
Learning Linear Regression Models over Factorized Joins

Maximilian Schleich Dan Olteanu Radu Ciucanu

Department of Computer Science, University of Oxford
{max.schleich,dan.olteanu,radu.ciucanu}@cs.ox.ac.uk

Cultural Learnings of Factorized Joins for Make
Benefit Glorious Family of Regression Tasks1

ABSTRACT
We investigate the problem of building least squares regres-
sion models over training datasets defined by arbitrary join
queries on database tables. Our key observation is that joins
entail a high degree of redundancy in both computation and
data representation, which is not required for the end-to-end
solution to learning over joins.

We propose a new paradigm for computing batch gradient
descent that exploits the factorized computation and repre-
sentation of the training datasets, a rewriting of the regres-
sion objective function that decouples the computation of
cofactors of model parameters from their convergence, and
the commutativity of cofactor computation with relational
union and projection. We introduce three flavors of this ap-
proach: F/FDB computes the cofactors in one pass over
the materialized factorized join; F avoids this materializa-
tion and intermixes cofactor and join computation; F/SQL
expresses this mixture as one SQL query.

Our approach has the complexity of join factorization,
which can be exponentially lower than of standard joins. Ex-
periments with commercial, public, and synthetic datasets
show that it outperforms MADlib, Python StatsModels, and
R, by up to three orders of magnitude.

1. INTRODUCTION
There is increasing interest in academia and industry in

building systems that integrate databases and machine learn-
ing [17, 34, 1, 18]. This is driven by web companies, e.g.,
Google Brain, Twitter, Facebook’s DeepFace, or Microsoft’s
platform, though it is also prominent in other industry seg-
ments such as retail-planning and forecasting applications [2].
State-of-art commercial analytics systems support descrip-
tive, or backward-looking analytics, predictive, or forward-

1With apologies to Sacha Baron Cohen and Borat.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882939

looking analytics such as classification and regression, and
prescriptive analytics, which are also forward-looking and
usually take the output of a predictive model as input. The
typical data sources of interest are weekly sales data, pro-
motions, and product descriptions. In these settings, the
input to analytics is a relation representing the natural join
of those data sources stored in a database. A typical pre-
diction a retailer would like to compute is the additional
demand generated for a given product due to promotion.

In our exploration with such systems on a real dataset
from a large US retailer and following discussions with in-
dustry experts [23], we realized three major shortcomings of
these systems: (1) Poor integration of analytics and databa-
ses, which are traditionally confined to distinct specialized
systems in the ever-growing technology stack [2]; (2) poor
efficiency already for few data sources; and (3) insufficient
accuracy due to omission of further relevant data sources.

The use of typical data sources already stretches the scal-
ability of existing systems and the current processing regime
is to manually partition the data, e.g., by market and cate-
gory, and run analytics independently on each partition [23].
Domain-expertise focuses on how to best partition the data,
to the point where it becomes black art. Data partitioning
misses relevant correlations and prohibits common forecast
patterns across different categories and markets. By pro-
cessing separately by market/category, today’s forecasting
cannot leverage similar demand behavior across geography
or time. For this reason, data partitioning is seen as a strong
limitation of the state of the art and preference is given to
running analytics on the entire dataset.

More data sources would enable forecasting with higher
accuracy and at a more granular level, such as customer re-
views, basket data transactions, competitive promotions and
prices, flu trends, loyalty program history, customer trans-
action history, social media text related to the retailer prod-
ucts sold, store attributes such as demographics, weather, or
nearby competition. Incorporating more data sources would
allow customer-specific promotions and separate out the im-
pact of actions taken by the retailer (e.g., changing discounts
and prices) from weather and environment [23]. However, it
can increase the load by several orders of magnitude as the
size of the input to analytics explodes.

A feasible approach to address these shortcomings would
at least need to support efficient joining of many relations
and running in-database analytics on large join results.

The main contribution of this paper is a batch gradient
descent approach that can build linear regression models on
training datasets defined by arbitrary join queries on tables.

http://dx.doi.org/10.1145/2882903.2882939

Our key observation is that the intermediate join step repre-
sents the main bottleneck and it is unnecessarily expensive.
It entails a high degree of redundancy in both computation
and data representation, yet this is not required for the end-
to-end solution, whose result is a list of real-valued parame-
ters of the learned model. By computing a factorized join [5]
instead of the standard flat join, we reduce data redundancy
and improve performance for both the join and the learning
steps. The theoretical and practical gains in both required
memory space and time performance for factorized joins are
well-understood and can be asymptotically exponential in
the size of the join [28], which translates to orders of mag-
nitude for various datasets reported in experiments [5, 4].

Our learning approach is based on several contributions:

• It uses an algebraic rewriting of the regression’s objec-
tive function that decouples the computation of cofac-
tors of model parameters from their convergence.

• Cofactor computation commutes with relational union
and projection. The commutativity with union enables
the computation of the parameter cofactors for the en-
tire dataset as the sum of corresponding cofactors for
disjoint partitions of the input dataset. This prop-
erty is essential for efficiency in a centralized setting
and also desirable for concurrent learning, where co-
factors of partitions are computed on different cores or
machines. The commutativity with projection allows
us to compute all cofactors once and then explore the
space of possible models by only running convergence
for a subset of parameters. This property is desirable
for model selection, whose goal is to find a subset of
features that best predict a test dataset.

• We introduce three flavors of our approach: F/FDB
uses FDB [5] to materialize the factorized join and
computes the cofactors in one pass over it; our baseline
F avoids this materialization and blends cofactor and
join computation; and F/SQL expresses this mixture
of joins and cofactors as one optimized SQL query.

• Given a database D and a join query Q, our approach
needs O(|D|fhtw(Q)) time (modulo log factors), which
is worst-case optimal for computing the factorized join
whose nesting structure is defined by a hypertree de-
composition of the query Q; in contrast, any relational
engine can achieve at best O(|D|ρ

∗(Q)) [3, 26, 41]. The
gap between the fractional hypertree width fhtw(Q)
and the fractional edge cover number ρ∗(Q) can be as
large as the number of relations in Q. For instance,
fhtw = 1 for acyclic queries and our approach takes
linear time. Learning over traditional flat joins is thus
bound to be suboptimal.

• We can also learn linear functions over arbitrary basis
functions, which include feature interactions.

• We benchmarked F and its variants against R, which
uses QR decomposition [15], Python StatsModels [40],
which uses Moore-Penrose pseudoinverse to compute
closed-form solutions (ols) [29], and MADlib [17], which
also supports ols and Newton optimization for gener-
alized linear models. In our experiments with pub-
lic, commercial, and artificial datasets, F outperforms
these competitors by up to three orders of magnitude
while preserving the same accuracy.

2. FACTORIZED DATABASES: A PRIMER
In this paper, we rely on factorized databases to compute

and represent join results that are input to learning regres-
sion models. We next introduce such databases by example
and refer to the literature [5, 4, 28] for a rigorous treatment.

Factorized databases form a representation system for re-
lational data that exploits laws of relational algebra, such
as the distributivity of the Cartesian product over union, to
reduce data and computation redundancy.

Example 2.1. Figure 1(a) depicts a database consisting
of three relations along with their natural join: The rela-
tion House records house prices and living areas (in squared
meters) within locations given by zipcodes; TaxBand relates
city/state tax bands with house living areas; Shops list shops
with zipcode and opening hours (in our experiments, we con-
sider an extended dataset from a large US retailer; the join
condition may also use a user-defined distance function).

The join result exhibits a high degree of redundancy. The
value z1 occurs in 24 tuples, each value h1 to h3 occurs in
eight tuples and they are paired with the same combinations
of values for the other attributes. Since z1 is paired in House
with p1 to p3 and in Shops with h1 to h3, all combinations
(indeed, the Cartesian product) of the former and the lat-
ter values occur in the join result. We can represent this
local product symbolically instead of eagerly materializing
it. If we systematically apply this observation, we obtain an
equivalent factorized representation of the entire join result
that is much more compact than the flat, tabular represen-
tation of the join result, cf. Figure 1(c) (the attribute names
are clear from context). Each tuple in the result is repre-
sented once in the factorized join and can be constructed by
following one branch of every union and all branches of a
product. Whereas the flat join has 130 values (26 tuples of
5 values each), the factorized join only has 18 values.

The factorized join in Figure 1(c) has the nesting structure
depicted in Figure 1(b): It is a union of Z-values occurring
in the join of Shops and House on Z. For each Z-value z, we
represent separately the union of H-values paired with z in
Shops and the union of S-values paired with z in House and
with T -values in TaxBand. That is, given z, the H-values
are (conditionally) independent of the S-values and can be
stored separately. This is where the factorization saves com-
putation and space as it avoids an explicit enumeration of all
combinations of H-values and S-values for a given Z-value.
Also, under each S-value, there is a union of T -values and a
union of P -values. The factorization can be compacted fur-
ther by caching subexpressions [28]: The S-value s2 occurs
with its union of T -values t4 ∪ t5 from TaxBand, regardless
of which Z-values s2 is paired with in House. This T -union
can be stored once and reused for every occurrence of s2. 2

The nesting structures of factorized joins are called d-
trees [28]. They are rooted forests representing partial orders
of join variables. Each variable A in a d-tree ∆ has a subset
key(A) of the set anc(A) of its ancestor variables on which A
and its descendant variables may depend. A d-tree satisfies
the following constraints. (1) The variables of each relation
symbol in Q lie along the same root-to-leaf path (since they
depend on each other). (2) For any child B of a variable A,
key(B) ⊆ key(A)∪{A}. Caching of factorizations rooted at
unions of A-values is useful when key(A) ⊂ anc(A), since A
and its descendant variables do not depend on variables in
anc(A) \ key(A) and thus factorizations rooted at A-values

Shops

Z H

z1 h1

z1 h2

z1 h3

z2 h4

House

Z S P

z1 s1 p1

z1 s1 p2

z1 s2 p3

z2 s2 p4

TaxBand

S T

s1 t1
s1 t2
s1 t3
s2 t4
s2 t5

Shops 1 House 1 TaxBand

Z H S P T

z1 h1 s1 p1 t1
z1 h1 s1 p1 t2
z1 h1 s1 p1 t3
z1 h1 s1 p2 t1
z1 h1 s1 p2 t2
z1 h1 s1 p2 t3
z1 h1 s2 p3 t4
z1 h1 s2 p3 t5

· · · · · · · · ·
the above for h2 and h3

· · · · · · · · ·
z2 h4 s2 p4 t4
z2 h4 s2 p4 t5

(a) The three relations of database D and natural joinQ(D).

Z

H S

T P

Shops

HouseTaxBand

(b) D-tree ∆.

∪

z1 z2

× ×

∪ ∪ ∪ ∪

h1 h2 h3 s1 s2 s2 h4

× × ×

∪ ∪ ∪ ∪ ∪

p1 p2 t1 t2 t3 p3 t4 t5 p4

(c) Factorization of Q(D) over ∆.

