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ABSTRACT
The problem of efficient evaluation of queries on probabilis-
tic databases has received a great attention in recent years.
In this paper, we introduce a class of queries with inequali-
ties (<,≤) and self-joins that admit tractable evaluation, in
the context where query evaluation is #P-hard in general.
This class strictly contains the class of inequality queries
recently introduced by Olteanu and Huang.

We also show that particular tractable instances of our
problem capture previously-open problems of counting ver-
tex covers in chain and convex bipartite graphs, for which
we can now easily derive efficient algorithms.

Our approach to both query evaluation and counting ver-
tex covers is based on a novel syntactical characterization
of k-DNF formulas that capture the lineage of our tractable
queries and that can be compiled in at most quadratic time
into binary decision diagrams of size linear in the size of the
formulas.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; G.3 [Mathematics of Computing]: Probability and
Statistics

General Terms
Algorithms, Languages, Management, Performance

Keywords
Query Processing, Decision Diagrams, Probabilistic Databases

1. INTRODUCTION
Recent years have seen increased interest in the theory

and development of probabilistic databases [6, 1, 2, 26, 14,
27, 28]. Such databases contain data that is only true with
a given probability, and applications thereof include scien-
tific databases, data integration, data cleaning and handling
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of sensor data [6, 1, 2, 26, 14, 27, 28]. Several research
projects currently aim at developping database management
systems (or parts thereof) for probabilistic relational data,
e.g., MystiQ [3], Trio [2], MayBMS [11] and SPROUT [21],
Bayestore [29], and MCDB [14].

One aspect vital to the success of all these systems is
the availability of efficient query evaluation algorithms, in
a context where exact query evaluation is #P-hard for con-
junctive queries [7]. It is therefore commonly agreed that
developping scalable query evaluation techniques has high
priority. In the last five years, the map of achievements has
accommodated both exact and approximate techniques. In
case of approximate techniques, FPRAS (fully polynomial
randomized approximation scheme) algorithms [15], which
can compute an approximate answer confidence within a
given allowed error with high probability, have been adapted
to probability computation [23, 14, 11]. In case of exact
techniques, the goals are to find classes of tractable queries
(wrt data complexity) [5, 19, 20] and develop scalable eval-
uation strategies using relational query plans [6, 21].

One of the contributions of this paper fits into the latter
category: We define tractable queries with inequalities (<
,≤) on tuple-independent probabilistic databases. This adds
to the few known theoretical results concerning tractabil-
ity of query evaluation on tuple-independent probabilistic
databases, of which the dichotomy of conjunctive queries [5]
and the trichotomy of “having” queries [24] are perhaps the
most prominent examples. For conjunctive queries with in-
equalities (<), recent work [20] introduced a tractable class
and presented a scalable secondary-storage evaluation algo-
rithm that can be easily incorporated into existing relational
query engines, such as that of PostgreSQL [20]. As we show
later, that query class is strictly included in the class de-
fined in this paper, while at the same time we obtain better
bounds for the evaluation time.

The contributions of this paper are as follows:

• We introduce the class of acyclic one-out inequality
queries and show that such queries can be evaluated
in polynomial time (wrt data complexity) on tuple-
independent probabilistic databases. This query class
strictly includes the known tractable class of inequal-
ity queries [20], and, in contrast to the latter, it allows
for self-joins, ≤ inequalities, and less structural con-
straints on the query inequality graph.

• We present a natural connection between two tractable
inequality queries and bipartite chain and convex graphs.
Using the tractability results developed in this paper,
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we are able to show that counting the number of vertex
covers or of independent sets can be done in polyno-
mial time on such graphs.

• Both problems of query evaluation and counting essen-
tially rely on a novel efficient compilation technique of
so-called multi-chain k-DNF and convex 2-DNF for-
mulas into binary decision diagrams, whose sizes are
bounded by the number of literals in the formulas.
The family of multi-chain k-DNFs captures the lin-
eage of acyclic one-out queries. Convex 2-DNFs, whose
graph representations form the class of convex bipar-
tite graphs, precisely capture the lineage of a so-called
single-guard query.

A long version of this paper is available from the web page
of the SPROUT research project at Oxford [30].

2. PRELIMINARIES

2.1 Tuple-independent Probabilistic Databases
Let X be a finite set of (independent) Boolean random

variables. A tuple-independent probabilistic table R is a
relation of schema (A, V, P ) with functional dependencies
A → V P , V → A. The list A represents data columns,
as in standard tables, whereas the values in the column V
are variables from X and the values in the column P are
numbers in (0, 1] that represent the probabilities of the cor-
responding variables being true. A probabilistic database D
is a set of probabilistic tables.

A probabilistic database represents a set of instance data-
bases, or possible worlds, with one possible world for each
total valuation of variables from X. Under a total valuation
θ, the instance of each probabilistic table R is the set of
tuples (a) such that (a, x, p) ∈ R and θ(x) is true. The
probability of that world is the probability of the chosen
total valuation f :

Pr[θ] =
“

Π
x∈X:θ(x) true

Pr[x]
”

·
“

Π
x∈X:θ(x) false

Pr[¬x]
”

.

2.2 Inequality Queries
We consider queries of the form

Q(A) : −R1(A1), . . . , Rk(Ak), φ(A1, . . . , Ak),

where the subgoals R1, . . . , Rk do not necessarily represent
disjoint relations, A1, . . . , Ak are disjoint sets of query vari-
ables, A ⊆ A1∪ . . .∪Ak, and φ(A1, . . . , Ak) is a conjunction
of inequalities (<,≤) over query variables. Without loss of
generality, we only consider queries where the conjunction
of inequalities is satisfiable and has no “local” inequalities
that only involve query variables from the same subgoal and
possibly constants. Satisfiability of conjunctions of inequal-
ities can be checked efficiently [13]; inequalities local to one
subgoal R can be easily resolved by dropping those tuples
from relation R that do not satisfy these inequalities.

