query syntax only, without consulting the input data. In conjunction with the up-
per bounds on representations over f-trees and d-trees, given in Section 7, the results
of this section yield asymptotic upper bounds on the resulting factorisation size.

We consider without loss of generality f-trees and d-trees whose nodes correspond
bijectively to the equivalence classes of head attributes in the input query Q; a detailed
justification is given in Remark 6.3.

6.1. F-trees for Queries

In Section 3 we defined the notion of Q-dependent attributes for a conjunctive query
Q, and showed that Q-dependent attributes can be dependent in some results of Q. We
use this property to characterise the f-trees that factorise all results of Q.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:18 D. Olteanu and J. Závodný

AR, AS, AT

BR, BS

C D

ET

BR, BS

AR, AS, AT

C D ET

BR, BS

AR, AS , AT

C ET

D

AT

C

D

ET

AT

C D ET

Fig. 1. Left to right: two valid f-trees T1 and T2 and one invalid f-tree for query Q1 in Example 6.2. A valid
and an invalid f-tree for the query πAT ,C,D,ET

Q1 in Example 6.2.

PROPOSITION 6.1. Let Q be a conjunctive query and T be an f-tree whose nodes are
equivalence classes of attributes of Q. Then, Q(D) has an f-representation over T for
any database D iff any two Q-dependent nodes lie along a root-to-leaf path in T .

The intuition behind Proposition 6.1 is as follows. Setting aside the condition that
attributes in a node have equal values, an f-tree T is valid for a relation R if any two
sibling subtrees in T are independent conditioned on their common ancestors in T .
Since Q-dependent attributes are dependent in some results of Q, they cannot lie in
sibling subtrees of T , i.e., they must lie on a root-to-leaf path.

PROOF OF PROPOSITION 6.1. We first show that the path condition is necessary.
Let A and B be nodes that do not lie along a root-to-leaf path in T ; they lie in sibling
subtrees Ta and Tb of some forest U of T . If Q(D) has an f-representation over T , then
in this f-representation, for any c over anc(U) the fragment πUσanc(U)=cQ(D) is repre-
sented by a single expression E(R,U , c), and hence σanc(U)=cQ(D) is a product of its
projections πUσanc(U)=cQ(D) and πT \Uσanc(U)=cQ(D). Moreover, for any c, the relation
πUσanc(U)=cQ(D) is a product of its projections to the individual subtrees, including
πTa

Q(D) and πTb
Q(D). Therefore,

Q(D) = πTa∪anc(U)Q(D) ✶anc(U) πTb∪anc(U)Q(D) ✶anc(U) πT \Ta\Tb
Q(D),

so A and B are independent conditioned on anc(U) in Q(D), and hence they are not
Q-dependent. It follows that any two Q-dependent nodes do lie on a root-to-leaf path
in T .

Conversely, we prove that if any two dependent nodes lie along a root-to-leaf path,
then for any forest U of subtrees Tj in T , and any tuple t ∈ πanc(U)(Q(D)), the relation
πU (σanc(U)=t(Q(D))) is a product of its projections to the subtrees Tj . Let Tj be the set
of attributes in Tj together with all equivalent and dependent attributes. Then any
relation with attributes in some Tj has all its attributes in Tj or equivalent to anc(U),
and hence σanc(U)=t(×iRi) is a product of its projections πTj

σanc(U)=t(×iRi), anc(U), and
the remaining attributes. Thus

πU (σanc(U)=t(Q(D))) = πU (σanc(U)=t(πP (σψ(×iRi)))) = πU (σψ(σanc(U)=t(×iRi)))

is a product of its projections to Tj .

The condition in Proposition 6.1 is called the path condition. Any f-tree satisfying the
path condition is valid for the query Q: we call it an f-tree of Q. Proposition 6.1 shows
that an f-tree is valid for a query Q if and only if it is valid for all possible results of Q.

In the simpler case of an equi-join query Q (thus without projection), two nodes are
Q-dependent whenever they contain attributes that belong to the same relation. The
path condition for an equi-join query then states that the attributes of any relation
must lie along a root-to-leaf path in T .

Example 6.2. Consider the relations R, S and T over schemas {AR, BR, C},
{AS , BS , D} and {AT , ET } respectively and the equi-join query Q1 = σψ(R × S × T)

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:19

with ψ = (AR = AS = AT , BR = BS). The first and second f-trees in Figure 1 are valid
for Q1. The third f-tree is invalid since the attributes AS and D are both from relation
S and hence Q1-dependent, but are not on a common root-to-leaf path.

Consider now the query πAT ,C,D,ET
Q1. The attribute class {BR, BS} is entirely pro-

jected out, so the attributes of R and S are now Q1-dependent, and hence the corre-
sponding nodes {AT }, {C}, {D} are Q1-dependent. The relation T induces the depen-
dency of the nodes {AT } and {ET }. The fourth f-tree in Figure 1 satisfies the path
condition and hence is valid for our query, while the fifth f-tree, which is obtained by
removing the attributes projected away from the first f-tree in Figure 1, is not valid. ✷

Remark 6.3. Proposition 6.1 only considers f-trees whose node labels coincide with
the attribute classes of Q. For other f-trees of the same schema as Q, the characteri-
sation can be extended as follows. If two attributes not equivalent in Q label the same
node in T , thenQ(D) does not always have an f-representation over T . If two attributes
equivalent in Q are in different nodes of T and they have no equivalent common an-
cestor, then Q(D) also need not have an f-representation over T . The f-trees left out
are those where several nodes have attributes from the same class, and for each class,
among the nodes containing attributes of that class, there is one which is an ancestor
of the others. For any such f-tree, Q(D) always has an f-representation over T , but the
f-tree constructed by pushing up all attributes of a class to the top-most node labelled
by an attribute in that class defines f-representations with smaller or equal size. For
the purpose of this work, Proposition 6.1 thus characterises all interesting f-trees. ✷

6.2. D-Trees for Queries

We now extend our characterisation of f-trees, over which all results of a given query
Q admit an f-representation, to d-trees and d-representations: The underlying f-tree of
the d-tree must be valid for Q, and for any node B of T �, the subtree TB may only be
dependent on those ancestors of B that are in the set key(B).

Definition 6.4. A d-tree T � is valid for a query Q if the f-tree T is valid for Q and
there is no node B with an ancestor A 6⊆ key(B) and a descendant C such that A and C
are Q-dependent. ✷

PROPOSITION 6.5. Let Q be a conjunctive query and let T � be a d-tree whose nodes
are equivalence classes of attributes of Q. Then Q(D) has a d-representation over T � for
any database D iff T � is valid for Q.

Consider a query Q and a valid f-tree T . We can obtain a valid d-tree by defining
key(B) = anc(B) for all nodes B, since then no node B has an ancestor A 6⊆ key(B), and
the validity condition holds vacuously. Furthermore, the nodes of anc(B) can be divided
into those that are Q-dependent on some node from TB, and those that are not. Each
node Q-dependent on a node in TB must be in key(B) for the d-tree to be valid, yet the
others need not be in key(B). As we show in the following section, by shrinking the set
of keys at a node, the resulting d-representation decreases in size. Therefore, we will
often consider the minimal possible keys of an f-tree.

Definition 6.6. The minimal d-tree of an f-tree T for a query Q is the d-tree T �

where for each node B, key(B) is the set of all nodes of anc(B) which are Q-dependent
on some node from TB. ✷

Example 6.7. Consider the query Q2 from Example 7.17, whose hypergraph is de-
picted in Figure 2 left, and the d-tree T �

4 depicted in Figure 2 right. The f-tree T4
is a single root-to-leaf path, so it is valid for Q2. The only node N in T �

4 for which
key(N) 6= anc(N) is the leaf E ; no attributes from B are in key(E). However, no at-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:20 D. Olteanu and J. Závodný

tributes from the subtree TE = E are Q-dependent on B. Therefore, T �

4 is also valid for
Q2. In fact, it is the minimal d-tree of its underlying f-tree T4.

6.3. Extensions of F-trees and D-trees

We present an alternative characterisation of the d-trees of a conjunctive query Q via

d-trees of its equi-join Q̂. Given an d-tree T̂ � of Q̂, a first approach to obtain a d-tree

T � of Q is to remove the attributes from T̂ � that are projected away in Q. A prob-
lem arises when all attributes of a node are projected away: the node remains without
attributes and the d-tree is no longer well-formed. Moreover, the expressions of the
corresponding union would not be labelled by distinct singletons, and the resulting
d-representation may encode duplicate products of singletons and hence cease to be
deterministic. Hence we would lose the desirable property of optimal delay tuple enu-
meration (cf. Theorem 4.11).

Removing an empty node from the d-tree is also not always feasible as illustrated
by Example 6.2: the attributes in its children subtrees may become dependent, which
invalidates the d-tree. However, removing an empty leaf never invalidates the d-tree.
This observation leads to an alternative characterisation of d-trees of arbitrary con-
junctive queries.

Definition 6.8. An extension of a d-tree T � (f-tree T) of a conjunctive query Q is a

d-tree T̂ � (f-tree T̂) of the equi-join Q̂ of Q such that T � (T) can be obtained from T̂ � (T̂)
by erasing the non-head attributes in Q and repeatedly removing empty leaf nodes. ✷

PROPOSITION 6.9. Let Q be a conjunctive query. A d-tree T � and an f-tree T are

valid for Q iff there exists an extension T̂ � of T �, and respectively an extension T̂ of T .

PROOF. First we prove the claim for f-trees. Let T be an f-tree valid for Q, so that
any two Q-dependent nodes lie on a single root-to-leaf path. If we add equivalent non-
head attributes to the existing nodes, their Q-dependence does not change. The rela-
tions of Q can be partitioned into equivalence classes of relations that are either joined
by attributes that are all projected out, or connected by a chain of thus joined rela-
tions. For any such class R of relations, any two of their attributes are Q-dependent,
and hence all of them lie on a single root-to-leaf path (no two of the attributes can lie
in sibling subtrees). Let L be a lowest node on that path with an attribute from R.
Add a path of nodes under L, each node labelled by an equivalence class of non-head
attributes from R. Then for any relation R ∈ R, the attributes of R lie on a single
root-to-leaf path extending the path ending at L. If we do this for all such classes R
of relations, the path constraint will be satisfied for all relations of Q. Moreover, the
obtained tree T̂ will be an extension of T .

Conversely suppose that there exists an f-tree T̂ valid for Q̂ which is an extension of
T . We will show by contradiction that T is valid for Q: suppose that T is invalid, i.e.,
that two Q-dependent nodes A and B are in sibling subtrees TA and TB . Since A and B
are Q-dependent, their respective nodes in T̂ (call them C0 and Ck) contain dependent
attributes. Therefore, there exist relations R1, . . . , Rk such that Ri and Ri+1 are joined

on attributes from a node Ci of T̂ labelled only by non-head attributes of Q, and R1 has
an attribute in C0 and Rk an attribute in Ck. Since T̂ is valid for Q̂, the attributes of
each Ri lie on a single root-to-leaf path. However, since C0 ∈ TA and Ck ∈ TB , there
must exist a relation Ri for which Ci ∈ TA and Ci+1 ∈ TB . This is a contradiction to all
attributes of Ri lying on a single root-to-leaf path in T .

Finally we prove the claim for d-trees. If a d-tree T � is valid, then its f-tree T is
valid and it has an extension T̂ by the above. By defining key(A) for each new node A

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:21

to be the set of ancestors of A that are dependent on A, we create a valid d-tree T̂ �.

Conversely, if there exists an extension T̂ � of T � then T̂ is an extension of T and hence
T is valid for Q, and the keys key(A) on T make it a valid d-tree for Q since the same

keys key(A) make the extension T̂ � valid for Q̂.

Example 6.10. The fourth f-tree from the left in Figure 1 is valid for the query
πAT ,C,D,ET

Q1 and can be extended to an f-tree T̂ forQ1 by adding a leaf with attributes
BR, BS under D, and adding the attributes AR, AS to the node labelled by AT . The f-
tree T̂ then satisfies the condition from Proposition 6.9.

The fifth f-tree in Figure 1 cannot be extended to an f-tree valid for Q1, since the leaf
BR, BS would have to be a descendant of C and also a descendant of D. ✷

7. SIZE BOUNDS

The main result of this section is a characterisation of conjunctive queries based on
the size of f-representations and d-representations of their results. We summarise the
characterisation in the following restatement of Theorems 7.13, 7.16, 7.22 and 7.25,
proved later in this section.

THEOREM 7.1. For any non-Boolean query Q = πPσψ(R1 × · · · × Rn) there is a
rational number s(Q) such that:

— For any database D, Q(D) admits an f-representation with size O(|P| · |D|s(Q)).
— For any f-tree T of Q, there exist arbitrarily large databases D for which the f-

representation of Q(D) over T has size Ω((|D|/|Q|)s(Q)).
There is also a rational number s�(Q) such that:

— For any database D, Q(D) admits a d-representation with size O(|P|2 · |D|s
�(Q)).

— For any d-tree T � of Q, there exist arbitrarily large databases D for which the d-

representation of Q(D) over T � has size Ω((|D|/|Q|)s
�(Q)).

In this section we only consider non-Boolean queries; results of Boolean queries can
be represented by either the nullary tuple or the empty relation, both of size 1.

The corresponding upper and lower bounds from Theorem 7.1 meet with re-
spect to data complexity. For a fixed query Q and any database D, Q(D) admits
an f-representation with size O(|D|s(Q)) but any f-tree defines infinitely many f-
representations of size Ω(|D|s(Q)). Similarly, Q(D) admits a d-representation of size

O(|D|s
�(Q)) but any d-tree defines infinitely many d-representations of size Ω(|D|s

�(Q)).
The lower bounds as stated above hold with respect to a fixed f-tree or a fixed d-tree.

We also generalise them to the language of all f-representations over all f-trees, and
all d-representations over all d-trees. The following is a restatement of Theorems 7.23
and 7.26.

THEOREM 7.2. For any fixed non-Boolean query Q, there exist arbitrarily large
databases D for which any f-representation of the result Q(D) over any f-tree has size

Ω(|D|s(Q)), and there exist arbitrarily large databases D for which any d-representation

of the result Q(D) over any d-tree has size Ω(|D|s
�(Q)).

A precise definition of the parameters s(Q) and s�(Q) characterising the query Q is
given later in this section, and their relationship to each other and to other known
measures will be explored in the following section.

To prove Theorems 7.1 and 7.2, we first bound the size |D| of a d-representationD in
terms of the number of its singletons ‖D‖. We then derive an expression for the exact
number of singletons ‖T �(R)‖ of a d-representation T �(R) as a function of the relation
R and the d-tree T �. We then derive upper and lower bounds on this number in case

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:22 D. Olteanu and J. Závodný

R is a query result Q(D), as functions of the query Q and the size |D| of the input
database. We adapt these results for the special case of f-representations over f-trees.

