
University of Oxford

QR Decomposition of Normalised
Relational Data

Bas A.M. van Geffen
Kellogg College

Supervisor
Prof. Dan Olteanu

A dissertation submitted for the degree of:
Master of Science in Computer Science

Trinity 2018

Abstract

The simultaneous rise of machine learning and big data has led to a
pressing need to develop solutions that can process the large amounts of
data available. In-database analytics is an important approach, because
it avoids the expensive import-export step at the interface between the
database system and the statistical package. Within in-database analytics,
a technique known as factorised learning exploits the relational structure
in the data to decompose the learning algorithm into a set of queries over
the database relations. However, the current approach requires manually
rewriting machine learning algorithms to operations that can be pushed
past the join query.

This dissertation explores the in-database factorised setting at the more
fundamental linear algebra level. In particular, we show that the QR de-
composition of a matrixA defined by a join query over a relational database
can be computed without materialising the join result A.

We present the system F-GS, which implements a two-layered factorisa-
tion of a procedure used to compute QR decompositions. The first layer is
an algebraic rewrite of the Gram-Schmidt process to terms expressible as
aggregate queries. The second layer further pushes these aggregate queries
past the join query defining A.

F-GS provides both theoretical and practical improvements over the state
of the art. We show that through utilising factorised computation and a
sparse encoding for categorical data, F-GS can achieve asymptotically lower
computational complexity than out-of-database alternatives. Moreover, ex-
perimental results confirm that the speedup of F-GS over popular alterna-
tives matches the compression ratio brought by factorisation.

This dissertation introduces the first factorised matrix decomposition ap-
proach and shows that some of its applications, including solving linear least
squares and obtaining a singular-value decomposition, can be performed
without materialising the join result. By extension, our results open up a
line of research into fundamental linear algebra operations in an in-database
setting.

2

Acknowledgements

First of all, I would like to express my most sincere gratitude to my
supervisor Prof. Dan Olteanu. His guidance and input over the last months
were imperative to the outcome of this project. The feedback and push he
provided turned this dissertation into something I am truly proud of.

I would also like to thank Maximilian Schleich for his guidance and sug-
gestions for the research project starting from day one. His willingness to
help and answer my questions regarding implementation and experiments
is genuinely appreciated.

I am grateful to Fabian Peternek for his participation in our many dis-
cussions over the course of this project.

Finally, I would like to thank my parents and girlfriend for their support
and encouragement throughout my studies.

3

Contents

1 Introduction 6
1.1 Contributions . 8
1.2 Outline . 9

2 Preliminaries 10
2.1 Notation and definitions . 10

2.1.1 Basics . 10
2.1.2 Linear Algebra . 10

2.1.2.1 Orthogonality . 11
2.1.2.2 Linear Dependence and Rank 11

2.1.3 Functions . 11
2.2 Linear Least Squares . 12
2.3 QR Decomposition . 13

2.3.1 Gram-Schmidt process . 13
2.3.1.1 Modified Gram Schmidt 15

2.3.2 Solving Linear Least Squares 16
2.4 One-Hot Encoding Categorical Variables 17
2.5 Factorised Databases . 18

2.5.1 Cofactor Matrix . 19
2.5.2 Sparse Encoding for Categorical Variables 20
2.5.3 Sigma: Sparsely Including Categorical Cofactors 21

3 Factorised Gram-Schmidt 24
3.1 Outline and Setting . 24
3.2 Rewriting the Gram-Schmidt Process 25
3.3 From Equations to Algorithm . 27
3.4 Time and Space Complexity . 29

3.4.1 Complexity of F-GS . 29
3.4.2 Complexity of Listing-Based Approaches 30

3.5 Applications of F-GS . 31
3.5.1 Doubly Factorised Linear Least Squares 32
3.5.2 Singular-Value Decomposition 33
3.5.3 Cholesky Decomposition . 35
3.5.4 Moore-Penrose Inverse . 35

4

4 Implementation 37
4.1 Data Structures . 37

4.1.1 Sigma Matrix . 37
4.1.2 Ordering the Cofactors . 38
4.1.3 Matrices . 39

4.2 F-GS Variants . 40
4.3 Parallelisation . 42

4.3.1 Synchronisation . 42
4.3.2 Distribution of Work . 42

4.4 Detailed Description of F-GS . 44

5 Experiments 46
5.1 Summary of Findings . 46
5.2 Experimental Setup . 47

5.2.1 Systems . 47
5.2.2 Environment . 48

5.3 Tasks . 48
5.4 Datasets . 49
5.5 Experimental Results . 52

5.5.1 QR Performance . 52
5.5.2 Comparison of F-GS Variants 52
5.5.3 Breakdown of Factorised Decomposition 53
5.5.4 Impact of Parallelisation . 54

5.5.4.1 Balancing the Workload Distribution 54
5.5.5 End-to-End Linear Least Squares 55

6 Related Work 57

7 Conclusion 59
7.1 Future Work . 60

A Datasets 66

B Factorised Householder 68
B.1 Rewriting Householder QR . 68

B.1.1 Outline and definitions . 68
B.1.2 A Simplified Example . 70
B.1.3 Generalised Expression . 72
B.1.4 Explicit Expressions . 75

B.2 A Final Word on Challenges . 75

5

Chapter 1

Introduction

Machine learning (ML) and data analytics are of growing importance in both aca-
demia and industry. Today, machine learning plays an important role in many
industries, including retail, healthcare, finance, and manufacturing. Some promi-
nent examples of applications are facial recognition systems (such as Apple’s Face
ID), voice recognition (e.g. Amazon’s Alexa), and recommendation systems. For an
example of the last, consider that Netflix claims that its recommendation system
is responsible for 80% of streamed content. Moreover, Netflix values the combined
effects of its personalisation and recommendation algorithms at 1 billion US dollars
per year [1].

Simultaneously to the rise of machine learning, the term Big Data was coined to
describe the enormous growth in data available and being generated. A commonly
cited statistic (by IBM) claims that 90% of the world’s data was generated in the two
years prior [2]. Even though this increase in data has great value and impact (e.g. in
retail), various challenges are associated with dealing with big data. In particular,
visualising, analysing, or processing the data in some way becomes increasingly
difficult. Similarly, performing machine learning on large datasets requires massive
amounts of processing power and main memory capacity.

In practice, large datasets are stored in database management systems (DBMSs)
as several relations. The data, which is kept normalised over many relations, can
be viewed or reassembled as needed without needing to reorganise the relations.
In order to perform machine learning, the join result is computed by the DBMS,
which then exports the join result as a single large design matrix to the machine
learning component. Moreover, modern software enterprise stacks (such as those
provided by IBM, Oracle and Microsoft) provide specialised components for different
tasks, including: data mining, online analytical processing, and business intelligence.
Consequently, large scale ML pipelines are used to combine several systems, with
significant time being spent at the interface between these different components.
Additionally, this approach introduces significant costs in maintaining and operating
the many different software solutions [3].

The expensive import and export steps at each interface contribute strongly to
the scalability issues in machine learning. Moreover, the join result introduces large
amounts of redundancy in the data, which affects the processing and export time at
each component in the pipeline.

6

One approach to address the scalability issues of machine learning models is to
split the dataset into partitions that are small enough to be processed. Instead of
training one model on the entire dataset, each partition gets its own model. For
example, a recommendation system can consist of one model per region, which is
trained on and used for only one specific region. However, this approach can decrease
the predictive power of a model, because some useful patterns may not be present
in the partitioned dataset. Moreover, finding an appropriate partitioning both in
terms of the partition sizes and loss of accuracy is non-trivial and requires domain
expertise [4].

In-database analytics, which sets out to tightly integrate ML and analytics with
the database system, offers an alternative approach to deal with the scalability issues.
In-database analytics unifies the DBMS with the plethora of components into one
single engine. A key realisation is that large parts of ML algorithms can be expressed
as database queries [5]. This strategy retains a relational perspective of the data and
offers many potential benefits in practical scenarios. First of all, it avoids the time-
consuming import/export step at the interface between the specialised components
in a conventional data pipeline. Secondly, mature DBMS technology for managing
large datasets can be exploited and potentially extended. Hence, a unified engine
can effectively address the current limitations of learning over large databases [3].

The conventional method to incorporate ML in the DBMS is to compute the
design matrix as the listing representation of the DBMS query result. The ML algo-
rithm is then performed inside the database, thus avoiding the time-consuming im-
port/export step. A more promising way goes beyond this: it decomposes ML tasks
into subtasks that are expressible as relational algebra queries, and subsequently
further pushes these queries past the join that puts together the input relations.
This approach, known as factorised learning in literature, is compelling because it
can lower the computational complexity and lead to large performance benefits in
practice [6][7][8].

This dissertation builds on the observation that many machine learning models at
their core rely on a series of linear algebra operations, e.g. matrix decompositions,
Gaussian elimination and the matrix inverse. Whereas earlier work considered the
integration of a specific ML task (e.g. learning polynomial regression models) with
the DBMS, our work lies at the more fundamental linear algebra level. The goal of
this dissertation is to break new ground on in-database linear algebra. Ultimately,
an in-database linear algebra library offers a systematic approach to reuse obtained
results to develop or improve in-database algorithms.

We set out to show that fundamental linear algebra operations can be efficiently
performed in the in-database factorised setting outlined, with the promised lower
computational complexity and high performance improvements. Specifically, this
dissertation describes a completely factorised approach to compute a fundamental
matrix decomposition: the QR decomposition. The QR decomposition is an essential
tool in any widely-used linear algebra library (including NumPy, R and MATLAB),
because of its application in solving linear least squares and as the basis of an
eigenvalue algorithm. More concretely, we consider the following problem setting:

7

Given a database D (consisting of continuous and categorical attributes) and a
join queryQ to define a design matrixA, we would like to compute the factorised
QR decomposition of A matrix without materialising this matrix, such that:

A = QR = (AC)R

We propose an algebraic rewrite of the Gram-Schmidt process, a method used
to compute QR decompositions, to aggregate queries over Q(D). We show that the
entries in C and R can be expressed in terms of inner products of the columns of
A. Similarly to prior work on factorised learning, we show that this computation
can be performed without materialising A. Our novel approach effectively pushes
arithmetic computations necessary for the QR decomposition past the join of the
input relations.

Incorporating heterogeneous data in the design matrix poses a second challenge,
because the QR decomposition is defined for numerical matrices. Unlike continuous
features, categorical variables are normally not aggregated together and admit no
natural ordering. Therefore, the state-of-the-art approach is to use the one-hot
encoding that is highly redundant. We obtain the same outcome while using a
sparse encoding that was proposed within factorised learning [6].

1.1 Contributions

We introduce F-GS, a novel system for in-database factorised QR decompositions.
The contributions of this dissertation are:

• This is the first system that shows how to approach a fundamental linear
algebra operation, in particular the QR decomposition, using an in-database
factorised computation. We show how the singular-value decomposition, the
Moore-Penrose inverse, and the solution to linear least squares can be obtained
from our approach, without materialising the data matrix A.

• We investigate the computational complexity of F-GS. We show that F-GS
has data complexity O(|D|1+max (fhtw(Q), 2)) where fhtw(Q) is the fractional
hypertree width. In contrast, the data complexity of conventional approaches,
which rely on the materialised join result, is O(|D|ρ∗(Q)+2), where ρ∗(Q) is
the fractional edge cover number. The two measures satisfy 1 ≤ fhtw(Q) ≤
ρ∗(Q) ≤ number of relations in Q. Note that the gap between these two
measures can be significant for certain classes of queries commonly seen in
learning tasks, e.g. acyclic queries for which fhtw(Q) is 1 while ρ∗(Q) can be
up to |Q|.
• We show how to use F-GS to solve linear least squares and thus train linear

regression models. This is the first in-database solution capable of computing
the exact least square estimator over normalised data without materialising
the design matrix A. By extension, exact linear regression can be performed
on large databases on which conventional software will take much more time
or even run out of memory.

8

• We provide a C++ implementation of F-GS which relies on an (ideally) fac-
torised engine to compute a set of related aggregate queries over Q(D). In
this dissertation the recent AC/DC [8] engine was used, however other en-
gines could be plugged in easily. For example, recent development on covers,
a sparse lossless representation of relational databases, could lead to an alter-
native aggregate engine [9].

• We report on extensive benchmarking with F-GS and two popular open-source
competitors. Data matrices with different characteristics are defined using
three different datasets, of which two real-world ones and one synthetic. We
show that F-GS can outperform these competitors by more than 20× on a
real-world dataset. Furthermore, in many cases the competitors are unable to
load or one-hot encode the data altogether without running out of memory.

Matrix decompositions are an important part of linear algebra. This dissertation
introduces the first matrix decomposition to factorised databases. By extension,
opening up a line of research into potentially useful matrix decompositions in an
in-database setting.

1.2 Outline

The structure of the remaining chapters in this dissertation is as follows:

Chapter 2 introduces notation and background theory on linear least squares,
one-hot encoding categorical data, the QR decomposition, and factorised databases.

Chapter 3 presents the main theoretical results of this dissertation. First, an
algebraic derivation of F-GS from the Gram-Schmidt process is given. The results
are translated into an algorithm, for which the runtime complexity is analysed. The
chapter ends with different applications of the factorised QR decompositions.

Chapter 4 gives details on the C++ implementation of the proposed system. The
chapter outlines the data structures and optimisations used in F-GS. In particular,
details regarding the sparse encoding of categorical data and the parallelisation of
F-GS are described.

Chapter 5 describes the experimental setup and datasets. The performance of
F-GS is compared against the systems Py and R which rely on the industry stan-
dard (LAPACK) for QR decomposition. Moreover, the chapter includes an analysis
of F-GS through considering variants and a variety of problem instances.

Chapter 6 outlines related work on in-database analytics, in particular factorised
learning and in-database linear algebra.

Chapter 7 summarises the outcomes of this dissertation and discusses interest-
ing directions for future work in light of this dissertation.

9

Chapter 2

Preliminaries

This chapter outlines the prerequisite theory behind the dissertation, and describes
the notions that are required to understand the proceeding chapters. It provides a
brief description of the linear least squares problem. Next, a more detailed descrip-
tion of the QR decomposition is given. In particular, the Gram-Schmidt process is
outlined and demonstrated with an example. It then explains the one-hot encoding,
which is typically used to include categorical variables in a learning task. Finally,
factorised databases are outlined, with a focus on concepts that are directly relevant
to this dissertation.

For an exhaustive description of linear regression see [10]. Similarly, a compre-
hensive overview of factorised databases can be found in [11].

2.1 Notation and definitions

This section introduces important definitions and notation used in the remainder
of this dissertation. More specialised notation may be introduced in the relevant
sections.