The query structure can be visualized using query graphs:

Definition 2.1 (Query Graph). The query graph of
a query Q(A) : −R1(A1), . . . , Rk(Ak), φ(A1, . . . , Ak) is the
directed graph GQ = (VQ, EQ, RQ), where VQ is the set of
query variables involved in inequalities, (Xi, Xj) ∈ EQ if
φ(A1, . . . , Ak) contains the inequality Xi ⊙ Xj for ⊙ ∈ {<
,≤}, and RQ = {A1 ∩ VQ, ..., Ak ∩ VQ}.

R S

T

A

C

B

D

Figure 1: Query graph for the query of Example 2.2.
A, B, C, D are query nodes, R, S, T are relation nodes.

R A V
1 r1

2 r2

3 r3

S B V
1 s1

2 s2

3 s3

T C D V
2 4 t1
3 3 t2
4 2 t3

Figure 2: Tuple-independent probabilistic database
(the probability columns P are not shown).

The sets in RQ describe which query variables occur in
the same subgoal. Graphically, they can be visualized by
relation nodes, which are dotted boxes around query variable
nodes.

Example 2.2. The query graph for the Boolean query

Q : −R(A), S(B), T (C,D), A < C, B < D.

is shown in Figure 1. The sets of nodes, edges and relation
nodes are VQ = {A, B, C, D}, EQ = {(A, C), (B, D)} and
RQ = {{A}, {B}, {C, D}}. 2

Conceptually, queries are evaluated in each world. Given
a query Q and a probabilistic database D, the probability
of a distinct answer tuple t is the probability of t being in
the result of Q in the worlds of D, or equivalently,

Pr[t ∈ Q(D)] =
X

θ: t∈Q(D) in world θ

Pr[θ].

The evaluation of queries on probabilistic databases fol-
lows the standard semantics, where the columns for vari-
ables and probabilities are copied along in the answer tu-
ples. These columns store relationally a DNF formula over
Boolean random variables, which is commonly called lineage.

We denote the lineage of t by φt,Q,D (or φt if Q and D
are clear). If Q is Boolean, we write φQ as a shorthand for
φ(true),Q.

Example 2.3. The answer of the Boolean query in Fig-
ure 1 on the database shown in Figure 2 is given below
(left). The table obtained by the projection on the columns
for random variables represents the relational encoding of
the query lineage φ (right).
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Q VR VS VT

r1 s1 t1
r1 s1 t2
r1 s1 t3
r1 s2 t1
r1 s2 t2
r1 s3 t1
r2 s1 t2
r2 s1 t3
r2 s2 t2
r3 s1 t3

φ = r1s1t1+
r1s1t2+
r1s1t3+
r1s2t1+
r1s2t2+
r1s3t1+
r2s1t2+
r2s1t3+
r2s2t2+
r3s1t3.

In an easier to read factored form, the lineage φ is:

φ = r1{s1 [t1 + t2 + t3] + s2 [t1 + t2] + s3 [t1]}

+r2{s1 [t2 + t3] + s2 [t2]}+ r3{s1 [t3]}.

Intuitively, the answer to Q would be true, if the answer lin-
eage would be a tautology. Otherwise, it is only “partially”
true, and this can be quantified by means of probabilities,
as stated next. 2

The following result is folklore.

Proposition 2.4. For any query Q, probabilistic database
D, and a distinct tuple t in Q(D), Pr[t ∈ Q(D)] = Pr[φt].

Computing Pr[φt,Q,D] is #P-complete in general and one
goal of this paper is to define and study classes of queries
for which this computation can be done efficiently.

Without loss of generality, we only consider Boolean queries
in the sequel, because a non-Boolean query Q(A) can be an-
swered by evaluating repeatedly Boolean queries Q[(a)/A]
obtained by substituting some constant tuple (a) for A.

We further introduce a few necessary tools.
The size of a formula φ, denoted by |φ|, is the number of

its literals.

Definition 2.5. Given two DNFs φ and φ′, φ is syntac-
tically included in φ′, denoted by φ ⊆ φ′, if c ∈ φ′ for every
clause c ∈ φ.

Definition 2.6. Let a DNF φ and variables x1 · · ·xl in
φ. The co-factor of (x1 · · ·xl) in φ, denoted by f(x1 · · ·xl),
is a DNF such that φ = (x1 · · ·xl)f(x1 · · ·xl) + φ′, and
the DNF φ′ does not contain clauses with all the variables
x1 · · ·xl.

2.3 Binary Decision Diagrams
Binary decision diagrams (BDDs) are commonly used to

represent compactly large Boolean expressions [17].
The idea behind BDDs is to decompose Boolean formulas

using variable elimination and possibly identify and share
common subexpressions.

Definition 2.7. Given a formula φ and one of its vari-
ables x, its Shannon expansion is

x · φ|x + x̄ · φ|x̄,

where φ|x and φ|x̄ are φ with x set to true and false, re-
spectively. The expansion is exhaustive if φ|x and φ|x̄ are
literals.

It is easy to see that any formula is equivalent to its Shan-
non expansion and that it can be brought into exhaustive
Shannon expansion form by repeatedly applying the variable
elimination step until no more such steps can be applied.
Each decomposition step creates two subformulas and the
variable elimination orders may differ for different subfor-
mulas.