In the following, all formal statements referring to queries Q and d-trees T � or f-
trees T assume universal quantification over all conjunctive queries Q and all d-trees
T � of Q or f-trees T of Q, unless explicitly stated otherwise.

7.1. Size and Number of Singletons

The size |D| of a d-representation is defined to be the number of its singletons ‖D‖ plus
the number of empty set symbols, unions, products and references to other expressions.
For d-representations over d-trees, we show that the size is not significantly larger
than the number of singletons.

LEMMA 7.3. For any relation R and any d-tree T � valid for R, the size of the d-
representation T �(R) satisfies the bound |T �(R)| = O(‖T �(R)‖ · |T |).

PROOF. By Definition 5.13, the d-representation T �(R) consists of factorised ex-
pressions of the form

D(R, TA, t) =
⋃

a∈A〈A :a〉 × �D(R,U , t′) for subtrees TA, and

D(R,U , t) = �D(T1, t
′
1)× · · · × �D(Tk, t

′
k) for forests U ,

where in the first expression the reference �D(R,U , t′) is omitted if U is empty, 〈A :a〉
is the product of singletons 〈Ai :a〉 for all Ai ∈ A, and T1, . . . , Tk are the trees compris-
ing the forest U . The exact definition of tuples t′ and t′i is not important. The size of
each term in the union in D(R, TA, t) is O(A). The size of each expression D(R,U , t) is
O(k) = O(|T |). Moreover, each expression D(R,U , t) where U is a forest is referenced
in at least one D(R, TA, t) where TA is a subtree, apart from a possible root expression
D(R, T , 〈〉) = �D(R, T1, 〈〉)× · · · × �D(R, Tk, 〈〉) if the d-tree is itself a forest. Therefore,
to each product of singletons 〈A :a〉 in T �(R) we can associate its term in the union in
D(R, TA, t), and the therein referenced expression D(R,U , t) (if any) as shown above,
of total size O(|A|+ |T |). Per each singleton this amounts to O(|T |). These expressions
cover the entire d-representation up to the possible root fragment of size O(|T |) and
the union nodes of which there are at most as many as singletons. It follows that the
size of T �(R) is O(‖T �(R)‖ · |T |).

For f-representations over f-trees we can tighten the bound as follows.

LEMMA 7.4. For any relation R and any f-tree T valid for R, the size of the f-repre-
sentation T (R) satisfies the bound |T (R)| = O(‖T (R)‖).

PROOF. In any f-representation T (R), each union symbol and each product sym-
bol is followed by a singleton, so there are at most as many unions and products as
singletons. Since there are no empty set symbols, the result follows.

7.2. Counting Singletons in Representations

In this section we derive an exact expression for the number of singletons of each type
in a given f-representation over an f-tree, or d-representation over a d-tree.

Consider first any f-representation of the form T (R). For any attribute A in the root
of T , T (R) contains one occurrence of the singleton 〈A :a〉 for each A-value a in the
relation R. For any attribute B in a child of the root, and for each A-value a, T (R) con-
tains a singleton 〈B :b〉 (inside a subexpression over TB) for each B-value b in σA=aR.
Continuing top-down along T , we deduce that for any attribute C, each singleton 〈C :c〉
appears once for each combination of values of the ancestor attributes of C, with which
it contributes to some tuple of R. Similarly, in any d-representation T �(R), the single-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:23

ton 〈C :c〉 appears once for each combination of values of the attributes in key(C) with
which it contributes to some tuple of R.

We next formalise the above observation and express the exact number of singletons
in the d-representation T �(R) as a function of R and T �. Recall that for an attribute A,
we denote by A the node that contains A.

LEMMA 7.5. Let T �(R) be the d-representation of a relation R over a non-empty
d-tree T �, A be an attribute of R, and x be a value.
— The number of occurrences of the singleton 〈A :x〉 in T �(R) is |πkey(A)σA=xR|.
— The number of occurrences of A-singletons in T �(R) is |πkey(A)∪AR|.
— The number of singletons in T �(R) is ‖T �(R)‖ =

∑

A∈schema(R) |πkey(A)∪AR|.

PROOF. The singleton 〈A :x〉 occurs in expressions of the form D(R, T �
A, t). In par-

ticular, by Definition 5.13 it occurs exactly once for each t ∈ πkey(A)R such that
x ∈ σkey(A)=tR. These are exactly the t ∈ πkey(A)σA=xR, so the number of occurrences
of 〈A :x〉 is |πkey(A)σA=xR|. The total number of occurrences of A-singletons is thus

∑

x∈πA(R) |πkey(A)σA=x(R)|

=
∑

x∈πA(R) |πkey(A)∪AσA=x(R)|

=
∑

x∈πA(R) |σA=xπkey(A)∪A(R)|

=| ∪x∈πA(R) σA=xπkey(A)∪A(R)|

=|πkey(A)∪A(R)|.

Finally, if T � is non-empty then there are no nullary singletons in T �(R), so ‖T �(R)‖
is the number of typed singletons of all types, which is

∑

A∈schema(R) |πkey(A)∪AR|.

An analogous result for f-representations follows by noting that T (R) = T �(R) when
key(A) = anc(A) for all nodes A of the d-tree T �, and that anc(A) ∪ A = path(A).

COROLLARY 7.6 (LEMMA 7.5). Let T (R) be the f-representation of a relation R over
a non-empty f-tree T , A be an attribute of R, and a be a value.
— The number of occurrences of the singleton 〈A :a〉 in T (R) is |πanc(A)σA=aR|.
— The number of occurrences of A-singletons in T (R) is |πpath(A)R|.
— ‖T (R)‖ =

∑

A∈schema(R) |πpath(A)R|.

7.3. Upper Bounds

Lemma 7.5 gives an exact expression for the number of singletons in a d-repre-
sentation T �(R) in terms of the relation R and the d-tree T �. In case R is a query
result Q(D), and T � is valid for Q, we can quantify the number of singletons in the
d-representation T �(Q(D)) directly in terms of the database size |D|.

Recall from Lemma 7.5 that for any attribute A in T �, the number of singletons of
type A in T �(Q(D)) is |πkey(A)∪AQ(D)|. By Proposition 3.2, we can bound this number
from above using the (key(A) ∪ A)-restriction of Q and D.

COROLLARY 7.7 (PROPOSITION 3.2 AND LEMMA 7.5). For any database D, the
number of occurrences of A-singletons in the d-representation T �(Q(D)) is at most
|Qkey(A)∪A(Dkey(A)∪A)|.

PROOF. By Lemma 7.5, the number of occurrences of A-singletons in T �(Q(D)) is
|πkey(A)∪A(Q(D))|, and by Proposition 3.2, this is at most |Qkey(A)∪A(Dkey(A)∪A)|.

This is a useful upper bound because any restriction of Q, as defined in Section 3,
is an equi-join, and recent results [Atserias et al. 2008] give tight asymptotic bounds

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:24 D. Olteanu and J. Závodný

on the size of results of equi-joins in terms of the input size. We next give an intuitive
introduction to these asymptotic bounds.

We can estimate the size |Q(D)| of any equi-join result as a function of |D| and Q.
Intuitively, if we can cover all attributes of the query Q by k ≤ |Q| of its relations, then
|Q(D)| is at most the product of the sizes of these k relations, which is at most |D|k.
These k relations correspond to an edge cover of size k in the hypergraph of Q. The
following strengthens this idea by lifting covers to a weighted fractional version.

Definition 7.8. [Atserias et al. 2008] For an equi-join query Q = σψ(R1 × · · · × Rn),
the fractional edge cover number ρ∗(Q) is the cost of an optimal solution to the linear
program with variables {xRi

}ni=1:

minimise
∑

i xRi

subject to
∑

i:Ri∈rel(A) xRi
≥ 1 for each attribute class A,

xRi
≥ 0 for all i. ✷

In a fractional edge cover, to each relation Ri (or edge in the query hypergraph) we
assign a weight xRi

. Each attribute class A (or each vertex in the query hypergraph)
has to be covered by relations with attributes in A such that the sum of the weights of
these relations is greater than 1. The objective is to minimise the sum of the weights
of all relations. By restricting the variables xRi

to the values 0 and 1 we obtain the
standard non-weighted version of edge cover; in the fractional version the variables
can hold any positive real number (though the optimal solution is always rational).

We showed above that given an edge cover of the hypergraph of QS , the result size
|QS(DS)| is bounded by the product of the sizes of the covering corresponding relations.
[Atserias et al. 2008] generalise this idea and show that given a fractional edge cover
of the hypergraph of QS , where the edge Ri has weight xRi

, the result size |QS(DS)| is
bounded by the weighted product

∏

i |Ri|
xRi . The following Lemma is an adaptation of

this result.

LEMMA 7.9. For any equi-join queryQ and database D, we have |Q(D)| ≤Mρ∗(Q) ≤
|D|ρ

∗(Q), where M is the size of the largest relation in D.

PROOF. For any solution {xRi
} to the fractional edge cover linear program we have

|Q(D)| ≤
∏

i |Ri|xRi [Atserias et al. 2008]. By considering an optimal solution, it follows
that

|Q(D)| ≤
∏

i |Ri|xRi ≤
∏

iM
xRi =M

∑
i xRi =Mρ∗(Q) ≤ |D|ρ

∗(Q).

Together with Corollary 7.7, this yields the following bound.

LEMMA 7.10. For any database D, the number of occurrences of A-singletons in the

d-representation T �(Q(D)) is at most |D|ρ
∗(Qkey(A)∪A).

Lemma 7.10 gives an upper bound on the number of occurrences of singletons of
any given attribute. We can obtain an upper bound on the total number of occurrences
of singletons in the d-representation T �(Q(D)) by summing these bounds over all at-
tributes of Q. A simpler bound is obtained by estimating each of the summands by
the largest one. A single bound for all possible d-trees of the query Q is obtained by
considering the one with the smallest bound.

Definition 7.11. Let Q be a conjunctive query. For any d-tree T � of Q, define

s�(T �) = max{ρ∗(Qkey(A)∪A) | A ∈ P}

to be the maximum possible ρ∗(Qkey(A)∪A) over all head attributes A of Q, and

s�(Q) = min{s�(T �) | T � is a d-tree of Q}

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:25

S

T

U

R A

B

CD

E

AR, AS, AT

CS, CU

DT , DU

BS, BT ER, EU

AR, AS, AT

BS, BT

CS, CU

DT , DU

ER, EU

key(A) = {}
key(B) = A
key(C) = A∪ B
key(D) = A ∪ B ∪ C
key(E) = A∪ C ∪ D

Fig. 2. Left to right: Hypergraph of query Q2 from Example 7.17 with nodes A = {AR, AS , AT }, B =
{BS , BT }, C = {CS , CU}, D = {DT ,DU}, and E = {ER, EU}; f-trees T3 and T4 of the query Q2; and keys

of nodes of the f-tree T4 turning it into a d-tree T �

4 .

to be the minimum possible s�(T �) over all d-trees T � of Q. ✷

COROLLARY 7.12 (LEMMA 7.10).

— For any database D, the number of singletons in T �(Q(D)) is at most |P| · |D|s
�(T �).

— For any database D, there exists a d-representation ofQ(D) with at most |P|·|D|s
�(Q)

singletons.

Using Lemma 7.3, we can turn bounds on the number of singletons into size bounds.

THEOREM 7.13. The size of T �(Q(D)) is O(|P|2 · |D|s
�(T �)), and for any database D

there exists a d-representation of Q(D) with size O(|P|2 · |D|s
�(Q)).

PROOF. If the number of singletons in T �(Q(D)) is at most |P| · |D|s
�(T �), then by

Lemma 7.3, |T �(Q(D))| is O(|P|· |D|s
�(T �) · |T �|), which is O(|P|2 · |D|s

�(T �)) since |T �| ≤
|P|. The second claim follows.

Analogous upper bounds can be shown for the sizes of f-representations over f-trees.
The number of A-singletons in an f-representation T (R) is |πpath(A)R| by Corollary 7.6.

This is at most |Qpath(A)(Dpath(A))| by Proposition 3.2, which is at most |D|ρ
∗(Qpath(A))

by Lemma 7.9. Similarly to d-trees, we maximise this value over all head attributes of
T to obtain bounds for f-representations over T , and then minimise over all f-trees T
of Q to obtain bounds for f-representations of results of Q.

Definition 7.14. Let Q be a conjunctive query. For any f-tree T of Q, define

s(T) = max{ρ∗(Qpath(A)) | A ∈ P}

to be the maximum possible ρ∗(Qpath(A)) over all head attributes A of Q, and

s(Q) = min{s(T) | T is an f-tree of Q}

to be the minimum possible s(T) over all f-trees T of Q. ✷

COROLLARY 7.15 (THEOREM 7.13). The number of singletons in T (Q(D)) is at

most |P| · |D|s(T), and for any database D, there exists an f-representation of Q(D)
with at most |P| · |D|s(Q) singletons.

Using Lemma 7.4, we obtain the bounds on f-representation size. The difference
of a factor of |P| compared to d-representations is due to the tighter bound on f-
representation size expressed in the number of singletons.

THEOREM 7.16. The size of T (Q(D)) is O(|P| · |D|s(T)), and for any database D

there exists an f-representation of Q(D) with size O(|P| · |D|s(Q)).

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:26 D. Olteanu and J. Závodný

Example 7.17. Consider a database with relations R, S, T , and U with schemas
{AR, ER}, {AS , BS , CS}, {AT , BT , DT } and {CU , DU , EU} respectively, and the query
Q2 = σψ(R × S × T × U), with ψ = (AR = AS = AT , BS = BT , CS = CU , DT =
DU , ER = EU). The hypergraph of Q2 is depicted in Figure 2 left. The attribute classes
of Q2 can be covered by the two relations S and U , so ρ∗(Q2) ≤ 2. On the other hand,
the attribute classes {BS, BT } and {ER, EU} have no relations in common, so their
corresponding conditions xS +xT ≥ 1 and xR+xU ≥ 1 imply ρ∗(Q2) ≥ 2. It follows that
ρ∗(Q2) = 2, so the result Q2(D) has size at most |D|2 for any database D.

First consider the simpler case of f-representations over the f-trees in Figure 2. We
compute |T3(Q2(D))|, where T3 is the left f-tree in Figure 2. The nodes with largest
paths are B = {BS, BT } and E = {ER, EU}. Consider the query restriction QB

2 . We need
at least two relations to cover all attributes of QB

2 , so the edge cover number of QB
2

is 2. However, in the fractional edge cover linear program, we can assign xS = xT =
xU = 1/2 and xR = 0. The covering conditions are satisfied, since each attribute class
is covered by two of the relations S, T, U . The cost of this solution is 3/2. It is in fact
the optimal solution, so ρ∗(QB

2) = 3/2. For QE
2 , the optimal solution is xU = 2/3 and

xR = xS = xT = 1/3 with total cost ρ∗(QE
2) = 5/3, and hence s(T3) = 5/3. It follows that

the factorisation T3(Q2(D)) has at most 11 · |D|5/3 singletons, which is asymptotically
smaller than the number of singletons 11 · |D|2 in the flat result.