2.1.1 Basics

[k] The set of integers {1, 2, . . . , k}
a A scalar
a A vector
A A matrix
0 The zero vector or matrix (clear from context)
I Identity matrix with implicit (from context) dimensions
D A database consisting of normalised relations
O Big O notation for data complexity

2.1.2 Linear Algebra

‖a‖ The L2 (Euclidean) norm of a
〈u, v〉 The dot product; inner product of Euclidean spaces.
A> The transpose of a matrix A

10

2.1.2.1 Orthogonality

Orthogonality of vectors is the generalisation of perpendicularity to vectors of any
dimension. A set of vectors {v1,v2, . . . ,vn} is (pairwise) orthogonal if for each pairs
of vectors their inner product is zero.

An orthogonal matrix is a square matrix with orthogonal normalised (i.e. norm of
1) vectors as columns and rows, i.e.:

Q> = Q−1 ⇐⇒ Q>Q = QQ> = I

In this dissertation we loosen the definition to include non-square semi-orthogonal
matrices. A matrix with more rows than columns is semi-orthogonal, if the columns
are orthonormal vectors. Equivalently, we consider a matrix to be (semi-)orthogonal
if:

Q>Q = I or QQ> = I

2.1.2.2 Linear Dependence and Rank

A set of vectors {v1,v2, . . . ,vn} is linearly dependent if one of the vectors can be
expressed as a linear combination of other vectors in the set. Equivalently, if there
exist non-trivial coefficients λ = (λ1, λ2, . . . , λn) such that:

λ1v1 + λ2v2 + · · ·+ λnvn = 0

Conversely, the set of vectors is linearly independent if the only satisfying assign-
ment is λ = 0.

The rank of a matrix A ∈ Rm×n is the dimension of the vector space spanned
by the columns (or equivalently rows) of A. A matrix is (or has) full-rank if

rank (A) = min (m,n)

Equivalently, either all rows or all columns of A must be linearly independent.
Otherwise, the matrix is said to be rank deficient.

2.1.3 Functions

A (partial) function or map f maps elements from a set X (domain) to a single
element of a set Y (range). In this dissertation, we include partial functions, i.e. for
all x ∈ X either f(x) ∈ Y or f(x) is undefined.

For the purpose of this dissertation, it is useful to consider a function f as a set
M of pairs ([x], y) with key x and payload y ∈ R, such that f(x) = y. Therefore,
the following representation is used for a function M :

M =
{

([x1], φ1), ([x2], φ2), . . . , ([xk], φk)
}

11

2.2 Linear Least Squares

The linear least squares problem arises naturally in many different fields, and is
most commonly used to perform linear regression. Consider a data set with m
observations and N features:

{y(i), x(i)1 , . . . , x
(i)
N }i∈[m]

The linear regression model assumes a linear relationship between the dependent
variable or label (yi) and the features (xi1, . . . , xiN). Moreover, an error variable εi
is included to capture the noise or error of each observation, such that:

yi = β0 + β1x
(i)
1 + · · ·+ βnx

(i)
N + εi

For notational convenience, it is common to include x
(i)
0 := 1 such:

y =


y(1)

y(2)

...
y(m)

 , β =


β0
β1
...
βN

 , ε =


ε1
ε2
...
εm



X =
(
x0 x1 · · · xm

)
=


1 x

(1)
1 . . . x

(1)
N

1 x
(2)
1 . . . x

(2)
N

...
... · · · ...

1 x
(m)
1 . . . x

(m)
N

 ,

We can succinctly write the model using matrix notation as follows:

y = Xβ + ε

The goal of linear regression is to fit (or estimate) the parameter vector β. Even
though multiple estimation methods exist and are used in practice, we only consider
the least squares principle. Figure 2.1 shows an illustrative example of least squares.
Least squares sets out to minimise the sum of squared residuals (errors). The least
squares estimator β̂ satisfies:

β̂ = arg min
β

m∑
i=1

εi
2 = arg min

β

m∑
i=1

‖y −Xβ‖2 (2.1)

More generally; given an overdetermined (i.e. more equations than unknowns) sys-
tem of equations Av = b, the linear least squares problem is to find the solution
which minimises the residuals.

‖b−Av‖2

It is well known that there exists a closed-form solution to equation 2.1, assuming
that A is full-rank. The solution is obtained by solving the Normal equations which
can be obtained by differentiating the objective with respect to v.

(A>A)v̂ = A>b ⇐⇒ v̂ = (A>A)
−1
A>b

12

Figure 2.1: Example of a linear least squares regression instance with one feature.
The regression line (shown in red) minimises the sum of squared errors (shown in
blue), to best fit the data (shown as red circles). Figure taken from [10].

2.3 QR Decomposition

Definition 2.1. The QR decomposition of a matrix A is a decomposition of A into
an orthogonal matrix QA (i.e. Q>AQA = I) and an upper triangular matrix RA such
that A = QARA.

The best known use of the QR decomposition is to solve the linear least squares
problem. The main advantage of using the QR decomposition to solve an instance of
linear least squares, as opposed to a more direct approach (i.e. the Normal equations
method), is numeric stability. Other uses include the (practical) QR algorithm and
computing the singular-value decomposition of a matrix.

Any real m × n matrix A with m ≥ n admits a QR decomposition such that
QA ∈ Rm×m and RA ∈ Rm×n. Since RA is rectangular and upper triangular, the
bottom m−n rows consist entirely of zeroes. Therefore, it is useful to partition QA

and RA.

A = QARA = QA

[
R
0

]
=
[
Q Q′

] [R
0

]
= QR

We have m × n matrix Q, n × n matrix R and (m − n) × n matrix Q′. The
decomposition A = QR is known as a thin QR decomposition.

Multiple methods for computing the QR decomposition of a matrix exist; most
notably the Gram-Schmidt process, Householder transformations, and Givens rota-
tions.

2.3.1 Gram-Schmidt process

The Gram-Schmidt process is used to orthonormalise a set of vectors, and can
be applied to the columns of a matrix to compute its QR decomposition. Gram-
Schmidt computes the thin QR decomposition. Consider the matrixA ∈ Rm×n with
n linearly independent columns (i.e. full-rank) and m ≥ n.

13

A =
[
a1 a2 · · · an

]
The Gram-Schmidt process is defined as follows:

u1 = a1 e1 =
u1

‖u1‖

u2 = a2 −
〈u1, a2〉
〈u1, u1〉

u1 e2 =
u2

‖u2‖

uk = ak −
〈u1, ak〉
〈u1, u1〉

u1 − · · · −
〈uk−1, ak〉
〈uk−1, uk−1〉

uk−1 ek =
uk
‖uk‖

= ak −
k−1∑
i=1

〈ui, ak〉
〈ui, ui〉

ui

A QR decomposition of A is then given by:

Q =
[
e1 e2 · · · en

]
R =


〈e1, a1〉 〈e1, a2〉 · · · 〈e1, an〉

〈e2, a2〉 · · · 〈e2, an〉
. . .

...
0 〈en, an〉


Computing a QR decomposition using the Gram-Schmidt process is appealing be-
cause of the simplicity of implementation and the intuitive geometric interpretation.
The vector uk is computed by projecting ak orthogonally onto u1,u2, . . . ,uk−1 and
defining uk as the difference between ak and the projections. Next, ek is obtained
by normalising uk.

Example. To further illustrate the Gram-Schmidt QR decomposition, consider the
following 3× 3 matrix A:

A =

 8 30 5
4 0 7
−8 −15 22


First, the Gram-Schmidt process is applied to find u1, u2 and u3.

u1 = a1 =
(
8 4 −8

)>
u2 = a2 −

〈u1, a2〉
〈u1, u1〉

u1

=
(
30 0 −15

)> − 〈(8 4 −8), (30 0 −15)〉
〈(8 4 −8), (8 4 −8)〉

(
8 4 −8

)>
=
(
30 0 −15

)> − 8 · 30 + 8 · 15

82 + 42 + (−8)2
(
8 4 −8

)>
=
(
30 0 −15

)> − 5

2

(
8 4 −8

)>
=
(
10 −10 5

)>
14

u3 = a3 −
〈u1, a3〉
〈u1, u1〉

u1 −
〈u2, a3〉
〈u2, u2〉

u2

= a3 −
〈(8 4 −8), (5 7 22)〉
〈(8 4 −8), (8 4 −8)〉

u1 −
〈(10 −10 5), (5 7 22)〉
〈(10 −10 5), (10 −10 5)〉

u2

= a3 −
8 · 5 + 4 · 7− 8 · 22

82 + 42 + (−8)2
u1 −

10 · 5− 10 · 7 + 5 · 22

102 + (−10)2 + 52
u2

=
(
5 7 22

)>
+

3

4

(
8 4 −8

)> − 2

5

(
10 −10 5

)>
=
(
7 14 14

)>
Next, Q is obtained by normalising the vectors u1, u2, and u3.

Q =
[
u1

‖u1‖
u2

‖u2‖
u3

‖u3‖

]
=


8
12

10
15

7
21

4
12

−10
15

14
21

− 8
12

5
15

14
21

 =


2
3

2
3

1
3

1
3
−2

3
2
3

−2
3

1
3

2
3


Finally, the matrix R is obtained.

R =


〈u1, a1〉
‖u1‖

〈u1, a2〉
‖u1‖

〈u1, a3〉
‖u1‖

0 〈u2, a2〉
‖u2‖

〈u2, a3〉
‖u2‖

0 0 〈u3, a3〉
‖u3‖


=

12 30 −9
0 15 6
0 0 21


This shows how the Gram-Schmidt process can be used to compute a QR decom-

position of a matrix A. However, the Gram-Schmidt process is inherently numeri-
cally unstable due to a loss of orthogonality as a result of (floating-point) rounding
errors. In practice a minor modification is sometimes used, resulting in a more stable
version known as modified Gram-Schmidt [12].

2.3.1.1 Modified Gram Schmidt

Instead of computing uk as a sum of projections, an iterative approach is used.

u
(1)
k = ak −

〈u1, ak〉
〈u1, u1〉

u1

u
(2)
k = u

(1)
k −

〈u2, u
(1)
k 〉

〈u2, u2〉
u

(1)
k

...

u
(i)
k = u

(i−1)
k − 〈ui, u

(i−1)
k 〉

〈ui, ui〉
u

(i−1)
k

uk = u
(k)
k

15

At each step u
(i)
k is orthogonalised against the previous step u

(i−1)
k , including any

error that was introduced in the computation of u
(i−1)
k . Noteworthy is that (classical)

Gram-Schmidt and modified Gram-Schmidt are mathematically equivalent; that is
in exact arithmetic.

2.3.2 Solving Linear Least Squares

Consider the system of equations Ax = b with A ∈ Rm×n, x ∈ Rn and b ∈ Rm.
We want the solve the linear least squares such that x̂ minimises:

‖b−Ab‖2

The closed-form solution is obtained by solving the Normal equations.

(A>A)x̂ = A>b

The orthogonality of the Q matrix in the QR decomposition of A = QR can be
exploited to efficiently solve for x̂.

(A>A)x̂ = A>b ⇐⇒
((QR)>QR)x̂ = (QR)>b ⇐⇒
(R>Q>QR)x̂ = R>Q>b ⇐⇒

R>Rx̂ = R>Q>b ⇐⇒
Rx̂ = Q>b

Above expression is rewritten by first computing d = Q>b resulting in the upper
triangular system Rx̂ = d. Consider the system written as linear equations in
reverse order:

rn,n · xn = dn
rn−1,n · xn + rn−1,n−1 · xn−1 = dn−1

...
...

. . .
...

r1,n · xn + rn−1,n−1 · xn−1 + . . . + r1,1 · x1 = d1

By considering the equations in reverse order, we can solve x̂n at the first step. By
substituting x̂n in the next step, we can solve for the only free variable x̂n−1.

x̂n =
dn
rn,n

x̂n−1 =
dn−1 − rn−1,nx̂n

rn−1,n−1

x̂k =
1

rk,k
·
(
dk −

n∑
i=k+1

rk,ix̂i

)
This procedure avoids inverting R to more efficiently solve an upper triangular
system, and is known as backward substitution because of the reversed order of the
equations. The time complexity of backward substitution on an n × n matrix is
O(n2).

16

2.4 One-Hot Encoding Categorical Variables

A categorical variable refers to an attribute with a fixed limited number of possible
values, assigning the entry to one specific nominal category (or group). Examples
of categorical variables relating to a person include blood type, nationality, smoker,
and gender. The QR decomposition and many machine learning algorithms require
the input data to be numeric and therefore require categorical data to be encoded.
The encoding used is important for the interpretation and treatment of categorical
data.

Example. The variable “smoker” may be (compactly) stored as ‘0 = unknown’, ‘1
= yes’ and ‘2 = no’. However, a ML model may assume a natural ordering between
the categories or incorporate the non-smoker category as ‘twice’ the smoker category.

Consequently, the one-hot encoding can be used to incorporate indicator (or
dummy) features for the categories. At its core, one-hot coding extends the dataset
by using one boolean (indicator) feature for each distinct category. The intuition
is that the boolean feature indicates whether the entry belongs to that specific
category.

In practice, this approach may result in a problem known as the dummy variable
trap. The trap is best explained by a simple example.

Example. Consider a linear model with a single boolean variable ‘verified’, encoded
as two boolean features x

(i)
1 (yes) and x

(i)
2 (no), and the intercept x

(i)
0 .

y(i) = β0x
(i)
0 + β1x

(i)
1 + β2x

(i)
2

Clearly, every entry must be either verified or unverified, hence:

∀i∈[m] : x
(i)
1 + x

(i)
2 = 1 = x

(i)
0

The result is a design matrix with perfect multicollinearity, which means that
X is not full-rank and the Gram-Schmidt process cannot be applied. In fact, for
rank-deficient X no unique solution to the least squares problem exists.

The dummy variable trap occurs whenever there is more than one categorical
variable or one categorical variable and a constant feature (e.g. intercept in linear
regression). The dummy variable trap can be avoided by removing one indicator
feature from each categorical variable. Moreover, we ensure that a constant feature
is included to retain the same rank as before dropping any features.

Within the context of a learning model, dropping one indicator feature per vari-
able does not reduce the expressive or predictive power of the model. Instead,
entries belonging to the excluded group are considered to be the “base” group and
represented by the constant (intercept) term. The learned parameters for all other
(included) groups are then relative to this base group.

Example. We end this section with a comparison of the integer and one-hot en-
coding. Table 2.2 shows both encodings for a small relation containing blood type
information.

17

Entry Blood type Group A B O
1 AB 1 0 0 0
2 A 2 1 0 0
3 A 2 1 0 0
4 B 3 0 1 0
5 O 4 0 0 1
6 B 3 0 1 0

Table 2.2: Example of a table containing blood type (categorical) information. The
third column (group) represents the integer representation. The last three columns
show the corresponding one-hot encoding, with ‘AB’ being excluded.