Figure 1: (a) Database D with relations House(Zipcode, Sqm, Price), TaxBand(Sqm, Tax), Shops(Zipcode,
Hours), where the attribute names are abbreviated and the values are not necessarily distinct; (b) Nesting
structure (d-tree) ∆ for the natural join of the relations; (c) Factorization ∆(D) of the natural join over ∆.

repeat for every tuple of values for these variables. For in-
stance, key(T) = {S} ⊂ anc(T) = {S,Z}.

The construction of d-trees is guided by the joins, car-
dinalities, and join selectivities. They can lead to factor-
izations of greatly varying sizes, where the size of a rep-
resentation (flat or factorized) is defined as the number of
its values. Within the class of factorizations over d-trees, we
can find the worst-case optimal ones and also compute them
in worst-case optimal time:

Proposition 2.2. Given a join query Q, for every databa-
se D, the join result Q(D) admits

• a flat representation of size O(|D|ρ
∗(Q)) [3];

• a factorization over d-trees of size O(|D|fhtw(Q)) [28].

There are classes of databases D for which the above size
bounds are tight and worst-case optimal join algorithms to
compute the join result in these representations [26, 28].

The measures ρ∗(Q) and fhtw(Q) are the fractional edge
cover number and the fractional hypertree width respec-
tively. We know that 1 ≤ fhtw(Q) ≤ ρ∗(Q) ≤ |Q|, where |Q|
is the number of relations in query Q [28]. The gap between
fhtw(Q) and ρ∗(Q) can be as large as |Q|. The fractional
hypertree width is fundamental to problem tractability with
applications spanning constraint satisfaction, databases, ma-
trix operations, logic, and probabilistic graphical models [19].

A key observation is that aggregates defined by arithmetic
expressions over data values with operations summation and
multiplication, e.g., count and sum, can be computed in one
pass over factorized joins [4]; we only need to change the
union-Cartesian product semiring to the sum-multiplication
semiring. For instance, to count the number of tuples of a
relation represented by a subtree of the factorized join, we in-
terpret each value as 1 and turn unions and Cartesian prod-
ucts into sums and multiplication respectively. The count
at the topmost union node is then the number of tuples in
the query result. To sum over all values of an attribute A,
the only difference to the previous count algorithm is that
we now preserve the A-values. The construction of linear
regression models concerns a family of such aggregates.

3. LEARNING REGRESSION MODELS
OVER FACTORIZED JOINS

We are given a training dataset of size m that is computed
as a join of database tables:

{(y(1), x
(1)
1 , . . . , x(1)

n), . . . , (y(m), x
(m)
1 , . . . , x(m)

n)}.

The values y(i) are called labels and the other values are
called features. They are all real numbers. For our training
dataset, a natural label would be P to predict the price
given the other features. Our goal is to learn the parameters
θ = (θ0, . . . , θn) of the linear function:

hθ(x) = θ0 + θ1x1 + . . .+ θnxn

that approximates the label y of unseen tuples (x1, . . . , xn).
For uniformity, we add x0 = 1 so that hθ(x) =

∑n
k=0 θkxk.

The error of our model is given by the so-called least
squares regression objective function:

J(θ) =
1

2

m∑
i=1

(hθ(x
(i))− y(i))2. (1)

This is a much studied objective function, since minimizing
sum-of-squared errors is equivalent to finding a maximum
likelihood solution under a Gaussian noise model [6].

We consider the batch gradient descent (BGD) [6], which
repeatedly updates the parameters of hθ in the direction of
the gradient to decrease the error given by J(θ):

∀0 ≤ j ≤ n : θj := θj − α
δ

δθj
J(θ)

:= θj − α
m∑
i=1

(

n∑
k=0

θkx
(i)
k − y

(i))x
(i)
j .

The value α is the learning rate and can adapt with the
iterations. A näıve implementation of the above expression
would start with some initial values for parameters θk and
perform one pass over the dataset to compute the value of
the sum aggregate, followed by one approximation step for
the parameters, and repeat this process until convergence.

This is not practical since it is inefficient to go over the entire
dataset for each iteration. BGD can however become very
competitive when adapted to work on factorized joins.

BGD has two logically independent tasks that are inter-
twined in the above expression: The computation of the sum
aggregate and the convergence of the parameters. The sum
aggregate can be rewritten so that the label y becomes part
of the features and has a predefined parameter θ = −1:

∀0 ≤ j ≤ n : Sj =

m∑
i=1

(

n∑
k=0

θkx
(i)
k)x

(i)
j (2)

Our approach is guided by two main insights.

Our first insight is that the sum aggregates can be rewrit-
ten so that we explicate the cofactor of each parameter θk
in each sum aggregate Sj :

∀0 ≤ j ≤ n : Sj =

n∑
k=0

θk × Cofactor[k, j] (3)

where Cofactor[k, j] =

m∑
i=1

x
(i)
k x

(i)
j (4)

This reformulation allows to decouple cofactor computation
from parameter convergence. This is crucial for performance
as we do not require to scan the dataset for each approxima-
tion step. Our system F computes the cofactors once and
performs parameter convergence directly on the matrix of
cofactors, whose size is independent of the data size m. For
convergence, F uses an adaptation of AdaGrad [13].

Furthermore, the cofactor matrix has desirable properties:

Proposition 3.1. Let (Q,D) be a pair of join query Q
and database D defining the training dataset Q(D) with
schema/features σ = (A0, . . . , An). Let Cofactor be the co-
factor matrix for learning the parameters θA0 , . . . , θAn of the
function fθ =

∑n
k=0(θAkxAk) using batch gradient descent.

The cofactor matrix has the following properties:
1. Cofactor is symmetric:

∀0 ≤ k, j ≤ n : Cofactor[Ak, Aj] = Cofactor[Aj , Ak].

2. Cofactor computation commutes with union: Given
training datasets Q(D1), . . . , Q(Dp) with cofactor matrices
Cofactor1, . . . , Cofactorp where D =

⋃p
l=1 Dl, then

∀0 ≤ k, j ≤ n : Cofactor[Ak, Aj] =

p∑
l=1

Cofactorl[Ak, Aj].

3. Cofactor computation commutes with projection: Given
a feature set L ⊆ σ and the cofactor matrix CofactorL for
the training dataset πL(Q(D)), then

∀0 ≤ k, j ≤ n such that Ak, Aj ∈ L :

CofactorL[Ak, Aj] = Cofactor[Ak, Aj].

The symmetry property implies that we only need to com-
pute the upper half of the cofactor matrix.

The commutativity with union means that the cofactor
matrix for the union of several training datasets is the entry-
wise sum of the cofactor matrices of these training datasets.
This property is key to the efficiency of our approach, since
we can locally compute partial cofactors over different par-
titions of the training dataset and then add them up. It
is also desirable for concurrent computation, where partial
cofactors can be computed on different cores or machines.

The commutativity with projection allows us to use the
cofactor matrix to compute any subset of the parameters:
All it takes is to ignore from the matrix the columns and
rows for the irrelevant parameters. This is beneficial if some
features are necessary for constructing the dataset but ir-
relevant for learning, e.g., relation keys supporting the join
such as zipcode in our training dataset in Figure 1(a). It
is also beneficial for model selection, a key challenge in ma-
chine learning centered around finding the subset of features
that best predict a test dataset. Model selection is a labo-
rious and time-intensive process, since it requires to learn
independently parameters corresponding to subsets of the
available features. With our reformulation, we first compute
the cofactor matrix for all features and then perform con-
vergence on top of the cofactor matrix for the entire lattice
of parameters independently of the data. Besides choosing
the features after cofactor computation, we may also choose
the label and fix its model parameter to -1.

The two commutativity properties in Proposition 3.1 hold
under bag (SQL) semantics in the sense that the relational
projection and union operators do not remove duplicates.
This is important, since learning is sensitive to duplicates.

Our second insight is that we can compute the cofactors
in one pass over any factorized join representing the training
dataset, which has the flat join as a special case:

Proposition 3.2. Let (Q,D,∆) be a triple of a join query
Q, a database D, and a d-tree ∆ of Q. Let the training
dataset be the factorized join ∆(D) with features (A0, . . . , An),
and let Cofactor be the cofactor matrix for learning the pa-
rameters θA0 , . . . , θAn of the function

∑n
k=0(θAkxAk) using

batch gradient descent. Then, Cofactor can be computed in
one pass over the factorized join ∆(D).

Section 4 gives an algorithm to compute the cofactor ma-
trix over the materialized factorized join. Section 5 then
shows how to avoid this materialization by intertwining co-
factor and join computation. Finally, Section 6 shows how
to encode the previous algorithm in one SQL query. An im-
mediate implication is that the redundancy in the flat join
result is not necessary for learning:

Theorem 3.3. The parameters of any linear function over
features from a training dataset defined by a database D and
a join query Q can be learned in time O(|D|fhtw(Q)).

Theorem 3.3 is a direct corollary of Propositions 2.2 and
3.2. We recall our discussion in Section 2 that within the
class of factorized representations over d-trees, this time
complexity is essentially worst-case optimal in the sense that
there is no join algorithm that can achieve a lower worst-case
time complexity. To put this result into a broader context,
any worst-case optimal join algorithm that would produce
flat join results, such as NPRR [26] or LogicBlox’s LeapFrog

TrieJoin [41], would need time at least O(|D|ρ
∗(Q)) to create

the training dataset, yet the gap between ρ∗(Q) and fhtw(Q)
can be as large as the number of relations in the join query.

Our approach extends to linear functions
∑n
k=0 θkφk(x̄)

with arbitrary basis functions φk over a tuple x̄ of features.
We previously discussed the identity basis functions φk(xk) =
xk. Further examples are polynomials and Gaussian Radial
Basis Functions [6]. While basis functions over a single fea-
ture xk are trivially supported, feature interactions are chal-
lenging as they may restrict the structure of the factorized

join. For instance, the basis function φk(xi, xj) = xi ·xj can
only be supported efficiently by d-trees where the attributes
xi and xj are along the same root-to-leaf path as if they were
attributes of a same relation, since we require to compute
all possible combinations of values for xi and xj . We can
enforce this path constraint by enriching the database with
one (not materialized) relation over the schema Rk(xi, xj)
and the query Q with a natural join with Rk. The d-trees for
the enriched query will necessarily satisfy the new path con-
straint and the factorization will have a new value for every
combination of values for xi and xj along a same path. We
can thus add to the factorization a value 〈φk : φk(xi, xj)〉
under each pair of values for xi and xj .

We can rephrase Theorem 3.3 for linear functions with
basis functions as follows. We say that the basis functions
φ0, . . . , φb over the sets of features S0, . . . , Sb induce a rela-
tional schema σ = (R0(S0), . . . , Rb(Sb)). Given a join query
Q and the above schema σ, an extension of Q with respect
to σ is a join query Qσ = Q 1 R0 1 · · · 1 Rb.