The succinctness of representations over T3 is achieved by storing values of B and E
independently for each combination of values of A, C and D, as represented by B and
E lying in different branches of T3 under A, C and D. For comparison, in the right f-
tree T4 in Figure 2, path(E) contains all attributes of Q2. Hence ρ∗(QE

2) = ρ∗(Q2) = 2,
so s(T4) = 2 and f-representations over the f-tree T4 present no asymptotic saving in
space compared to flat representations.

Consider now the d-tree T �

4 , whose underlying f-tree is T4 and the node keys are as
defined in Figure 2 right. Now key(E) ∪ E = A ∪ C ∪ D ∪ E is a strict subset of path(E),
and ρ∗(Qkey(E)∪E) equals 5/3, strictly less than ρ∗(Qpath(E)) = 2. For all other nodes N

the value ρ∗(Qkey(N)∪N) is at most 5/3, so d-representations over T �

4 have size at most

11 · |D|5/3. The succinctness of d-representations over T �

4 compared to f-representations
over T4 is achieved by storing a union of E-values only once for each combination of
values from key(E) = A∪C ∪D, and referencing this same expression for each different
value of B.

For the case of Q2, it turns out that T3 is an optimal f-tree and T �

4 is an optimal d-
tree, so s(Q2) = s�(Q2) = 5/3. It is not necessarily true that s(Q) = s�(Q), in Section 9
we show examples of queries with s�(Q) ≪ s(Q). ✷

7.4. Lower Bounds

We next show that the upper bound on the d-representation size is best possible in the
following sense. For any non-Boolean query Q and any d-tree T � of Q, there are arbi-
trarily large databases for which the size of the d-representation of the query result
over T � asymptotically meets the upper bound in terms of data complexity.

By Lemma 7.5, the number of singletons of type A in T �(Q(D)) is |πkey(A)∪AQ(D)|,
and Proposition 3.2 bounds any |πS(Q(D))| from above by |QS(DS)|, where (QS ,DS)
is the S-restriction of Q and D. The following result provides a corresponding lower
bound.

LEMMA 7.18. For any subset S of head attributes of a query Q and any database
DS over the schema of QS with largest relation of sizeM , there exists a database D with
size M ≤ |D| ≤ |DS | and |πS(Q(D))| ≥ |QS(DS)|.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:27

PROOF. Each relation symbol RSi in QS is the relation symbol Ri restricted to the
attributes of S and attributes equivalent to those in S. (Denote this set S∗.) Construct
a database D

′ by extending each relation in DS with the removed attributes: for each
attribute in the schema of Q but not QS , we allow a single value 1, and extend each
tuple in each relation by this value for these new attributes. For relations inQ but with
no attributes in QS , the relation instance in DS is {〈〉}, so D

′ will consist of a single
tuple with value 1 in each attribute. There is a one-to-one correspondence between the
tuples of D′ and DS , so |D′| = |DS |.

Finally we merge the relation instances in D
′ which should be equal due to self-

joins. We construct the database D as follows. For any class {Ri1 , . . . , Rim} of relation
symbols which refer to the same relation, replace the relation instances Ri1 , . . . ,Rim
in D

′ by a single relation instance R =
⋃

j Rij in D, and interpret each of the relation

symbols Rij by R. By construction the largest relation in D is at least as large as the
largest relation in DS , so M ≤ |D|. By the union bound we have |D| ≤ |D′| = |DS |, and

|πS(Q(D))| = |πS(πP (σψ(R1 × · · · ×Rn)))(D)|

≥ |πS(πP (σψ(R1 × · · · ×Rn)))(D
′)| (2)

= |πS(σψ(R1 × · · · ×Rn))(D
′)|

= |πS∗(σψ(R1 × · · · ×Rn))(D
′)| (4)

= |πS∗(σψS
(R1 × · · · ×Rn))(D

′)| (5)

= |σψS
(πS∗R1 × · · · × πS∗Rn)(D

′)|

= |QS(DS)|.

Inequality (2) holds because each relation of D′ is a subset of the corresponding rela-
tion of D, equality (4) holds because each attribute in S∗ is equivalent to some attribute
in S, and equality (5) holds because in D

′ the values in all attributes outside S∗ are
equal.

In a first attempt to make the lower bound |QS(DS)| as large as possible while keep-
ing |DS | small, we pick k attribute classes of QS and let each of them attain N different
values. If each relation has attributes from at most one of these classes and size at most
N , then DS has size |QS | ·N but the result QS(DS) has size Nk. The picked k attribute
classes correspond to an independent set of k nodes in the hypergraph of QS .

Similar to the upper bound, we can strengthen the above lower bound by lifting
independent sets to a weighted version. Since the linear programs for the (fractional)
edge cover and the independent set problems are dual, this lower bound meets the
upper bound from Section 7.3. The following result forms the basis of our argument.

LEMMA 7.19 ([ATSERIAS ET AL. 2008]). For any equi-join query Q without self-

joins, there exist arbitrarily large databases D such that |Q(D)| ≥ (|D|/|Q|)ρ
∗(Q).

We now use Lemmata 7.5, 7.18 and 7.19 to construct databases D with lower bounds
on the number of A-singletons in the d-representation T �(Q(D)).

LEMMA 7.20. There exist arbitrarily large databases D such that the number of

A-singletons in T �(Q(D)) is at least (|D|/|Q|)ρ
∗(Qkey(A)∪A).

PROOF. By Lemma 7.19 applied toQkey(A)∪A, there exist arbitrarily large databases

Dkey(A)∪A such that |Qkey(A)∪A(Dkey(A)∪A)| ≥ (|Dkey(A)∪A|/|Qkey(A)∪A|)
ρ∗(Qkey(A)∪A).

By Lemma 7.18, there exists a database D with |D| ≤ |Dkey(A)∪A| such that
|πkey(A)∪A(Q(D))| ≥ |Qkey(A)∪A(Dkey(A)∪A)|. Moreover, D is at least as large as the

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:28 D. Olteanu and J. Závodný

largest relation of Dkey(A)∪A, so D also gets arbitrarily large. By Lemma 7.5, the num-
ber of A-singletons in T �(Q(D)) is

|πkey(A)∪A(Q(D))| ≥ |Qkey(A)∪A(Dkey(A)∪A)|

≥ (|Dkey(A)∪A|/|Qkey(A)∪A|)
ρ∗(Qkey(A)∪A)

≥ (|D|/|Q|)ρ
∗(Qkey(A)∪A).

We now lift Lemma 7.20 from A-singletons to all singletons in T �(Q(D)) by consid-
ering the attribute A for which the lower bound (|D|/|Q|)ρ

∗(Qkey(A)∪A) is the largest.

COROLLARY 7.21 (LEMMA 7.20). There exist arbitrarily large databases D for

which T �(Q(D)) has at least (|D|/|Q|)s
�(T �) singletons.

Since the size of a d-representation is at least the number of its singletons, we also
have the following.

THEOREM 7.22. There exist arbitrarily large databases D for which T �(Q(D)) has

size Ω((|D|/|Q|)s
�(T �)) = Ω((|D|/|Q|)s

�(Q)).

Theorem 7.22 gives a lower bound for the representation size over a given d-tree. We
next give a (non-trivial) generalisation to a lower bound for the representation size in
the language of d-representations over any d-tree.

THEOREM 7.23. For a fixed query Q, there exist arbitrarily large databases D for

which any d-representation of the result Q(D) over any d-tree has size Ω(|D|s
�(Q)).

PROOF. To prove this theorem we need to strengthen the requirements on the sizes
of database examples witnessing the lower bounds in Lemma 7.19 and Theorem 7.22.
The changes are of a technical nature and the full proofs of the adapted versions are
deferred to the electronic appendix.

Lemma 7.19, adapted. For any equi-join query Q without self-joins, there exist con-
stants bQ, cQ such that for any sufficiently large N , there exists a database D of size

N ≤ |D| ≤ bQ ·N such that |Q(D)| ≥ cQ · |D|ρ
∗(Q).

Theorem 7.22, adapted. For any query Q there exist constants bQ, cQ such that for
any sufficiently large N and for any d-tree T � of Q, there exists a database DT � of size

N ≤ |DT � | ≤ bQ ·N such that |T �(Q(DT �))| ≥ cQ · |DT � |s
�(Q).

For any N sufficiently large let DT � be as in the adapted version of Theorem 7.22.
Construct the database D as a disjoint union of DT � for all d-trees T � of Q. (Label each
data element in DT � by T �, so that the corresponding relations of DT � are disjoint, and
for each relation symbol of Q construct a relation instance in D by taking a union of
the corresponding relation instances in all DT � .) The result Q(D) is a disjoint union
of the results Q(DT �), and for any d-tree T � the d-representation T �(Q(D)) contains

the d-representation T �(Q(DT �)), so its size is at least cQ · |DT � |s
�(Q). The size of each

DT � is at most bQ · N , so the size of D is at most d · bQ · N , where d is the number of
d-trees of Q. Therefore, for any d-tree T � the d-representation T �(Q(D)) has size at

least bQ · (|D|/(c · d))s
�(Q), which is Ω(|D|s

�(Q)) for a fixed Q.

For a fixed query, the upper and lower bounds on the size of d-representations of
query results meet asymptotically. The fractional versions of the minimum edge cover
number for the upper bounds and of the maximum independent set number for the
lower bounds are essential for the tightness result, since their integer versions need
not be equal. The parameter s�(Q) thus completely characterises queries by the repre-
sentability of their results within the class of d-representations defined by d-trees.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:29

Analogous lower bounds can be deduced for the special case of f-representations over
f-trees.

LEMMA 7.24. For any f-tree T of Q there exist arbitrarily large databases D for
which T (Q(D)) has at least (|D|/|Q|)s(T) singletons.

PROOF. Any f-tree can be seen as a d-tree with key(A) = anc(A) for all attributes
A, hence by Lemma 7.20, the number of A-singletons in any T (Q(D)) is at least
(|D|/|Q|)ρ

∗(Qanc(A)∪A) = (|D|/|Q|)ρ
∗(Qpath(A)) ≥ (|D|/|Q|)s(T).

COROLLARY 7.25. For any f-tree T of Q there exist arbitrarily large databases D

for which T (Q(D)) has size Ω((|D|/|Q|)s(T)) = Ω((|D|/|Q|)s(Q)).

COROLLARY 7.26. For a fixed query Q, there exist arbitrarily large databases D for
which the any f-representation of the result Q(D) over any f-tree has size Ω(|D|s(Q)).

Example 7.27. Let us continue Example 7.17 and consider the query Q2 =
σψ(R(AR, ER) × S(AS , BS , CS) × T (AT , BT , DT) × U(CU , DU , EU)), with ψ = (AR =
AS = AT , BS = BT , CS = CU , DT = DU , ER = EU). Consider the left f-tree T3 from
Figure 2. The hypergraph of QE

2 is obtained by dropping the node B from the hyper-
graph of Q (which is depicted in Figure 2 left), and has maximum independent set of
size 1, since any two nodes share a common edge. We can trivially construct databases
D for which the number of E-singletons is linear in the size of D, yet this is much
smaller than the O(|D|5/3) upper bound given by Lemma 7.24. The fractional relax-
ation of the maximum independent set problem allows to increase the optimal cost to
5/3, thus meeting ρ∗(QE

2) by duality of linear programming, as follows. In this relax-
ation we assign nonnegative values to the attribute classes, so that the sum of values
in each relation is at most one. By assigning yA = 2/3 and yC = yD = yE = 1/3, the
sum in each relation is exactly one, and the total cost is 5/3. This is then used in the
proofs of Lemmas 7.19 and 7.20 to construct arbitrarily large databases D for which
the number of E-singletons in T3(Q2(D)) is at least (|D|/|Q2|)5/3 = (|D|/4)5/3.

One such database D would contain the relations R = [4] × [2], S = [4] × [1] × [2],
T = [4]× [1]× [2] and U = [2]× [2]× [2]. Here [N] denotes {1, . . . , N} and the attributes
of each relation are ordered alphabetically as in the definition above. Each relation
has size 8 and the database D has size 32 = 8 × |Q2|. The result Q2(D) corresponds
to the relation where AR = AS = AT ∈ [4], BS = BT = 1, CS = CU ∈ [2], DT =
DU ∈ [2] and ER = EU ∈ [2], and any combination of these values is allowed. Its size
is |Q2(D)| = 32 = (32/4)5/3 = (|D|/|Q2|)5/3. By replacing powers of 2 in this example
by powers of larger integers, we can create arbitrarily large database examples with
|Q2(D)| = (|D|/|Q2|)5/3.

Since all f-trees T forQ2 have s(T) ≥ s(Q2) = 5/3, the results in this subsection show
that for any such f-tree T we can find databases D for which the size of T (Q2(D)) is at
least (|D|/|Q2|)5/3 = (|D|/4)5/3. ✷

8. CONJUNCTIVE QUERY EVALUATION

In this section we present an algorithm for computing the result of conjunctive queries
directly in factorised form. In Section 5.5 we gave an algorithm that factorised a given
relation over a given d-tree in quasilinear time. However, there exist queries whose
results are exponentially larger than both the input database and their succinct f-
representations and d-representations. The algorithms in this section compute the d-
representation T �(Q(D)) of a query result Q(D) directly from the input database D,
query Q and d-tree T �, without an intermediate computation of the potentially large
flat result Q(D). This allows an o(|Q(D)|) time complexity, better than for any possible
algorithm computing the flat result. In particular, for an equi-join query Q, we com-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:30 D. Olteanu and J. Závodný

pute the d-representation T �(Q(D)) with data complexity O(|D|s
�(T �) log |D|) (Propo-

sition 8.2), which is worst-case optimal up to the logarithmic factor. The algorithm is
extended to arbitrary conjunctive queries.

Any algorithm for computing d-representations over d-trees naturally subsumes the
computation of f-representations over f-trees, in particular, for any equi-join Q and its
f-tree T , we can compute T (Q(D)) with data complexity O(|D|s(T) log |D|).

8.1. Computing D-representations of Equi-Join Query Results

We show that the d-representation T �(Q(D)) of any equi-join query result can be
computed directly from the input database D and the query Q, with data complexity

O(|D|s
�(T �) log |D|). The best asymptotic bound for the size of T �(Q(D)) is O(|D|s

�(T �)),
so the algorithm is worst-case optimal up to the logarithmic factor. It is not instance-

optimal; for particular databases D the d-representation may be of size o(|D|s
�(T �))

but the algorithm may still take Ω(|D|s
�(T �)).