2.5 Factorised Databases

Relational databases store relations as tables consisting of records (i.e. rows) shar-
ing the same attributes (i.e. columns). To avoid redundancy, a database is split
into normalised relations which can be related to each other via join keys. It is
common practice to materialise the join result of two or more relations on common
attributes (i.e. keys), such as shown in Figure 2.3. The resulting listing representa-
tion contains a high degree of redundancy, which the normalised relations set out
to eliminate. This data redundancy will lead to corresponding processing overhead,
e.g. for computing aggregates over the join result.

Orders

Cust Day Menu

Mark Mon Regular
Alice Mon Regular
John Mon Vegetar.
John Sun Vegetar.

Menus

Menu Item

Regular Burger
Regular Fries
Regular Drink
Vegetar. Salad
Vegetar. Fries
Vegetar. Drink

Preparation

Item Time

Burger 8
Salad 6
Fries 4

Drink 1

(a) Normalised

Orders ./ Menus ./ Preparation

Cust Day Menu Item Time

Mark Mon Regular Burger 8
Mark Mon Regular Fries 4
Mark Mon Regular Drink 1
Alice Mon Regular Burger 8
Alice Mon Regular Fries 4
Alice Mon Regular Drink 1
John Mon Vegetar. Salad 6
John Mon Vegetar. Fries 4
John Mon Vegetar. Drink 1
John Sun Vegetar. Salad 6
John Sun Vegetar. Fries 4
John Sun Vegetar. Drink 1

(b) Natural Join

Figure 2.3: Example of a small relational database, with colouring to emphasise
redundancy.

Alternatively, factorised representations are succinct lossless representations for
arbitrary join queries over relational databases. They exploit properties of rela-
tional algebra, in particular the distributivity of the Cartesian product over union.
More importantly, they led to the development of factorised aggregate computation
engines [13][8]. Consequently, the computational and space complexity for solving
Functional Aggregate Queries (FAQs), a generalisation of join queries, has been
lowered for a range of join queries.

In general, there is no unique factorisation for a given join query Q over the
database D. A variable ordering defines the (nesting) structure of the factorised
representation. A variable ordering is a partial ordering over the attributes, which

18

Menu

Day

Cust

Item

Time

∪

Regular

×

∪

Mon

×

∪

Mark Alice

∪

Burger

×

∪

8

Fries

×

∪

4

Drink

×

∪

1

Vegetar.

×

∪

Mon

×

∪

John

Sun

×

∪

John

∪

Fries

×

Drink

×

Salad

×

∪

6

Figure 2.4: One possible factorisation of the join result (right) and the corresponding
variable order (left). Dotted lines denote reuse of cached symbols.

is obtained from static analysis of Q and the schematic structure of D. One possible
factorisation is shown in Figure 2.4, with the variable ordering on the left.

The size of a factorisation depends on which variable ordering is used to dictate
its structure. Even though the size of different factorisations may vary greatly, the
asymptotically optimal sizes are well understood. Let |D| denote the number of
tuples in the database D.

Proposition 2.2 ([11]). Given a feature extraction join query Q, with continuous
features only, then for every database D, the join result Q(D) admits:

• a listing representation of size O(|D|ρ∗(Q)); [14]

• a factorised representation of size O(|D|fhtw(Q)); [15]

There are classes of databases for which above bounds are tight and worst-case op-
timal join algorithms to compute the join result in these representations [16][15].

The parameters used in Proposition 2.2 are the fractional edge cover number
ρ∗(Q) and the fractional hypertree width fhtw(Q), satisfying 1 ≤ fhtw(Q) ≤
ρ∗(Q) ≤ |Q| with |Q| the number of relations in Q. The gap between fhtw(Q)
and ρ∗(Q) can be as large as |Q| − 1, in which case the factorised join result can
be computed exponentially faster than the listing representation (even when using
worst-case optimal join algorithms!) [7]. For example, acyclic joins (e.g. path and
hierarchical) have fhtw(Q) = 1 whereas ρ∗(Q) can be as large as the number of
relations |Q|.

2.5.1 Cofactor Matrix

A particularly useful and recurring use of FAQs is to compute the cofactor matrix.

Cofactor = A>A ∈ RN×N

The cofactor matrix is commonly used in applications of statistics and machine
learning. Factorised computation of A>A has previously been used in multiple in-
database learning tasks, including linear and polynomial regression, factorisation

19

machines and principle component analysis [6]. Most importantly, all aggregates in
Cofactor can be computed in a single pass over the factorised join.

Cofactor =


〈a1, a1〉 〈a1, a2〉 · · · 〈a1, aN〉
〈a2, a1〉 〈a2, a2〉 · · · 〈a2, aN〉
〈a3, a1〉 〈a3, a2〉 · · · 〈a3, aN〉

...
...

. . .
...

〈aN , a1〉 〈aN , a2〉 · · · 〈aN , aN〉

 (2.2)

A useful property of the cofactor matrix is symmetry, which can easily be shown.

(A>A)
>

= A>(A>)
>

= A>A

It follows that only the entries in the upper-half (including the diagonal) need to be
computed.

2.5.2 Sparse Encoding for Categorical Variables

In Section 2.4 the one-hot encoding, which is often used to incorporate categorical
variables in a learning model, is described. However, one-hot encoding generally
leads to significant redundancy, especially when working with large datasets with
multiple categorical variables. As an example, consider a categorical column with m
rows and p possible categories (i.e. groups). One-hot encoding results in pm values
of which only m are ones, and the remaining (p− 1)m are zeroes. Computationally
it requires processing potentially many zeroes, and more importantly, the increased
memory usage may result in a procedure running out of memory.

In factorised learning, an alternative sparse encoding of the input data has been
proposed [6]. Instead of increasing the number of columns, each entry is represented
by a pair consisting of a key and a payload of 1. For notational consistency, con-
tinuous variables are similarly encoded. Figure 2.5 shows columns of both types in
their corresponding encoding.

enc(xa) =


([x

(1)
a], 1)

([x
(2)
a], 1)

...

([x
(k)
a], 1)


(a) Categorical variable

enc (xb) =


([], x

(1)
b)

([], x
(2)
b)

...

([], x
(k)
b)


(b) Continuous variable

Figure 2.5: Examples of encoded columns with k entries. The payloads in blue.

This encoding may not seem useful yet, however, it allows us to concisely express
the computation of cofactors. More importantly, this encoding avoids aggregating
categorical variables together in the same way as one-hot encoding, without intro-
ducing the associated redundancy. Finally, even though (conceptually) we think

20

of the input data as encoded in this manner, in practice this encoding is applied
on-the-fly where necessary during aggregate computation.

Figure 2.6 compares the sparse encoding to the one-hot encoding.


10 . . . 0︸ ︷︷ ︸

p

. . . 10 . . . 0︸ ︷︷ ︸
p

...
. . .

...
0 . . . 01︸ ︷︷ ︸

p

. . . 0 . . . 01︸ ︷︷ ︸
p


(a) onehot (A)

 ([a
(1)
1], 1) . . . ([a

(1)
n], 1)

...
. . .

...

([a
(m)
1], 1) . . . ([a

(m)
n], 1)


(b) enc (A)

Figure 2.6: Side-by-side comparison of the two encodings applied to an m×n matrix
with n categorical variables each with p categories.

2.5.3 Sigma: Sparsely Including Categorical Cofactors

The Sigma matrix (Σ) is introduced to incorporate the sparse categorical encoding
into the cofactor matrix. The entries in Σ are functions instead of scalars. Alter-
natively, each entry can be considered a predicate which is nullary, unary or binary
depending on the domains of the variables. Moreover, the dimensions of Σ are
proportional to the number of variables n instead of the number of features N .

Σ =

σ1,1 · · · σ1,n
...

. . .
...

σ1,n · · · σn,n


In order to express the entries in Σ we introduce the sum and product over mappings.
For the purpose of this dissertation it is sufficient to define the product over pairs.

([x], φx)⊗ ([y], φy) :=
(
[x,y], φx · φy

)
The slightly more generalised sum is defined over a mapping M and a pair.

M ⊕ ([y], φy) :=

{(
M \

{
([y], φx)

})
∪
{

([y], φx + φy)
}

if ∃φx ∈ R : ([y], φx) ∈M
M ∪

{
([y], φy)} otherwise

Informally, the product (⊗) merges two pairs by concatenating their keys and mul-
tiplying the payloads. The sum (⊕) resembles a union; if the mapping M already
contains the key of the summed pair, then the payload of the summed pair is added
to the existing pair. If not, the pair is simply inserted into M .

Using these definitions, we can generalise the dot product to include mappings.

σk,l = 〈enc (ak), enc (al)〉

=
⊕
i∈[m]

[
enc (a

(i)
k)⊗ enc (a

(i)
l)
]

21

For example, an entry for two continuous variables ak,al contains a singleton.

σk,l =
{

([], φk,l)}

Whereas an entry for a categorical variable ak with p categories and a continuous
variable al contains p entries.

σk,l =
{

([k1], φk1,l), ([k2], φk2,l), · · · , ([kp], φkp,l)
}

Example. To clarify the sparse encoding and dot product, consider the small table:

enc(


Item Customer Amount
A X 4
C Y 1
B X 1
C Y 3

) =


I C A

([A], 1) ([X], 1) ([], 4)
([C], 1) ([Y], 1) ([], 1)
([B], 1) ([X], 1) ([], 1)
([C], 1) ([Y], 1) ([], 3)


We proceed to show how some of the entries in Σ can be computed.

σI,A = 〈enc (aI), enc (aA)〉

=
⊕
i∈[m]

(
enc (a

(i)
I)⊗ enc (a

(i)
A)
)

=
(
([A], 1)⊗ ([], 4)

)
⊕
(
([C], 1)⊗ ([], 1)

)
⊕
(
([B], 1)⊗ ([], 1)

)
⊕(

([C], 1)⊗ ([], 3)
)

= ([A], 4)⊕ ([C], 1)⊕ ([B], 1)⊕ ([C], 3)

=
{

([A], 4), ([C], 1)
}
⊕ ([B], 1)⊕ ([C], 3)

=
{

([A], 4), ([C], 1), ([B], 1)
}
⊕ ([C], 3)

=
{

([A], 4), ([C], 4), ([B], 1)
}

σA,A = 〈enc (aA), enc (aA)〉
=
(
([], 4)⊗ ([], 4)

)
⊕
(
([], 1)⊗ ([], 1)

)
⊕
(
([], 1)⊗ ([], 1)

)
⊕
(
([], 3)⊗ ([], 3)

)
= ([], 16)⊕ ([], 1)⊕ ([], 1)⊕ ([], 9)

=
{

([], 27)
}

σI,C = 〈enc (aI), enc (aC)〉
=
(
([A], 1)⊗ ([X], 1)

)
⊕
(
([C], 1)⊗ ([Y], 1)

)
⊕
(
([B], 1)⊗ ([X], 1)

)
⊕(

([C], 1)⊗ ([Y], 1)
)

= ([A,X], 1)⊕ ([C, Y], 1)⊕ ([B,X], 1)⊕ ([[C, Y], 1)

=
{

([A,X], 1), ([C, Y], 2), ([B,X], 1)
}

Finally, we show how the aggregates in an entry (i.e. σk,l) can be expressed
as FAQs. Consider two arbitrary keys xk and xl in the mappings of ak and al
(respectively).

• If xk and xl both have continuous domains:

σk,l() =
∑

∀j∈[n]:xj

xk · xl · 1Q(x1,···xn)

22

• If xk and xl both have categorical domains:

σk,l(xk, xl) =

j 6∈{k,l}∑
∀j∈[n]:xj

1Q(x1,···xn)

• If xk has a categorical domain, and xl has a continuous domain:

σk,l(xk) =

j 6∈{k}∑
∀j∈[n]:xj

xl · 1Q(x1,···xn)

23

Chapter 3

Factorised Gram-Schmidt

This chapter describes factorised Gram-Schmidt, the theoretical result behind the
main technical contribution of this dissertation. F-GS can be considered a two-
layer factorisation of a QR decomposition computation. This chapter describes the
first layer which is a decomposition of the Gram-Schmidt process into subproblems
expressible as relation queries. The second layer refers to exploiting techniques from
factorised databases to push these subproblems past the join of the input relations.

First, an outline of the factorised Gram-Schmidt process and its in-database
setting are provided. Next, an algebraic rewrite of the Gram-Schmidt process to
expressions in terms of the cofactors is given. The obtained equations are then
translated into an algorithm stated in pseudocode. An analysis of the space and
time complexity of this algorithm is provided. Finally, some applications of the
factorised QR decomposition are stated. For simplicity, this chapter assumes that
the cofactors are given as the square N ×N matrix Cofactor.

Chapter 4 then describes the C++ implementation of F-GS. Moreover, the re-
sults of this chapter are extended to include the sparse encoding of Σ.

3.1 Outline and Setting

This dissertation assumes the common in-database scenarios where join queries are
used to retrieve a matrix. Consider a feature extraction query Q and database D.

A = Q(D)

This chapter assumes that A consists of numerical values which were obtained using
any preferred encoding for categorical variables. Let N be the number of features
and let m be the number of rows, such that A ∈ Rm×N . Most importantly, in a
database setting it is a reasonable assumption that there are many more rows than
there are features (or columns); that is m� N .

The factorised Gram-Schmidt process computes a factorised QR decomposition of
the matrix A.

Definition 3.1. The factorised QR decomposition of a matrix A is of shape:

A = QR = (AC)R

24

Factorised refers to the fact that A and Q are kept symbolically, whereas the N×N
matrices C and R are materialised.

The goal of factorised Gram-Schmidt is to express C and R in terms of the
cofactors of A. Consequently, it provides a computation for the factorised QR
decomposition which relies solely on Cofactor instead of the actual data.

Recall that the second layer of our approach factorises the computation of the
cofactors to avoid materialising the join result A. Therefore, all stages of F-GS can
be performed without ever materialising A.

3.2 Rewriting the Gram-Schmidt Process

Recall the Gram-Schmidt process outlined in Section 2.3.1.

uk = ak −
k−1∑
i=1

〈ui, ak〉
〈ui, ui〉

ui (3.1)

ek =
uk
‖uk‖

=
uk√
〈uk, uk〉

(3.2)

The key insight of the proposed system is that the inner products in equations 3.1
and 3.2 can be expressed in terms of sum-product expressions. Most importantly,
these expressions are subject to factorised computation in the same way that the
join query is. Specifically, we rewrite the Gram-Schmidt process such that:[

u1 u2 · · · uN
]

= AC ′

=
[
a1 a2 · · · aN

]

c1,1 c1,2 · · · c1,N

c2,2 · · · c2,N
. . .

...
0 cN,N


We set out to show that we can express uk as a linear combination of the columns
of A.

Theorem 3.2. For all k ∈ [N], the orthogonalised vectors uk can be expressed as:

uk =
∑
j∈[k]

cj,kaj (3.3)

Where for all j ∈ [k]: cj,k can be computed in terms of Cofactor.