Theorem 3.4. Let Q be a join query and D a database
that define the training dataset Q(D), and fθ a linear func-
tion with basis functions that induce a relational schema σ.
Let Qσ be the extension of Q with respect to σ. Then, the
parameters of fθ can be learned in time O(|D|fhtw(Qσ)).

The two insights discussed above complement each other,
in particular Proposition 3.1 still holds in the presence of
factorized joins. The commutativity with projection is es-
pecially useful in conjunction with factorization since it does
not restrict our choice of possible d-trees for the factorized
join depending on the input features used for learning. We
may choose the best possible factorization of the join result
and at learning time skip over irrelevant attributes (e.g.,
join attributes). Explicitly removing join attributes from
the factorized join may in fact lead to larger representations
(this contrasts with the flat case). For instance, if we would
eliminate from the factorized join in Figure 1(c) all Z and
S-values, then the remaining attributes H, T , and P would
become dependent on each other (they were independent
conditioned on values for Z and S). The only permissi-
ble d-trees would be paths, and the factorized join may be
asymptotically as large as the flat join.

For simplicity of exposition, we assume the following (not
required in practice). Each relation has one extra attribute
I with value 1 to accommodate the intercept θ0. The d-trees
for the join of the relations have the variable I as root. The
fatorized join has the I-value 1 as root.

4. F/FDB: COFACTOR COMPUTATION ON
MATERIALIZED FACTORIZED JOINS

The cofactors in Equation (4) can be rewritten to mirror
the factorization in the factorized join. In this section, we
introduce F/FDB, an approach that relies on FDB [5] to
compute the factorized join and that computes the rewritten
cofactors in one pass over the factorized join.

4.1 Cofactor Computation By Factorization
We explain cofactor factorization by examples.

Example 4.1. For the training dataset TD in Figure 1(a),
there is one sum aggregate in Equation (2) per feature (i.e.,
attribute) in the dataset. For feature Z, we obtain:

SZ =(θZz1 + θHh1 + θSs1 + θP p1 + θT t1)z1+

(θZz1 + θHh1 + θSs1 + θP p1 + θT t2)z1+

(θZz1 + θHh1 + θSs1 + θP p1 + θT t3)z1+

. . . (the above block repeated for p2)

(θZz1 + θHh1 + θSs2 + θP p3 + θT t4)z1+

(θZz1 + θHh1 + θSs2 + θP p3 + θT t5)z1+

. . . (all above repeated for h2 and h3)

(θZz2 + θHh4 + θSs2 + θP p4 + θT t4)z2+

(θZz2 + θHh4 + θSs2 + θP p4 + θT t5)z2.

We can reformulate the aggregate SZ using the rewritings

n∑
i=1

x→ x · n and

n∑
i=1

x · ai → x ·
n∑
i=1

ai :

SZ = θZ [z1(z1 + · · ·+ z1︸ ︷︷ ︸
|σZ=z1

(TD)|

) + z2(z2 + · · ·+ z2︸ ︷︷ ︸
|σZ=z2

(TD)|

)]+

θH [z1(
3∑
i=1

hi + · · ·+ hi︸ ︷︷ ︸
|σZ=z1,H=hi

(TD)|

) + z2(h4 + · · ·+ h4︸ ︷︷ ︸
|σZ=z2,H=h4

(TD)|

)]+

θS [z1(

2∑
i=1

si + · · ·+ si︸ ︷︷ ︸
|σZ=z1,S=si

(TD)|

) + z2(s2 + · · ·+ s2︸ ︷︷ ︸
|σZ=z2,S=s2

(TD)|

)]+

θP [z1(

3∑
i=1

pi + · · ·+ pi︸ ︷︷ ︸
|σZ=z1,P=pi

(TD)|

) + z2(p4 + · · ·+ p4︸ ︷︷ ︸
|σZ=z2,P=p4

(TD)|

)]+

θT [z1(

5∑
i=1

ti + · · ·+ ti︸ ︷︷ ︸
|σZ=z1,T=ti

(TD)|

) + z2(

5∑
i=4

ti + · · ·+ ti︸ ︷︷ ︸
|σZ=z2,T=ti

(TD)|

)].

We then obtain the following cofactors in the sum SZ :

Q[Z,Z] = z1 · 24z1 + z2 · 2z2
Q[H,Z] = z1 · 8(h1 + h2 + h3) + z2 · 2h4.

Q[S, Z] = z1 · 3(6s1 + 2s2) + z2 · 2s2.
Q[P,Z] = z1 · 3[3(p1 + p2) + 2p3] + z2 · 2p4.
Q[T, Z] = z1 · 3[2(t1 + t2 + t3) + t4 + t5] + z2 · (t4 + t5). 2

This arithmetic factorization is not arbitrary. It considers
the arithmetic expressions grouped by the join Z-values, as
done by the d-tree in Figure 1(b). Each cofactor in SZ is
expressed as a sum of terms with one term per each join
Z-value z1 and z2. The numerical values occurring in the
cofactors represent occurrence counts, e.g., 24 in L[Z] = 24z1

states that z1 occurs in 24 tuples in the training dataset,
while 8 in L[H] = 8(h1 +h2 +h3) states that each of h1, h2,
and h3 occurs in 8 tuples with z1. The expressions L[Z] and
L[H] represent sums of Z-values and respectively H-values
that occur in the same tuples with z1 and that are weighted
by their occurrence counts.

The above rewritings do not capture the full spectrum of
possible computational savings: They are sufficient for co-
factors of features θX in SumY , where X and Y are from the
same input relation. Moreover, they do not bring asymptotic
savings. In case X and Y are from different input relations,
then we can potentially save more computation.

Example 4.2. Consider now a rewriting of the cofactor
of parameter θP in sum ST :

Q[P, T] = 3[(p1 + p2) · (t1 + t2 + t3)] + 3[p3 · (t4 + t5)] + p4 · (t4 + t5).

The three terms in the outermost sum correspond to differ-
ent pairs of join values for Z and S, namely (z1, s1), (z1, s2),

f-fdb (Factorization E)
if (visited) return;
switch E:

〈A : a〉

×

E1
. . .Ek

CE = 1;
foreach j ∈ [k] do { f-fdb(Ej); CE = CE · CEj ; }
LE [A] = a · CE ; QE [A,A] = a · LE [A];
foreach j ∈ [k] do {

foreach B ∈ Schema[Ej] do { LE [B] = LEj [B] · CE/CEj ; QE [A,B] = a · LEj [B] · CE/CEj ; }
foreach B,D ∈ Schema[Ej] s.t. B < D do QE [B,D] = QEj [B,D] · CE/CEj ;
foreach j < l ∈ [k], B ∈ Schema[El], D ∈ Schema[Ej] do QE [B,D] = LEl [B] · LEj [D] · CE/(CEl · CEj);

}

∪

E1
. . .Ek

CE = 0; foreach j ∈ [k], B,D ∈ Schema[Ej] do {LE [B] = 0; QE [B,D] = 0; }
foreach j ∈ [k] do { f-fdb(Ej); CE += CEj ; }
foreach j ∈ [k], B ∈ Schema[Ej] do {
LE [B] += LEj [B];
foreach D ∈ Schema[Ej] do QE [B,D] += QEj [B,D];

}
visited = true;

Figure 2: F/FDB: Algorithm for computing regression aggregates (constant CE, linear LE, quadratic QE) in
one pass over a factorized join E.

and (z2, s2). This rewriting thus follows the same join order
as the d-tree in Figure 1(b). These terms read as follows:
Each of the P -values p1 and p2 occurs in three tuples with
each of the T -values t1 to t3; the P -value p3 occurs in three
tuples with each of the T -values t4 and t5; the P -value p4

occurs in one tuple with each of the T -values t4 and t5. 2

The rewritten expression for Q[P, T] factors out sums, e.g.,
p1 + p2, using a rewriting more powerful than those for the
sum SZ given in Example 4.1 that can transform expressions
to exponentially smaller equivalent ones:

r∑
i=1

s∑
j=1

(xi · yj)→ (

r∑
i=1

xi) · (
s∑
j=1

yj).

The above rewritings are already implemented by the fac-
torized join from Figure 1(c). For instance, the sums of
values in the cofactors mentioned in Examples 4.1 and 4.2
can be recovered via unions of their corresponding values
in the factorization. Since Z-values are above the values
for the other attributes, the former are in one-to-many re-
lationships with the latter. This explains the rewritings in
Example 4.1 for the cofactors in sum SZ : Each of z1 and
z2 are paired with the weighted sums of all H-values under-
neath, namely 8(h1 +h2 +h3) and respectively 2h4. Similar
pairings are with the weighted sums of values for each of the
other attribute. Since P and T are on different branches in
the d-tree, a Cartesian product of a union of P -values and
a union of T -values becomes a product of the sums of the
corresponding P -values and T -values.

Examples 4.1 and 4.2 show that cofactor computation re-
quires three types of aggregates: Constant aggregates that
are occurrence counts; linear aggregates that are weighted
sums, i.e., sums over features or products of linear and con-
stant aggregates; and quadratic aggregates that are cofac-
tors, i.e., products of features and/or linear aggregates, or
of quadratic and constant aggregates. Constant aggregates
are real numbers and denoted by C. Linear aggregates are
arrays of reals, one per feature A and denoted by L[A].
Quadratic aggregates are matrices of reals, one per each pair
of features (A,B) and denoted by Q[A,B].

Definition 4.3. A regression aggregate is a tuple (C,L,Q)
of constant, linear, and quadratic aggregates. We use indices
E and ∆ to refer to the regression aggregates (CE , LE , QE)
for a factorization E and (C∆, L∆, Q∆) for a d-tree ∆.

4.2 Computing Regression Aggregates
The algorithm f-fdb in Figure 2 computes the regression

aggregates, and in particular the cofactors, at each node in
the input factorization E in one pass over E.

Let us denote by JEK the relation represented by the fac-
torization E. The schema Schema[E] of JEK is the set of
features (or query variables) from the d-tree of E. The
Cartesian product and union operators in the factorization
translate to multiplication and summation for regression ag-
gregates. Since they commute with union, we compute them
for each child of a union and then add them entrywise.

The constant aggregate CE is the number of tuples in
JEK. The constant aggregates are used to compute occur-
rence counts as follows. If E is the child of a product E×, its
occurrence count in E× (i.e., the occurrence count of each
tuple in JEK) is the product of the constant aggregates of
its siblings. This is correct, since each of the tuples repre-
sented by E is extended in the relation JE×K by each tuple
represented by each of E’s siblings.

The linear aggregate LE [A] for a feature A ∈ Schema[E] is
the sum of A-values in E, each weighted by their occurrence
counts given by constant aggregates.