The main idea of the algorithm is to evaluate individual subqueries Qkey(A)∪A for
each node A and then stitch their results together into the d-representation of the re-
sult ofQ. The results of the subqueriesQkey(A)∪A represent the largest “non-factorised”
fragments of the d-representation and in fact dictate its size as shown in Section 7.
Each result Qkey(A)∪A(D) can be computed in traditional flat form using one of the

known worst-case optimal algorithms in time O(|D|ρ
∗(Qkey(A)∪A)) [Ngo et al. 2012; Veld-

huizen 2014].
The d-representation T �(Q(D)) contains one singleton 〈A :a〉 for each tuple in

πkey(A)∪A(Q(D)). (More precisely, for each t ∈ πkey(A)(Q(D)) it contains a union of 〈A :a〉
over a ∈ πAσkey(A)=t(Q(D)).) We first construct a larger d-representation with one sin-
gleton 〈A :a〉 for each tuple in Qkey(A)∪A(D), which contains πkey(A)∪A(Q(D)). Then we
identify the d-representation T �(Q(D)) as a subset of the computed d-representation
by removing all its subexpressions that represent the empty relation. The algorithm
is given in pseudocode as Algorithm 1. We next prove its correctness and time perfor-
mance.

PROPOSITION 8.1. For any equi-join query Q, its d-tree T � and database D, Algo-
rithm 1 computes the d-representation T �(Q(D)).

PROOF. First we prove that before block 2 in Algorithm 1, the set of expressions R
when interpreted as a parse graph contains the d-representation T �(Q(D)) as a sub-
graph. Since RA = Qkey(A)∪A(Dkey(A)∪A) contains πkey(A)∪A(Q(D)) by Proposition 3.2,
πkey(A)(RA) contains πkey(A)(Q(D)) and similarly πkey(U)(RA) contains πkey(U)(Q(D))

for the forest U under A, so for each expression D(R,X , t) in T �(Q(D)) as per Def-
inition 5.13, the set R also contains an expression named D(R,X , t). Moreover, all
expressions D(R,U , t) in R are precisely as defined by Definition 5.13, and all expres-
sions D(R, TA, t) in R contain as a subexpression the one defined by Definition 5.13:
they are of the same form, except that the range of their union, πAσkey(A)=t(RA), may
be larger than πAσkey(A)=tQ(D). This shows that T �(Q(D)) as per Definition 5.13 is a
subgraph of the parse graph of R.

Next we prove that the set of expressions R before block 2 is a d-representation of
the result Q(D). First note that by labelling each subexpression D(R,X , t) with the
schema of X , R indeed becomes a d-representation over the schema of Q(D) with root
D(R, T , 〈〉). By top-down induction over T it follows that in the traversal of R, each
expression D(R,X , t) is multiplied by singletons of all attributes from anc(X), and
those from key(X) coincide with t. Each singleton 〈A :a〉 in R is in some expression
D(R, TA, t), where by construction we have t × 〈A :a〉 ∈ RA, and this singleton is mul-

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:31

ALGORITHM 1: Computing the d-representation of an equi-join query result.

Data: Equi-join query Q, d-tree T �, database D.
Result: D-representation T �(Q(D)).

R←− empty d-representation;

1 for all nodes A in T do
let {T1, . . . , Tk} = U ←− forest of children subtrees of A in T ;
RA ←− Qkey(A)∪A(D) using a worst-case optimal algorithm for equi-joins;
group RA by key(A);
for t ∈ πkey(A)(RA) do

At ←− πAσkey(A)=t(RA);
if U = ∅ then D(TA, t)←−

⋃

a∈At
〈A :a〉;

else D(TA, t)←−
⋃

a∈At
〈A :a〉 × �D(U , πkey(U)(t× 〈A :a〉));

add expression D(TA, t) to R;
end
group RA by key(U);
for t ∈ πkey(U)(RA) do

D(U , t)←− �D(T1, πkey(T1)t)× · · · ×
�D(Tk, πkey(Tk)t);

add expression D(U , t) to R;
end

end

if T is a forest T1, . . . , Tk then add D(T , 〈〉)←− �D(T1, 〈〉)× · · · ×
�D(Tk, 〈〉) to R;

set D(T , 〈〉) as the root of R;

2 for all expressions D in R, bottom-up do

if D =
⋃

a〈A :a〉 × �Da then

D ←−
⋃

a:Da 6=∅〈A :a〉 × �Da;

else if D = �D1 × · · · ×
�Dk where some Di = ∅ then

D ←− ∅;
end

end

return D;

tiplied by t in any tuple represented by R. Therefore, for any tuple d represented by R
and any node A, πkey(A)∪A ∈ RA, and hence JRK ⊆ ✶A RA. Since each relation Ri has
all its attributes included in some key(A) ∪ A, and hence it is unrestricted in RA, we
can deduce that JRK ⊆✶iRi = Q(D). Since R contains the d-representation T �(Q(D)),
and both are of the same schema, it follows that JRK ⊇ JT �(Q(D))K = Q(D). Therefore
JRK = Q(D).

Finally we prove that after block 2, R equals T �(Q(D)). We have shown above that
before block 2, R contains T �(Q(D)), but its unions D(R, TA, t) may contain additional
terms. Since JDK = JT �(Q(D))K, all these additional terms must represent the empty
relation, otherwise they would contribute additional tuples to JDK. Block 2 of Algo-
rithm 1 removes exactly these terms and no others, the resulting d-representation R
is therefore equal to T �(Q(D)).

PROPOSITION 8.2. For any equi-join query Q, its d-tree T � and database D, Algo-

rithm 1 runs in time O(|D|s
�(T �) · log |D| · poly(|Q|, |S|)).

PROOF. The computation of each RA takes O(|D|ρ
∗(Qkey(A)∪A)) = O(|D|s

�(T �)) us-
ing a worst-case optimal join algorithm [Ngo et al. 2012] and the size of RA is also

O(|D|ρ
∗(Qkey(A)∪A)) = O(|D|s

�(T �)). The group-by can then be implemented using a sort

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:32 D. Olteanu and J. Závodný

in time O(|RA| · log |RA|) = O(|D|s
�(T �) · log |D| ·s�(T �)), all remaining processing takes

time linear in |RA|. If the d-representation is constructed as a parse-graph, the look-
up of each expression name in an associative map takes time logarithmic in the total
number of expressions, which is O(|RA|), so the total time is still quasi-logarithmic in
|RA|. The normalisation procedure implemented in block 2 of the algorithm takes time
linear in the result computed thus far, so does not increase the runtime complexity.

For ease of analysis, in Algorithm 1 we abstract away the computation of the joins
RA = Qkey(A)∪A(D): we apply a known worst-case optimal algorithm, and use the
results to construct the d-representation Q(D). The queries Qkey(A)∪A for different
nodes A can partially overlap, and it is possible to amalgamate the entire computa-
tion into a single multi-way merge-join, as done in [Olteanu and Závodný 2012] for
f-representations only. However, this optimisation cannot reduce the data complexity
of the algorithm, only the factor hidden in poly(|Q|, |S|).

8.2. Computing D-representations of Conjunctive Query Results

The algorithm for equi-join queries can be extended to arbitrary conjunctive queries
using d-tree extensions. Recall from Proposition 6.9 that any d-tree of a conjunctive
query Q can be extended to a d-tree of the equi-join Q̂ of Q.

PROPOSITION 8.3. Given any conjunctive queryQ, a d-tree T � ofQ and its extension

T̂ �, and a database D, we can compute T �(Q(D)) in time O(|D|s
�(T̂ �) · log |D|) with

respect to data complexity.

PROOF. Using the extension d-tree T̂ �, which is a d-tree of the equi-join Q̂, we

can compute the d-representation T̂ �(Q̂(D)) in time O(|D|s
�(T̂ �) · log |D|) by Propo-

sition 8.2. Since T̂ � is an extension of T �, it contains additional non-head attributes
in some nodes, and also additional subtrees and subforests consisting of non-head at-

tributes only. With respect to T �(Q(D)), the d-representation T̂ �(Q̂(D)) therefore con-
tains additional singletons 〈A :a〉 for non-head attributes A that are in a node with
some head attribute, and additional expressions E(X , t) for subtrees and subforests X
consisting of non-head attributes only. Both the additional singletons and expressions

can be removed from T̂ �(Q̂(D)) in time linear in its size, so the total runtime is still

O(|D|s
�(T̂ �) · log |D|) with respect to data complexity.

9. SUCCINCTNESS GAP AND TREE DECOMPOSITIONS

In this final section we compare and quantify the succinctness of flat relational repre-
sentations, f-representations over f-trees and d-representations over d-trees in repre-
senting equi-join query results. We draw a complete picture of how succinct these three
representation classes can be relative to each other: how much can relations be com-
pacted by factorisation, and how much extra succinctness is brought by subexpression
sharing in d-representations.

The succinctness of these representation systems for query results is characterised
by the parameters ρ∗(Q), s(Q) and s�(Q) of the asymptotic size bounds introduced in
Section 7. Recall that for a given equi-join query Q, ρ∗(Q), s(Q) and s�(Q) are the
smallest numbers such that for any database D, the result Q(D) has
— a flat representation of size O(|D|ρ

∗(Q)),
— an f-representation over an f-tree with size O(|D|s(Q)),

— a d-representation over a d-tree with size O(|D|s
�(Q)).

We study the relationships of the parameters ρ∗(Q), s(Q) and s�(Q) to each other and
to known parameters of fractional hypertree width and fractional hyperpath width.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:33

1 ≤ s�(Q) = fhw(Q)
(1)

≤ fhpw(Q)
(2)

≤ s(Q)
︸ ︷︷ ︸

factor O(log |S|)

(3)

≤ ρ∗(Q)
(4)

≤ |Q|

Fig. 3. The hierarchy of parameters for non-empty equi-join queries Q. Each inequality may express a gap
asymptotically as large as permitted by the remaining constraints. In particular, inequalities (1) and (2) may
express a gap with a factor of Ω(log |S|), and inequalities (3) and (4) a factor of Ω(|Q|).

We first show that d-trees are closely related to tree decompositions and that the
parameter s�(Q) equals the fractional hypertree width fhw(Q) of Q (Corollary 9.4).
Similarly but to a smaller extent, f-trees are related to path decompositions, and the
parameter s(Q) is greater or equal to the fractional hyperpath width fhpw(Q) of Q
(Corollary 9.9). Together with the trivial observation that s(Q) ≤ ρ∗(Q) we obtain the
hierarchy of inequalities of parameters summarised in Figure 3.

We also quantify the gaps between these parameters. The parameter s(Q) is bounded
above by O(fhw(Q) · log |S|), where S is the schema of Q (Proposition 9.12), and this
bound is tight: we exhibit a class of queries with s(Q) = Ω(fhpw(Q) · log |S|) (Proposi-
tions 9.17 and 9.21), and from known results on pathwidth it is also easy to exhibit
queries with fhpw(Q) = Ω(fhw(Q) · log |S|) (Proposition 9.15). The gap between s(Q)
and ρ∗(Q) can also be as large as the hierarchy allows; we construct classes of queries
with s(Q) = 1 while ρ∗(Q) = |Q| (Proposition 9.22). Finally, we note that there exist
arbitrarily large queries for which all mentioned parameters are O(1), and queries for
which all parameters are Ω(|Q|) (Proposition 9.23). These results are also summarised
in Figure 3.

In this section we restrict our attention to equi-join queries, whose structure is pre-
cisely captured by their hypergraphs. Equi-join queries are also the traditional domain
of structural decomposition methods, where the notions of fractional hypertree decom-
positions and fractional edge covers relate to size bounds and complexity of evaluation.

9.1. D-Trees and Tree Decompositions

There is a close connection between d-trees and fractional hypertree decompositions
of the query hypergraph [Grohe and Marx 2006] for equi-join queries. We show how
any d-tree T � of an equi-join query Q can be translated into a fractional hypertree
decomposition of Q with width w = s�(T �), and any width-w fractional hypertree de-
composition of Q can be translated into a d-tree T � with s�(T �) ≤ w. This implies that
s�(Q) coincides with the fractional hypertree width of Q.

Let us first recall the definition of a fractional hypertree decomposition of a hyper-
graph3.

Definition 9.1 ([Grohe and Marx 2006]). Let H be a hypergraph. A tree decomposi-
tion of H is a pair (T, (Bt)t∈V (T)) where
— T is a tree, and
— (Bt)t∈V (T) is a family of sets of vertices of H , called bags, such that each edge of H

is contained in some Bt, and for each vertex v of H the set {t : Bt ∋ v} is connected
in T .

A fractional hypertree decomposition of H is a triple (T, (Bt)t∈V (T), (γt)t∈V (T)), where
(T, (Bt)) is a tree decomposition and
— (γt)t∈V (T) is a family of weight functions E(H) 7→ [0,∞) such that for each t ∈ V (T),
γt covers all vertices of Bt, i.e.

∑

e∋v γt(e) ≥ 1 for all v ∈ Bt.

3In this section we speak of a query and its hypergraph interchangeably; by a fractional hypertree decom-
position of a query we mean the fractional hypertree decomposition of its hypergraph.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:34 D. Olteanu and J. Závodný

The weight of a weight function γt is weight(γt) =
∑

e∈E(H) γt(e) and the width of the

decomposition is maxt∈V (T) weight(γt). The fractional hypertree width of H , fhw(H), is
the minimum possible width of a fractional hypertree decomposition of H . ✷

In a fractional hypertree decomposition of a hypergraph H , each weight function γt
must be a fractional edge cover of the hypergraph H restricted to the vertices of Bt.
Since we are primarily interested in fractional hypertree decompositions of minimum
possible width, for a given tree decomposition (T, (Bt)) we often consider each γt to be
an optimal fractional edge cover of Bt, and hence obtain a minimum-width extension
of (T, (Bt)) into a fractional hypertree decomposition (T, (Bt), (γt)). By the fractional
width of a tree decomposition we mean the width of its minimal fractional extension;
note that fhw(H) is the minimal possible fractional width of a tree decomposition of H .

Next we show how any d-tree of an equi-join query Q corresponds to a tree decom-
position of Q and vice versa. Intuitively, the vertices of the d-tree correspond to the
vertices of the tree decomposition, and the sets key(A) ∪ A correspond to the bags BA.
An example tree decomposition translated into a d-tree is depicted in Figure 4. Our
translation ensures that the fractional width of the corresponding tree decomposition
is at most the cost s�(T �), of the original d-tree T �, and vice versa.

PROPOSITION 9.2. Let T � be a d-tree of an equi-join query Q. There exists a frac-
tional hypertree decomposition of Q with width w = s�(T �).