Furthermore, we show that C and R can be expressed in terms of Cofactor =
A>A. That is, given Cofactor = A>A we can computeC andR in time independent
of the number of rows m. Recall that Cofactor contains the inner products of the
columns of A.

Cofactor[i, j] = 〈ai, aj〉

25

Proof of Theorem 3.2

First of all, observe that from equations 3.1 and 3.3 it is clear that ci,i = 1 for all
i ∈ [N]. We proceed to consider the base case k = 2:

u2 = a2 −
〈a1, a2〉
〈a1, a1〉

a1

c1,2 := −〈a1, a2〉
〈a1, a1〉

To generalise this, using proof by induction, assume that for some k it holds:

∀ t ∈ [k − 1] : ut =
∑
j∈[t]

cj,taj

We use the definition of uk (equation 3.1) to find the necessary terms to rewrite uk.

uk = ak −
k−1∑
i=1

〈ui, ak〉
〈ui, ui〉

ui

= ak −
k−1∑
i=1

〈ui, ak〉
〈ui, ui〉

(i∑
j=1

cj,iaj

)
= ak −

k−1∑
i=1

i∑
j=1

〈ui, ak〉
〈ui, ui〉

cj,iaj

= ak −
k−1∑
j=1

(k−1∑
i=j

〈ui, ak〉
〈ui, ui〉

cj,i

)
aj (3.4)

It remains to be shown that the inner products 〈ui, ak〉 and 〈ui, ui〉 can be ex-
pressed in terms of Cofactor and C ′ for all i ∈ [k − 1].

〈ui, ak〉 = 〈
∑
l∈[i]

cl,ial, ak〉

=
∑
l∈[i]

cl,i〈al, ak〉 (3.5)

〈ui, ui〉 = 〈ui,
∑
l∈[i]

cl,ial〉

=
∑
l∈[i]

cl,i〈ui, al〉

=
∑
l∈[i]

∑
p∈[i]

cl,icp,i〈ap, al〉 (3.6)

26

Finally, we use equation 3.4 to find expressions for cj,k for all j ∈ [k − 1]:

uk = ck,kak +
k−1∑
j=1

(
−

k−1∑
i=j

〈ui, ak〉
〈ui, ui〉

cj,i

)
︸ ︷︷ ︸

cj,k

aj

= ck,kak +
k−1∑
j=1

cj,kaj

=
∑
j∈[k]

cj,kaj

cj,k := −
k−1∑
i=j

〈ui, ak〉
〈ui, ui〉

cj,i (3.7)

= −
k−1∑
i=j

∑
l∈[i] cl,i〈al, ak〉∑

l∈[i]
∑

p∈[i] cl,icp,i〈ap, al〉
cj,i

This concludes the proof by induction, hence equation (3.3) holds for all k ∈ [N].
Moreover, the proof yields the necessary equations to compute C ′. Next, we show
how this relates to Q and in particular to C, noting that ‖ui‖ =

√
〈ui, ui〉.

Q =
[
u1

‖u1‖
u2

‖u2‖ · · ·
uN

‖uN‖

]

= A


c1,1
‖u1‖

c1,2
‖u1‖ · · ·

c1,N
‖u1‖

c2,2
‖u2‖ · · ·

c2,N
‖u2‖

. . .
...

0
cN,N

‖uN‖


︸ ︷︷ ︸

C

It follows from the definition of R that its entries can be computed efficiently.

Ri,j = 〈ei, aj〉

= 〈 ui
‖ui‖

, aj〉

=
〈ui, aj〉
‖ui‖

Finally, we use R′ to denote R before dividing by the norm of ui, i.e.:

R′i,j = 〈ui, aj〉

3.3 From Equations to Algorithm

The derivations from Section 3.2, in particular equations 3.5, 3.6 and 3.7, implicitly
give an algorithm to compute the factorised QR decomposition.

27

The first stage of Algorithm 1 computes C ′ and R′ row-by-row in N iterations.

R[i, j]← 〈ui, aj〉, C[i, j]← ci,j

Before we proceed, we justify storing 〈ui, ui〉 in the diagonal of R. More concretely,
we use the following result to show that

√
R[k, k] = ‖uk‖:

〈ui, ui〉 =
∑
l∈[i]

cl,i〈ui, al〉

= c1,i 〈ui, a1〉︸ ︷︷ ︸
0

+c2,i 〈ui, a2〉︸ ︷︷ ︸
0

+ · · ·+ ci,i︸︷︷︸
1

〈ui, ai〉

= 〈ui, ai〉

The inner products being 0 is a direct result of the orthogonalisation process. De-
spite this result, equation 3.6 is used to compute the diagonal of R (line 8) instead
of equation 3.5 (which is computationally cheaper). Equation 3.6 corrects for (po-
tential) loss of orthogonality as a result of floating-point errors, resulting in better
accuracy in practice.

The last stage of the algorithm (lines 9 and 10) ‘normalises’ C and R by dividing
the kth row of both by

√
R[k, k] = ‖uk‖.

Algorithm 1 Factorised Gram-Schmidt (Naive)

1: procedure F-GS(Cofactor: Matrix) . Cofactor contains the inner products
2: C,R← IN , Matrix[N,N]
3: for k ∈ [N] do
4: for i ∈ [k − 1] do

5: R[i, k]←
∑
l∈[i]

C[l, i] · Cofactor[l, k] . Eq 3.5

6: for j ∈ [k − 1] do

7: C[j, k]← −
k−1∑
i=j

R[i, k]

R[i, i]
C[j, i] . Eq 3.7

8: R[k, k]←
∑
p∈[k]

∑
l∈[k]

C[p, k] · C[l, k] · Cofactor[l, p] . Eq 3.6

9: Normalise(C, diag(R)) . diag extracts the diagonal of a matrix.
10: Normalise(R, diag(R))
11: return R, C

12: function Normalise(M : Matrix, d: Array)
13: for k ∈ [N] do
14: for j ← k until N + 1 do

15: M [k, j]← M [k, j]√
d[k]

28

3.4 Time and Space Complexity

This section analyses the time and space complexities of three different approaches
to compute the (factorised) QR decomposition. The first approach reflects on the
complexity of F-GS and relies on the factorised representation of a join result.
In contrast, the second approach considers factorised Gram-Schmidt performed on
the listing representation. Finally, we consider the conventional (out-of-database)
approach to compute the QR decomposition given the listing representation.

Throughout this section we use N to denote the number of features (after en-
coding). Clearly we have N ≤ n · |D|, where n is the number of variables and |D| is
the database size, i.e. the sum of the number of tuples in the relations of D. More
importantly, recall that we use O to denote the data complexity. The data complex-
ity considers n and |Q| (the number of relations in the join query) to be constants,
such that N = O(|D|). In our case the factors n and |Q| that we leave out are at
most quadratic.

3.4.1 Complexity of F-GS

We start by considering the complexity of factorised Gram-Schmidt given Cofactor,
noting that the sparse Σ contains the same information as Cofactor.

Lemma 3.3. Given the N × N matrix Cofactor for the query Q over database D,
F-GS needs time O(N3) to compute the factorised QR decomposition of the matrix
defined by Q(D).

Proof. The factorised QR decomposition consists of computing C and R in N itera-
tions. For each iteration the number of operations is O(N2), yielding a total runtime
of O(N3). This bound is tight for the computation of C, regardless of the potential
sparsity of Σ. For completeness, we add that the space complexity is proportional
to the size of objects C and R and therefore O(N2).

In case Q(D) only contains continuous data, then the overall data complexity of
F-GS is as follows:

Theorem 3.4. Given a feature extraction join query Q, with continuous features
only, over a database D, F-GS computes the factorised QR decomposition of Q(D)

in time O(|D|fhtw(Q) + |D| log |D|).

Proof. Recall that Proposition 2.2 states that the factorised representation for join
result Q(D), containing only continuous data, has size O(|D|fhtw(Q)). The cofactors
can be computed in a single pass over the factorised representation. However, this
requires the input data D to be sorted, which takes log-linear time in the size of D,
i.e. O(|D| log |D|).

Finally, in the continuous case N = n, hence by Lemma 3.3 the data complexity
of F-GS (given the cofactors) is given by O(n3) = O(1).

Finally, in the more general case where Q(D) may contain any number of cate-
gorical variables, we have:

29

Theorem 3.5. Given a feature extraction join query Q over database D, F-GS
computes the factorised QR decomposition of the matrix defined by Q(D) in time

O(|D|1+max (fhtw(Q), 2)).

Proof. Recall that the cofactors can be computed in a single pass over the factorised
representation of Q(D). The sparse encoding of the categorical data in Q(D) may
require at most one extra factor linear in the size of the active domains of these cat-
egorical variables. More concretely, the factorised representation for heterogeneous
Q(D) has size O(|D|fhtw(Q)+1) [6].

Moreover, it follows from Lemma 3.3 that the additional complexity of F-GS is
O(N3) = O(|D|3). This gives an overall complexity of:

O(|D|fhtw(Q)+1 + |D|3 + |D| log |D|) = O(|D|fhtw(Q)+1 + |D|3)

We can express this more succinctly as O(|D|1+max (fhtw(Q), 2)).

3.4.2 Complexity of Listing-Based Approaches

First, we consider factorised Gram-Schmidt on top of the listing representation of the
join result. That is in contrast to F-GS which relies on a second layer of factorisation
to compute the cofactors. Afterwards, we state the complexities of conventional
QR decomposition algorithms, such as the classical Gram-Schmidt process. The
structure of this section is similar to that of the previous section, however we start
by stating the complexity of factorised Gram-Schmidt given the design matrix A.

Lemma 3.6. Given the m × N matrix A, factorised Gram-Schmidt computes the
factorised QR decomposition of A in time O(N2 ·m+N3).

Proof. Recall that factorised Gram-Schmidt relies on the cofactors of A instead of
A itself. The cofactors can be obtained either by computing O(N2) dot products
over the columns of A, or by (pre-)computing A>A, i.e. by (matrix) multiplying
two rectangular matrices. Both approaches to compute the cofactors are O(N2 ·m),
in addition to the factorised process itself which Lemma 3.3 states is O(N3).

Recall that Proposition 2.2 states that the listing representation of the join result
Q(D) has size O(|D|ρ

∗(Q)), where ρ∗ is the fractional edge cover number. We use
this result to characterise factorised Gram-Schmidt on a materialised join result
consisting solely of continuous data.

Proposition 3.7. Given the matrix A = Q(D) for a feature extraction query Q,
with continuous features only, over a database D, factorised Gram-Schmidt computes
the factorised QR decomposition of A in time O(|D|ρ

∗(Q)).

Proof. The design matrixA defined byQ(D) has dimensionsm×N . The dimensions

of A have bounds m = O(|D|ρ
∗(Q)) and N = n = O(1). By combining these bounds

with Lemma 3.6, we obtain the data complexity O(|D|ρ
∗(Q)).

We extend this result to include categorical data, such that:

30

Proposition 3.8. Given the join result Q(D) of a query Q over database D, fac-
torised Gram-Schmidt computes the factorised QR decomposition of the matrix A
defined by Q(D) in time O(|D|ρ

∗(Q)+2).

Proof. The dimensions of A have bounds m = O(|D|ρ
∗(Q)) and N = O(|D|). How-

ever, recall that A must be one-hot encoded, which is possible in time O(N · m).
Together with Lemma 3.6, this gives a complexity of O(N2 · m + N3 + N · m) =
O(N2 ·m+N3). By substituting the bounds for the dimensions of A, we get:

O(|D|2 · |D|ρ
∗(Q) + |D|3) = O(|D|ρ

∗(Q)+2 + |D|3)

Since ρ∗(Q) ≥ 1, this can be simplified to O(|D|ρ
∗(Q)+2).

Finally, we state the complexity of the conventional methods used to compute
the QR decomposition. Under conventional methods we include the Gram-Schmidt
process, Householder reflections, and Given’s rotations approaches. In contrast to
the factorised Gram-Schmidt process, the conventional methods do not make use of
the cofactors and instead rely on the materialised A.

Proposition 3.9. Given the join result Q(D) of a query Q over database D, con-
ventional methods compute the QR decomposition of the matrix A defined by Q(D)

in time O(|D|ρ
∗(Q)+2).

Proof. The conventional methods all have computational complexity O(N2 ·m) [17].

The dimensions of A have bounds m = O(|D|ρ
∗(Q)) and N = O(|D|). By substitut-

ing these bounds, we get: O(|D|2 · |D|ρ
∗(Q)) = O(|D|ρ

∗(Q)+2).

Recall that for the class of frequently occurring acyclic queries fhtw(Q) = 1.
Therefore, above results imply that for an acyclic query Q, F-GS can compute the
QR decomposition of a continuous-only join result Q(D) in time log-linear in the
size of the input database D. If we consider categorical data for the same class of
queries, F-GS needs time cubic in the size of D — regardless of the size of the join
result Q(D) and thus of the size of design matrix A! An alternative characterisation
is that the computation time (in terms of data complexity) of F-GS is quadratic in
|D| plus cubic in the number of features.

This can be arbitrarily better than the state-of-the-art approaches that first ma-
terialise Q(D) as a relation. Recall that for acyclic queries, ρ∗(Q) can be as large as
|Q|, the number of joined relations. Therefore, conventional methods may require
time exponential in |Q| for the same class of queries — even in the continuous case.
Finally, the data complexity of factorised Gram-Schmidt applied to the materialised
join result is identical to the data complexity of conventional (out-of-database) meth-
ods. This is not unexpected, because factorised Gram-Schmidt is designed to exploit
the second layer of factorisation to compute the cofactors.

3.5 Applications of F-GS

This section describes some applications of the factorised QR decomposition which
is computed by F-GS. We assume that the factorised QR decomposition of an m×N

31

matrix A is given, such that:

A = QR = ACR

With N ×N matrices C and R materialised, however, with both Q and A symbol-
ically.

3.5.1 Doubly Factorised Linear Least Squares

The linear least squares problem is introduced in Section 2.2. Recall that for the
in-database scenario considered, a linear model is given as:

Ax = b (3.8)

Where A, b = Q(D), i.e. the result of some feature extraction query over database
D. In Section 2.3.2 the QR approach to solving equation 3.8 is described.

d := Q>b

Rx̂ = d (3.9)

Backward substitution is used to efficiently solve the system of equation 3.9, however,
this requires computing d = Q>b. Using the ideas of F-GS, we can exploit that b
is a column in database D and avoid materialising Q altogether.

d = −(AC)>b

= −C>A>b

= −C>


〈a1, b〉
〈a2, b〉

...
〈aN , b〉


The dot products 〈ai, b〉 can be computed by FAQs without materialising A. In
fact, A>b should be considered as part of (or an extension of) Cofactor.

Next, we give the pseudocode for F-GSLS, an extension of F-GS which solves linear
least squares using the factorised QR decomposition. The algorithm closely follows
the method described in Section 2.3.2.