BDDs can be seen as graphical representations of formulas
in exhaustive Shannon expansion: They are directed acyclic
graphs with two terminal nodes representing the constants
0 (false) and 1 (true), and non-terminal nodes representing
the eliminated variables. Each node for a variable x has
two outgoing edges corresponding to the two possible vari-
able assignments: a high (solid) edge for x = 1 and a low
(dashed) edge for x = 0. To evaluate the expression for a
given set of variable assignments, we take the path from the
root node to one of the terminal nodes, following the high
edge of a node if the corresponding input variable is true,
and the low edge otherwise. The terminal node gives the
value of the expression.

The identification and sharing of common subformulas is
what can make BDDs more compact than the Shannon ex-
pansion form of Boolean formulas: a node n is redundant if
both its outgoing edges point to the same node, or if there
is a node for the same variable and with the same children
as n.

Example 2.8. Figure 3 gives a BDD for the DNF formula
of Example 2.3. The terminal node 0 and its ingoing dotted
edges are omitted to avoid clutter, but they can be easily
derived: Each node without both outgoing edges shown has
a dotted edge to node 0.

We show next several variable elimination steps that con-
struct the Shannon expansion represented the the three up-
permost nodes in the BDD. We first eliminate r1 and obtain

φ = r1φ|r1
+ r1φ|r1

, where

φ|r1
= s1 [t1 + t2 + t3] + s2 [t1 + t2] + s3 [t1]

+ r2{s1 [t2 + t3] + s2 [t2]}+ r3{s1 [t3]};

φ|r1
= r2{s1 [t2 + t3] + s2 [t2]}+ r3{s1 [t3]};

Obviously, φ|r1
can be simplified to a subset of its clauses:

s1 [t1 + t2 + t3] + s2 [t1 + t2] + s3 [t1].
We next eliminate variable s1 in φ|r1

and obtain

φ|r1
= s1φ|r1s1

+ s1φ|r1s1
, where

φ|r1s1
= [t1 + t2 + t3] + s2 [t1 + t2] + s3 [t1]

φ|r1s1
= s2 [t1 + t2] + s3 [t1]

Again, φ|r1s1
can be simplified to t1 + t2 + t3. We can now

eliminate t1 and obtain

φ|r1s1
= t1φ|r1s1t1 + t1φ|r1s1t1

, where

φ|r1s1t1 = 1 and φ|r1s1t1
= t2 + t3

2

Remark 2.9. The probability of a BDD representing a
formula over Boolean random variables can be computed in
time linear in its size using the fact that the branches of any
node represent mutually exclussive expressions, e.g., [19].
The probability of any internal node n is the sum of the
probabilities of their children weighted by the probabilities
of the corresponding assignments of the decision variable at
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Figure 3: BDD for Example 2.3

that node. The probability of the terminal nodes is given
by their label (1 or 0).

The same procedure is applicable to model counting, i.e.,
to counting the number of satisfying assignments of Boolean
formulas represented as BDDs with the following addition.
If we set the probability of each random variable to 1/2, we
then obtain the probability c · 1

2n , where n is the number of
variables and c is the number of satisfying assignments of
the input formula. 2

3. BDDS FOR MULTI-CHAIN K-DNFS
In this section we define a class of k-DNFs that admit

tractable model counting and probability computation. Their
tractability is inherited from BDDs, into which they can be
efficiently compiled.

Definition 3.1 (Multipartite k-DNF). A formula is
in k-DNF if it is in disjunctive normal form and each clause
has k literals. A k-DNF is multipartite over the list of vari-
able sets [X1, . . . , Xk] if these sets are pairwise disjoint or
equal and the l-literal in each clause is from Xl for 1 ≤ l ≤ k.

The lineage of conjunctive queries on tuple-independent data-
bases can be expressed as multipartite k-DNFs, where each
set Xi consists of the random variables of a tuple-independent
relation. In case of 2-DNFs, they match the separation of
nodes into disjoint sets of bipartite graphs.

A special form of multipartite k-DNFs, called multi-chain,
is of particular interest here.

Definition 3.2. A multipartite k-DNF over the list of
variable sets [X1, . . . , Xk] is multi-chain if there are orders
<1, . . . , <k over the variables of each of its sets such that

∀1 ≤ j ≤l ≤ k, xj ∈ Xj , yl ∈ Xl, xl <l yl :

f(x1 · · ·xl) ⊇ f(x1 · · ·xl−1yl) or f(x1 · · ·xl) = 0.

Example 3.3. The formula φ = x1y1 + x1y2 + x1y3 +
x2y2 + x2y3 is a multipartite 2-DNF over disjoint variable
sets X = {x1, x2} and Y = {y1, y2, y3}. It is also multi-
chain, since f(x1) = y1 + y2 + y3 ⊇ y2 + y3 = f(x2). 2

The naming “multi-chain” comes from the fact that the
graph of a multi-chain 2-DNF formula over disjoint variable
sets is a bipartite chain graph. We discuss the connection
to such graphs in more detail in Section 5.

The main result of this section is stated next.

Theorem 3.4. Any multi-chain φ with orders <1, . . . , <k

can be compiled in time O(|φ|2) into a BDD of size bounded
by |φ|. If the variable sets of φ are disjoint, then the compi-
lation time is O(|φ| log |φ|).