PROOF. Let Q be an equi-join query and let T � be a d-tree of Q. Consider the pair
(T , (BA)A∈V (T)), where T is the underlying f-tree of T � and the bag BA contains the
nodes of key(A) ∪ A for each node A of T . We show that it is a tree decomposition of
the query Q, with fractional width s�(T �).

First we show that each hyperedge of the query Q is contained in some bag BB. For
any relation R of the query Q, the attributes of R lie on a root-to-leaf path in the f-
tree T by the path condition of Proposition 6.1. For the lowest node B containing an
attribute of R, all attributes of R are contained in path(B). By Definition 6.4 character-
ising the d-trees of Q, all attributes of R must in fact lie in key(B) ∪ B ⊆

⋃
BB. Thus

the hyperedge corresponding to the relation R is contained in the bag BB.
Next we show that for any node B of the query Q the set {A : BA ∋ B} is connected

in T . Since key(A) ∪ A ⊆ anc(A) ∪ A for any A, the node B may only be in BA if B is
an ancestor of A or equal to A, or equivalently, only if A ∈ TB. Also, by Definition 5.12,
key(A) ⊆ key(parent(A)) ∪ parent(A), so key(A) ∪ A ⊆ key(parent(A)) ∪ parent(A) ∪ A
and hence BA ⊆ Bparent(A) ∪ {A}, for any node A. Thus if BC does not contain B for
some C ∈ TB, then BD will not contain C for any D under C. This shows that the
set {A : BA ∋ B} is a connected subset of T (in fact, a connected subset of TB), and
concludes the proof that (T , (BA)A∈V (T)) is a tree decomposition of Q.

Finally, each bag BA consists of the nodes of key(A) ∪ A, so the cost of the optimal
fractional edge cover γA of BA is ρ∗(Qkey(A)∪A), and the width of the corresponding
fractional hypertree decomposition is exactly maxA∈V (Q)(ρ

∗(Qkey(A)∪A)) = s�(T �).

PROPOSITION 9.3. If there exists a fractional hypertree decomposition of an equi-
join query Q with width w, then there exists a d-tree T � of Q such that s�(T �) ≤ w.

PROOF. Let (T, (Bt), (γt)) be a fractional hypertree decomposition of an equi-join
query Q. Each bag Bt is a set of vertices of (the hypergraph of) Q, that is, equivalence
classes of attributes under the selection condition of Q. We construct the d-tree T �

whose nodes are the vertices of Q by mimicking the structure of T . While each node
may occur in multiple bags of T ; in T we include each node only once, at its topmost
occurrence in T . The formal definition of T � follows.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:35

B

C

D E

F

G

H

V

R

S T

U
A B

C

D E

F

G

H

A,B,C

B,C,E

C,D,E B,G,E

E,G,H B,F,G

r

s

t u

v

w
7−→

A

B

C

E

D G

H F

key(A) = {}
key(B) = {A}
key(C) = {A,B}
key(E) = {B,C}
key(D) = {C,E}
key(G) = {B,E}
key(F) = {B,G}
key(H) = {E,G}

Fig. 4. Left to right: the hypergraph of query Q3 from Example 9.5, its tree decomposition of fractional
width 3

2
, and a corresponding d-tree T �

Q3
with s�(T �

Q3
) = 3

2
as constructed in Proposition 9.3.

Construction. For each bag Bt, let B′
t ⊆ Bt be the set of vertices which are not con-

tained in Ba for any ancestor a of t. Chain the vertices of B′
t into a path, and construct

an f-tree T by replacing each t in T by the path B′
t (all in-edges to t now enter the first

node of B′
t and all out-edges from t now exit the last node of B′

t). Each vertex A lies in a
connected subset of bags Bt, so there is exactly one B′

t containing A and hence exactly
one occurrence of A in T . Finally, construct T � by annotating each node A of T with
key(A) = anc(A) ∩

⋃
Bt, where t is such that A ∈ B′

t.
Correctness. First we prove that the f-tree T is an f-tree of Q. Let A and B be at-

tributes of a relation R, let a and b be such that A ∈ B′
a and B ∈ B′

b, and let t be such
that the hyperedge corresponding to R is a subset of Bt, so that A,B ∈ Bt. Then both
a and b are ancestors of t in T , and hence a and b lie on a root-to-leaf path in T . This
implies that A and B lie on a root-to-leaf path in T , and shows that the path condition
is satisfied.

Next we prove that the d-tree T � is a d-tree of Q, i.e. that for any A, the nodes in
the subtree TA can only depend on the vertices from key(A). Suppose that some node
C from TA depends on some B from anc(A). Let a, b, c be such that A ∈ B′

a, B ∈ B′
b and

C ∈ B′
c. Since A is an ancestor of C or A = C, a is an ancestor of c or a = c. In any

case, if C ∈ Bt then t is a descendant of a or t = a. Since B and C are dependent, they
share a hyperedge of Q, and hence there exists a r such that B, C ∈ Br. By the above,
r must be a descendant of a or r = a. Since B ∈ B′

b ⊆ Bb where b is an ancestor of a or
equals a, and since the set {t : B ∈ Bt} is connected in T , we must also have B ∈ Ba,
i.e., B ⊆

⋃
Ba. Thus B ⊆ anc(A) ∩

⋃
Ba = key(A), as required.

Finally, for each node A, the set of attributes key(A)∪A is contained in some
⋃
Bt, so

ρ∗(Qkey(A)∪A) ≤ ρ∗(Q⋃
Bt
) ≤ w wherew is the width of the original fractional hypertree

decomposition. It follows that s�(T �) = maxA ρ
∗(Qkey(A)∪A) ≤ w.

The two-way correspondence yields the following equality.

COROLLARY 9.4 (PROPOSITIONS 9.2 AND 9.3). For any equi-join query Q,
s�(Q) = fhw(Q).

PROOF. Let T � be an optimal d-tree for the equi-join query Q. By Proposition 9.2,
fhw(Q) ≤ s�(T �) = s�(Q). By Proposition 9.3, there exists a d-tree T � such that
s�(T �) = fhw(Q), so s�(Q) ≤ fhw(Q). The result follows.

Example 9.5. We illustrate the correspondence between tree decompositions and
d-trees on the query

Q3 = R(A,B,C) ✶ S(C,D,E) ✶ T (E,G,H) ✶ U(B,F,G) ✶ V (B,E),

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:36 D. Olteanu and J. Závodný

for clarity written here as a natural join. The hypergraph ofQ3 has verticesA,B, . . . , H
and edgesR,S, T, U, V , as depicted in Figure 4 left. A tree decomposition TQ3 of Q3 with
vertices r, s, t, u, v, w is depicted in Figure 4 middle, where bags are shown in place of
the vertices. The bags Br, Bs, Bt and Bu can each be covered by a single hyperedge R,
S, T and U respectively. The bag Bv = {B,C,E} can be covered by assigning weight 1

2

to each of the hyperedges R, S and V , and Bw = {B,G,E} by assigning weight 1
2 to

each of T, U, V . The fractional width of TQ3 is thus 3
2 . The corresponding d-tree T �

Q3

constructed by Proposition 9.3 is depicted in Figure 4 right: the nodes ofQ are arranged
into a tree by their topmost occurrence in the tree decomposition TQ3 , and for each
node N the set key(N) contains those ancestors of N which are in the same bag as the
topmost occurrence of N .

By applying Proposition 9.2 to T �
Q3 , we obtain back a tree decomposition of Q3 with

fractional width 3
2 . It is not equal to the original decomposition TQ3 ; it contains an

additional vertex A with BA = {A}, its child B with BB = {A,B}, and then a copy of
TQ3 as a subtree under B. (It is not depicted here.) ✷

9.2. F-Trees and Path Decompositions

We draw a connection between f-trees and fractional hyperpath decompositions of
equi-join queries, although a looser one than between d-trees and fractional hyper-
tree decompositions. Any f-tree T of an equi-join query Q can be translated into a
fractional hyperpath decomposition of the hypergraph of Q with width s(T), and any
width-w fractional hypertree decomposition ofQ can be translated into an f-tree T with
s(T) ≤ w · log |S|, where S is the schema of Q. It follows that s(Q) is greater or equal to
the fractional hyperpath width of Q, but can be greater by at most a factor logarithmic
in |S|. The next subsection shows that this logarithmic gap cannot be shrunk.

Definition 9.6. A path decomposition of a hypergraph H is a tree decomposition
(T, (Bt)) of H for which the tree T is a path. A fractional hyperpath decomposition of
H is a fractional hypertree decomposition (T, (Bt), (γt)) for which T is a path. The frac-
tional hyperpath width of a hypergraphH , fhpw(H), is the minimum possible width of
a fractional hyperpath decomposition of H .

Since any fractional hyperpath decomposition is also a fractional hypertree decom-
position, fhw(H) ≤ fhpw(H) for any hypergraph H .

Next we show how any f-tree T of an equi-join query can be translated into a path
decomposition of fractional width s(T). Intuitively, each root-to-leaf path in T corre-
sponds to a bag of the decomposition, and these bags are arranged into a path using
some ordering of the leaves of T .

Example 9.7. Consider query Q3 from Example 9.5 and its f-tree TQ3 as depicted
in Figure 4. The path decomposition of Q3 corresponding to this f-tree has bags B1 =
{A,B,C,E,D}, B2 = {A,B,C,E,G,H} and B3 = {A,B,C,E,G, F}, in this order. ✷

The translation is formalised in the following result.

PROPOSITION 9.8. Let T be an f-tree of an equi-join query Q. There exists a path
decomposition of Q with width w = s(T).

PROOF. Construction. Consider a left-to-right order of the nodes in the f-tree T in-
duced by any left-to-right order of the children under each node. Let L1, . . . , Lk be the
leaves of T in this order, let Bi be the set of nodes of T (vertices of the hypergraph of
Q) on the path from Li to the root of T , and let P be the path 1− 2− · · · − k.

Correctness. We show that (P, (Bi)) is a path decomposition of H . For each node A,
A ∈ Bi iff Li is in the subtree TA, and hence set of indices i for which Bi contains A is

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:37

a contiguous range of integers, i.e., a connected subset of P . Moreover, for any relation
R in Q, the attributes of R lie on a root-to-leaf path in T , so the corresponding nodes
are contained in Bi for some index i.

Finally, let γi be an optimal fractional edge cover of Bi. Then (P, (Bi), (γi)) is
a fractional hyperpath decomposition of Q, and its width is w = maxi ρ

∗(Bi) =
maxi ρ

∗(Qpath(Li)). For any non-leaf vertex A of T , there exists a leaf Li under A and
ρ∗(Qpath(A)) ≤ ρ∗(Qpath(Li)), so in fact w = maxA ρ

∗(Qpath(A)) = s(T).

COROLLARY 9.9 (PROPOSITION 9.8). For any equi-join query Q, s(Q) ≥ fhpw(Q).

The translation of Proposition 9.8 cannot always be reversed. The path decomposi-
tions produced by the translation have a special property that for any pair of nodes u
and v, the sets {t : Bt ∋ u} and {t : Bt ∋ v} are either disjoint or one is contained in the
other. A general path decomposition of Q does not have this property and cannot be
translated back to an f-tree T of Q with s(T) equal to the width of the decomposition.
However, there exists a reverse translation for which s(T) is by at most a logarith-
mic factor larger than the width of the original path decomposition. Moreover, such a
translation can also be defined for arbitrary tree decompositions of Q.

Intuitively, the reverse translation works as follows. We pick a vertex V of the tree
decomposition whose removal breaks the tree into smallest possible components. We
recursively build an f-tree from each of these resulting components of the tree decom-
position, and make them children subtrees of a path built from attributes in V . It is
possible to prove that each path in the resulting f-tree contains attributes from only
logarithmically many vertices of the original tree decomposition.

To establish this claim formally, we first prove an auxiliary lemma on balanced tree
section and then the main result.

LEMMA 9.10. For any tree T there exists a vertex v such that all connected compo-
nents of T \ v have at most |V (T)|/2 vertices.

PROOF. Let v be a vertex of T for which the largest connected component of T \ v
has minimum possible number of vertices. For the sake of contradiction, suppose that
T \ v has a component C with more than |V (T)|/2 vertices, and let c be the vertex in
C adjacent to c. Then the sets C \ c and T \ C are disconnected in T \ c, and have
at most |V (C)| − 1 and |V (T)|/2 vertices respectively. Therefore, the largest connected
component of T \ c has less than |V (C)| vertices, a contradiction.

PROPOSITION 9.11. If there exists a fractional hypertree decomposition
(T, (Bt), (γt)) of Q with width w, then there exists an f-tree T of Q such that
s(T) ≤ w · (log2 |V (T)|+ 1).

PROOF. Our construction is related to a known proof that any forest has logarith-
mic pathwidth [Korach and Solel 1993]. For any tree decomposition (T, (Bt)) of Q, we
rearrange the nodes of its underlying tree to attain height log |V (T)| (possibly losing
the tree decomposition property), and then translate it into an f-tree T in which each
root-to-leaf path will consist of at most log |V (T)| bags of the tree decomposition.

Construction. Let (T, (Bt), (γt)) be a fractional hypertree decomposition of Q. Con-
struct a rooted tree balance(T) recursively as follows. Let v be a vertex in T such that
all connected components of T have at most |V (T)|/2 vertices, and let T1, . . . , Tk be
the connected components of T \ v. Then balance(T) is a tree with root v and children
subtrees balance(T1), . . . , balance(Tk).

Next we repeat on balance(T) the construction of an f-tree from a tree of bags, used
in the proof of Proposition 9.3. For each bag Bt, let B′

t be the set of vertices in Bt but

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:38 D. Olteanu and J. Závodný

R1 R2 R3 R4 R5 R6

V1 V2 V3 V4 V5 V6 V7

V1, V2

V2, V3

V3, V4

V4, V5

V5, V6

V6, V7

7−→
V4, V5

V2, V3

V1, V2 V3, V4

V5, V6

V6, V7

7−→

V4

V5

V2

V3

V1

V6

V7

=

A4, B3

A5, B4

A2, B1

A3, B2

A1

A6, B5

A7, B6

Fig. 5. Top right: hypergraph of the query Q6 from Example 9.14. Bottom left to right: a width-1 tree de-
composition P (which is also a path decomposition) of the query Q6, a rearrangement of its bags balance(P),
and the resulting f-tree T as constructed in Proposition 9.11.

not in Ba for any ancestor a of t in balance(T). Chain the vertices of each B′
t into a path,

and construct T by replacing each Bt in balance(T) by the path B′
t.