Algorithm 2 Linear Least Squares extension of F-GS

procedure F-LLS(Cofactor, CofactorLS) . CofactorLS contains A>b
R,C ← F-GS(Cofactor)
d← Array[N]
for k ∈ [N] do

d[k]←
∑
i∈[k]

C[i, k] · CofactorLS[i]

return BackwardSubstitute(R, d)

32

First, the factorised QR decomposition (C and R) is obtained by performing fac-
torised Gram-Schmidt. Next, a factorised computation is used to calculate d = Q>b.
Finally, Rx̂ = d is solved for x̂ using backward substitution.

Corollary 3.10 (Theorem 3.5). Given a join query Q over database D such that
A, b is defined by Q(D), F-GSLS can solve the least squares problem Ax = b in

O(|D|1+max (fhtw(Q), 2)).

Proof. Computing an entry of d is possible in time linear in N , hence computing
d is O(N2) overall. Similarly, backward substitution is quadratic in the size of the
linear system (N). Therefore the data complexity from Theorem 3.5 applies.

3.5.2 Singular-Value Decomposition

The singular-value decomposition (SVD) is an important matrix decomposition.

Definition 3.11. A thin SVD of a matrix A ∈ Rm×N is of form A = UΣV , with
orthogonal matrices U ∈ Rm×N , V ∈ RN×N , and diagonal matrix Σ ∈ RN×N .

Despite the identical notation, this matrix Σ is unrelated to the Sigma matrix
used for cofactors. Applications of the (thin) SVD include matrix approximation,
principle component analysis and computing the rank of a matrix.

First, we show that a thin SVD of A can be obtained from the factorised QR
decomposition. Next, a more efficient method is proposed which exploits that R is
upper triangular. We start by showing a property of orthogonal matrices.

Lemma 3.12. The matrix product of two orthogonal matrices X ∈ Rp×q and Y ∈
Rq×r is an orthogonal matrix.

Proof. In what follows I denotes a rectangular identity matrix (unless p = r).

(XY)>(XY) = Y >X>XY

= Y >Y = I

Corollary 3.13 (Theorem 3.5). Given a join query Q over database D such that A

is defined by Q(D), a factorised SVD of A can be obtained in O(|D|1+max (fhtw(Q), 2)).

Proof. First, the SVD of R is computed such that R = URΣV >.

A = ACR

= ACURΣV >

= (ACUR)ΣV >

Recall that R is N × N and therefore the SVD of R can be computed in O(N3)
[17]. Moreover, UR is N × N such that U := ACUR is m × N . Finally, using
Lemma 3.12 and that Q = AC is orthogonal, we conclude that A = UΣV > is a
valid SVD. Moreover, the data complexity of F-GS (Theorem 3.5) applies.

33

Computing the Factorised SVD

A promising method is found in a slight adaptation of an existing procedure used to
compute the SVD for matrices. The SVD is typically computed using a two-phase
approach, of which the first phase is to bring the matrix into a bidiagonal form.
In the second phase the SVD of the bidiagonal matrix is computed. For matrices
with m � N it is advantageous to use LHC bidiagonalisation which relies on the
QR decomposition as an additional first step [17]. By plugging in the factorised QR
decomposition we obtain the following procedure:

1. Compute the factorised QR decomposition of A:

A = ACR

2. Compute the Golub-Kahan bidiagonalisation of R:

B = U>RRV R (3.10)

Where UR and V R are orthogonal and B is bidiagonal.

3. Compute the SVD of B:
B = UBΣV >B (3.11)

The second step requires O(N3) floating-point operations (flops) for N ×N matrix
R. Numerous iterative algorithms can be used for the second phase (i.e. the third
step), e.g. a variant of the QR algorithm which requires O(N2) flops [17].

To show how the SVD can be obtained, we start by using that URU
>
R = I and

V RV
>
R = I such that:

R = (URU
>
R)R(V RV

>
R)

= UR(U>RRV R)V >R { By Eq 3.10 }
= URBV

>
R

Substituting this result in the factorised QR decomposition of A yields:

A = ACR

= ACURBV
>
R { By Eq 3.11 }

= ACUR(UBΣV >B)V >R)

= (ACURUB)Σ(V >BV
>
R)

By Lemma 3.12, the following definitions of U and V constitute an SVD for A:

U := ACURUB

V > := V >BV
>
R

Therefore, given the factorised QR decomposition (or rather the cofactors) this
approach can compute the factorised SVD in O(N3), i.e. independent of m.

34

3.5.3 Cholesky Decomposition

Definition 3.14. The Cholesky decomposition of a symmetric positive-definitive
matrix M is a decomposition of the form

M = LL>

Where L is lower triangular and has positive diagonal entries.

There is a known relation between the QR decomposition of A and the Cholesky
decomposition of A>A.

Proposition 3.15. Given a (factorised) QR decomposition A = QR, a Cholesky
decomposition for A>A immediately follows.

Proof.

A>A = (QR)>QR

= R>(Q>Q)R

= R>R

Recall that Rk,k =
√
‖uk‖ > 0 and R is upper triangular, therefore, it follows from

Definition 3.14 that this is a valid Cholesky decomposition.

Therefore, the Cholesky decomposition of A>A is essentially obtained for free.
Even though the Cholesky decomposition is best known for its application to solve
linear least squares, it has applications in multiple other problems including non-
linear optimisation and Monte Carlo simulation.

3.5.4 Moore-Penrose Inverse

Definition 3.16. The Moore-Penrose inverse of A (denoted A†) is defined for any
full-rank m×N matrix A.

A† := (A>A)
−1
A>

The advantage of this generalised inverse is that it can be computed over non-
square matrices (i.e. when A is not invertible). The factorised QR decomposition

can be used to avoid inverting (A>A)
−1

.

A† = (A>A)
−1
A>

= ((QR)>QR)
−1

(QR)>

= (R>(Q>Q)R)
−1
R>Q>

= R−1R−>R>Q>

= R−1Q>

= R−1(C>A>)

In practice we may want to postpone (or rather avoid) inverting R, and instead
rely on algebraic rewrites within the context of the application.

35

Example. As an example, we show how the (QR) solution to linear least squares
can be derived from the Moore-Penrose inverse.

Ax = b

x̂ = A†b

= (R−1Q>)b

Rx̂ = Q>b

= C>A>b

Recall that solving such an upper triangular system is possible in O(N2) using
backward substitution, whereas inverting an upper triangular matrix is O(N3).

36

Chapter 4

Implementation

Chapter 3 describes the theoretical results behind F-GS, including an algorithm in
pseudocode. This chapter presents implementation details of the system, including
optimisations and data structures that were used. In particular, it explains how the
sparse Sigma matrix is used to avoid the redundancy introduced in Cofactor as a
result of one-hot encoding.

Multiple variants of F-GS are considered to outline the improvements and im-
plementation details of the final version. Moreover, the parallelisation of F-GS and
associated challenges are extensively discussed. The chapter concludes with a de-
tailed description of F-GS, tying the preceding sections together. Chapter 5 then
reports experiments carried out to benchmark and compare F-GS to both competi-
tors and its variants.

4.1 Data Structures

4.1.1 Sigma Matrix

Section 2.5.3 describes a succinct representation of Σ in the presence of both contin-
uous and categorical variables. However, the aggregate engine AC/DC [8] only uses
this for cofactors involving categorical features. In particular, aggregates for a pair
of continuous features are generally non-zero and thus do not affect sparsity. More-
over, the remaining aggregates involving at least one categorical feature are listed
as ‘coordinates’, i.e. (i, j, φi,j). Therefore, AC/DC splits the cofactors in a square

m1,1 m1,2 0
0 0 m2,3

0 m3,2 m3,3


(a) Sparse Matrix

(1, 1,m1,1),
(1, 2,m1,2),
(2, 3,m2,3),
(3, 2,m3,2),
(3, 3,m3,3)

(b) Coordinate list

Figure 4.1: Example of a sparse matrix stored as a coordinate list

37

matrix for pairs of continuous features (similar to Cofactor) and uses the sparse Co-
ordinate list (COO) for the remaining cofactors involving at least one categorical
feature. Figure 4.1 shows the COO representation of a 3× 3 sparse matrix.

4.1.2 Ordering the Cofactors

One consequence of using the COO format for the categorical cofactors is that
the order of iteration is determined by the ordering of this list. However, as the
pseudocode in Algorithm 1 indicates, there are two access patterns for the cofactors.
Since we prioritise performance over space efficiency, we use a second data structure
for the cofactors to reduce the number of redundant cofactors we access.

In addition to the COO format, the list of lists (LIL) format is used to store
the cofactors. Concretely, for each categorical feature a list of pairs (containing the
paired feature and aggregate) is created.

We compare the Σ representation described in Section 2.5.3 and the LIL format
used in practice to illustrate the differences. Consider an instance with T continuous
variables, and one categorical variable with P categories.

Σ =



([], φ1,1) · · · ([], φ1,T)


(A, φ1,A)

...

(P, φ1,P)


...

. . .
...

...

([], φ1,T) · · · ([], φT,T)


(A, φT,A)

...

(P, φT,P)


(A, φ1,A)

...

(P, φ1,P)

 · · ·


(A, φT,A)

...

(P, φT,P)




(A, φA,A)
...

(P, φP,P)




Figure 4.2: Visualisation of the Sigma matrix for the example instance

Figure 4.2 shows Σ for the same example as Figure 4.3 which is a more accurate
visualisation of the cofactors in practice. Figure 4.3 shows that the cofactors are di-
vided into a matrix for the continuous aggregates and the LIL format for categorical
aggregates.

38


φ1,1 φ1,2 · · · φ1,T

φ1,2 φ2,2 · · · φ2,T
...

...
. . .

...
φ1,T φ2,T · · · φT,T


(a) Continuous aggregates

A · · · P
↓ ↓

(1, φ1,A) (1, φ1,P)
...

...
(T, φT,A) · · · (T, φT,P)
(A, φA,A) (P, φP,P)

(b) (Partially) categorical aggregates

Figure 4.3: The cofactors split into two different representations.

Finally, we apply a specific ordering, known as the colexicographic order (colex),
to the COO format of the cofactors which is optimised for the access pattern used
to compute the diagonal of R. Within the scope of this dissertation, the following
definition of the colex order for pairs (a, b) ∈ R2 and (x, y) ∈ R2 is sufficient:

(a, b) <colex (x, y) ⇐⇒
(

max (a, b), min (a, b)
)
<L

(
max (x, y), min (x, y)

)
Where <L denotes the lexicographical order (or dictionary order), i.e.:

(a, b) <L (x, y) ⇐⇒ (a < x) ∨ (a = x ∧ b < y)

More generally, the colexicographic ordering first obtains a representative by sort-
ing the elements in a tuple in non-increasing order. The standard lexicographical
ordering is then applied to the representatives.

Tuple (1,2,3) (2,4,3) (1,2,4) (2,3,3)
Representative 321 432 421 332

This ordering is useful because it corresponds to the nested sums to k ∈ N:

sum←
∑
i∈[k]

∑
j∈[k]

mi,j

For example, the result of this ordering applied to N× N starts as follows:

(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (1, 4), (4, 1), (2, 4), . . .

4.1.3 Matrices

Many programming languages and libraries which implement matrices store the un-
derlying matrix as a contiguous array. Our implementation is no different, however,
some other details regarding the storage of matrices are relevant for performance.

In particular, a matrix can be stored either row-by-row (row-major) or column-
by-column (column-major). For most linear algebra libraries, matrix orientation
does not affect the provided interface (e.g. indexing) of the matrix. Nevertheless,
the orientation used can affect performance of the algorithm. In particular, matching
the orientation to the access pattern (when possible) leads to improved locality and
thus better performance for large matrices.

In our implementation all matrices are row-major, except for R which is column-
major.

39

4.2 F-GS Variants

The final implementation F-GS contains multiple optimisations and is multithreaded
to improve the performance on data matrices with many categorical features. In this
section, we describe three earlier (or alternative) variants of F-GS which contained
fewer optimisations.

For simplicity, the pseudocode in this section assumes that all cofactors are stored
in one object. For Naive F-GS this is Cofactor, whereas for Sequential F-GS and
Triangular F-GS this is Φ which uses the LIL format, i.e. including continuous
aggregates. Figure 4.4 shows Φ for the working example with T continuous variables
and one categorical variable with P categories.

1 T A P
↓ ↓ ↓ ↓

(1, φ1,1) (1, φ1,T) (1, φ1,A) (1, φ1,P)
... · · · ...

... · · · ...
(T, φ1,T) (T, φT,T) (T, φT,A) (T, φT,P)

(A, φA,A) (P, φP,P)

Figure 4.4: Visualisation of Φ

Naive F-GS

Naive F-GS is a direct (and first) implementation of the rewritten Gram-Schmidt
process as described in Algorithm 1. Recall that instead of the sparse encoding of
Σ, the procedure relied on a square N×N matrix Cofactor. More concretely, Naive
F-GS takes the sparse Σ (given by the aggregate engine) as input. It proceeds to
create a N×N matrix Cofactor, in which the aggregates of Σ are placed. This results
in a relatively clean and intuitive implementation, however, this matrix is highly
redundant and contains many zeroes in contrast to Σ. Consequently, calculations
which iterate over Cofactor involve a lot of redundant terms, which Σ (or Φ) avoids.

Sequential F-GS

The single-threaded Sequential F-GS is identical to the final system F-GS without
multithreading. Algorithm 3 shows how the sparse Φ is used instead of Cofactor.
In particular, the entries of R are computed by iterating over the sparse Φ (lines 4
and 7). Finally, we point out that the computation of C (line 6) does not make use
of the sparsity of Φ, and instead iterates over the N ×N matrix R.

40

Algorithm 3 Sequential Factorised Gram-Schmidt

1: procedure Sequential F-GS(Φ: LIL)
2: for k ∈ [N] do
3: for i ∈ [k − 1] do

4: R[i, k]←
l≤i∑

(l,φl,k)∈Φ[k]

C[l, i] · φl,k

5: for j ∈ [k − 1] do

6: C[j, k]← −
k−1∑
i=j

R[i, k]

R[i, i]
· C[j, i]

7: R[k, k]←
∑
p∈[k]

l≤k∑
(l,φl,p)∈Φ[p]

C[p, k] · C[l, k] · φl,p

Triangular F-GS

Triangular matrices (and symmetric matrices) are a recurring type of matrix in fac-
torised Gram-Schmidt. Using a traditional matrix to store a triangular or symmetric
matrix leads to unnecessary redundancy. Instead, Triangular F-GS uses an array
for C and R, which avoids storing some of the redundant elements. Unlike other
sections, this subsection starts indexing at 0 for a much more intuitive description.