The quadratic aggregate QE [B,D] for features B,D ∈
Schema[E] is the sum of quadratic aggregates QEj [B,D] for
the child Ej of E if both B and D occur in Ej , or the product
of linear aggregates for each of B and D weighted by their
occurrence counts, if B and D are from different children of
E. We use the symmetry of the cofactor matrix (cf. Proposi-
tion 3.1) to only compute the quadratic aggregates for B and
D in case B occurs before D in the depth-first left-to-right
preorder traversal of the d-tree (and factorization). The co-
factor matrix is formed by the quadratic aggregates at the
root of the factorization.

1

×

∪

z1 z2

× ×

∪ ∪ ∪ ∪

h1 h2 h3 s1 s2 s2 h4

× × ×

∪ ∪ ∪ ∪ ∪

p1 p2 t1 t2 t3 p3 t4 t5 p4

26

24
2

3 8
2 1

6 2 2

2 3 1
2

1

H1 =
∑3
i=1 hi

P1 = p1 + p2 T1 =
∑3
i=1 ti

T2 = 2T1

P2 = 3P1

T4 = T3

P4 = 2P3

P3 = p3

T3 = t4 + t5

T5 = T2 + T4

P5 = P2 + P4

S5 = 6s1 + 2s2

T6 = 3T5

P6 = 3P5

S6 = 3S5

H6= 8H1

P7 = p4

T8 = T3

P8 = 2P7

H2 = h4

T9= T8

P9= P8

S9= 2s2

T10 = T9

P10 = P9

S10 = S9

H10= 2H2

Z11 = 24z1 + 2z2

T11 = T6 + T10

P11 = P6 + P10

S11 = S6 + S10

H11= H6 +H10

θI θZ θS θP θT θH
ΣI 26 24z1 + 2z2 3(6s1 + 2s2) + 2s2 9(p1 + p2) + 6p3 + 2p4 6(t1 + t2 + t3) + 3(t4 + t5) 8(h1 + h2 + h3) + 2h4

ΣZ ΣI/θZ 24z2
1 + 2z2

2 z1S6 + z2S10 z1P6 + z2P10 z1T6 + z2T10 z1H6 + z2H10

ΣS ΣI/θS ΣZ/θS 3(6s21 + 2s22) + 2s22 3(s1P2 + s2P4) + s2P8 3s1T2 + 3s2T4 + s2T8 S5H1 + S9H2

ΣP ΣI/θP ΣZ/θP ΣS/θP 9(p2
1 + p2

2) + 6p2
3 + 2p2

4 3P1T1 + 3P3T3 + P7T3 P5H1 + P9H2

ΣT ΣI/θT ΣZ/θT ΣS/θT ΣP /θT 6(t21 + t22 + t23) + 3(t24 + t25) T5H1 + T9H2

ΣH ΣI/θH ΣZ/θH ΣS/θH ΣP /θH ΣT /θH 8(h2
1 + h2

2 + h2
3) + 2h2

4

Figure 3: The factorized join in Figure 1(c) with extra root value 1 for intercept. Constant (encircled) and
linear (boxed) aggregates are shown for product and union nodes. The cofactor matrix (bottom) is formed
by the quadratic aggregates for the root node. We may first compute the matrix and then explore possible
regression models by choosing different sets of features and label to predict.

To support caching, we use a Boolean flag visited for each
node in the factorization. Initially, this flag is false. After
the the node is visited, the flag is toggled so that we recog-
nize visited nodes and skip them should we arrive again at
them. The parent of an already visited node ν can just use
the previously computed regression aggregates for ν.

Example 4.4. Figure 3 shows the factorization in Fig-
ure 1(c) annotated with constant and linear aggregates as
computed in one bottom-up pass. The cofactor matrix is
computed in the same pass. The top left entry in the ma-
trix is the cofactor of the intercept θI in the sum SI and
represents the number of tuples in the flat join result. Since
the matrix is symmetric, we only compute the entries above
and including the diagonal. 2

Our algorithm inherits the data complexity of computing
the factorized join as it is linear in its size. At each node ν,
the algorithm f-fdb recurses once for each child of ν and we
need time linear in its schema to compute the constant and
linear aggregates, and quadratic in its schema to compute
the quadratic aggregates. The time complexity is thus linear
in the size of the input factorized data and quadratic in
the size of the schema (number of features). We require
space to store the factorized data. For each node in the
factorization, we also require space quadratic in the schema
size to store the regression aggregates. In the next section,
we show how to avoid to store the factorized data and also
to reduce the number of regression aggregates to only having
one per variable in the d-tree.

5. F: MIXING COFACTOR AND FACTOR-
IZED JOIN COMPUTATION

This section introduces two improvements to F/FDB. (1)
We avoid the materialization of the factorized join. (2) We
reduce the number of regression aggregates from one per
node in the factorized join to one per node in its d-tree. This
new algorithm is called F. It is an in-memory monolithic
engine optimized for regression aggregates over joins.

Figure 4 gives F’s core procedure. It takes as input the
database relations R1, . . . , Rd and a d-tree ∆ for the given
join query. It computes a tuple (C∆, L∆, Q∆) of regression
aggregates for the factorized join over ∆. Instead of materi-
alizing the factorized join, we iterate over its paths of values
that are mapped to paths of variables in ∆. Such a map-
ping is kept in varMap. This join approach is reminiscent of
LeapFrog TrieJoin [41] with the difference that instead of us-
ing a total variable (or join) order, we use a partial variable
order defined by a d-tree. More branches in a d-tree mean a
higher factorization degree and performance improvement.

The relations are assumed sorted on their attributes fol-
lowing a depth-first pre-order traversal of ∆. Each call takes
a range defined by start and end indices in each relation. Ini-
tially, these ranges span the entire relations. Let us assume
the variable at the root of ∆ is A. Once A is mapped to
a value a in the intersection of possible A-values from the
relations with attribute A, then these ranges are narrowed
down to those tuples with value a for A. We may further nar-
row down these ranges using mappings for variables below
A in ∆ at higher recursion depths. Each A-value a in this

f (d-tree ∆, varMap, ranges[(start1, end1), . . . , (startd, endd)])

A = var(∆); keyMap = πkey(A)(varMap); reset(C∆, L∆, Q∆);

if (key(A) 6= anc(A)) { (C∆, L∆, Q∆) = cacheA[keyMap]; if (C∆ 6= 0) return; }

foreach a ∈
⋂
i∈[d],A∈Schema[Ri]

πA(Ri[starti, endi]) do {
foreach i ∈ [d] do find ranges Ri[start

′
i, end

′
i] ⊆ Ri[starti, endi] such that πA(Ri[start

′
i, end

′
i]) = {(A : a)};

switch(∆) :
leaf node A : C∆ += 1; L∆[A] += a; Q∆[A,A] += a · a;
inner node A(∆1, . . . ,∆k) :

foreach j ∈ [k] do f(∆j , varMap× {(A : a)}, ranges[(start′1, end
′
1), . . . , (start′d, end

′
d)]);

C = C∆1 · . . . · C∆k ;
if(C 6= 0) {
C∆ += C; L∆[A] += a · C; Q∆[A,A] += a · a · C;
foreach j ∈ [k] do {

foreach B ∈ Schema[∆j] do { L∆[B] += L∆j [B] · C/C∆j ; Q∆[A,B] += a · L∆j [B] · C/C∆j ; }
foreach B,D ∈ Schema[∆j] s.t. B ≤ D do Q∆[B,D] += Q∆j [B,D] · C/C∆j ;
foreach j < l ∈ [k], B ∈ Schema[∆l], D ∈ Schema[∆j] do Q∆[B,D] += L∆l [B] · L∆j [D] · C/(C∆l · C∆j);

}
}

}
if (key(A) 6= anc(A)) cacheA[keyMap] = (C∆, L∆, Q∆);

Figure 4: F: Algorithm for computing regression aggregates (constant C∆, linear L∆, quadratic Q∆) for a
given d-tree ∆ of the join query and a database (R1, . . . , Rd). The parameters of the initial call are the d-tree
∆, an empty variable map, and the full range of tuples for each relation.

intersection is the root of a factorization fragment over ∆.
Instead of using one regression aggregate for each A-value,
we may use one running regression aggregate for all of them
since it commutes with their union. We thus only need as
many regression aggregates as variables in the d-tree.

The regression aggregate for A is computed using the A-
values and the aggregates for its children if any. We first
reset it, since it might have been used for different factor-
ization fragments with the same nesting structure ∆. We
next check whether we previously computed this aggregate
for the same factorization fragment and cached it. Whereas
for F/FDB caching is done by FDB, F needs to manage the
cache itself. As explained in Section 2, the key of each vari-
able tells us when caching may be useful: This happens when
key(A) is strictly contained in anc(A), since this means that
the factorization fragments over the d-tree rooted at A are
repeated for every distinct combination of values for vari-
ables in anc(A) \ key(A). In this case, we probe the cache
using as key the mappings from varMap of the variables in
key(A). If we have already visited that factorization frag-
ment, then we can just use its previously computed regres-
sion aggregate and avoid recomputation. If this is the first
visit, we insert the aggregate in the cache after we compute
it. If the aggregate is not already in cache, we compute it
precisely as for F/FDB. The case when ∆ is an inner node
is a combination of the two cases in Figure 2: We have a
union of A-values, each on top of a product of subexpres-
sions. The case when ∆ is a leaf node corresponds to the
first case in Figure 2 without subexpressions Ej .

F has the same time complexity as F/FDB (including
FDB’s computation of the factorized join). The key oper-
ation needed for joins is the intersection of the arrays of
ordered values defined by the relation ranges. This is done

efficiently using the unary leapfrog join [41]. Given d or-
dered arrays L1, . . . , Ld, where Nmin = min{|L1|, . . . , |Ld|}
and Nmax = max{|L1|, . . . , |Ld|} are the sizes of the smallest
and respectively largest array, their intersection takes time
O(Nmin log(Nmax/Nmin)), which is the size of the smallest
array if we ignore log factors. The time to compute the re-
gression aggregates is the same as for F/FDB. The amount
of extra memory necessary for computing the join is how-
ever limited: For each relation, there is one index range that
is a pair of numbers, varMap has at most one mapping per
variable at any one time, and the number of regression ag-
gregates is bounded by the number of variables in the d-tree.

6. F/SQL: F IN SQL
F’s cofactor computation can be expressed using one SQL

query whose result is a table with one row that contains all
cofactors. This SQL encoding of F, called F/SQL, has de-
sirable properties. (1) It can be computed by any relational
database system and is thus readily deployable in practice
with a small implementation overhead. (2) It works for
datasets that do not fit in memory. (3) Like F, it pushes
aggregates past joins for efficiency.