The proof is based on the following observation: Multi-
chain k-DNFs have the property that the elimination of the
first variable in the order <1 leads to a (not necessarily DNF)
Shannon expansion formula of size linear in the size of the
input formula. This property turns out to be crucial for the
tractability of model counting. We exemplify this property
with the formula φ of Example 3.3:

φ = x1 · φ|x1
+ x1 · φ|x1

= x1 · [y1 + y2 + y3 + x2y2 + x2y3] + x1 · [x2y2 + x2y3]

= x1 · [f(x1) + x2 · f(x2)] + x1 · x2 · f(x2)

The cofactors of x1 and x2 are here f(x1) = y1 + y2 + y3

and f(x2) = y2 + y3. Since f(x1) ⇒ x2f(x2), we have that
f(x1) + x2f(x2) = f(x1) and f(x1) ⊃ f(x2), and thus

φ = x1f(x1) + x1 · x2 · f(x2).

The cofactors f(x1) and f(x2) are trivially multi-chain. The
following lemma states that this property of cofactors holds
even for multi-chains with k > 2. We could then recursively
apply variable elimination to the obtained cofactors until we
reach an exhaustive Shannon expansion.

Lemma 3.5. Any multi-chain φ over variable sets [X1, . . . ,
Xk] is equivalent to φ1, where n = |X1| and

φi = xif(xi) + xiφi+1,∀1 ≤ i < n

φn = xnf(xn),

The cofactors f(x1), . . . , f(xn) are multi-chain (k-1)-DNFs.

Proof. It is assumed that the variables in X1 are ordered
by <1 such that the syntactical inclusion of Definition 3.2
holds.

By Definition 2.6 we have

φ = x1f(x1) + x2f(x2) + . . . + xnf(xn).

Since φ is multi-chain it holds f(xi) ⊇ f(xj), ∀1 ≤ i < j ≤
n, and thus ¬f(xi) implies ¬f(xj) for all i < j. This means

f(xi) + xi+1f(xi+1) + . . . + xnf(xn) = f(xi)

for any choice of i. Thus,

φ = x1f(x1) + x1[x2f(x2) + . . . + xnf(xn)]

= x1f(x1) + x1[x2f(x2) + x2[x3f(x3) + . . . + xnf(xn)]]

= . . . ,

which proves the expansion.
Now each cofactor f(xi), 1 ≤ i ≤ k, is a multipartite

(k-1)-DNF over variable sets X2, . . . , Xk. To show that it
is multi-chain, denote the cofactors in f(xi) by fi and let
2 ≤ j ≤ l ≤ k, yj ∈ Xj , zl ∈ Xl, xl <l yl be arbitrary. Then

fi(y2 · · · yl) ⊇ fi(y2 · · · yl−1zl) or fi(y2 · · · yl) = 0

⇔

f(xiy2 · · ·xl) ⊇ f(xiy2 · · · yl−1zl) or f(xiy2 · · · yl) = 0,

which is true because φ is multi-chain. Hence, each f(xi) is
a multi-chain (k-1)-DNF.
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Lemma 3.6. Any multi-chain φ can be expressed as an
exhaustive Shannon expansion φ′ with

|φ′| ≤ |φ|+ |X1|+ . . . + |Xk| ≤ 2|φ|.

Proof. Assume φ has variable sets [X1, . . . , Xk]. Lemma
3.5 shows how we can eliminate the variables of the first
set X1 and that all the cofactors of variables in this set
are multi-chain (k − 1)-DNFs. Thus, we can apply the fac-
torization of Lemma 3.5 k times and obtain an exhaustive
Shannon expansion φ′.

We inductively show the upper bound: φ is expressible as

x1f(x1) + x2f(x2) + . . . + xnf(xn)

where the number of literals in each xif(xi) is smaller than
the number of literals in the sum of all conjunctions of φ
which start with xi, because xi appears only once (and all
other literals appear in both). Thus,

|x1f(x1) + x2f(x2) + . . . + xnf(xn)| ≤ |φ|.

After the application of Lemma 3.5, we obtain the equiva-
lent formula φ1, where for each variable in X1 we add one
negated literal. This gives

|φ1| ≤ |φ|+ |X1|.

Inductively, this leads to

|φ′| ≤ |φ|+ |X1|+ . . . + |Xk| ≤ 2|φ|

for the exhaustive Shannon expansion φ′.

An exhaustive expansion was shown earlier in this section
for the formula of Example 3.3.

Lemma 3.7. Any multi-chain φ can be brought into ex-
haustive Shannon expansion in O(|φ| log |φ|) if its variable
sets are pairwise disjoint, or in O(|φ|2) if some of its vari-
able sets are equal.

Proof. We first sort φ according to the orders <1, . . . , <k,
which can be done in O(|φ| log |φ|).

Consider first the case of pairwise disjoint variable sets.
Thus, no variable can occur several times in the same clause
and the cofactors of variables in Xi are (k − i)-DNFs.

We can then in one scan over φ rewrite it as

φ = x1f(x1) + . . . + xnf(xn).

In a second scan, we compute again the cofactors of variables
in X2 within each cofactor of the variables in X1. With
Y = X2 this gives

φ = x1(y1f(x1y1) + . . . + ymf(x1ym))

+ . . . + xn(y1f(xny1) + . . . + ymf(xnym)).

This completes the expansion after k scans, i.e. in time
O(k|φ|). In fact, we can do everything in one scan, if we ex-
haustively expand f(x1) before moving tp the next cofactors
of variables in X1.

If some sets of variables are identical, the same variable
can occur multiple times in a clause. When computing the
cofactor f(x) for a variable x, we then replace all occurrences
of x by 1 (true) in f(x), and eliminate all clauses in f(x) that
are subsumed by clauses with occurrences of 1. This requires
quadratic time in the number of clauses. Furthermore, we
only compute cofactors for variables of φ that are in sets
X2, . . . , Xk, thus skipping cofactors for the constant 1.