Figure 4.5 shows that the elements below the diagonal of an upper triangular
matrix are not included in the array. Consequently, indexing becomes more chal-
lenging.

m0,0 m0,1 m0,2

m1,1 m1,2

0 m2,2


(a) Upper triangular matrix

0 1 2 3 4 5
m0,0 m0,1 m0,2 m1,1 m1,2 m2,2

(b) Array

Figure 4.5: Example of a 3× 3 matrix M in both representations

The functions tri up and tri lo are used to convert from matrix index mr,c of an upper
and lower triangular matrix (resp.) to the corresponding vector index.

tri up(r, c) := N · r − r(r + 1)

2
+ c

tri lo(r, c) :=
r(r + 1)

2
+ c

It is common (and more efficient) to fill an array (or matrix) with the precomputed
vector indices. Triangular F-GS uses this method to sparsely store C and R.

41

4.3 Parallelisation

The execution time of F-GS is largely spent on computing the entries of C and R.
Despite the sequential nature of the Gram-Schmidt process, the factorised procedure
can benefit from parallelisation. In fact, the entries ofC are independent of the other
entries in the same row of C. Similarly, the entries within the same row of R are
independent of each other. Consequently, the computation of entries in a row is
conceptually straightforward to parallelise. The two main challenges of parallelising
F-GS are synchronisation and distribution of work.

4.3.1 Synchronisation

Each iteration in the computation of C and R consists of three phases:

1. Computing non-diagonal elements in the kth row of R.

2. Computing elements in the kth row of C.

3. Computing the kth diagonal element of R, i.e. Rk,k.

Broadly speaking, the possible synchronisation points are after (or before) each step.
Recall that the entries in C are computed as follows:

C[j, k]← −
k−1∑
i=j

R[i, k]

R[i, i]
· C[j, i] (4.1)

First of all, notice that C1,k depends on all non-diagonal elements in the kth row ofR.
Therefore, the first synchronisation point is after the first step. Similarly, computing
the diagonal element Rk,k requires the kth row of C to be known. It follows that
the next synchronisation point is after the second step. The same synchronisation
point is also necessary for computing the (k + 1)th row of R in the next iteration.
Finally, Rk,k is first used in the next iteration to compute the (k + 1)th row of C.
The first synchronisation point (after step 1) is therefore sufficient, and no third
synchronisation point is necessary.

Additionally, computing Rk,k takes non-trivial time and the summation is there-
fore distributed across the threads. Each thread computes a local result which is a
‘subtotal’ of the value of Rk,k. The local results are than summed up together to
produce Rk,k. To avoid simultaneous writes to Rk,k a mutex (lock) is used to provide
mutual exclusive access.

To recap, there are two synchronisation points which occur after the first and af-
ter the second step. A mutex is used to provide mutual exclusive access to Rk,k. The
synchronisation points are effectively a barrier (or meeting point) for the threads;
any thread must stop and wait until all threads reach the barrier.

4.3.2 Distribution of Work

One consequence of using barrier synchronisation is that progress is determined by
the slowest thread to reach each synchronisation point. To minimise the time threads

42



step 1 step 2 step 3 step 4 ··· step N

R1,1 R1,2 R1,3 R1,4 · · · R1,N

R2,2 R2,3 R2,4 · · · R1,N

R3,3 R3,4 · · · R3,N

R4,4 · · · R4,N

. . .
...

RN,N


Figure 4.6: Distribution of work for R with three threads, visualised by using a
different colour (blue, green, red) for each thread. The computational burden of the
diagonal entries (in black) is shared over the threads.

spend waiting at the barrier, it is important to balance the distribution of work over
the threads. The difficulty is caused by the varying costs of computing entries within
the same row in C and R. For example, computing R[1, k] := C[1, 1] · φ1,k is much
cheaper than computing Rk−1,k := C[1, k − 1] · φ1,k + · · ·+ C[k − 1, k − 1] · φk−1,k.

A common strategy is to partition the work, i.e. the row of k elements, into
contiguous blocks such that each partition requires roughly the same amount of
computation time. This approach generally has desirable properties, in particular
good data locality. However, in our case estimating the costs of each entry is non-
trivial and the actual computation time of an entry could depend on many factors
including hardware and compiler optimisations. Moreover, the sparsity of Σ poses
an additional challenge to partition the computational burden evenly.

Instead, we rely on a much simpler approach which does not require estimating
the computational cost. Instead of partitioning the rows into contiguous blocks, the
threads alternate in computing the next entry, resulting in the interleaved access
pattern shown in Figure 4.6. This approach (approximately) balances the workload
of computing C and R over the available threads with no added complexity. It
follows from equation 4.1 that the entries within a row of C are of increasingly
lower computational cost. It can be similarly shown that the entries within a row
of R are of increasingly higher computational cost.

However, one disadvantage is that the threads have reduced spatial locality (i.e.
for the column-major R). Moreover, threads are more likely to (almost) simulta-
neously access adjacent memory locations which may result in false sharing [18].
False sharing occurs when threads access independent variables which are stored
in the same cache line; the smallest unit managed by the caching mechanism. For
example, when a thread modifies a variable in a particular cache line, other threads
that access different variables in the same cache line will be forced to reload the
entire cache line.

43

4.4 Detailed Description of F-GS

Algorithm 4 Detailed Factorised Gram-Schmidt

1: procedure F-GS(Cofactor: Matrix, Σ: CoordinateList)
2: OrderColex(Σ)
3: Φ := ToListOfLists(Σ)

4: for tid ∈ [#THREADS] do
5: CreateThread(DoWork, tid, Cofactor, Σ, Φ)

6: JoinThreads()

7: Normalise(C, diag(R))
8: Normalise(R, diag(R))
9: return R,C

As detailed in Section 4.1, F-GS takes as input a T × T matrix Cofactor containing
the aggregates for pairs of continuous variables and a coordinate list representation
of Σ with the remaining cofactors. Recall that T denotes the number of continuous
features. The procedure starts by applying the colexicographical order to Σ and
constructing Φ as a copy of Σ in the LIL-format. Next, all the worker threads are
created with a unique thread identifier tid and the different cofactor structures. The
procedure waits for all created threads to finish their work and terminate, before
finally normalising C and R (lines 7 and 8).

The DoWork procedure implements the multithreaded version of the computation
for C and R. The first two stages compute: I) the non-diagonal elements in the
kth row of R; and II) the elements in the kth row of C. In the third stage, each
thread computes a subtotal of the diagonal element Rk,k in two steps. The first step
iterates over the cofactors for pairs of continuous variables stored in the Cofactor.
The second step iterates over the colexicographically ordered list Σ to sum up the
part of the (partially) categorical cofactors allocated to the thread. Finally, the
mutex is obtained to safely add the subtotal of each thread to the (shared) R[k, k].

44

10: function DoWork(tid: Int, Cofactor: Matrix, Σ: CoordinateList, Φ: LIL)
11: step := #THREADS
12: for k ∈ [N] do
13: for (i := tid; i ≤ k; i+ = step) do
14: if k ≤ T then
15: R[i, k] :=

∑
l∈[i]

C[l, i] · Cofactor[l, k]

16: else

17: R[i, k] :=

l≤i∑
(l,φl,k)∈Φ[k]

C[l, i] · φl,k

18: Synchronise()

19: for (j := tid; j < k; j+ = step) do

20: C[j, k] := −
k−1∑
i=j

R[i, k]

R[i, i]
· C[j, i]

21: Synchronise()

22: D[k] :=

min(k,T)∑
p=start

min(k,T)∑
l=1

C[p, k] · C[l, k] · Cofactor[l, p]

23: for (i := tid; i ≤ length(Σ); i+ = step) do
24: (l, p, φl,p) := Σ[i]
25: if p > k or l > k then
26: break loop

27: D[k] += C[p, k] · C[l, k] · φl,p

28: lock()
29: R[k, k] += D[k]
30: unlock()

45

Chapter 5

Experiments

Chapter 4 describes the C++ implementation behind F-GS, i.e. the factorised com-
putation of a QR decomposition. This chapter reports the experimental results and
findings obtained using this implementation. The performance of F-GS is compared
to two popular systems Py (in Python) and R (in R). Moreover, a breakdown of
the computation time for Algorithm 4 is provided. The speedup gained by the op-
timisations in F-GS relative to earlier implementations are reported. Finally, the
scalability of the parallelisation techniques from Section 4.3 is analysed. Chapter 6
then outlines related work on linear algebra and machine learning performed inside
the database system.

5.1 Summary of Findings

This section outlines the findings from experiments performed on several real-world
and synthetic datasets, using a quad-core machine with 32GB of main memory.

F-GS is the only system able to compute the QR decomposition over the
real-world Retailer dataset. Competitors ran out of memory while importing the
3.61 billion values in the join result. This limitation applies even when all attributes
are considered to be continuous. In contrast, F-GS is able to include thousands of
features without crashing or taking an unreasonable amount of time to complete.

The speedup of F-GS over Py consistently matches or beats the compres-
sion ratio of the factorised representation to the listing representation.
This result applies to all problem instances on which Py managed to complete, de-
spite relying on the highly optimised LAPACK procedure for QR decomposition.

F-GS can achieve up to 13× faster performance than Naive F-GS. Recall
that Naive F-GS is a variant which does not exploit the sparsity of the cofactors in
Σ. The single-threaded variant Sequential F-GS is 3.8× faster than Naive F-GS
for the same data matrix. This improvement is a direct result of the sparsity of Σ.

Multithreading yields a speedup of over 3× on a real-world dataset. More-
over, F-GS performs best when the number of threads is the number of logical cores.

46

Experiments confirm that, given the cofactors, performance of F-GS is
determined by the number of features and is independent of the number
of rows. Given the cofactors, F-GS can compute the QR decomposition of matrices
with up to 100 features in less than 10 milliseconds.

The speedup of the linear least squares extensions F-GSLS over PyLS is
slightly higher than the speedup of F-GS over Py on the same data ma-
trices. Moreover, experiments show that the accuracy of F-GSLS and PyLS are
comparable; the relative differences in sum of squared residuals are ≤ 10−10.

5.2 Experimental Setup

This section describes the systems included in the experiments and the environment
in which the experiments were performed.

5.2.1 Systems

The following systems are benchmarked: out-of-database competitors Py and R, all
variants of F-GS, and the state-of-the-art factorised learner BGD.

Basic Linear Algebra Subprograms (BLAS) is a specification of routines that
provide standard building blocks for performing basic vector and matrix operations
[19]. OpenBLAS is an open-source BLAS implementation, which is highly optimised
for modern multi-core computer architectures [20].

LAPACK is a numerical linear algebra package which provides efficient proce-
dures for solving systems of linear equations, eigenvalue problems and obtaining
matrix decompositions [21]. LAPACK routines delegate as much work as possible
to BLAS calls, in order to benefit from the highly optimised implementation.

Py is a system written in Python and uses the popular SciPy stack (specifically
NumPy, pandas and SciPy) [22] to implement a fast out-of-database system with
capabilities similar to F-GS. The implementation relies on SciPy for QR decompo-
sition; which is simply a wrapper for LAPACK.

Similarly, R relies on the base library of statistical language R [23] for QR de-
composition, where a flag is used to enable using LAPACK instead of R’s default
implementation. For perspective, the LAPACK procedure completed more than
20× faster than the default method for the reported experiments.

The systems PyLS and F-GSLS denote the linear least squares extensions of Py
and F-GS (resp.). Moreover, R is only used for linear least squares instances.

F-GS is the optimised and multithreaded implementation of the factorised Gram-
Schmidt process, as detailed in Algorithm 4. Recall the three variants of F-GS:
(a) Naive F-GS is single-threaded and does not exploit the sparsity of Σ.
(b) Sequential F-GS is a single-threaded implementation.
(c) Triangular F-GS uses sparse storage for the upper triangular C and R.

47

Finally, we include BGD which is an extension of AC/DC which uses batch gradient
descent (BGD) to find an approximate solution to linear regression problems [6].
This system uses the Barzilai-Borwein step-size adjustment in combination with the
Armijo line search condition. BGD uses the stopping conditions outlined in the
review article [24] with a threshold of 0.0001.

5.2.2 Environment

All experiments were performed on an Intel R© CoreTM i7-4770 @ 3.40GHz/64bit/32
GB with Linux 3.13.0/g++6.4.0. The Python implementation (Py) we compare
against uses Python 3.4.3 and SciPy 1.1.0, and the R implementation (R) uses R
3.0.2. The underlying libraries used for QR decomposition are LAPACK 3.5.0 with
OpenBLAS 0.2.8.

The systems F-GS and BGD are compiled as an extension of the aggregate
engine AC/DC [8] (i.e. to compute Σ). Consequently, the compiler flags used to
compile AC/DC also apply to F-GS and BGD, most notably -Ofast which enables
the highest standard optimisation level. For a complete description and analysis,
please refer to Section 3.1 of the dissertation by P. Bigourdan [25].

5.3 Tasks

A problem instance is defined as a combination of a dataset and a configuration.
The datasets are given as natural join queries Q over a database D consisting of
relations with some common attributes. A configuration is used to indicate which
attributes are to be excluded or included in the data matrix as either continuous or
categorical. The features then consist of all continuous variables and all categories
of the categorical variables. In short, a problem instance is a complete specification
for a data matrix A.

Recall that for categorical variables, one category is dropped to retain full-rank,
as explained in Section 2.4. Moreover, every problem instance is extended with an
intercept feature (constant value) to represent the reference (i.e. dropped) categories.
These details are hereafter left implicit.

QR Decomposition

The first task is to compute a (factorised) QR decomposition of a data matrix
A. For F-GS this entails computing the N × N matrices C and R, such that
A = QR = (AC)R. For Py the goal is to obtain the QR decomposition using the
internal format of LAPACK; H and τ . The N×m matrix H stores both R and the
Householder reflections that generate Q. The array τ stores N additional scaling
factors for the Householder reflections. It should be noted that computing H and
τ takes significantly less time than computing Q. Finally, the result returned by
LAPACK (H , τ) is sufficient to solve linear least squares without materialising Q,
similarly to the result of F-GS (C, R) as described in Section 3.5.1.

48

Linear Least Squares

The second task is a direct application of the QR decomposition; that is to solve a
linear least squares (LLS) instance. In addition to the data matrix defined by the
problem instance, one (continuous) variable is specified as the label (or dependent
variable). The goal is to compute the least squares estimator for the parameters of
the linear model in the features of the data matrix. Moreover, both PyLS and R
rely on the QR decomposition to solve LLS.

5.4 Datasets

Experiments are performed on both real-world and synthetic datasets. This sec-
tion briefly introduces the datasets and the different configurations of each. First
of all, the linear models described are not intended to be accurate predictive mod-
els. Instead, they are designed to benchmark and analyse F-GS under different
circumstances.

The Gram-Schmidt process requires the (encoded) data matrix to be full-rank.
Therefore, care must be taken to ensure that no linear dependencies occur in the
datasets. Including functional determining variables (e.g. keys) results in linear
dependence, unless all functionally determined variables are excluded. It follows
that, for example, if a primary key is included, all remaining variables of that table
must be excluded.