We generate the F/SQL query in two steps: We first
rewrite the query so that cyclic joins are isolated and the
rewritten query becomes (α-)acyclic. To retain the com-
plexity of F, these isolated cyclic joins have to be computed
using a worst-case optimal algorithm [41]. We then traverse
bottom up an optimal d-tree ∆ for the rewritten query and
at each node with variable g we create a query that joins on
g and then computes the regression aggregates for g. This
evaluation strategy thus intertwines the joins and the aggre-
gates like in F, which is prerequisite for its good complex-
ity. In contrast to F, F/SQL requires as input an extended

rewrite(d-tree ∆)

QS = ∅; A = var(∆);
if (∆ = A(∆1, . . . ,∆k)) QS =

⋃
j∈[k] rewrite(∆j);

QA = relations(key(A) ∪ {A});
if (6 ∃Q ∈ QS s.t. QA ⊆ Q) return QS ∪ {QA}
else return QS

Figure 5: F/SQL: Query rewriting procedure.

d-tree where each input table R becomes a leaf under the
lowest variable that corresponds to an attribute of R.

6.1 Rewriting Arbitrary Joins to Acyclic Joins
The rewriting procedure is given in Figure 5 and works

on a d-tree ∆ of the input join query Qin. The set QS is a
disjoint partitioning of the set of relations in Qin into sets
of relations or partitions. Each partition QA corresponds
to a join query that is materialized to a relation with the
same name QA. The set key(A) ∪ {A} consists of those
variables on which the variables in ∆ depend. D-trees are
a different syntax for hypertree decompositions and the set
key(A) ∪ {A} represents the bag at a node in such a de-
composition [28]. By materializing the joins defined by such
bags, we simplify the hypertree decomposition or d-tree of
Qin to that of an acyclic query Qout equivalent to Qin. In
case Qin is already acyclic, then each partition has one re-
lation and hence Qout is syntactically equal to Qin.

Example 6.1. Consider the following bowtie join query
Q over relations R1, . . . , R6 together with a d-tree for it:

A E

B D

CR2 R5

R3 R6

R1 R4 C

A

B

E

D

∅

{C}

{A,C}

{C}

{C,E}
We state the keys next to each variable in the d-tree. We

apply the rewriting algorithm. When we reach leaf B in the
left branch, we create the join query QB over the relations
{R1, R2, R3} and add it to QS. When we return from re-
cursion to variable A, we create the query QA over the same
relations, so we do not add it to QS. We proceed similarly
in the right branch, create the join query QD over relations
{R4, R5, R6}, and add it to QS. The queries at E and C
are not added to QS. Whereas the original query and the
two subqueries QB and QD are cyclic, the rewritten query
Qout is the join of QB and QD on C and is acyclic. The
triangle queries QB and QD cannot be computed worst-case
optimally with traditional relational query plans [3], which
calls for specialized engines to compute them [41].

The query in Figure 1(a) is acyclic. Using its d-tree from
Figure 1(b), we obtain one identity query per relation. 2

6.2 SQL for Learning over Acyclic Joins
The SQL construction algorithm is recursive on the struc-

ture of the extended d-tree. As we proceed bottom up, we
aggregate over the input attributes A and create sets of con-
stant C, linear L, and quadratic Q aggregates.

At a leaf for a table R, we create a trivial query R:

R = SELECT A(R).∗, C(R).∗,L(R).∗,Q(R). ∗ FROM R;

where A is the schema of R, there is no linear and quadratic
aggregate, and we add one constant aggregate with value 1.

At an inner node with variable g, where Gi is the query
created at the i-th child, we create the aggregate query G
over the natural join G1 of queries G1, . . . ,Gk on g.

G1 =SELECT Q(G1).∗,L(G1).∗, C(G1).∗,A(G1).∗
FROM G1 NATURAL JOIN . . .Gk;

Q(G1) ={q ·#−i | q ∈ Q(Gi), i ∈ [k]} ∪ {g · 1 ·#}∪
{li · lj | li ∈ L(Gi), lj ∈ L(Gj), 1 ≤ i < j ≤ k}∪
{g · li ·#−i | li ∈ L(Gi), i ∈ [k]} ∪ {g2 ·#}

L(G1) ={li ·#−i | li ∈ L(Gi), i ∈ [k]} ∪ {g ·#}

C(G1) ={#} A(G1) =

k⋃
i=1

A(Gi)− {g}

=Πk
j=1{c | c ∈ C(Gj)} #−i = #/(Πc∈C(Gi)c)

Two constant aggregates are used in several regression ag-
gregates: # is the number of tuples in the result of G1 and
#−i is # where we ignore child i from the join. The regres-
sion aggregates are computed as for F. We next group by the
remaining attributes A(G1) and sum over each aggregate:

G =SELECT A(G).∗, C(G).∗,L(G).∗,Q(G).∗
FROM G1 GROUP BY A(G).∗;

Q(G) ={
∑

q | q ∈ Q(G1)} L(G) = {
∑

l | l ∈ L(G1)}

C(G) ={
∑

c | c ∈ C(G1)} A(G) = A(G1)

Example 6.2. Consider the d-tree in Figure 1(b). We
create the queries QP at node P and then QT at node T :

SELECT Z, S, sum(House_c) as P_c, sum(P) as P_l1,
sum(P*P*House_c) as P_q1

FROM (SELECT Z, S, P, 1 as House_c FROM House)
GROUP BY Z, S;
SELECT S, sum(TaxBand_c) as T_c, sum(T) as T_l1,

sum(T*T*TaxBand_c) as T_q1
FROM (SELECT S, T, 1 as TaxBand_c FROM TaxBand)
GROUP BY S;

At node S, we create the query QS using QP and QT :

SELECT Z, sum(S_c) as S_c, sum(S_l1) as S_l1,
sum(S_l2) as S_l2, sum(S_l3) as S_l3,
sum(S_q1) as S_q1, sum(S_q2) as S_q2,
sum(S_q3) as S_q3, sum(S_q4) as S_q4,
sum(S_q5) as S_q5, sum(S_q6) as S_q6

FROM (SELECT Z, P_c*T_c as S_c, P_l1*T_c as S_l1,
T_l1*P_c as S_l2, S*S_c as S_l3,
P_q1*T_c as S_q1, T_q1*P_c as S_q2,
P_l1*T_l1 as S_q3, S*P_l1*T_c as S_q4,
S*T_l1*P_c as S_q5, S*S_l3 as S_q6

FROM Q_P NATURAL JOIN Q_T)
GROUP BY Z;

The nodes H and Z are treated similarly. The constructed
query exploits caching: Indeed, for each distinct S-value
s, QT computes once the aggregates over T in TaxBand.
Without caching, we would repeat the computation of QT
for every occurrence of the S-value s in House. 2

F/SQL has the time complexity of F under the assump-
tion that cyclic joins are computed using a worst-case op-
timal join algorithm like LFTJ. For (input and rewritten)
acyclic queries, we may use standard query plans.

7. EXPERIMENTS
We report on the performance of an end-to-end solution

for learning regression models over joins, which includes: (a)
Constructing the training dataset via joins; (b) importing
the dataset in the learning module; and (c) learning the
parameters of regression functions. We show experimentally
that the intermediate join step is unnecessarily expensive. It
entails a high degree of redundancy in both computation and
data representation, yet this is not required for the end-to-
end solution, whose result is a list of real-valued parameters.
By factorizing the join we reduce data redundancy while
improving performance for both the join and the learning
steps. A tight integration of learning and join processing
also eliminates the need for the data import step.

We benchmark F and its flavors against three open-source
systems: M (MADlib [17]), P (Python StatsModels [40]),
and R [33]. We show that for the used datasets and learning
tasks, F outperforms these systems by up to three orders
of magnitude, while maintaining their accuracy; we verified
that for all systems the learned parameters coincide with
high precision. This performance boost is due to three or-
thogonal optimizations: Factorization and caching of data
and computation; decoupling parameter convergence from
cofactor computation; and shared cofactor computation.
Regression Learners. We implemented F and its flavors
in C++. They all use AdaGrad to adapt the learning rate
(α) based on history in the convergence component [13].
F/FDB uses FDB [5] to compute factorized joins via an
in-memory multiway sort-merge join. F/SQL is F’s en-
coding in SQL. For R we used lm (linear model) based on
QR-decomposition [15]. For P we used ols (ordinary least
squares) based on the Moore-Penrose pseudoinverse [29].
For M we used ols to compute the closed-form solution and
glm based on Newton optimization for generalized linear
models. M (glm), P, and R use PostgreSQL 9.4.4 for join
computation (done by query plans with sort-merge joins for
the Housing dataset and with in-memory hash joins for the
other datasets). We tuned PostgreSQL for in-memory pro-
cessing by setting its working memory to 14GB and shared
buffers to 128MB and by turning off parameters than affect
performance (fsync, synchronous commit, full page writes,
bgwriter LRU maxpages). We verified that it runs in mem-
ory by monitoring IO. From all the systems, M (ols), F, and
F/SQL do not require the materialization of the join query.
P and R need to export data from PostgreSQL and load it
into their memory space, which requires one pass over the
flat join and construction of its internal representation.
Experimental Setup. All experiments were performed on
an Intel(R) Core(TM) i7-4770 3.40GHz/64bit/32GB with
Linux 3.13.0/g++4.8.4 (no compiler optimization flags were
used, ulimit was set to unlimited). We report wall-clock
times by running each system once and then reporting the
average of four subsequent runs with warm cache. For P,
R, M (glm), and F/FDB we break down the times for:
Computing the join in memory, importing the data, and
learning the parameters; we do not report the times to load
the database into memory as they can differ substantially
between PostgreSQL and FDB and are orthogonal to this
work. All tables are given sorted by their join attributes.
Datasets and Learning Tasks. We experimented with a
real-world dataset, which is used by a large US retailer for
forecasting user demands and sales, with two public datasets
LastFM [10] and MovieLens [16], and a synthetic dataset

modeling the textbook example on house price market [25].
We next briefly introduce the learning tasks for each dataset;
a detailed description is given in Appendix.

US retailer: We considered three linear regression tasks
that predict the amount of inventory units based on all other
features: L considers all features; N1 and N2 also consider
two interactions of features from the same tables (no factor-
ization restructuring necessary), and respectively from dif-
ferent tables (factorization restructuring necessary).

LastFM: We consider two training datasets L1 and L2 to
relate how often friends listen to the same artists.

MovieLens: The regression task is to predict the rating
given by a user to a movie.

Housing: The regression task is to predict the housing
price based on all the features in the dataset.
1. Flat vs. Factorized Joins. The compression ratio is a
direct indicator of how well F fares against approaches that
rely on flat representation of the training dataset. As shown
in Table 1, the compression factor brought by factorizing
the joins varies from 4.43 for MovieLens to 26.61 for US
retailer and over 100 for LastFM. Caching can improve the
compression factor even further: 3x for MovieLens and 8x
for LastFM. The effect of caching for US retailer is minimal.

While the speedup of FDB over PostgreSQL is significant,
it is less than the data compression ratio possibly due to the
less optimized data structures to encode factorizations in
FDB. As shown in Figure 6, for scale 10 the factorized join
is computed in 1.25 seconds vs. 64 seconds for the flat join.
All join queries used in the experiments are acyclic, which
means that our F flavors can compute them in linear time
(modulo log factors).