Correctness. In the tree balance(T) the bags containing a given vertex A possibly do
not form a connected subtree, but the following argument by contradiction shows that
there is still only one occurrence of A in T . If A ∈ B′

x and A ∈ B′
y, then neither of x and

y is an ancestor of the other, so they have a least common ancestor p different from x
and y, and A /∈ Bp. The subtree of balance(T) rooted at p was constructed as balance(Tp)
for some connected subtree Tp of T . Since x and y lie in different children subtrees of p
in balance(Tp), they are in different connected components of Tp \ p. Therefore, the set
{t : Bt ∋ A}, containing x and y but not p, is disconnected in Tp and hence also in T .
This contradicts (T, (Bt)) being a tree decomposition.

Next we show that T satisfies the path condition. Let A and B be attributes of a
relation R, let a and b be such that A ∈ B′

a and B ∈ B′
b. There exists a bag Bt containing

all vertices of the hyperedge corresponding to R, in particular, A,B ∈ Bt. Then both a
and b are ancestors of t in balance(T), and hence A and B lie on a root-to-leaf path in
T . This completes the proof that T is an f-tree of Q.

By induction we prove that depth(balance(T)) ≤ 1 + log2 |V (T)|: if |V (T)| = 1
then depth(balance(T)) = 1 and if |V (T)| > 1 then depth(balance(T)) = 1 +
maxk depth(balance(Tk)) ≤ 1 + 1 + log2⌊|V (T)|/2⌋ ≤ 1 + log2 |V (T)|.

Finally we prove the bound on s(T). For any attribute A, if A ∈ B′
a, then path(A) in

the tree T is contained in the labels of vertices of
⋃

t∈path(a)Bt, where by path(a) we

mean the set containing a and the ancestors of a in balance(T). The weight function
γA =

∑

t∈path(a) γt covers all vertices in
⋃

t∈path(a)Bt, the weight of each γt is at most w,

and the size of path(a) is at most 1 + log2 |V (T)|, so ρ∗(Qpath(A)) ≤ w · (1 + log2 |V (T)|).
Since this holds for any attribute A of Q, we also have s(T) ≤ w · (1 + log2 |V (T)|).

PROPOSITION 9.12. For equi-join queries Q, we have s(Q) = O(fhw(Q) · log |S|).

PROOF. Let T � be an optimal d-tree of Q. The proof of Proposition 9.2 constructs
a fractional hypertree decomposition of Q with width s�(T �) = s�(Q) = fhw(Q) such
that the underlying tree T has |V (Q)| ≤ |S| vertices. The result follows by Proposi-
tion 9.11.

COROLLARY 9.13 (PROPOSITION 9.12). For equi-join queries Q, we have
s(Q) = O(s�(Q) · log |S|).

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:39

Example 9.14. Consider the chain query of 6 relations

Q6 = σB1=A2∧B2=A3∧···∧B5=A6(R1(A1, B1)×R2(A2, B2)× · · · ×R6(A6, B6))

same as defined in Definition 9.16. Its hypergraph is a path of vertices V1 = A1,
V2 = {B1, A2}, . . . , V6 = {B5, A6}, V7 = {B6} depicted in Figure 9.2 top, and it
has a straightforward width-1 path decomposition P with bags {V1, V2}, {V2, V3}, . . . ,
{V6, V7}, depicted in Figure 9.2 left. This path decomposition can never result as a
translation of an f-tree using Proposition 9.8, since e.g. the sets of bags containing V2
and V3 are not disjoint, nor one contained in the other.

Proposition 9.11 translates any tree decomposition into an f-tree T with s(T) only by
a logarithmic factor larger than the width of the tree decomposition. For the tree de-
composition P , the translation first constructs the tree balance(P) by repeatedly pick-
ing out the middle vertex as a root, and then the f-tree T by keeping the topmost
occurrence of each node and removing others, as shown in Figure 9.2. The rearrange-
ment P 7→ balance(P) ensures that each root-to-leaf path in the resulting f-tree T only
contains vertices from a logarithmic number of bags from the original decomposition.

Note that the constructed f-tree T is not necessarily optimal, we have s(T) = 3 but
s(Q6) = 2 as witnessed by the complete binary f-tree V4(V2(V1, V3), V6(V5, V7)). ✷

9.3. Succinctness Gap for D-representations

We show that the logarithmic upper bound on the gap between s�(Q) and s(Q) is tight
by exhibiting a class of queries for which s(Q) = Ω(s�(Q) · log |S|). First we show that
the logarithmic gap exists between fhw(Q) and fhpw(Q), which implies the gap between
s�(Q) and s(Q) since

s�(Q) = fhw(Q) ≤ fhpw(Q) ≤ s(Q).

Then we also exhibit a class of queries with a logarithmic gap between fhpw(Q) and
s(Q), that is, for which s(Q) = Ω(fhpw(Q) · log |S|).

The gap between fhw(Q) and fhpw(Q) follows easily from existing results on
treewidth and pathwidth.

PROPOSITION 9.15. There exist arbitrarily large equi-join queries for which
fhpw(Q) = Ω(fhw(Q) · log |S|).

PROOF. The complete binary tree Th of height h has 2h− 1 vertices, treewidth 1 and
pathwidth Ω(h) [Cattell et al. 1996]. Pathwidth Ω(h) implies that any path decomposi-
tion of Th has a bag B with Ω(h) vertices. Since Th is a graph and all edges of Th contain
two vertices, two times the weight

∑

e γ(e) of any weight function γ on B equals the
sum of weights of all vertices

∑

v

∑

e∋v γ(e), which is at least |B| if γ coversB. It follows
that the weight of γ is Ω(h) and hence the fractional hyperpath width of Th is Ω(h). The
fractional hypertree width of Th is still 1. Therefore, the query QTh whose hypergraph
is the tree Th has fhw(Q) = 1 but fhpw(Q) = Ω(h) = Ω(log |2h − 1|) = Ω(log |S|).

In the remainder of this section we show the gap between fhpw(Q) and s(Q). A pro-
totypical example for this gap are the chain queries.

Definition 9.16. Consider the relations Ri over schemas {Ai, Bi} for i ∈ N. For any
natural number n we define the chain query Qn to be the chain of n− 1 joins

Qn = σB1=A2 ∧ B2=A3 ∧ ... ∧ Bn−1=An
(R1 × · · · ×Rn). ✷

The hypergraph of Qn is a simple path of n + 1 vertices denoted as V1 = {A1},
V2 = {B1, A2}, . . . , Vn = {Bn−1, An}, Vn+1 = {Bn} connected by the n edges {Vi, Vi+1}
corresponding to the relations Ri for i = 1, . . . , n.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:40 D. Olteanu and J. Závodný

B6, A7

B3, A4

B1, A2

A1 B2, A3

B5, A6

B4, A5

B9, A10

B8, A9

B7, A8

B10, A11

B11

Fig. 6. The f-tree T11 for Q11 with height(T11) = 4 and s(T11) = 3. (From Example 9.18).

PROPOSITION 9.17. For any chain query Qn, fhpw(Qn) = fhw(Qn) = s�(Qn) = 1.

PROOF. Let P be the path 1 − 2 − · · · − n and for each i = 1, . . . , n define the bag
Gi = {Vi, Vi+1} and the weight function γi as Ri 7→ 1 and Rj 7→ 0 for j 6= i. Then each
hyperedge Ri of Qn is contained in the bag Gi, for each vertex Vi of Qn the set of j
such that Gj ∋ Vi is connected, and each γi covers its corresponding bag Gi. Therefore,
(P, (Gi)

n
i=1, (γi)

n
i=1) is a fractional path decomposition of Qn. The weight of each γi is 1,

so the weight of the decomposition is 1. SinceQn is non-empty, any fractional hypertree
decomposition has weight at least 1. It follows that fhpw(Qn) = fhw(Qn) = 1, and by
Proposition 9.4, also s�(Qn) = 1.

Proposition 9.11 bounds s(Qn) from above by s(Qn) ≤ log2(n + 1) + 1. This bound
is also witnessed by the balanced f-tree Tn constructed by picking the node V⌊n/2⌋+1

in the middle of the chain query as a root and constructing its two children subtrees
by recursively using the two resulting halves of the query: we definitely have s(Tn) ≤
depth(Tn) = ⌊log2(n+ 1)⌋+ 1.

Example 9.18. The f-tree T11 for the chain query Q11 (i.e., n = 11) is shown in
Figure 6. Its depth is ⌊log2 12⌋ + 1 = 4, so definitely s(T11) ≤ 4. In fact s(T) = 3, as
ρ∗(Qpath(A1)) = 3 and ρ∗(Qpath(Ai)) ≤ 3 for all otherAi (whereQpath(Ai) is the restriction
of Q11 to path(Ai)).

The d-tree T � that is a path of nodes V1 = {A1}, V2 = {B1, A2}, . . . , V11 = {B10, A11}
and V12 = {B11}, rooted at V1, with key(Vi+1) = Vi for each i, is a valid d-tree of Q11.
Since each key(Vi+1)∪Vi+1 is covered by the relation Ri, we have s�(T �) = 1 and hence
also s�(Q11) = 1. ✷

Next we prove that up to a constant factor, Tn is optimal for Qn, and thus the bound
of Proposition 9.11 is tight. We first prove a lemma limiting the f-trees among which
we need to search for an optimal f-tree. It states that under any node of an f-tree it
always pays off to branch into the maximal possible number of branches.

Definition 9.19. An f-tree T of an equi-join query Q is maximally branching if for
each node A, the children subtrees of A correspond to the connected components of the
query QTA\A. ✷

Note that for any f-tree T of an equi-join query and any node A, each of the con-
nected components of QTA\A is wholly contained in one of the children subtrees of A.
Otherwise some relation of that connected component would have its attributes in two
distinct children subtrees of A, which would violate the path condition. An f-tree T
is maximally branching if the vertices of each connected component of QTA\A form a
different subtree under A.

LEMMA 9.20. For any equi-join query Q, there exists a maximally branching f-tree
Tb with s(Tb) = s(Q).

PROOF. Let T be any f-tree of Q with s(T) = s(Q). Construct Tb by splitting T
as much as possible but reflecting the original hierarchy of the nodes in T . Formally,

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:41

define split(T) recursively as follows. For a forest U , split(U) =
⋃

tree T in U split(T). For
a tree T with root A and forest of children subtrees U , let {T1, . . . , Tk} = split(U), let
A = {i : Ti depends on A}, let Ta be a tree with root A and children subtrees {Ti}i∈A
and define split(T) = {Ti}i/∈A ∪ Ta.

By structural induction on T , we can prove that split(T) satisfies the path constraint,
so Tb = split(T) is an f-tree of Q. By construction, Tb is maximally branching. Also, by
structural induction we prove that Qpathsplit(T)(A) ⊆ QpathT (A) for any node A in T , so

ρ∗(Qpathsplit(T)(A)) ≤ ρ∗(QpathT (A)) and hence s(Tb) ≤ s(T). Since T is optimal, we must

in fact have s(Tb) = s(T) = s(Q).

PROPOSITION 9.21. For any chain query Qn, s(Qn) = Ω(logn).

PROOF. Let T be a maximally branching optimal f-tree of Qn. By top-down induc-
tion on T we can prove that the vertices of any subtree TA of T are {Vi}i∈I for a con-
tiguous interval I of integers, and hence that any node in T has at most two children.
It follows that the height of T is at least log2(n + 1) + 1. Since each hyperedge of Qn
covers at most two vertices, s(Qn) = s(T) > (log2(n+ 1) + 1)/2 = Ω(log n).

9.4. Succinctness Gap for F-representations

For non-empty equi-join queries, any f-representation of the query result must be at
least linear in the database size, while the result size can be exponential in the query
size. We show that there exist queries for which this size gap is attained.

PROPOSITION 9.22. There exist arbitrarily large equi-join queries Q such that
s�(Q) = s(Q) = 1 and ρ∗(Q) = |Q|.

PROOF. The product query Q = R1 × · · · × Rn over unary relations R1, . . . , Rn has
ρ∗(Q) = n = |Q| but s(Q) = 1.

The product query is a trivial example, but there exist many others. In particular,
any equi-join query Q, in which at least one attribute per relation is not involved in
joins, has ρ∗(Q) = |Q|, yet many such queries still retain small s(Q). For example,
queries Q whose Boolean projections π∅Q are hierarchical [Dalvi and Suciu 2007] ad-
mit an f-tree T with s(T) = 1. For each root-to-leaf path in such an f-tree there is a
relation with attributes in each node of the path. A simple example of a hierarchical
query is the join σA1=···=An

(R1 × · · · ×Rn), where each Ri is over a schema {Ai, Bi}.
On the other hand, there exist queries for which s(Q) = ρ∗(Q), and whose results

hence cannot benefit from factorisations over f-trees. This happens when no branching
is possible in f-trees of Q and all f-trees of Q are paths, so that Qpath(B) = Q for the
bottom node B. All f-trees of a query Q are paths iff any two nodes are dependent, i.e.,
any two attribute classes have attributes from a common relation.

PROPOSITION 9.23. There exist arbitrarily large equi-join queries Q such that
s�(Q) = s(Q) = ρ∗(Q) = Ω(|S|).

PROOF. Consider the relations Ri,j for 1 ≤ i < j ≤ n with schemas {Aii,j , A
j
i,j}.

Let Q = σψ(×i<jRi,j), where ψ equates all attributes with the same superscript. The
hypergraph of Q is the complete graph on n nodes, so the possible f-trees of Q are the
n! paths of these nodes and the possible d-trees have key(N) = anc(N) for all nodes N .

For each such d-tree T �, the query Qkey(B)∪B = Qpath(B) of the bottom node B in-
cludes all nodes of T � and hence is equal to Q, and its fractional edge cover number is
ρ∗(Qkey(B)∪B) = ρ∗(Q) =

(
n
2

)
1

n−1 = n
2 . (An optimal fractional edge cover assigns weight

1
n−1 to each of the

(
n
2

)
relations.) It follows that s�(T �) = s(T) = ρ∗(Q) = n

2 for any

f-tree T of Q, and hence s�(Q) = s(Q) = ρ∗(Q) = n
2 = Ω(|S|).

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:42 D. Olteanu and J. Závodný

10. DIRECTIONS FOR FUTURE WORK

This work introduces the parameters s(Q) and s�(Q), which characterise the succinct-
ness of f-representations and d-representations of conjunctive query results, and re-
lates these parameters to other known measures such as fractional hypertree width.
The complexity of computing s(Q) and s�(Q) for a given conjunctive query Q is unad-
dressed and still open. The related complexity of computing the fractional hypertree
width is also open, with partial results on its approximation [Marx 2010].

The algorithms for computing f-representations and d-representations of query re-
sults presented in this work are proven to be worst-case optimal. Recent results [Ngo
et al. 2013] towards instance-optimal join algorithms with flat relational results can
perhaps be extended to the factorised case.