In all cases, the data matrix is obtained by taking the natural join over all
relations in the respective dataset. In the following descriptions underlining is used
to denote primary keys, and cursive to denote the label used in LLS. For both tasks,
the label is not considered as a part of the data matrix. A categorical variable ‘attr’
is occasionally denoted by ‘attr(p)’ to make explicit the number of categories (p)
included as features. Finally, some extra details regarding the datasets are provided
in Appendix A.

Retailer

Retailer is a large real-world dataset used to predict customer demand for products
based on many external factors [7][8]. The database consists of five relations:

• Inventory(locn, dateid, ksn, inventoryunits). Inventory units of each product
(ksn) at a location (locn) on a specific date (dateid).

• Census(zip, males, females, medianage, households, etc.). Demographics per
zip code.

• Item(ksn, subcategory, category, categorycluster, price). Product information.

• Location(locn, zip, total area, sell area, competitor distance, etc.). Informa-
tion on each location (i.e. store).

• Weather(locn, dateid, rain, snow, maxtemp, mintemp, etc.). Weather data per
location for each date.

49

In addition to the functional dependencies resulting from the primary keys, the
dataset contains two linear dependencies:
1. Columns ‘occupiedhouseunits’ and ‘households’ in Census are identical.
2. For each tuple in Census, ‘population’ equals the sum of ‘males’ and ‘females’.
To preserve full-rank, the columns ‘occupiedhouseunits’ and ‘population’ are ex-
cluded. Moreover, we have that ‘category’ determines ‘categorycluster’ and ‘sub-
category’ determines ‘category’. Therefore, at most one of the three attributes is
included.

Five different configurations of the retailer dataset are used in the experiments. The
first three v0, v1 and v2 use a smaller (partitioned) dataset, intended to accommodate
to the limitations of Py and R. In practice, both systems run out of memory while
one-hot encoding the many categorical features in v2. v0 includes 31 features, which
are exactly all the continuous variables. v1 extends v0 with four categorical variables:
rain(2), snow(2), thunder(2) and categorycluster(8). v2 differs from v1 in that it
includes ksn(3431) and excludes categorycluster. v3 is identical to v2 but uses the
full dataset, resulting in slighly more products, i.e. ksn(3653). Finally, v4 extends
v3 with dateid(124).

Favorita

Favorita is a public dataset which was released as part of a competition to accurately
forecast product sales [26]. The dataset consists of 6 tables:

• Sale(date(1684), store(54), item(4036), unit sales, onpromotion(3))

• Holiday(date, holiday type(6), locale(3), locale id(24), transferred(2))

• Item(item, family(33), itemclass(334), perishable(2))

• Oil(date, oilprice)

• Store(store, city(22), state(16), store type(5), cluster(17))

• Transcation(date, store, transactions)

This dataset is included to benchmark F-GS with multiple different categorical
variables with a large number of categories. One single configuration is used for the
dataset which includes all variables as their true type (i.e. continuous or categor-
ical). Most importantly, this implies that the problem instance contains multiple
functional dependencies. Consequently, the data matrix is guaranteed to be rank
deficient. Nevertheless, the benchmark results are a useful addition and offer new
insights in the performance of F-GS.

Housing

Housing is a series of synthetic datasets which represent the textbook example of
predicting the housing price market using linear regression [7]. The datasets contain
multiple data sources which are relevant for the price of a house. Each relation

50

Housing Retailer Favorita
v0 v1 v2 v0 v1 v2 v3 v4

Variables Continuous 27 20 16 31 31 31 31 31 3
Categorical 0 7 11 0 4 4 4 5 14

Features 27 44 110 31 45 3468 3684 3808 6244
Size Listing 0.68M – 1.47G 774M 3.61G 2.30G

Factorised 0.68M – 3.57M 37M 169M 377M
Compression 1× – 411× 20.9× 21.4× 6.11×

Table 5.1: Summary of the available configurations.

Housing
Scale Factor 1 2 3 4 5 6 7 8 9 10 11
Listing 0.68M 2.70M 24.3M 43.2M 101M 219M 397M 518M 820M 1.01G 1.47G
Factorised 0.68M 1.00M 1.40M 1.68M 1.98M 2.24M 2.57M 2.81M 3.08M 3.32M 3.57M
Compression 1× 2.69× 17.4× 25.7× 51.1× 97.6× 154× 184× 266× 305× 411×

Table 5.2: Sizes and compression of the Housing datasets

uses the postcode attribute as a primary key, which is also used to obtain the join
result. Housing consists of six relations:

• House(postcode(25000), price, livingarea, nbbathrooms, nbbedrooms, etc.)

• Demographics(postcode, averagesalary, crimesperyear, unemployment, etc.)

• Institution(postcode, typeeducation, size)

• Restaurant(postcode, openinghours, pricerange)

• Shop(postcode, pricerange, openinghours, tesco, sainsburys, ms)

• Transport(postcode, nbbuslines, nbtrainstations, distancecitycentre)

There are 25,000 distinct postcodes in every relation. The datasets are created
with a scale factor S used to determine the number of tuples per postcode in the
relations. Concretely, we generate S tuples in House and Shop, S/2 tuples in Restau-
rant, log2 S tuples in Institution, and 1 tuple in Demographics and Transport [7]. The
number of records in the join result is therefore given by S3

2
log2 (S) · 25, 000.

Three different versions of the datasets are used with varying number of cat-
egorical features. Housing v0 includes all 27 variables as continuous features. v1
includes six boolean variables (tesco, sainsburys, ms, house, flat and bungalow) and
typeeducation(12) as categorical features. Finally, v2 builds on v1 by additionally in-
cluding nbtrainstations(20), nbbuslines(20), nbbedrooms(10) and nbbathrooms(10)
as categorical variables — even though they are clearly not.

Table 5.1 summarises the datasets and their respective configurations. Table 5.2
provides details on the sizes and compression ratio of the join result of the Housing
datasets for scale factors 1 until 11. The compression ratio of a dataset is defined as
the size of the factorised representation versus the size of the listing representation
of the join result. For example, a compression ratio of 2 means that the number

51

	0

	200

	400

	600

	800

	1000

	1200

	2 	4 	6 	8 	10

Sp
ee

du
p/
Co

m
pr
es
sio

n

Scale	factor

Compression
Speedup	(Total)

Speedup	(In-Mem)

(a) Housing v0

	0

	200

	400

	600

	800

	1000

	1200

	2 	4 	6 	8 	10

Sp
ee

du
p/
Co

m
pr
es
sio

n

Scale	factor

Compression
Speedup	(Total)

Speedup	(In-Mem)

(b) Housing v2

Figure 5.3: Performance of F-GS compared to Py for two Housing configurations.

of values in the factorised representation is half the number of values in the listing
representation.

5.5 Experimental Results

This section reports the experimental results obtained for F-GS and competing
systems. The goal of all experiments, except for the last, is to compute the QR
decomposition. The last experiment compares the performance of the linear least
squares extensions of all systems. All experiments were performed using 8 threads
(i.e. the number of logical cores) for F-GS (+ AC/DC) and OpenBLAS (used by
Py and R), unless explicitly stated otherwise.

5.5.1 QR Performance

This section compares the performance of F-GS to Py for computing the QR de-
composition. Two different performance metrics are reported: the total execution
includes reading the input data and all processing, whereas the in-memory perfor-
mance excludes reading. The in-memory speedup reflects on the performance ben-
efits of factorised QR decomposition over standard QR decomposition algorithms
which are listing representation based.

Figure 5.3 shows the speedup of F-GS over Py and the compression ratio as a
function of the scale factor S. The plots show that both the total and in-memory
speedup match or beat the compression ratio. The in-memory speedup is signifi-
cantly lower than the total speedup for v0, however the extra categorical features
in v2 close the gap between in-memory and total speedup. One explanation is that
the time spent on one-hot encoding and computing the QR decomposition increase
significantly, whereas the import time stays the same.

5.5.2 Comparison of F-GS Variants

F-GS was designed with multiple optimisations to improve the performance on ma-
trices with many categorical features. In this section, we analyse the impact of

52

Speedup Naive F-GS Sequential F-GS Triangular F-GS
Retailer v3 13.66× 3.58× 1.89×
Retailer v4 11.41× 3.26× 1.75×
Favorita 6.26× 2.56× 1.27×

Table 5.4: QR decomposition speedup of F-GS over its three variants

	0
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9

	1

Retailer	V2 Retailer	V3 Retailer	V4 Favorita

Pr
op

or
tio

n
C

R	(non-diag)
R	(diag)	

Overhead

Figure 5.5: Breakdown of the computation time of C and R. Overhead represents
the fraction of execution time not spent on the computation of C and R.

these improvements by comparing F-GS to the three variants detailed in Section
4.2. Table 5.4 shows the performance of F-GS relative to the variants for three
different problem instances. The reported speedups are based on the time spent on
computing the QR decomposition, that is given Σ.

Perhaps the most surprising result is that F-GS outperforms Triangular F-GS
in all experiments. Recall that both Triangular F-GS and F-GS are multithreaded,
and that the single difference is that Triangular F-GS uses an array to store only
the non-zero halves of triangular matrices C and R. Moreover, the performance
gap is not related to artefacts of parallelisation. In fact, Sequential F-GS is almost
twice as fast (1.92×) as Triangular F-GS performed with one single thread (on
Retailer v3). Therefore, a likely explanation for this performance difference is the
indirection caused by the non-linear indices for these sparse triangular matrices.

5.5.3 Breakdown of Factorised Decomposition

The bottleneck of F-GS (once Σ is computed) is the main loop which computes C
and R. The main loop can be broken down into three parts; computing C, comput-
ing non-diagonal elements of R, and computing the diagonal of R. Synchronisation
and execution time outside the main loop are considered to be overhead.

Figure 5.5 shows a breakdown of the computation time of the main loop for four
different data matrices. The times are shown as a fraction of the total computation
time spent on QR decomposition, i.e. adding up to 1. For the included Retailer
instances (v2, v3 and v4), the majority of the execution time is spent on calculating
C. A likely reason is that the computation for R exploits the sparsity of Σ, whereas
the computation for C does not. In particular, the calculation for an entry Ri,j

iterates over the cofactors in Σ. In contrast, an entry Ci,j is calculated using an
iteration over the (dense) matrix R. Moreover, Favorita, as opposed to Retailer,

53

	0

	2

	4

	6

	8

	10

	12

	14

	16

	0 	2 	4 	6 	8 	10 	12

Ti
m
e(
s)

Threads

Figure 5.6: QR time of F-GS for Retailer v2 as a function of the number of threads.

contains many different categorical variables resulting in a more dense Σ. This
explains the more even distribution of computation time over the three components.

5.5.4 Impact of Parallelisation

In order to evaluate the performance impact of multithreading, we computed the
QR decomposition of the same matrix (Retailer v2) with an increasing number of
threads.

Figure 5.6 shows the computation time of the QR decomposition as a function
of the number of threads. First of all, the results show that using 2 and 3 threads
yields a speedup of respectively 1.95 and 2.86 — which is almost optimal. However,
for 4 threads the speedup is 3.02, which clearly indicates a drop in improvement.
Since the threads work on the same objects, increased contention likely contributes
to this decrease.

Secondly, the performance declines when increasing from 4 to 5 and from 8 to 9
threads. The latter is not unexpected, because at this point the number of threads
exceeds the number of logical cores. The performance hit at 5 threads is related to
the number of physical cores. This behaviour is examined in Section 5.5.4.1.

In general, the repeated experiments resulted in comparable performance for
each repetition. However, when using 4 threads, most runs are roughly 4 seconds;
yet some runs take significantly longer. More concretely, out of six repetitions, one
execution will almost systematically take up to 7 seconds. The reason for this phe-
nomenon, which was not observed for other numbers of threads, is unclear.

The same approach was used to assess the scalability of Py on Housing v2 with scale
factor S = 4 and Retailer v1. Despite a CPU usage of consistently nearly 100% per
(logical) core, there was no noticeable influence on the performance at all.

5.5.4.1 Balancing the Workload Distribution

Recall the discussion of Section 4.3 on the performance penalty of barrier synchroni-
sation caused by an unbalanced workload. The distribution of work can be assessed

54

Threads std Computation time per thread (ms)
4 9.9 3686 3686 3667 3671 – – – – – –
5 1300 5697 3334 5712 3351 3308 – – – – -
6 1015 2685 4649 2643 4619 4631 4624 – – – –
7 656 4017 4004 3978 4003 2266 4005 4005 – – –
8 6.0 3654 3644 3658 3657 3645 3644 3648 3655 – –
9 28 4064 4051 3987 4037 3993 4046 4067 4042 4040 –
10 23 3406 3375 3358 3427 3356 3401 3389 3379 3403 3423
4∗ 1111 5769 5783 3860 3843 – – – – – –

Table 5.7: Distribution and standard deviation (std) of computation time per thread.
Times in red denote (relatively) slow threads, whereas green denotes fast threads.

by measuring the actual computation time per thread, i.e. excluding time idle at
synchronisation points. In theory, using 5 threads on a quad-core machine results in
one physical core being shared amongst two threads, whereas each of the remaining
3 cores is dedicated to a single thread. This can result in two threads receiving
less CPU resources, and the remaining threads spending more time waiting at the
barrier.

Table 5.7 shows the computation time for each individual thread. The results
confirm the unbalanced distribution of work that occurs when increasing from 4 to 5
threads. Two threads clearly spend more time on computations, while others must
wait for these threads. This trend clearly continues for 6 and 7 threads. As expected,
when increasing to 8 threads the workload becomes balanced again. Using more than
8 threads results in a relatively balanced workload, likely because of more frequent
(and fair) scheduling at the operating system level. Nevertheless, using more threads
than logical cores incurs a performance penalty and no obvious benefits.

Finally, Table 5.7 includes a ‘slow run’ with 4 threads, indicated by an asterisk.
Even though this does not represent the majority of executions, it occurs frequently
enough to not be considered an outlier. The underlying mechanism causing these
unbalanced runs is unknown, one possible explanation is that two threads are exe-
cuted on the same physical core.

5.5.5 End-to-End Linear Least Squares

In this section we report and compare the end-to-end performance of the LLS exten-
sions of all included systems. The times reported include (if required by the system):
materialising and exporting the join result, importing the data matrix, processing
the data (e.g. sorting and encoding), and solving LLS.

Table 5.8 shows that F-GSLS outperforms both PyLS and R by a factor which
matches the compression ratio. Moreover, whereas Py and R both crash while im-
porting the full Retailer dataset, F-GS is able to include more than 3,000 categorical
features and complete within two minutes. The time F-GS spends on solving (in-
cluding computing the QR decomposition) is marginal compared to the time spent
on aggregate computation for all included tasks. However, it should be noted that
F-GS adds significantly more time than BGD when the number of categorical fea-
tures grows. Nevertheless, F-GS obtains an exact solution whereas BGD applies
gradient descent to obtain an approximate solution.