MultiChain2BDD(multi-chain k-DNF φ, <1, . . . , <k) {

Assumption: φ ordered according to <1, . . . , <k;

// Keep nodes for variables set to true on current BDD path

define nodes as array of k + 1 BDD nodes;

// Create BDD for the first clause

nodes[k+1] = 1; // constant node 1

foreach i from k downto 1 do

nodes[i] = new BDDnode(φ.clause(1).literal(i));

nodes[i].high = nodes[i+1];

endfor

root = nodes[1];

// Add BDD nodes for each clause

foreach clause c in φ do

// Find position where path continues

d = FirstDifferentLiteral(c,c.lastClause());

// Create new nodes for the last k − d positions

foreach i from k downto d + 1 do

nodes[i].low = 0; // constant node 0

nodes[i] = new BDDnode(c.literal(i));

nodes[i].high = nodes[i+1];

endfor

// Create new node for position d and connect

// the low edge from the previous node

temp = nodes[d];

nodes[d] = new BDDnode(c.literal(d));

nodes[d].high = nodes[d+1];

temp.low = nodes[d];

endfor

// Connect the remaining low edges to 0

foreach i from 1 to k do nodes[i].low = 0;

return root;

}

Figure 4: The MultiChain2BDD algorithm.

Proof of Theorem 3.4. Formulas written in exhaustive
Shannon expansion are nothing else than term notations for
BDDs, where each variable occurs once positive and once
negated in the formula; the positive and negative occur-
rences account for the solid and dotted edge, respectively,
of the BDD node for that variable. For multi-chain k-DNFs
with disjoint sets of variables, Theorem 3.4 now follows from
Lemmas 3.5, 3.6, and 3.7.

Figure 4 gives a more practical algorithm for the con-
struction of the BDD. This algorithm works on relational
encodings of multi-chain k-DNFs where its variables sets
are sorted in the orders <1, . . . , <k, and constructs a BDD
in one scan over the input. Regarding memory footprint,
the algorithm only needs to keep in main memory one array
of k + 1 nodes, the BDD nodes created during the scan of
the formula. The time needed by the algorithm is O(|φ|).

We explain the algoritm with the running example illus-
trated in Figure 5. We are given the multi-chain 4-DNF
formula from the left table. The BDD at the right is shaped
similarly to the tabular representation of the formula to
show its structural similarity; the BDD can be seen as a
factorization of the formula, where r1 occurs only once (it
is factored out), within r1, s1 occurs only once, and when
the clauses with s1 are exhausted, s1 is invalidated and we
move to s2 (see the dotted edge between the nodes with
variables s1 and s2). Similar factorizations happen for the
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1 2 3 4
r1 s1 t1 u1

r1 s1 t1 u2

r1 s1 t2 u1

r1 s1 t2 u2

r1 s1 t3 u2

r1 s2 t2 u1 ←
r1 s2 t2 u2

r1 s2 t3 u2

r2 s1 t2 u1

...
...

...
...

r1 s1

s2

t1

t2

0 1

t2

u1

t3

u1

u1

u2

u2

u2

Figure 5: Running example for MultiChain2BDD.
The left table shows a relational encoding of a multi-
chain 4-DNF. At right, the BDD as constructed by
the algorithm after seing the first six clauses.

other variables.
On reading the first clause, we construct the first line of

BDD nodes that are connected by solid edges (the “high”
field): The formula is true if the variables in each of these
nodes are set to true. We then move to the second clause
and identify the first literal different from the first clause
(procedure FirstDifferentLiteral) in the variable at the
4th position (u2 instead of u1). We create a new BDD node
for the new literal u2 and connect it to the low edge of the
previous node for u1: The formula is true if r1, s1, t1 are true
and u1 or u2 are true. The compilation follows similarly until
the sixth clause is added to the BDD, the result being the
(partial) BDD in Figure 5.

In case some of the variable sets of the input k-DNF are
equal, there may be clauses with the same variable occurring
several times. In such cases, the algorithm does not create
a valid BDD as there may be several nodes for the same
variable on the same path. Nevertheless, the outcome of the
algorithm can be turned into a BDD in one scan by removing
such nodes.

Lemma 3.8. Any multi-chain k-DNF φ with some of the
variable sets equal, can be compiled into a BDD in time
O(|φ|2).

Proof. Let B(φ) be the outcome of the algorithm Multi-
Chain2BDD for φ. As explained above, to turn B(φ) into a
BDD we need to remove illegal nodes along each of its paths.
We show below that this can be done in time quadratic in
the size of B(φ). Since this size is bounded by O(|φ|), and
MultiChain2BDD needs linear scan of φ, we obtain the up-
per bound of O(|φ|2).

We scan each path and keep track of all the variables
of the nodes along that path. When we arrive at a node,
we check whether its variable has been already encountered
along the path. If this is not the case, we advance to the
next node. Otherwise, we drop the node and only keep its
positive or negative branch if the variable at the earlier node
is reachable via its positive or negative edge, respectively.
This test requires to compare the variable of each node with

the variables of nodes up in the path, hence quadratic time
in the path length.

Remark 3.9. Compiling formulas into BDDs is a well-
investigated research field in AI with many fundamental con-
tributions, e.g.,[17]. The problem of tractable compilation
into propositional theories beyond the popular reduced or-
dered BDDs [4, 12] has received tremendous attention, for
instance, the work of Darwiche on decomposable negation
normal form and its variations [8, 9]. These approaches con-
trast to ours in that they bound the size of the constructed
BDD by the treewidth of the input formula. Our formu-
las, however, can have unbounded treewidth. For instance,
the 2-DNF formula over sets X1 and X2 that has a clause
for each pair of variables from the two sets has unbounded
treewidth. This 2-DNF formula is multi-chain. 2

4. ACYCLIC ONE-OUT QUERIES
We next define a class of tractable inequality queries called

acyclic one-out.