For arbitrary input relations beyond query results, the computation of an optimal
factorised representation is likely to be hard, similar to the Σp2-hardness of minimi-
sation of Boolean functions [Buchfuhrer and Umans 2008]. Determining the precise
complexity of various flavours of problems of finding minimal factorisations, as well
as quantifying the succinctness gaps between various flavours of f-representations
and d-representations, is subject to future work. A robust approach to approximate
instance-based factorisation would be desirable in practice.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers, whose suggestions helped improve the presen-
tation of this article. Jakub Závodný was supported by an EPSRC DTA Grant EP/P505216/1.

REFERENCES

ABITEBOUL, S. AND BIDOIT, N. 1986. Non first normal form relations: An algebra allowing data restructur-
ing. Journal of Computer and System Sciences 33, 3, 361–393.

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases.

AGRAWAL, S., NARASAYYA, V., AND YANG, B. 2004. Integrating vertical and horizontal partitioning into au-
tomated physical database design. In Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’04. 359–370.

ATSERIAS, A., GROHE, M., AND MARX, D. 2008. Size bounds and query plans for relational joins. In Foun-
dations of Computer Science (FOCS). 739–748.

BAGAN, G., DURAND, A., AND GRANDJEAN, E. 2007. On acyclic conjunctive queries and constant delay
enumeration. In Computer Science Logic. Lecture Notes in Computer Science Series, vol. 4646. 208–
222.

BAKIBAYEV, N., KOČISKÝ, T., OLTEANU, D., AND ZÁVODNÝ, J. 2013. Aggregation and ordering in factorised
databases. Proceedings of the VLDB Endowment 6, 14, 1990–2001.

BAKIBAYEV, N., OLTEANU, D., AND ZÁVODNÝ, J. 2012. FDB: A query engine for factorised relational
databases. Proceedings of the VLDB Endowment 5, 11, 1232–1243.

BANCILHON, F., RICHARD, P., AND SCHOLL, M. 1982. On line processing of compacted relations. In In 8th
Int. Conference on Very Large Data Bases (VLDB). 263–269.

BATORY, D. S. 1979. On searching transposed files. ACM Trans. Database Syst. 4, 4, 531–544.

BONCZ, P. A., MANEGOLD, S., AND KERSTEN, M. L. 1999. Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of the 25th International Conference on Very Large Data
Bases. VLDB ’99. 54–65.

BRAYTON, R. K. 1987. Factoring logic functions. IBM J. Res. Dev. 31, 2, 187–198.

BUCHFUHRER, D. AND UMANS, C. 2008. The complexity of boolean formula minimization. In Proceedings
of the 35th international colloquium on Automata, Languages and Programming, Part I. ICALP ’08.
24–35.

CATTELL, K., DINNEEN, M. J., AND FELLOWS, M. R. 1996. A simple linear-time algorithm for finding
path-decompositions of small width. Inf. Process. Lett. 57, 4, 197–203.

CERF, L., BESSON, J., ROBARDET, C., AND BOULICAUT, J.-F. 2009. Closed patterns meet n-ary relations.
ACM Transactions on Knowledge Discovery from Data (TKDD) 3, 1, 3.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results 2:43

CHEN, H. AND GROHE, M. 2010. Constraint satisfaction with succinctly specified relations. Journal of
Computer and System Sciences 76, 8, 847–860.

CUDRÉ-MAUROUX, P., WU, E., AND MADDEN, S. 2009. The case for rodentstore: An adaptive, declarative
storage system. In CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research.

DALVI, N. AND SUCIU, D. 2007. Efficient query evaluation on probabilistic databases. The VLDB Jour-
nal 16, 4, 523–544.

DELOBEL, C. 1978. Normalization and hierarchical dependencies in the relational data model. ACM Trans.
Database Syst. 3, 3, 201–222.

GEERTS, F., GOETHALS, B., AND MIELIKÄINEN, T. 2004. Tiling databases. In Discovery science. Lecture
Notes in Computer Science Series, vol. 3245. Springer, 278–289.

GOTTLOB, G. 2012. On minimal constraint networks. Artif. Intell. 191-192, 42–60.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000. A comparison of structural CSP decomposition meth-
ods. Artif. Intell. 124, 2, 243–282.

GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. 2007. Provenance semirings. In Proceedings of the
Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS
’07. 31–40.

GROHE, M. AND MARX, D. 2006. Constraint solving via fractional edge covers. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Algorithm. SODA ’06. 289–298.

GRUND, M., KRÜGER, J., PLATTNER, H., ZEIER, A., CUDRÉ-MAUROUX, P., AND MADDEN, S. 2010.
HYRISE - A main memory hybrid storage engine. Proceedings of the VLDB Endowment 4, 2, 105–116.

HENGLEIN, F. AND LARSEN, K. F. 2010. Generic multiset programming with discrimination-based joins
and symbolic cartesian products. Higher-Order and Symbolic Computation 23, 3, 337–370.

IMIELINSKI, T., NAQVI, S., AND VADAPARTY, K. 1991. Incomplete object—a data model for design
and planning applications. In Proceedings of the 1991 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’91. 288–297.

JAESCHKE, G. AND SCHEK, H. J. 1982. Remarks on the algebra of non first normal form relations. In
Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. PODS
’82. 124–138.

KENT, W. 1983. A simple guide to five normal forms in relational database theory. Commun. ACM 26, 2,
120–125.

KORACH, E. AND SOLEL, N. 1993. Tree-width, path-width, and cutwidth. Discrete Applied Mathemat-
ics 43, 1, 97 – 101.

MAKINOUCHI, A. 1977. A consideration on normal form of not-necessarily-normalized relation in the re-
lational data model. In Proceedings of the Third International Conference on Very Large Data Bases -
Volume 3. VLDB ’77. 447–453.

MARX, D. 2010. Approximating fractional hypertree width. ACM Trans. Algorithms 6, 2, 29:1–29:17.

NGO, H. Q., NGUYEN, D. T., RE, C., AND RUDRA, A. 2013. Towards instance optimal join algorithms for
data in indexes. CoRR abs/1302.0914.

NGO, H. Q., PORAT, E., RÉ, C., AND RUDRA, A. 2012. Worst-case optimal join algorithms: [extended ab-
stract]. In Proceedings of the 31st Symposium on Principles of Database Systems. PODS ’12. 37–48.

OLTEANU, D. AND HUANG, J. 2008. Using OBDDs for efficient query evaluation on probabilistic databases.
In Proceedings of the 2nd International Conference on Scalable Uncertainty Management. SUM ’08.
326–340.

OLTEANU, D., KOCH, C., AND ANTOVA, L. 2006. World-set decompositions: Expressiveness and efficient
algorithms. In Proceedings of the 11th International Conference on Database Theory. ICDT’07. 194–208.

OLTEANU, D. AND ZÁVODNÝ, J. 2011. On factorisation of provenance polynomials. In 3rd USENIX Work-
shop on the Theory and Practice of Provenance.

OLTEANU, D. AND ZÁVODNÝ, J. 2012. Factorised representations of query results: Size bounds and read-
ability. In Proceedings of the 15th International Conference on Database Theory. ICDT ’12. 285–298.

OZSOYOGLU, Z. M. AND YUAN, L.-Y. 1987. A new normal form for nested relations. ACM Trans. Database
Syst. 12, 1, 111–136.

PEARL, J. 1989. Probabilistic reasoning in intelligent systems: Networks of plausible inference.

RENDLE, S. 2013. Scaling factorization machines to relational data. Proceedings of the VLDB Endow-
ment 6, 5, 337–348.

SEN, P., DESHPANDE, A., AND GETOOR, L. 2010. Read-once functions and query evaluation in probabilistic
databases. Proceedings of the VLDB Endowment 3, 1, 1068–1079.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

2:44 D. Olteanu and J. Závodný

SHUTE, J., VINGRALEK, R., SAMWEL, B., HANDY, B., WHIPKEY, C., ROLLINS, E., OANCEA, M., LITTLE-
FIELD, K., MENESTRINA, D., ELLNER, S., CIESLEWICZ, J., RAE, I., STANCESCU, T., AND APTE, H.
2013. F1: A distributed SQL database that scales. Proceedings of the VLDB Endowment 6, 11, 1068–
1079.

STONEBRAKER, M., ABADI, D. J., BATKIN, A., CHEN, X., CHERNIACK, M., FERREIRA, M., LAU, E., LIN, A.,
MADDEN, S., O’NEIL, E., O’NEIL, P., RASIN, A., TRAN, N., AND ZDONIK, S. 2005. C-store: A column-
oriented dbms. In Proceedings of the 31st International Conference on Very Large Data Bases. VLDB ’05.
553–564.

VELDHUIZEN, T. L. 2014. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of the 17th
International Conference on Database Theory. ICDT ’14. 96–106.

Received July 2013; revised May 2014; accepted July 2014

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Online Appendix to:
Size Bounds for Factorised Representations of Query Results

DAN OLTEANU and JAKUB ZÁVODNÝ, University of Oxford

A. DEFERRED PROOFS

Proof of Proposition 3.2

Let Q be a query, D be a database, and (QS ,DS) be the S-restriction for a subset S of
the set of head attributes of Q. We prove that |πS(Q(D))| ≤ |QS(DS)|.

Intuitively, πS(Q(D)) performs all joins of Q and projects to S, while QS(DS) first
projects to S and performs only the joins on the attributes in S. Formally,

|πS(Q(D))| = |πS(πP(σψ(R1 × · · · ×Rn)))(D)|

= |πS(σψ(R1 × · · · ×Rn))(D)| (2)

= |πS∗(σψ(R1 × · · · ×Rn))(D)| (3)

≤ |πS∗(σψS
(R1 × · · · ×Rn))(D)|

= |σψS
(πS∗(R1 × · · · ×Rn))(D)|

= |σψS
(πS∗R1 × · · · × πS∗Rn)(D)|

= |QS(DS)|,

where S∗ denotes the set of attributes in S and attributes equivalent to an attribute
in S, equality (2) holds because S ⊆ P and equality (3) holds because each attribute in
S∗ \ S is equivalent to some attribute to S.

Proof of Proposition 3.4

We prove that (1) if the attributes A and B are Q-dependent for a query Q, then there
exists a database D for which A and B are dependent in the relation Q(D), and (2) if
A and B are not Q-dependent then for all databases D, A and B are not dependent in
the relation Q(D).

Proof of statement (1). Let A and B be Q-dependent. Then there are attributes A′

equivalent to A and B′ equivalent to B, and a chain of relations R1, . . . , Rk in Q, such
that A′ is in the schema of R1, B′ is in the schema of Rk, and each successive Ri
and Ri+1 are joined on an attribute Ji that does not belong to the projection list P and
neither does any equivalent attribute. Let J be the set of attributes equivalent to some
Ji.

Consider a database D in which all attributes only attain the value 1 except for the
attributes equivalent to A or B and the attributes from J , which attain values 2 and 3.
Let each relation contain all possible tuples over these domains which do not have both
values 2 and 3. The result Q(D) then contains two tuples; one for which A = B = 2 and
one for which A = B = 3. All attributes not equivalent to A nor B have the value 1,
because the attributes from J are projected out in Q. ThenQ(D) cannot be the natural
join of two relations RA ✶C RB for a set C that does not contain A nor B. Any such join
would contain the tuples where A = 2 and B = 3, and vice versa. Therefore, A and B
are dependent in Q(D).

Proof of statement (2). Call two relations R1 and Rk in a query Q coupled if there
exists a chain of relations R1, . . . , Rk such that each successive Ri and Ri+1 are joined
on an attribute whose class is disjoint with the projection list P . This partitions the

c© 2015 ACM 0362-5915/2015/03-ART2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

App–2 D. Olteanu and J. Závodný

relations of Q into equivalence classes of relations all coupled to each other. If two
attributes A and B are not Q-dependent, then no attributes A′ equivalent to A and
B′ equivalent to B may belong to coupled relations. Therefore, the relations of Q can
be divided into two groups {Ri}i∈I and {Rj}j∈J such that no relation from one group
is joined on projected-out attribute class with a relation in the other group, and all
attributes equivalent to A belong to some Ri with i ∈ I, and all attributes equivalent
to B belong to some Rj with j ∈ J . Let I be the set of attributes only equivalent to
attributes from Ri, J the set of attributes only equivalent to attributes from Rj , and K
the set of attributes equivalent to both an attribute from Ri and to an attribute from
Rj . Let ψI , ψJ , ψK be the fragments of the selection condition ψ that equate attributes
from I, J and K respectively, and let PI ,PJ ,PK be the partition of the projection list P
to I, J , and K respectively. Then

Q(D) = πPσψK
(σψI

(×i∈IRi)× σψJ
(×j∈JRj))

= πPK
σψK

(πPI
σψI

(×i∈IRi)× πPJ
σψJ

(×j∈JRj))

= πPK
σψK

(RI ×RJ),

where RI = πPI
σψI

(×i∈IRi) and similarly for RJ . Let R
′
I be RI extended with at-

tributes fromK such that ψK holds, and similarly for RJ . Then σψK
(RI×RJ) = R

′
I ✶K

R
′
J , and since each class of attributes equivalent in ψK has at least one member in PK ,

R
′
I ✶K R

′
J = R

′
I ✶PK

R
′
J . Therefore

Q(D) = πPK
σψK

(RI ×RJ) = πPK
(R′

I ✶PK
R

′
J) = (πPK

R
′
I) ✶PK

(πPK
R

′
J),

where A is an attribute of πPK
R

′
I and B an attribute of πPK

R
′
J . Therefore A and B are

independent in Q(D) conditionally on PK .

Proof of Proposition 5.10

We first prove a technical lemma that characterises exactly which subexpressions
E(R,X , t) comprise the f-representation T (R) and which respective fragment of R

each E(R,X , t) represents.

LEMMA A.1. If T is valid for R, then the recursive definition of T (R) invokes
E(R,X , t) exactly once for each subtree or forest X and each tuple t ∈ πanc(X)(R), and

each resulting expression E(R,X , t) is an f-representation of πX (σanc(X)=t(R)) over X .

PROOF. We first prove by bottom-up induction over T that each E(R,X , t) is an
f-representation of πX (σanc(X)=t(R)) over X .
— For any leaf A, E(R, TA, t) =

⋃

a∈A〈A :a〉 is an f-representation over TA. Since the
union ranges over A = πA1(σanc(A)=t(R)),

⋃

a∈A〈A1 :a〉 = πA1(σanc(A)=t(R)), and
since all Ai have equal values in all tuples of R, JE(R, TA, t)K =

⋃

a∈A〈A :a〉 =
πA(σanc(A)=t(R)).