Table 1 reports the join time for the real-world datasets.
For the US retailer, the flat join is too large to be handled
by P and R. In practice, such large datasets are partitioned
and learning happens independently for each partition. This
entails a loss of accuracy as we miss correlations across fea-
tures. We partitioned the largest table Inventory (84M tu-
ples) into four (ten) disjoint partitions for R (respectively,
P) of roughly equal sizes by hashing on the join values for
location. By joining each partition with the other tables we
obtain a partitioning of the join result. Table 1 reports the
overall (starred) time to compute the join for all partitions.
2. Importing Datasets. P and R are the only systems
that need one pass over the join result to load it into their
internal data structures. This is typical for the existing
solutions based on software enterprise stacks consisting of
dozens of specialized systems (e.g., for OLAP, OLTP, and
BI), where non-trivial integration effort is usually spent at
the interface between these systems. Table 1 and Figure 6
report the times for importing the training datasets. For
Housing, P and R failed to import the data starting with
scale 10 and respectively 11. In contrast, F can even finish
for scale 100.
3. Learning. Table 1 shows that the speedup factor of
learning with F/FDB versus competitors is larger than the
compression factor, which is partially due to sharing compu-
tation across cofactors and, when compared against the gra-
dient descent approximation methods like M(glm), also due
to our decoupling of cofactor computation from convergence.
For R and P on US retailer, we partitioned the dataset as ex-
plained in Experiment 2. Table 1 reports the sum of learning
times for all partitions. However, the learned parameters for
each partition are arbitrarily far from true ones (although

US retailer L US retailer N1 US retailer N2 LastFM L1 LastFM L2 MovieLens L

parameters 31 33 33 6 10 27
Factorized 97,134,867 97,134,867 97,134,867 2,577,556 2,379,264 6,092,286

Join cached 97,134,675 97,134,675 97,134,675 376,402 315,818 2,115,610
Size Flat 2,585,046,352 2,585,046,352 2,585,046,352 369,986,292 590,793,800 27,005,643

Compression 26.61× 26.61× 26.61× 143.54× 248.31× 4.43×
cached 26.61× 26.61× 26.61× 982.86× 1870.68× 12.76×

Join Fact. (FDB) 36.03 36.03 36.03 4.79 9.94 12.28
Time Flat (PSQL) 249.41 249.41 249.41 54.25 61.33 1.30
Import R 1189.12* 1189.12* 1189.12* 155.91 276.77 10.86
Time P 1164.40* 1164.40* 1164.40* 179.16 328.97 11.33

F/FDB 9.69 9.82 9.79 0.53 0.89 3.87
Learn M (glm) 2671.88 2937.49 2910.23 572.88 746.50 31.91
Time R 810.66* 873.14* 884.47* 268.04 466.52 6.96

P 1199.50* 1277.10* 1275.08* 35.74 148.84 10.92
F 16.29 16.56 16.50 0.11 0.25 2.12
F/FDB 45.72 45.85 45.82 5.32 10.83 16.15
F/SQL 108.81 109.02 109.07 0.58 2.00 14.26

Total M (ols) 680.60 737.02 738.08 152.37 196.60 7.08
Time M (glm) 2921.29 3186.90 3159.64 627.13 807.83 33.21

R 2249.19* 2311.67* 2323.00* 478.20 804.62 19.12
P 2613.31* 2690.91* 2688.89* 269.15 539.14 23.55

F vs. M (ols) 41.78× 44.51× 44.73× 1385.18× 786.40× 3.34×
Speedup F vs. M (glm) 179.33× 192.45× 191.49× 5701.18× 3231.32× 15.67×

F vs. R 138.07× 139.59× 140.79× 4347.27× 3218.48× 9.02×
F vs. P 160.42× 162.49× 162.96× 2446.82× 2156.56× 11.11×

Table 1: Performance comparison for learning over joins (size in number of values, time in seconds). F,
F/SQL, and M(ols) intertwine the join and learning computation and we only show their total end-to-end
times. P and R crashed for US retailer due to memory limitation, the starred numbers are for running them
on disjoint partitions of the location values for the join (four for R and ten for P) and adding up the times.

not supported by P and R, they could have been made cor-
rect if the output parameters for a partition would serve as
the initial parameter values for the next partition). Never-
theless, even under these simplifying assumptions for P and
R, F learns the correct parameters at least two orders of
magnitude faster than them.

The tasks N1 and N2 in Table 1 for US retailer consider
feature interactions. The time to perform the regression task
slightly increases, which is due to the fact that additional
parameters are learned.
4. End-to-End Solution. Table 1 compares the perfor-
mance of our end-to-end flavors of F and of our competitors,
where we summed up their time components for the join,
import, and learning. F performs the best for all datasets,
which can be directly linked to the intermixing of the fac-
torized join and cofactor computation. It is from 3x to 50x
faster than F/FDB and from 5x to 8x faster than F/FSQL.
For LastFM, F exceeds three-orders of magnitude improve-
ment over its competitors. For US retailer, the performance
speedup is around two orders of magnitude in comparison to
R, P, and M(glm), and 40 times in comparison to the closest
competitor M(ols). The performance gains for MovieLens
are more limited, which is due to the comparatively smaller
size of this dataset.

Figure 6 reports the performance of end-to-end solutions
for Housing against M (ols), and R, which are the best com-
petitors for this dataset. We stress-tested F for scale factors
beyond 20 for Housing: The total time without data loading
is 4.1 seconds for scale 50 (compression ratio 14K) and 5.9
seconds for scale 100 (compression ratio 69K).

0

100

200

300

400

500

600

700

800

900

FMR FMR FMR FMR FMR FMR FMR FMR FMR FMR

Ti
m

e
(s

ec
on

d
s)

Scale Factor (s)

Load data
Join

Import
Learn

10987654321

0

2

4

6

8

F

Ti
m

e
(s

ec
on

d
s)

Zoom for s=10

Figure 6: Total time for the end-to-end solution
(loading data, join, import, learn) for F and the best
competitors M(ols) and R on the Housing dataset.
R runs out of memory starting with scale 11.

5. More features. We considered the Housing dataset
with scale 15 and an increasing number of attributes per
relation: 11, 18, 50, 100, and 168. This results in training
datasets with around 60, 100, 300, 600 and 1000 features.
Figure 7 shows the performance of F and M(ols) on these
datasets (P and R already fail to load the original dataset
with 27 features). M(ols) times out (i.e., it takes over four

10-1

100

101

102

103

104

105

0 100 200 300 400 500 600 700 800 9001000

Ti
m

e
(s

ec
on

d
s,

 l
og

sc
al

e)

Number of Features

F M(ols)

Figure 7: Total time for the end-to-end solution for
F and M(ols) on the Housing dataset with scale fac-
tor scale 15 and increasingly many features. M(ols)
times out after 300 features.

hours) for the dataset with 300 features. F’s performance is
consistently two orders of magnitude better than of M(ols).
6. Model selection. In the previous experiments, we
learned over all features of the training dataset. We further
considered settings with fewer features, as used for model
selection. The experiments validated that F only computes
the parameter cofactors once and that the convergence time
is consistently the smallest amongst all components of F.
This contrasts with M, P, and R that need to independently
learn over the entire dataset for each set of features.

8. RELATED WORK

Our contribution lies at the intersection of databases and
machine learning, as we look at regression learning, which is
a fundamental machine learning problem, through database
glasses. The crossover between these two communities gained
increasing interest during the past years, as also acknowl-
edged in a SIGMOD 2015 panel [34].
Machine learning in databases. Our work follows a very
recent line of research on marrying databases and machine
learning [17, 14, 11, 36, 7, 20, 1, 24, 18, 9, 38, 34, 31, 32].

While F’s learning approach is novel in this landscape,
two of these works are closest in spirit to it since they in-
vestigate the impact of data factorization for the purpose of
boosting learning tasks. Rendle [36] considers a limited form
of factorization of the design matrix for regression. His ap-
proach performs ad-hoc discovery of repeating patterns on
the flat join to save up time in the subsequent regression
task, though with two important limitations. This discov-
ery does not seek to capture join dependencies, i.e., to re-
cover the knowledge that the data has been produced via
joins, since this is NP-hard. It also does not save time in
join computation, but it instead needs additional time to
perform the discovery on the flat join. Our approach is dif-
ferent since (i) we avoid the computation of the flat join as
it is too expensive and entails redundancy; (ii) we exploit
the join structure from the query to identify the repeating
patterns due to join dependencies. Kumar et al. [20] propose
a framework for learning generalized linear models over key-
foreign key joins in a distributed environment and consider,
amongst other techniques, factorized computation over the
non-materialized join. F works for arbitrary join queries and
factorizations with caching, linear regression with feature in-
teractions, and has theoretical performance guarantees. We
show that F’s cofactor computation commutes with union,
and can thus be trivially distributed. Prior work on factor-

ized databases discusses efficient support for joins [28] and
simple aggregates [4]. F shows that factorization can benefit
more complex user-defined aggregate functions, such as the
cofactor matrix used in linear regression.

Most efforts in the database community are on design-
ing systems to support large-scale scalable machine learning
on top of possibly distributed architectures, with a goal on
providing a unified architecture for machine learning and
databases [14], e.g., MLLib [1] and DeepDist [24] on Spark
[42], distributed gradient descent on GLADE [32], MADlib
[17] on PostgreSQL, SystemML [18, 7], system benchmark-
ing [9] and sample generator for cross-validate learning [38].
Our approach is more specialized as it proposes an effi-
cient batch gradient descent variant for linear regression over
joins. It achieves efficiency by factorizing data and compu-
tation, which enables more data to be kept in the memory
of one machine and to be processed fast without the need
for distribution. As pointed out recently [22], when bench-
marked against one-machine systems, distributed systems
can have a non-trivial upfront cost that can be offset by
more expensive hardware or large problem settings.

The tight integration of the FDB query engine for factor-
ized databases [5] with our regression learner F has been
inspired by LogicBlox [2], which provides a unified runtime
for the enterprise technology stack, and MADlib [17].
Gradient descent optimization. The gradient descent
family of optimization algorithms is fundamental to machine
learning [6] and very popular, cf. a ICML 2015 tutorial [37].
One of the applications of gradient descent is regression,
which is the focus of this paper. A popular variant is the
stochastic gradient descent [8] with several recent improve-
ments such as faster convergence rate via adaptive learning
rate [13] (which is also used by our system F) and paral-
lel or distributed versions [43, 30, 35, 12, 27]. Some of these
optimizations have made their way in systems such as Deep-
Dive [39, 21] and DeepDist [24, 12]. Our contribution is or-
thogonal since it focuses on avoiding data and computation
redundancy when learning over joins.