Definition 4.1. An inequality query is acyclic, if there is
no cycle of relation nodes in its query graph. It is one-out,
if for each relation, at most one of its nodes has outgoing
edges in the query graph.

Example 4.2. Figure 1 shows the graph of the acyclic
one-out query Q : −R(A), S(B), T (C,D), A < C, B < D. If
we would add the inequality D < A, then the query would
be cyclic. If in addition we would add the inequality C < B,
then the query would not be one-out, for there would be two
outgoing edges from both query variables of T . 2

We obtain tractability of acyclic one-out queries by show-
ing that the lineage of any query in this class is a multi-chain
k-DNF, where the order of variable sets in the k-DNF fol-
lows any topological order of the corresponding relations in
the query graph.

Lemma 4.3. The lineage of any acyclic one-out query is
a multi-chain k-DNF formula.

Proof. W.l.o.g., Q can be written as

Q : −R1

`

A1
1, . . . , A

1
N1

, B1´

, . . . , Rk

“

Ak
1 , . . . , Ak

Nk
, Bk

”

, Λ

where

1. B1, . . . , Bk are the lists of query variables not partici-
pating in inequalities,

2. Λ is the conjunction of inequalities over query vari-
ables,

3. Only the nodes for A1
1, . . . , A

k
1 have outgoing edges in

the query graph,

4. Each relation Ri is sorted ascendingly on the first col-
umn Ai

1, and

5. The order of subgoals follow a topological order ob-
tained from the query graph, i.e., there is no outgoing
edge from nodes of Rj to nodes of Ri for 1 ≤ i < j ≤ k.
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The third assumption can be made since Q is one-out and
both Q and the relations R1, . . . , Rk can be trivially reorga-
nized by moving the query variables and their corresponding
attributes, respectively, as first in the subgoals and relations,
respectively. The fifth assumption holds since Q is acyclic.

By construction, the query lineage φ is a multipartite k-
DNF over the variable sets [X1, . . . , Xk], where Xi is the set
of random variables occurring in Ri. We next show that it
is also multi-chain.

We first introduce some notation. Each relation Ri, 1 ≤
i ≤ k, can be written as

Ri =
n

(vi
1,1, ..., v

i
1,Ni

, bi
1, x

i
1), ..., (v

i
ni,1, ..., v

i
ni,Ni

, bi
ni

, xi
ni

)
o

where ni is the size of Ri, vi
j,r and bi

j are the data values of

attributes Ai
r and Bi, respectively, and xi

j ∈ Xi.
Let 1 ≤ i1 ≤ n1, . . . , 1 ≤ ik ≤ nk, 1 ≤ l ≤ k, and Λ = Λ1∧

Λ2 where Λ1 contains all inequalities over query variables

from Rl.Thus, Λ1 consists of inequalities of the form Al′

m′ ⊙

Al
m (ingoing) with l′ < l and Al

1 ⊙ Al′′

m′′ (outgoing) with
l < l′′, where ⊙ ∈ {<,≤}, 1 ≤ m ≤ nl, 1 ≤ m′ ≤ nl′ ,
1 ≤ m′′ ≤ nl′′ .

If the clause x1
i1
· · ·xk

ik
is in φ, then the corresponding

data values (v1
i1,1, . . . , v

1
i1,N1

), . . . , (vk
ik,1, . . . , v

k
ik,Nk

) satisfy
Λ.

Consider now an arbitrary 1 ≤ i′l < il and f(x1
i1

. . . xl−1
il−1

xl
i′
l

)

6= ∅. Since the data values for all attributes other than Al
1

are not changed, Λ2 is satisfied by
(v1

i1,1, . . . , v
1
i1,N1

), . . . , (vl
i′
l
,1, . . . , v

l
i′
l
,Nl

), . . . , (vk
ik

, . . . , vk
ik,Nk

).

Since f(x1
i1

. . . xl−1
il−1

xl
i′
l

) 6= ∅, the ingoing inequalities of

Λ1 are satisfied by (v1
i1,1, . . . , v

1
i1,N1

), . . . , (vl
i′
l
,1, . . . , v

l
i′
l
,Nl

).

Furthermore, we have

vl
i′
l
,1 ≤ vl

il,1

and thus the implication

vl
il,1
⊙ vl′

i
l′

,m′ ⇒ vl
i′
l
,1 ⊙ vl′

i
l′

,m′

for any ⊙ ∈ {<,≤}, l′ ≥ l, 1 ≤ m′ ≤ Nl′ . This shows that
the outgoing inequalities of Λ1 are also satisfied. Since il
and i′l are arbitrary it follows that

f(x1
i1

. . . xl−1
il−1

xl
il
) ⊆ f(x1

i1
. . . xl−1

il−1
xl

i′
l

)

for arbitrary 1 ≤ l ≤ k, 1 ≤ i′l < il ≤ nl and 1 ≤ i1 ≤
n1, ..., 1 ≤ il−1 ≤ nl−1 for which f(x1

i1
. . . xl−1

il−1
xl

i′
l

) 6= 0.

Thus, φ is multi-chain.

By Lemma 4.3 and Theorem 3.4 it then follows that

Theorem 4.4. The data complexity of acyclic one-out que-
ries is PTIME. In particular, the probability of the lineage φ
of such queries can be computed in time O(|φ|2) for queries
with self-joins, and in time O(|φ| log |φ|) for queries without
self-joins.