— For any subtree TA with non-empty forest U of children subtrees, E(R,U , t×〈A :a〉)
is an f-representation over U by the induction hypothesis and hence E(R, TA, t) =
⋃

a∈A〈A :a〉 × E(R,U , t× 〈A :a〉) is an f-representation over TA. Also,

JE(R, TA, t)K =
⋃

a∈A〈A :a〉 × JE(R,U , t× 〈A :a〉)K

=
⋃

a∈A〈A :a〉 × πU (σanc(U)=t×〈A:a〉(R))

=
⋃

a∈A πTA
(σanc(U)=t×〈A:a〉(R))

= πTA
(
⋃

a∈A σanc(U)=t×〈A:a〉(R))

= πTA
(
⋃

a∈A σA=〈A:a〉(σanc(TA)=t(R))

= πTA
(σanc(TA)=t(R)),

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results App–3

where the second equality is by the induction hypothesis and the last one holds
because all Ai have equal values in all tuples of R.

— Finally, for any forest U of subtrees T1, . . . , Tk, each E(R, Ti, t) is an f-representation
over Ti and hence their product E(R,U , t) is an f-representation over U . Moreover,
since JE(R, Ti, t)K = πTi

(σanc(Ti)=t(R)) = πTi
(πU (σanc(U)=t(R))), and πU (σanc(U)=t(R))

is the product of its projections to Ti by validity of T for R, it follows that
JE(R,U , t)K = JE(R, T1, t)K × · · · × JE(R, Tk, t)K = πU (σanc(U)=t(R)).
Now we prove by top-down induction over T that T (R) = E(R, T , 〈〉) invokes

E(R,X , t) exactly once for each t ∈ πanc(X)(R). For X = T , this is true by definition.
— For any subtree TA with a non-empty forest of children U , assume T (R) invokes
E(R, TA, t) exactly once for each t ∈ πanc(TA)(R). Any E(R,U , t′) is only ever invoked
from E(R, TA, πanc(TA)t

′) and hence at most once, and exactly once for each t′ =
t× 〈A :a〉 for t ∈ πanc(TA)(R) and a ∈ πA1(σanc(TA)=t(R)), i.e., for each t′ ∈ πanc(U)(R).

— For any forest U , if T (R) invokes E(R,U , t) = E(R, T1, t) × · · · × E(R, Tk, t) exactly
once for each t ∈ πanc(U)(R), then it also invokes each E(R, Ti, t) once for each t ∈
πanc(U)(R) = πanc(Ti)(R).

This concludes the proof of Lemma A.1.

We next proceed to prove Proposition 5.10. We show that a relation R has an f-
representation over an f-tree T iff T is valid for R, and that any f-representation of R
over T is equal to T (R) up to commutativity of product and union.

If T is valid for R, T (R) is E(R, T , 〈〉) from Definition 5.8, which by Lemma A.1 is
an f-representation of πT (σtrue(R)) = R over T .

Conversely, if R has an f-representation over T we show that it is equal to T (R) up
to commutativity of product and union, and that T is valid for R.

To show that any f-representation of R over T is equal to T (R), we first show
by bottom-up induction over T that for any subtree or forest X and any tuple t ∈
πanc(X)(R), any f-representation of πX (σanc(X)=t(R)) over X is equal to E(R,X , t).
— For any leaf A, any two f-representations over TA of the same relation are equal.
— For any subtree TA with a non-empty forest of children subtrees U , any f-

representation of R
′ = πTA

(σanc(TA)=t(R)) over TA is by definition of the form
⋃

a〈A :a〉×Ea, where each Ea is an f-representation over U . Since no Ea contains sin-
gletons of type A1, the union must be over the values of πA1R

′ = πA1(σanc(X)=t(R)).
Since the union is over distinct values of a, we have JEaK = πU (σA=〈A:a〉(R

′)) =
πU (σanc(U)=t×〈A:a〉(R)). By the induction hypothesis, Ea must be equal to E(R,U , t×
〈A :a〉).

— For any forest U of subtrees T1, . . . , Tk, any f-representation of R′ = πU (σanc(U)=t(R))
over U is a product of f-representations Ei over Ti. Therefore we must have JEiK =
πTi

(R′) = πTi
(σanc(Ti)(R)) for each i, and by the induction hypothesis, we must have

Ei = E(R, Ti, t).
It follows that any f-representation of πT (σanc(T)=〈〉(R)) = πT (σtrue(R)) = R over

T is equal to E(R, T , 〈〉). Moreover, the above shows that each πU (σanc(U)=t(R)) is a
product of its projections to Ti, and it is immediate that for each node A the attributes
in A have equal values in all tuples of R, so T is valid for R, T (R) is defined to be
E(R, T , 〈〉) and hence is also equal to the f-representation of R.

Proof of Proposition 5.15

We prove that if T � is valid for R, then T �(R) is a d-representation and its traversal
is T (R).

First note that if T � is valid for R, then not only πTA
(σanc(A)=t1(R)) =

πTA
(σanc(A)=t2(R)) whenever πkey(A)(t1) = πkey(A)(t2) for any subtree TA, but also

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

App–4 D. Olteanu and J. Závodný

πU (σanc(U)=t1(R)) = πU (σanc(U)=t2(R)) whenever πkey(U)(t1) = πkey(U)(t2) for any for-
est U . We can reformulate this independence condition to claim that for any forest or
subtree X , we have πX (σkey(X)=t′(R)) = πX (σanc(X)=t(R)) for t′ = πkey(X)t.

If we label each D(R,X , t) by the schema consisting of the attributes of X , then
T �(R) is a d-representation with root D(R, T , 〈〉). To prove that traversal(T �(R)) =
T (R), we show by bottom-up structural induction over T that traversal(D(R,X , t′)) =
E(R,X , t) for any t ∈ πanc(X)(R) such that t′ = πkey(X)t.
— For any leaf A of T , the traversal of D(R, TA, t′) is just

⋃

a∈A〈A :a〉 where A =
πA1σkey(A)=t′R = πA1σanc(A)=tR, so the traversal is equal to E(R,X , t).

— For subtree TA with a non-empty forest of children U , the traversal of D(R, TA, t′)
is

⋃

a∈A〈A :a〉 × traversal(D(R,U , πkey(U)(t
′ × 〈A :a〉))) where A = πA1σkey(A)=t′R =

πA1σanc(A)=tR, and by the induction hypothesis we have traversal(D(R,U , πkey(U)(t
′×

〈A :a〉))) = E(R,U , πanc(U)(t × 〈A :a〉)). This shows that traversal of D(R, TA, t′) is
exactly E(R, TA, t).

— For any forest U of subtrees T1, . . . , Tk, if t ∈ πanc(U)(R) and t′ = πkey(U)t,
then πkey(Ti)t

′ = πkey(Ti)(πanc(Ti)t) and hence traversal(D(R, Ti, πkey(Ti)t
′) =

E(R, Ti, πanc(Ti)t) = E(R, Ti, t), so traversal(D(R,U , t′)) = ×iE(R, Ti, t) = E(R,U , t).

Proof of Proposition 6.5

Let Q be a conjunctive query and let T � be a d-tree whose nodes are labelled by the
equivalence classes of attributes of Q. We prove that Q(D) has a d-representation over
T � for any database D iff T � is valid for Q.

We first show that if Q(D) has a d-representation over T � for any D, then T � is valid
for Q. If Q(D) has a d-representation over T � then T � is valid for Q(D) and hence also
T is valid for Q(D). Since this holds for any D, T is valid for Q by definition. Next we
need to show that there is no node B with an ancestor A 6⊆ key(B) and a descendant
C that are Q-dependent. For any c ∈ πkey(B), the fragment πTB

σkey(B)=cQ(D) is repre-
sented by the expressionE′(R, TB, c), so σkey(B)=cQ(D) is a product of πTB

σkey(B)=cQ(D)
and πT \TB

σkey(B)=cQ(D). Therefore, Q(D) = πTB∪key(B)Q(D) ✶ πT \TB
σkey(B)=cQ(D), so

any ancestor A 6⊆ key(B) and any C ⊆ TB are independent conditioned on key(B). This
holds for any D, so A and C cannot be Q-dependent.

Conversely, suppose that T � is valid for Q. Firstly, this means that T is valid for
Q and hence T is valid for Q(D) for any database D. We need to show that T �

is also valid for any Q(D), i.e., that πTA
(σanc(A)=t1(Q(D))) = πTA

(σanc(A)=t2(Q(D)))
whenever πkey(A)(t1) = πkey(A)(t2). Denoting t := πkey(A)(t1) = πkey(A)(t2),
t′1 := πanc(A)\key(A)t1 and t′2 := πanc(A)\key(A)t2, we have πTA

(σanc(A)=t1(Q(D))) =
πTA

(σanc(A)\key(A)=t′1
(σkey(A)=t(Q(D)))), and similarly for t2. Since the nodes from TA

are only dependent on nodes in TA and those in key(A), the relation σkey(A)=t(Q(D)) is a
product of its projection to TA and to its complement. The attributes in anc(A) \ key(A)
belong to this complement, therefore πTA

(σanc(A)\key(A)=t′1
(σkey(A)=t(Q(D)))) =

πTA
(σanc(A)\key(A)=t′2

(σkey(A)=t(Q(D)))), and the result follows.

Detailed Proof of Theorem 7.23

We prove that for a fixed query Q, there exist arbitrarily large databases D for which

any d-representation of the result Q(D) over any d-tree has size Ω(|D|s
�(Q)).

To prove this theorem, we need to slightly strengthen the requirements on the sizes
of database examples witnessing the lower bounds in Lemma 7.19 and Theorem 7.22.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

Size Bounds for Factorised Representations of Query Results App–5

Lemma 7.19, adapted. For any equi-join query Q without self-joins, there exist con-
stants bQ, cQ such that for any sufficiently large N , there exists a database D of size

N ≤ |D| ≤ bQ ·N such that |Q(D)| ≥ cQ · |D|ρ
∗(Q).

Proof. We adapt the proof of Lemma 7.19 (Lemma 3 in [Atserias et al. 2008]). Denote
by a(R) the set of attribute classes of Q which contain an attribute of the relation R.
The linear program with variables yA labelled by the attribute classes of Q,

maximising
∑

A yA

subject to
∑

A∈a(R) yA ≤ 1 for all relations R, and

yA ≥ 0 for all A,

is dual to the linear program given in Definition 7.8. By this duality, any optimal solu-
tion {yA} to this linear program has cost

∑

A yA = ρ∗(Q).
For any N , construct a database D as follows. For each attribute class A, let NA =

⌈NyA⌉. For N sufficiently large, we have NA = ⌈NyA⌉ ≤ 21/|S|NyA , where S is the
schema of Q. We will assign values from [NA] = {1, . . . , NA} to the attributes in A.
For each relation R of Q, let the relation instance R contain all tuples t for which
t(A) ∈ [NA] for all attributes A, but t(A) = t(B) for any attributes A and B equated
in Q (i.e., such that A = B). For each attribute class A in a(R) there are NA possible
values of the attributes in A, so the size of R is

|R| =
∏

A∈a(R)NA =
∏

A∈a(R)⌈N
yA⌉ ≤

∏

A∈a(R) 2
1/|S|NyA ≤ 2N

∑
A∈a(R) yA ≤ 2N.

This implies that |D| ≤ 2|Q| · N . However, for at least one relation R we have
∑

A∈a(R) yA = 1 (otherwise we could increase any yA to produce a better solution to

the linear program), so |D| ≥ N .
Any tuple t in the result Q(D) is given by its values for each attribute class A, for

which there are NA possibilities, and any such combination of values gives a valid
tuple in the output. The size of the output is thus4

|Q(D)| =
∏

ANA ≥
∏

AN
yA = N

∑
A
yA = Nρ∗(Q) ≥ (|D|/(2|Q|))ρ

∗(Q).

The claim follows by setting bQ = 2|Q| and cQ = 1/(2|Q|)ρ
∗(Q).

Theorem 7.22, adapted. For any query Q there exist constants bQ, cQ such that for
any sufficiently large N and for any d-tree T � of Q, there exists a database DT � of size

N ≤ |DT � | ≤ bQ ·N such that |T �(Q(DT �))| ≥ cQ · |DT � |s
�(Q).

Proof. Let T � be any d-tree of Q and let A be an attribute for which ρ∗(Qkey(A)∪A) =

s�(T �) ≥ s�(Q). Applying the adapted version of Lemma 7.19 to Qkey(A)∪A, there
exist bT , cT such that for any sufficiently large N , there exists a Dkey(A)∪A with

N ≤ |Dkey(A)∪A| ≤ bT ·N and |Qkey(A)∪A(Dkey(A)∪A)| ≥ cT · |Dkey(A)∪A|
ρ∗(Qkey(A)∪A).

Moreover, by construction, its largest relation has size at least N . Then, by
Lemma 7.18, there exists a database D with N ≤ |D| ≤ |Dkey(A)∪A| ≤ bT ·N such
that |πkey(A)∪A(Q(D))| ≥ |Qkey(A)∪A(Dkey(A)∪A)|. By Lemma 7.5, the number of A-
singletons in T �(Q(D)) is |πkey(A)∪A(Q(D))|, and by the above,

|πkey(A)∪A(Q(D))| ≥ |Qkey(A)∪A(Dkey(A)∪A)| ≥ cT ·|Dkey(A)∪A|
ρ∗(Qkey(A)∪A) ≥ cT ·|D|s

�(Q).

The claim follows by taking DT � to be D, bQ to be the maximum bT over all d-trees T �

of Q, and cQ to be the minimum cT over all d-trees of Q.

4After proving |Q(D)| =
∏

A NyA , the original paper [Atserias et al. 2008] claims that |Q(D)| ≥

|D|ρ
∗(Q)/|Q|. This is not necessarily true; the bound (|D|/|Q|)ρ

∗(Q) is exact for queries where the optimal
fractional independent set satisfies all relations (

∑
A∈a(R) yA = 1 for all R).

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

App–6 D. Olteanu and J. Závodný

Proof of Theorem. Finally we prove the original claim of Theorem 7.23.
For any N sufficiently large let DT � be as in the adapted version of Theorem 7.22.

Construct the database D as a disjoint union of DT � for all d-trees T � of Q. (Label each
data element in DT � by T �, so that the corresponding relations of DT � are disjoint, and
for each relation symbol of Q construct a relation instance in D by taking a union of
the corresponding relation instances in all DT � .) The result Q(D) is a disjoint union
of the results Q(DT �), and for any d-tree T � the d-representation T �(Q(D)) contains

the d-representation T �(Q(DT �)), so its size is at least cQ · |DT � |s
�(Q). The size of each

DT � is at most bQ · N , so the size of D is at most d · bQ · N , where d is the number of
d-trees of Q. Therefore, for any d-tree T � the d-representation T �(Q(D)) has size at

least bQ · (|D|/(c · d))s
�(Q), which is Ω(|D|s

�(Q)) for a fixed Q.

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 2, Publication date: March 2015.