9. CONCLUSIONS AND FUTURE WORK
This paper puts forward F, a fast learner of least squares

regression models over factorized joins that enjoys both the-
oretical and practical properties. The principles behind F
are applicable beyond least squares regression models, as
long as the derivatives of the objective function are express-
ible in a semiring with multiplication and summation op-
erations (which is the case for gradient descent and New-
ton approximation methods), much in the spirit of the FAQ
framework [19]. This is necessary since factorization relies
on commutativity and distributivity laws. For this reason,
least squares models are supported while logistic regression,
which uses exponential functions, is not. A non-exhaustive
list of analytics to benefit from our approach includes fac-
torization machines, boosted trees, and k-nearest neighbors.

Acknowledgements
This work benefitted from interactions with Molham Aref
(on F/SQL), Tim Furche (on experiments), Arun Kumar
(on related work), Ron Menich (on problem setting and
datasets), the MADlib team, and the anonymous reviewers.
It was supported by a Google Research Faculty award, the
ERC grant 682588, and the EPSRC platform grant DBOnto.

10. REFERENCES
[1] Apache. MLlib: Machine learning in Spark,

https://spark.apache.org/mllib, 2015.

[2] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld,
D. Olteanu, E. Pasalic, T. L. Veldhuizen, and
G. Washburn. Design and implementation of the
LogicBlox system. In SIGMOD, pages 1371–1382,
2015.

[3] A. Atserias, M. Grohe, and D. Marx. Size bounds and
query plans for relational joins. In FOCS, pages
739–748, 2008.

[4] N. Bakibayev, T. Kociský, D. Olteanu, and
J. Závodný. Aggregation and ordering in factorised
databases. PVLDB, 6(14):1990–2001, 2013.

[5] N. Bakibayev, D. Olteanu, and J. Závodný. FDB: A
query engine for factorised relational databases.
PVLDB, 5(11):1232–1243, 2012.

[6] C. M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics), 2006.

[7] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. Burdick, and S. Vaithyanathan. Hybrid
parallelization strategies for large-scale machine
learning in SystemML. PVLDB, 7(7):553–564, 2014.

[8] L. Bottou. Stochastic gradient descent tricks. In
Neural Networks: Tricks of the Trade (2nd ed), pages
421–436, 2012.

[9] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and
C. M. Jermaine. A comparison of platforms for imple-
lementing and running very large scale machine lear-
ning algorithms. In SIGMOD, pages 1371–1382, 2014.

[10] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd
workshop on information heterogeneity and fusion in
recommender systems. In RecSys, pages 387–388,
2011, http://grouplens.org/datasets/hetrec-2011.

[11] T. Condie, P. Mineiro, N. Polyzotis, and M. Weimer.
Machine learning for big data. In SIGMOD, pages
939–942, 2013.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, pages 1232–1240,
2012.

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121–2159, 2011.

[14] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a
unified architecture for in-rdbms analytics. In
SIGMOD, pages 325–336, 2012.

[15] J. G. F. Francis. The QR transformation: A unitary
analogue to the LR transformation–Part 1. The
Computer Journal, 4(3):265–271, 1961.

[16] GroupLensiResearch. MovieLens,
http://grouplens.org/datasets/movielens, 2003.

[17] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib analytics library or
MAD skills, the SQL. PVLDB, 5(12):1700–1711, 2012.

[18] B. Huang, M. Boehm, Y. Tian, B. Reinwald,
S. Tatikonda, and F. R. Reiss. Resource elasticity for
large-scale machine learning. In SIGMOD, pages
137–152, 2015.

[19] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ:
Questions Asked Frequently, CoRR:1504.04044, 2015.

[20] A. Kumar, J. F. Naughton, and J. M. Patel. Learning
generalized linear models over normalized data. In
SIGMOD, pages 1969–1984, 2015.

[21] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar.
An asynchronous parallel stochastic coordinate
descent algorithm. In ICML, pages 469–477, 2014.

[22] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what COST? In HotOS, 2015.

[23] R. Menich and N. Vasiloglou. The future of LogicBlox
machine learning. LogicBlox User Days, 2013.

[24] D. Neumann. Lightning-fast deep learning on Spark
via parallel stochastic gradient updates,
www.deepdist.com, 2015.

[25] A. Ng. CS229 Lecture Notes. Stanford & Coursera,
http://cs229.stanford.edu/, 2014.

[26] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms. In PODS, pages 37–48, 2012.

[27] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693–701, 2011.

[28] D. Olteanu and J. Závodný. Size bounds for factorised
representations of query results. TODS, 40(1):2, 2015.

[29] R. Penrose. A generalized inverse for matrices. Math.
Proc. Cambridge Phil. Soc., 51(03):406–413, 1955.

[30] F. Petroni and L. Querzoni. GASGD: stochastic
gradient descent for distributed asynchronous matrix
completion via graph partitioning. In RecSys, pages
241–248, 2014.

[31] C. Qin and F. Rusu. Scalable i/o-bound parallel
incremental gradient descent for big data analytics in
glade. In DanaC, pages 16–20, 2013.

[32] C. Qin and F. Rusu. Speculative approximations for
terascale distributed gradient descent optimization. In
DanaC, pages 1:1–1:10, 2015.

[33] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, www.r-project.org, 2013.

[34] C. Ré, D. Agrawal, M. Balazinska, M. I. Cafarella,
M. I. Jordan, T. Kraska, and R. Ramakrishnan.
Machine learning and databases: The sound of things
to come or a cacophony of hype? In SIGMOD, pages
283–284, 2015.

[35] B. Recht and C. Ré. Parallel stochastic gradient
algorithms for large-scale matrix completion. Math.
Program. Comput., 5(2):201–226, 2013.

[36] S. Rendle. Scaling factorization machines to relational
data. PVLDB, 6(5):337–348, 2013.

[37] P. Richtárik and M. Schmidt. Modern convex
optimization methods for large-scale empirical risk
minimization. In ICML, 2015. Invited Tutorial.

[38] S. Schelter, J. Soto, V. Markl, D. Burdick,
B. Reinwald, and A. V. Evfimievski. Efficient sample
generation for scalable meta learning. In ICDE, pages
1191–1202, 2015.

[39] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and
C. Ré. Incremental knowledge base construction using
DeepDive. PVLDB, 8(11):1310–1321, 2015.

https://spark.apache.org/mllib
http://grouplens.org/datasets/hetrec-2011
http://grouplens.org/datasets/movielens
www.deepdist.com
http://cs229.stanford.edu/
www.r-project.org

[40] The StatsModels development team. StatsModels:
Statistics in Python,
http://statsmodels.sourceforge.net, 2012.

[41] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In ICDT, pages 96–106, 2014.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI, pages 15–28, 2012.

[43] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li.
Parallelized stochastic gradient descent. In NIPS,
pages 2595–2603, 2010.

APPENDIX
A. PROOFS
Proof of Proposition 3.1. 1. (Symmetry). Assume that
Q(D) has m tuples. We have:

Sk =
m∑
i=1

(θ0x
(i)
0 + . . .+ θjx

(i)
j + . . .+ θnx

(i)
n)x

(i)
k ,

Sj =

m∑
i=1

(θ0x
(i)
0 + . . .+ θkx

(i)
k + . . .+ θnx

(i)
n)x

(i)
j .

This implies that:

Cofactor[Aj , Ak] =

m∑
i=1

x
(i)
j x

(i)
k =

m∑
i=1

x
(i)
k x

(i)
j = Cofactor[Ak, Aj].

2. (Commutativity with union). For 1 ≤ l ≤ p, assume that
the training dataset Q(Dl) has ml tuples, that we denote

Q(Dl) = {(x(1)
l,0 , . . . , x

(1)
l,n), . . . , (x

(ml)

l,0 , . . . , x
(ml)

l,n)}.

Then, Q(D) has
∑p
l=1 ml tuples. Take 0 ≤ k, j ≤ n. It

holds that:

p∑
l=1

Cofactorl[Ak, Aj] =

p∑
l=1

(

ml∑
il=1

x
(il)

l,k x
(il)

l,j)

=

∑p
l=1

ml∑
i=1

x
(i)
k x

(i)
j = Cofactor[Ak, Aj].

3. (Commutativity with projection). Assume that Q(D) has
m tuples. Since we are under bag semantics, πL(Q(D)) also
has m tuples. We assume that L has nL features that
we denote xL,0, . . . , xL,n. Take 1 ≤ k, j ≤ nL. Then,

CofactorL[Ak, Aj] =
∑m
i=1 x

(i)
j x

(i)
k , which moreover, is equal

to Cofactor[Ak, Aj].

Proof of Theorem 3.4. Take the basis functions φ0, . . . , φb
over the sets of features S0, . . . , Sb, the induced relational
schema σ = (R0(S0), . . . , Rb(Sb)), and Qσ = Q 1 R0 1

· · · 1 Rb as the extension of Q w.r.t. σ.
First, we show that the extension Dσ of D with relations

over the induced relational schema σ leads to a factorization
of the join Qσ(Dσ) of size O(|D|fhtw(Qσ)). The extension
Dσ has a relation instance Ri (for 1 ≤ i ≤ b) for each
schema Ri(Si) that is the projection of Q(D) on Si i.e.,
πSi(Q(D)). It then holds that Q(D) = Q(Dσ) = Qσ(Dσ).
By Proposition 2.2, there exists a factorization of Dσ of size
O(|Dσ|fhtw(Qσ)). Under data complexity, the schema σ has

constant size and thus O(|Dσ|fhtw(Qσ)) = O(|D|fhtw(Qσ)).

Let us denote by E the factorization of Qσ(Dσ) and let ∆

be a d-tree under which we obtain the size of O(|D|fhtw(Qσ)).
We next show that E can be augmented with values cor-

responding to the interaction terms φk while keeping the
same asymptotic bound on its size. The query variables of
any relation atom in the query, and in particular of rela-
tions over schemas R0(S0), . . . , Rb(Sb), are along the same
root-to-leaf path in ∆. This means that E materializes all
possible combinations of values for variables (corresponding
to attributes) in each schema Sk. We can thus compute the
result rk of the basis function φk on the values for variables
in Sk in one pass over E. For each tuple of values for vari-
ables in Sk, we add a product with the value rk immediately
under the lowest value in the tuple in E. We also add a vari-
able φk in ∆ immediately under the lowest variable in Sk.
These additions do not modify the asymptotic size bounds
of E since we add one value for each Sk-tuple of values in
E. Let us denote by Eσ the factorization E extended with
values for interaction terms. The factorization Eσ has size
O(|D|fhtw(Qσ)) and values for each basis function φk. Learn-
ing over Eσ has thus reduced to learning with identity basis
functions and, by Proposition 3.2, this can be done in one
pass over Eσ. The claim follows.