Remark 4.5. The class of acyclic one-out queries strictly
contains the max-one inequality queries without self-joins,
which were previously shown to be tractable [20]. A query
has the max-one property if at most one query variable per
subgoal participates in inequalities. Max-one queries thus
forbid not only that several graph nodes of the same relation
have outgoing edges, but also that several graph nodes of the

Figure 6: Complexity of #VC for various graphs.

same relation have incoming edges. For instance, the query
in the previous example is not max-one since the relation T
has two nodes (C and D) with incoming edges. In addition,
acyclic one-out queries can have self-joins and ≤ operators,
which are not allowed in max-one queries.

Our present work also differs from [20] in that the tech-
nique of that work cannot be used to show tractability of
acyclic one-out queries. The technique employed there com-
piles query lineage into ordered BDDs (OBDDs), whereas
in the case of the present paper we drop the ordering con-
straint. Indeed, in general the BDDs for multi-chain k-DNFs
can only be translated into OBDDs of exponential size. This
argument is supported by the fact that BDDs can be expo-
nentially more succinct that OBDDs [17].

The same earlier work of the authors [20] defined an exten-
sion of tractable inequality queries with equality joins. This
extension considers so-called efficient independent queries,
for which the distinct answer tuples are pairwise indepen-
dent and their probability can be com- puted in polynomial
time. It is then easy to see that such queries can be used
at the place of subgoals in acyclic one-out inequality queries
without affecting their tractability. 2

5. COUNTING VERTEX COVERS
Our tractability results on BDD construction for k-DNFs

are applicable to counting the number of vertex covers (#VC)
in chain and convex bipartite graphs. Remarkably, both
chain and convex bipartite graphs are captured by the lin-
eage of inequality queries on tuple-independent probabilistic
databases.

We first recall necessary definitions.

Definition 5.1 ([25]). A bipartite graph G = (X, Y, E)
is a bipartite chain graph if and only if for both X and Y
the neighborhoods of the nodes can be ordered linearly w.r.t.
(non-strict) inclusion.

A bipartite graph G = (X, Y, E) is convex if there is an
ordering < of X or Y such that the neighborhoods of the
vertices in the other set are consecutive in the ordering <
(i.e. they are intervals).

Definition 5.2. Let G = (V, E) be an (undirected) graph.
S ⊆ V is a vertex cover of G, if for each edge e ∈ E at least
one of endpoints of e is in S.
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The main result of this section is given next.

Theorem 5.3. #VC is in O(|E|2) for any bipartite chain
graph G(X, Y, E).

Theorem 5.4. #VC is in O(|E|2) for any convex bipar-
tite graph G(X, Y, E).

To put these results in context, we note that counting
vertex covers in general graphs is #P-complete [10]. By
Proposition 5.5 it then follows that #VC(bipartite graphs)
and #SAT(monotone bipartite 2-DNF) are #P-complete as
well [22]. Our multi-chain 2-DNF formulas are thus neces-
sarily restrictions of bipartite 2-DNFs.

Proposition 5.5 ([22]). The following problems are po-
lynomial-time reducible to each other: #VC(graphs), #VC
(bipartite graphs), and #SAT(monotone bipartite 2-DNF).

Figure 6 gives further complexity results for #VC in classes
of graphs. An arrow from class A to B means that A
is strictly included in B. #VC is in PTIME for chordal
graphs [16, 18] and #P-complete for bipartite graphs [22].

In the sequel, we prove Theorems 5.3 and 5.4. We first
show the connection between #VC and query evaluation.
This connection follows in two steps: Firstly, the equiva-
lence between #VC and counting the number of satisfying
assignments (#SAT) for DNFs, and secondly the connection
between #SAT and query evaluation by Proposition 2.4.

The connection between vertex cover and SAT is as fol-
lows [22]: Given a bipartite graph G = (X, Y, E), create
a monotone bipartite 2-CNF φ with variables xi ∈ X and
yj ∈ Y such that (xi ∨ yj) ∈ φ if and only if (xi, yj) ∈ E.
Then, S ⊆ (X ∪ Y ) is a vertex cover of G exactly when the
assignment σ : (X ∪ Y ) → {0, 1} with σ(z) = 1 ⇔ z ∈ S is
in SAT(φ).

Given φ, one can easily create a monotone bipartite 2-
DNF φ′, if we exchange conjunctions and disjunctions. Then,
σ ∈ SAT(φ) if and only if ¬σ 6∈ SAT(φ′) (i.e. ¬σ is in the
set NSAT(φ′) of non-satisfying assignments of φ′). Since
the number of all total truth assignment of |X ∪Y | Boolean

variables is 2|X∪Y |, we can easily relate #SAT and #NSAT.
In the sequel, let G(φ) denote the bipartite graph associ-

ated with a monotone bipartite 2-DNF φ with variable sets
X and Y . It is given by G(φ) = (X, Y, E) with (xi, yj) ∈ E
if and only if xiyj ∈ φ.

Example 5.6. Figure 7 shows the graph G(φ) for the 2-
DNF

φ = x1y2 + x1y3 + x2y1 + x2y2 + x3y3.

Example vertex covers are S1 = {x1, x2, x3}, S2 = {x1, x3, y1,
y2} and S3 = {x1, x2, x3, y1, y2, y3}. The corresponding
non-satisfying assignments for φ are σi : X ∪ Y → {0, 1},
i ∈ {1, 2, 3} with σ(z) = 1 iff z ∈ Si.

In total, G(φ) has 18 distinct vertex covers. This implies
that φ has 18 non-statisfying and 26 − 18 = 64 − 18 = 46
satisfying assignments. 2

Figure 6 also gives, next to graph classes, inequality queries,
whose lineage graphs are chain or vertex.

Lemma 5.7. Let the query Q : −R(A), S(B), A < B.
Then, the class of lineage graphs of Q is the class of bipartite
chain graphs.

x1 x2

y2 y3

x3

y1

Figure 7: Bipartite graph for 2-DNF of Example 5.6.

Proof. Let us denote by N(x) the neighbourhood of a
node x, i.e., all Y -nodes directly connected to x. Analo-
gously, N(x) for a variable x is the set of Y -variables that
occur with x in clauses of the query lineage.

”⊆”: Let φ be the query lineage, which is a bipartite 2-
DNF over variable sets [X,Y ]. Then, its graph is (X, Y, E)
constructed as explained above. If the variables in R and
S are ordered ascendingly by A and B respectively implies
that N(x1) ⊇ N(x2) ⊇ . . . and N(y1) ⊆ N(y2) ⊆ . . .. Thus,
the lineage graph is a bipartite chain graph.

”⊇”: Let G = (X, Y, E) be a bipartite chain graph. Then
there exists an order of X and Y such that N(x1) ⊇ N(x2) ⊇
. . . and N(y1) ⊇ N(y2) ⊇ . . .. Now create a database D with
relations R(A) and S(B) according to the following scheme:
For each xi ∈ X add a tuple (i) with random variable xi

to R. For each yj ∈ Y add a tuple (k + 0.1) with random
variable yj to S, where k is the maximum i such that yj ∈
N(xi).

For arbitrary i, j, the clause xiyj is in the query lineage φ
if and only if i < k +0− 1 = maxi(yj ∈ N(xi))+0.1. Thus,
xiyj ∈ φ if and only if ∃k ≥ i such that yj ∈ N(xk). Since
N(x1) ⊇ N(x2) ⊇ . . ., this implies that xiyj ∈ φ if and only
if yj ∈ N(xi). Thus, an edge (i, j) is in the φ’s graph if and
only if (i, j) is in E.

We are now ready to complete the proof of Theorem 5.3.

Proof. Consider the multi-chain 2-DNF φ over the vari-
able sets [X, Y ] corresponding to the bipatite chain graph
G = (X, Y, E). The orders <X and <Y can be computed
in time quadratic in the number of the clauses of φ (i.e.,
O(|E|2)) - this is necessary for computing the cofactor of
each variable in X (or, equivalently, the neighbourhood of
each node in X), and then finding the linear inclusion of
these cofactors.

The DNF φ can be compiled into a BDD of linear size in
quadratic time (see Theorem 3.4, Lemma 4.3, Proposition
5.5, and Lemma 5.7).

For convex bipartite graphs, we have the following results
that related them to the so-called single-guard query Q :
−R(A,C), S(B), A < C, C < B (where the query variables
A and C guard B). We note that this query is cyclic.

Lemma 5.8. The class of lineage graphs of the single-
guard query is the class of convex bipartite graphs.

Proof. ”⊆”: Let the bipatite graph G = (X, Y, E), where
X and Y are the sets of variables of R and S, respectively.
We show that G is convex. A variable xi associated with a
tuple (ai, ci) of R is paired with a variable yj associated with
a tuple (bj) of S if and only if ai < bj < ci. Thus, if we enu-
merate the Y -variables ascendingly, the X-neighborhoods
are sets of consecutive yj ’s (that is, intervals).

”⊇”: We are given a convex bipatite graph G = (X, Y, E).
We create a 2-DNF φ over the variable sets [X, Y ]. W.l.o.g.,
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let Y be the variable set for which an order exists such
that the neighbourhoods N(xi) are sets of consecutive yj ’s.
Then, for each xi there exist 1 ≤ si ≤ ti ≤ |Y | such that
N(xi) = {ysi

, . . . , yti
}. Now create a database D with rela-

tions R(A,B) and S(C), where X is the set of variables of
R and Y is the set of variables of S, according to the fol-
lowing scheme: For each xi ∈ X add a corresponding tuple
(si−0.1, ti +0.1) to R. For each yj ∈ Y add a corresponding
tuple (j) to S. Then xiyj ∈ φ if and only if yj ∈ N(xi).

The following lemma states that, as for multi-chain k-
DNFs, the lineage of the single-guard query, which captures
convex bipartite graphs, can be compiled into BDDs in poly-
nomial time. The proof of this lemma is deferred to the
master’s thesis of the first author [30].

Lemma 5.9. The lineage φ of the single-guard query on
any tuple-independent probabilistic database can be compiled
into a BDD in O(|φ|2).

Further results not discussed here include the tractability
of the two-edge query Q : −R(A,B), S(C, D), A < C, B <
D, which is not an one-out query. Besides the tractability of
this query, it is shown in [30] that its lineage family strictly
includes that of the single-guard query, and that its class
of lineage graphs is strictly included in the class of weakly
chordal bipartite graphs.

6. CONCLUSION AND FUTURE WORK
This paper shows the tractability of the new class of acyclic

one-out inequality queries on tuple-independent probabilis-
tic databases. This result strictly subsumes an earlier tractabil-
ity result for inequality queries [20]. By exploiting the con-
nection between structural properties of bipartite chain and
convex graphs and the lineage of tractable queries, we are
able to obtain novel tractability results for counting vertex
covers in such graphs. The technique underlying our results
is based on a syntactical characterization of k-DNF formu-
las that capture the lineage of tractable queries and that can
be compiled in at most quadratic time into binary decision
diagrams of size linear in the size of the formulas.

We plan to further investigate the tractability of queries
beyond acyclic one-out. Two results concern the tractable
single-guard and two-edge queries discussed in Section 5. It
is not yet clear how to integrate these two query patterns
with the acyclic one-out queries. In earlier work we have
shown that inequality queries with two single-guard queries
can easily become #P-hard [20].
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