B. DESCRIPTION OF USED DATASETS
• Housing is a synthetic dataset emulating the textbook
example for the house price market [25]. It consists of six
tables: House (postcode, price, number of bedrooms/bathro-
oms/garages/parking lots, living room/kitchen area, etc.),
Shop (postcode, opening hours, price range, brand, e.g.,
Costco, Tesco, Sainsbury’s), Institution (postcode, type of
educational institution, e.g., university or school, and num-
ber of students), Restaurant (postcode, opening hours, and
price range), Demographics (postcode, average salary, rate
of unemployment, criminality, and number of hospitals), and
Transport (postcode, the number of bus lines, train sta-
tions, and distance to the city center for the postcode). The
training dataset is the natural join of all relations (on post-
code) and has 27 features. There are 25K postcodes, which
appear in all relations. The scale factor s determines the
number of generated distinct tuples per postcode in each
relation: We generate s tuples in House and Shop, log2 s tu-
ples in Institution, s/2 in Restaurant, and one in each
of Demographics and Transport. The numerical values for
each attribute are randomly generated. The domains are in-
tervals simulating the real-world semantics of attributes e.g.,
large intervals for attributes such as price, smaller intervals
for attributes such as nbtrainstations and Boolean values
for attributes such as house, flat, or bungalow indicating
the type of housing.

We considered one linear regression tasks that predicts
the price of a house based on all other features. Since all
relations have a common attribute (postcode), the above
query is acyclic and in particular hierarchical. An optimal
d-tree that we would have each root-to-leaf path consisting
of query variables for one relation. Caching in F is not
useful here. The time complexity for F is linear (modulo log
factors). We present a snapshot of it in Figure 8(a).
• US retailer. This dataset consists of three relations:
Inventory (storing information about the inventory units
for products in a location, at a given date), Census (storing
demographics information per zipcode such as population,
median age, repartition per ethnicities, house units and how

http://statsmodels.sourceforge.net

postcode

price

house

nbofbedrooms

. . .

nbtrainstations

distancecitycentre

. . .

. . .

(a) Housing L.

movie

rating year

action

. . .

user

timestamp age

. . .

(b) MovieLens L.

user

weight1

artist1

friend

weight2

artist2

(c) LastFM L1.

user

artist1

timestamp1weight1

tag1

friend

artist2

timestamp2 weight2

tag2

(d) LastFM L2.

locn

zip ksn

inventoryunits

date

medianage

families

. . .

d1

d2

. . .

(e) US retailer L and N1.

locn

zip ksn

inventoryunits

date

d1

d2

. . .

medianage

population

houseunits

. . .

(f) US retailer N2.

Figure 8: Snapshots of the d-trees considered in the experiments (root variable for intercept omitted).

many are occupied, number of children per household, num-
ber of males, females, and families), and Location (storing
for each zipcode distances d1 to d10 to several other stores).

The training dataset is the natural join of the three re-
lations and has 31 features. We considered three linear re-
gression tasks that predict the amount of inventory units
based on all other features. All join queries for these tasks
are acyclic and under data-dependent functional dependen-
cies (no store location can be in two zipcodes), they become
hierarchical. Caching is not useful in their cases.
Task L considers the plain features. We consider an asymp-
totically optimal d-tree for the natural join query, a snap-
shot of which is presented in Figure 8(e). The relation
Inventory is encoded along the path locn/ksn/..., the re-
lation Location is encoded along the path locn/zip/d1/...,
while Census is encoded along the path zip/population/...

Task N1 considers two interactions of features from the same
relation and for which no restructuring is necessary: (i)
Between median age and number of families (both from
Census) and (ii) between different distances to other stores
(both from Location). The first interaction looks at the ef-
fect on inventory units while correlating the number of fam-
ilies and the median age, since the two features are strongly
related. The second interaction looks at the effect of hav-
ing competitors close to the store and how the interaction
of the two competitors changes the effect on the inventory
units in the given store. Since both features occurring in an
interaction are from the same table, we can use the d-tree
from the linear case, which is asymptotically optimal.

Task N2 considers two interactions: (i) Between population
and number of house units (both from Census), and (ii)
between median age and distance to another store (features
of Census and Location, respectively). The first interaction
uses the insight that if we have a large population but few
houses, then many people live in the same house. This can
give an indication of what the general population is like, and
therefore, can have a meaningful impact on our prediction.
The second interaction looks at how the age of a person
influences her tendency to look for satisfying stores at a
further distance.

The d-tree used for N2 needs to additionally satisfy the
constraint that the features from its second interaction (pop-
ulation and house units) are on the same root-to-leaf path;
a snapshot of it in Figure 8(f). For both tasks N1 and N2,
each new interaction term can be seen as a newly-derived
feature for learning in addition to the initial 31 features,
hence for each task we have 31 + 2 = 33 features.
• LastFM [10] has three relations: Userfriends (pairing
friends in the social network from the LastFM online music
system), Userartists (how often a user listens to a certain
artist), and Usertaggedartiststimestamps (the user clas-
sification of artists and the time when a user rated artists).
Our regression task is to predict how often a user would lis-
ten to an artist based on similar information for its friends.
We consider two training datasets: L1 joins two copies of
Userartists with Userfriends to relate how often friends
listen to the same artists; L2 is L1 where we also join in the

10-1

100

101

102

103

104

105

106

2 4 6 8 10 12 14 16
10-1

100

101

102

103

104

105

106
S

iz
e
 (

x
1
0

6
 s

in
g
le

to
n
s,

 l
o
g
sc

a
le

)

Jo
in

 t
im

e
 (

se
co

n
d
s,

 l
o
g
sc

a
le

)

Scale Factor (s)

Size (Flat)
Join time (Flat)

Size (Fact.)
Join time (Fact.)

(a) Size and join time.

10-1

100

101

102

103

104

105

2 4 6 8 10 12 14 16Le
a
rn

in
g
 t

im
e
 (

se
co

n
d
s,

 l
o
g
sc

a
le

)

Scale Factor (s)

M(glm)
P

R
F/FDB

(b) Learning time.

10-1

100

101

102

103

104

105

2 4 6 8 10 12 14 16C
o
m

p
re

ss
io

n
/s

p
e
e
d
u
p
 (

lo
g
sc

a
le

)

Scale Factor (s)

Compression ratio
Join speedup

Learning speedup

(c) Compression ratio and speedup.

Figure 9: Housing dataset: (a) Size and join time for factorized vs. flat joins; (b) time for learning (excluding
join time) with the four systems; (c) the learning speedup is for F/FDB relative to R, which is the fastest
competitor in terms of learning time alone. P and R run out of memory starting at s = 11 for learning. M
(glm) took longer than one hour after s = 13, and is not reported.

Usertaggedartiststimestamps copies of both friends:

L1 : UF 1UF.user=UA1.user UA1 1UF.friend=UA2.user UA2

L2 : UF 1UF.user=UA1.user UA1 1UF.friend=UA2.user UA2 1

1UF.user=UTA1.user UTA1 1UF.friend=UTA2.user UTA2

Both queries are hierarchical since the user is common to
all joined relations and use optimal d-trees for both of them.
We illustrate them in Figures 8(c) and 8(d).
• MovieLens [16] has three relations: Users (age, gen-
der, occupation, zipcode of users), Movies (movie year and
its type, e.g., action, adventure, animation, children, and
so on), and Ratings that users gave to movies on certain
dates. The training dataset is the acyclic natural join of
these tables and has 27 features. The regression task is to
predict the rating given by a user to a movie. We depict
a snapshot of the considered optimal d-tree in Figure 8(b).
There are four versions of the MovieLens datasets and we
only reported experimental findings for the largest available
version (1M records) that has complete information for all
three tables; there are two larger versions (10M and 20M)
but without Users. We also experimented with the other
versions (100K and the larger ones where we synthetically
generated the Users relation) and found that they exhibit
the same compression ratio and performance gain.

C. DATASET PREPARATION
The learning task requires to prepare the datasets. Firstly,

we only kept features that represent quantities or Boolean
flags over which we can learn and discarded string features
(except if necessary for joins). Secondly, we normalized
all number values of a feature A by mapping them to the
[0, 1] range of reals as follows. Let minA and maxA be
the minimum and respectively maximum value in the ac-
tive domain of A. Then, a value v for A is normalized to
(v − minA)/maxA. Normalization is essential so that all
features have the same relative weight, e.g., avoiding that
large date values represented in seconds since Jan 1, 1970
are more important than, say, small integer values repre-
senting the number of house bedrooms. It also preserves the
cardinality of the join results from the original datasets.

D. FURTHER EXPERIMENTS
Figure 9 outlines the relative performance of F/FDB over

its competitors on the Housing dataset along three dimen-
sions: Compression ratio, performance speedup, and learn-
ing speedup. For the first two dimensions we essentially
compare FDB against PostgreSQL, since F/FDB uses the
factorized join computed by FDB, while the competitors use
the flat join computed by PostgreSQL.

Figure 9(c) shows that Housing can be compressed by a
factor of over 103 for scale s = 16. For a scale factor s,
the flat join of all tables on postcode has 25K×s3/2× log2 s
tuples, each of 27 values, whereas the factorized join stay
linear in the size of the input tables. The gap between the
sizes of flat and factorized joins thus follows a quadratic
function in s.

Figures 9(a) and 9(c) confirm the finding from the real
datasets for join computation: There is a significant speedup
for factorized over flat, which is upper bounded by the data
compression ratio.

Figure 9(b) reports the performance of learning for up to
scale 16 for F/FDB, up to 13 for M(glm), and up to 10 for
P and R. At scale factor 10, the compression ratio is 240 and
F/FDB takes 2.2 seconds for learning. M(glm) was stopped
at scale factor 13, since it exceeded the timeout of one hour.
Learning with R and P already fails for scale factor 11 due
to memory limitation. We further tried with scale factors
up to 20, where the compression ratio is 1.9K and F/FDB
takes 3.4 seconds for learning.

E. UPDATES TO CONFERENCE PAPER
This is an updated version of the conference paper with

the same title that appeared in SIGMOD 2016. We cor-
rected Figure 4 as follows: we update regression aggregates
for A, i.e. L∆[A] and Q∆[A,A], at each inner node A, we
index the cache by the variable, such as in cacheA, to clar-
ify that there is a cache for each variable A, and the for-
loop over B,D ∈ Schema[∆j] now includes the case where
B = D. We also fixed references to this figure. We corrected
the worst-case optimality statements in Proposition 2.2.

	Introduction
	Factorized Databases: A Primer
	Learning Regression Models over Factorized Joins
	F/FDB: Cofactor Computation on Materialized Factorized Joins
	Cofactor Computation By Factorization
	Computing Regression Aggregates

	F: Mixing Cofactor and Factorized Join Computation
	F/SQL: F in SQL
	Rewriting Arbitrary Joins to Acyclic Joins
	SQL for Learning over Acyclic Joins

	Experiments
	Related work
	Conclusions and Future Work
	References
	Proofs
	Description of used datasets
	Dataset preparation
	Further experiments
	Updates to conference paper