55

Retailer v0 v1 v2 v3 v4

Join Representation Listing 774M 774M 774M 3.614G 3.614G
(#values) Factorised 37M 37M 37M 169M 169M
Compression Fact/List 20.9× 20.9× 20.9× 21.4× 21.4×
Features (continuous + categorical) 32 32+14 32+3437 32+3653 32+3777

Listing representation of the query result

Join Computation (PSQL) 50.63 50.63 50.63 216.56 216.56

PyLS Export/Import 137.74 137.74 137.74 OOM OOM
Process 0.66 5.16 OOM – –
QR 16.97 28.14 – – –
Solve LLS 2.14 9.38 – – –
Total 208.14 231.05 – – –

R Export/Import 280.72 280.72 280.72 OOM OOM
Process 3.41 18.07 OOM – –
QR+Solve 22.71 46.04 – – –
Total 357.47 395.46 – – –

Factorised representation of the query result

Import + Sort 2.73 2.73 2.73 12.34 12.34
Aggregate Computation 6.78 7.61 65.33 92.98 99.02

BGD Learn < 0.01 < 0.01 0.46 0.63 1.4
Iterations 520 502 459 519 430

F-GSLS QR < 0.01 < 0.01 3.90 4.80 5.99
Solve LLS < 0.01 < 0.01 0.03 0.03 0.03
Total 9.51 10.34 71.99 110.15 117.38

Speedup of F-GS over Py 21.66× 21.44× ∞ ∞ ∞
Speedup of F-GSLS over PyLS 21.89× 22.35× ∞ ∞ ∞

R 37.59× 38.25× ∞ ∞ ∞
BGD 1× 1× 0.95× 0.96× 0.96×

Table 5.8: Time performance (seconds) comparison for end-to-end LLS using
F-GSLS, PyLS, R and BGD. Both PyLS and R ran out of memory (OOM) while
importing (full) Retailer.

56

Chapter 6

Related Work

Previous chapters of this dissertation described the theory and implementation of
F-GS. This chapter briefly outlines related work on the integration of linear algebra
and machine learning into the database management system. Both similarities and
differences of earlier approaches with respect to this work are outlined. Finally,
Chapter 7 provides a summary of the outcomes and findings of this dissertation,
and recommends directions for future research to follow up on these results.

Factorised Learning

This dissertation follows a line of work on factorised learning, e.g. [6], [7], [27].
Factorised learning builds on factorised databases, a new kind of database system
pioneered by Olteanu and colleagues [28], and in particular on computing aggre-
gates over the factorised representation [29]. Factorised databases led to several
developments; most recently to the idea of learning over normalised databases.

Factorised learning differs from the majority of efforts on scalable machine learn-
ing, which instead focuses on designing systems on top of large-scale distributed
architectures such as Spark [30] (e.g. MLlib [31]), TensorFlow [32] and SystemML
[33][34].

Kumar et al. [27] introduce a new approach that pushes ML computations past
key-foreign key joins to avoid materialising the design matrix. Schleich et al. [7]
extend factorised learning to building linear regression models over datasets defined
by arbitrary join queries. Moreover, their work provides theoretical guarantees,
showing that the computational complexity is linear in the size of the factorised join
result. Khamis et al. [6] propose a framework for in-database learning, extending
the class of factorised learning models to include ridge linear regression, factorization
machines and principle component analysis. Moreover, this framework introduces a
sparse representation and treatment of categorical variables, which this dissertation
relies on.

In-Database Linear Algebra

Performing linear algebra inside the (relational) DBMS is not a new idea, and many
different approaches have been proposed. There is an on-going interest in developing
a system which supports both linear algebra and relational algebra [35] [36] [37]. The

57

main challenge is to retain the benefits associated with the standalone counterparts,
i.e. the efficiency of OpenBLAS, and capabilities of a DBMS (e.g. indexes, query
optimisation) [38].

These approaches recognise the advantages of in-database linear algebra, in par-
ticular to avoid the expensive import-export step and to leverage decades of research
in relational systems. However, none of these approaches fully exploit the relational
structure in the data to the same extent as factorised learning.

Factorised Linear Algebra

Even though little research has been done on factorised linear algebra, some recent
research has been done which is conceptually close to the work presented in this
dissertation. Chen et al. identify the development overhead of the current trend
in factorised learning, which is to manually rewrite specific ML algorithms to push
operations past the join [39]. They propose Morpheus, a framework which automat-
ically rewrites linear algebra operations into equivalent relational operations over
normalised data. This approach differs from our work in multiple ways. First of
all, our long-term goal is to provide a wide range of linear algebra operations which
can be used to factorise existing ML algorithms and to develop completely novel
algorithms. Morpheus, in contrast, relies on automatically applying a limited set of
algebraic rewrite rules, which limits the applications to completely ‘supported’ algo-
rithms. Moreover, we propose a completely novel factorised linear algebra operation
which is not supported by Morpheus. Finally, our work emphasises accommodating
categorical variables while avoiding the redundancy of the one-hot encoding.

58

Chapter 7

Conclusion

This dissertation introduced F-GS, a novel approach to compute the QR decom-
position of a matrix defined by a join query over normalised relational data. This
system uses a two-layer factorisation of the Gram-Schmidt process to avoid mate-
rialising the data matrix altogether. The first layer is an algebraic rewrite of the
Gram-Schmidt process to expressions in terms of the cofactors. The second layer of
our approach is the factorised computation of these cofactors. We have shown that
this algorithm has a lower asymptotic complexity than state-of-the-art QR decom-
position algorithms, which are based on the highly redundant listing representation
as input.

F-GS is implemented in C++ and supports input relations consisting of both
continuous and categorical data. Moreover, F-GS allows the computation of the QR
decomposition to be distributed across the cores of a machine. We have incorporated
a sparse encoding for categorical variables in F-GS, which resulted in significant
performance benefits in practice.

The performance of F-GS was investigated and compared against systems based
on the industry standard LAPACK, using two real-world datasets and one synthetic
dataset. The speedup of F-GS against its fastest competitor consistently matched
the compression ratio of the factorised representation of the join result compared
to the listing representation. Most importantly, F-GS was able to compute the QR
decomposition of problem instances much larger than any of its competitors. Con-
sidering that a real-world retailer dataset we experimented on yields a compression
rate of more than 20×, the matching speedup and increased data capacity of F-GS
have significant practical benefits.

Moreover, F-GSLS solves linear least squares on a real-world dataset (parti-
tioned to accommodate limitations of competitors) more than 20× faster than any
out-of-database competitor. Finally, we have shown a 13× speedup of the final im-
plementation of F-GS over its single-threaded predecessor Naive F-GS, which did
not exploit the sparse encoding for categorical variables.

This dissertation is the first to introduce a novel fundamental linear algebra
operation to factorised databases. We have described multiple applications of the
factorised QR decomposition, including solving linear least squares and obtaining
the factorised SVD. Whereas linear least squares was fully covered and implemented,
for other applications such as the SVD we only scratched the surface. In the final

59

section of this dissertation, we outline some interesting directions for future research
that follow up on the contributions of this dissertation.

7.1 Future Work

Applications of F-GS

This dissertation has only touched upon the many possibilities of the factorised
QR decomposition. There are two possible research directions to identify the ap-
plications of F-GS. The first considers linear algebra operations which can benefit
from the factorised QR decomposition. An important example which we already ad-
dressed is the factorised singular-value decomposition. Moreover, some applications
of the QR decomposition may be relatively unknown because of limited usefulness
in general. However, with the clear computational benefits of the factorised QR
decomposition these applications could proof incredibly useful in our setting.

The second investigates applications in the more traditional sense, i.e. which
problems can be solved. An example we considered is solving linear least squares.
However, the factorised QR decomposition and other operations derived from this
(including SVD) can potentially be used to solve many other problems in a com-
pletely factorised style.

Factorised Linear Algebra

We have already discussed more applications of the factorised QR decomposition.
However, there are potentially many useful linear algebra operations which can (on
their own) be factorised in a way similar to the factorised Gram-Schmidt process.
Therefore, another useful direction for future work is to come up with rewrites of
other linear algebra operations completely separate from the QR decomposition.

Implementation Improvements

Even though F-GS is multithreaded, the experimental results showed suboptimal
results in terms of scalability in the number of threads. The current implemen-
tation may suffer from data contention and poor cache performance, for example
as a consequence of the interleaved access pattern described in Section 4.3. There
is potential for performance improvements by redesigning the algorithm with the
modern hardware architecture in mind, see for example Chapter 5 of [18]. For in-
stance, partitioning C and R per thread based on write access could lead to better
performance.

Moreover, F-GS fails for data matrices which are not full-rank. In fact the
Gram-Schmidt process (fundamentally) requires the data matrix to be full-rank.
Nevertheless, this is a limitation of F-GS which can be addressed by a careful
implementation. In particular, it is possible to ‘drop’ linearly dependent columns
on-the-fly during the orthogonalisation process. This can be detected using the
norm of the orthogonalised vector (uk) which will be zero (or within some range ε
to account for floating-point errors).

60

Finally, F-GS expresses the QR computation in terms of the cofactor matrix. The
advantage is that these aggregates are used in earlier work on factorised learning
and are relatively intuitive. Nevertheless, it is worth looking into the possibility of
expressing the subsequent procedure (i.e. computing C and R) as FAQs.

Numerical Stability

Numerical stability is an important topic for matrix decompositions. In fact, compu-
tationally more expensive decompositions are used over cheaper ones solely because
of the improved numerical stability they provide. Moreover, the numerical properties
of a decomposition depend on the algorithm used to compute it.

The F-GSLS solution to linear least squares was comparable to the result ob-
tained using LAPACK (relative difference in residual sum of squares ≤ 1 · 10−10)
on multiple problem instances. Nevertheless, a rigorous numerical analysis (e.g.
of the condition number) of F-GS is valuable. Moreover, the implementation can
potentially be refined to improve its numerical properties.

Other QR algorithms

Another research direction, related to numerical stability, is rewriting other decom-
position algorithms to compute the factorised QR decomposition. Two prominent
alternatives to the Gram-Schmidt process are Householder reflections and Given’s
rotations. Both alternatives are known to have better numerical properties than the
Gram-Schmidt process.

Within our research we already attempted to come up with a factorised rewrite
of the Householder approach. This resulted in a factorisation of the QR compu-
tation itself, however, we did not manage to apply the factorised result without
needing to materialise the data matrix. The obtained derivations are included as
an appendix for future reference. Moreover, Appendix B outlines the challenges
of applying factorised Householder QR to solve linear least squares without mate-
rialising the design matrix. Nevertheless, different rewrites may be possible, and
exploring alternative algorithms could result in factorised QR decompositions with
better (numerical) properties.

61

Bibliography

[1] Carlos A. Gomez-Uribe and Neil Hunt. The Netflix recommender system: Al-
gorithms, business value, and innovation. ACM Trans. Management Inf. Syst.,
6(4):13:1–13:19, 2016.

[2] IBM. Big data solutions. https://www.ibm.com/it-infrastructure/

solutions/big-data. [Online; last accessed on 2018-08-21].

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and imple-
mentation of the LogicBlox system. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015, pages 1371–1382, 2015.

[4] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul M. Chilimbi. Performance
modeling and scalability optimization of distributed deep learning systems. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
pages 1355–1364, 2015.

[5] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards
a unified architecture for in-RDBMS analytics. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 325–336, 2012.

[6] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. In-database learning with sparse tensors. In Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, Houston, TX, USA, June 10-15, 2018, pages 325–340, 2018.

[7] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear re-
gression models over factorized joins. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Fran-
cisco, CA, USA, June 26 - July 01, 2016, pages 3–18, 2016.

[8] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. AC/DC: in-database learning thunderstruck. In Proceed-
ings of the Second Workshop on Data Management for End-To-End Machine
Learning, DEEM@SIGMOD 2018, Houston, TX, USA, June 15, 2018, pages
8:1–8:10, 2018.

62

https://www.ibm.com/it-infrastructure/solutions/big-data
https://www.ibm.com/it-infrastructure/solutions/big-data

[9] Ahmet Kara and Dan Olteanu. Covers of query results. In 21st International
Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Aus-
tria, pages 16:1–16:22, 2018.

[10] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive
computation and machine learning series. MIT Press, 2012.

[11] Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD Record,
45(2):5–16, 2016.

[12] Åke Björck. Solving linear least squares problems by gram-schmidt orthogonal-
ization. BIT Numerical Mathematics, 7(1):1–21, 1967.

[13] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. FDB: A query engine
for factorised relational databases. PVLDB, 5(11):1232–1243, 2012.

[14] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans
for relational joins. In 49th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages
739–748, 2008.

[15] Dan Olteanu and Jakub Závodný. Size bounds for factorised representations of
query results. ACM Trans. Database Syst., 40(1):2:1–2:44, 2015.

[16] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal
join algorithms. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 37–48. ACM, 2012.

[17] Lloyd N. Trefethen and David Bau. Numerical linear algebra. SIAM, 1997.

[18] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer
architecture - a hardware / software approach. Morgan Kaufmann, 1999.

[19] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra subprograms (BLAS).
ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

[20] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. AUGEM: automat-
ically generate high performance dense linear algebra kernels on x86 CPUs. In
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC’13, pages 1–12. IEEE, 2013.

[21] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[22] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001. http://www.scipy.org, Last accessed on 2018-08-05.

63

http://www.scipy.org

[23] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015.

[24] Tom Goldstein, Christoph Studer, and Richard G. Baraniuk. A field
guide to forward-backward splitting with a FASTA implementation. CoRR,
abs/1411.3406, 2014.

[25] Pierre-Yves Bigourdan. Distributed and multi-threaded learning of regression
models. Master’s thesis, University of Oxford, 2016.

[26] Corporación Favorita. Corporación Favorita grocery sales forecasting. https://
www.kaggle.com/c/favorita-grocery-sales-forecasting, 2018. [Online;
last accessed on 2018-08-15].

[27] Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. Learning generalized
linear models over normalized data. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 1969–1984. ACM, 2015.

[28] Dan Olteanu and Jakub Zavodny. Factorised representations of query results:
size bounds and readability. In Alin Deutsch, editor, 15th International Con-
ference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012,
pages 285–298. ACM, 2012.

[29] Nurzhan Bakibayev, Tomás Kociský, Dan Olteanu, and Jakub Zavodny. Aggre-
gation and ordering in factorised databases. PVLDB, 6(14):1990–2001, 2013.

[30] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010. USENIX Association, 2010.

[31] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,
and Ameet Talwalkar. MLlib: Machine learning in Apache Spark. Journal of
Machine Learning Research, 17:34:1–34:7, 2016.

[32] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016., pages 265–283. USENIX Association, 2016.

[33] Amol Ghoting, Rajasekar Krishnamurthy, Edwin P. D. Pednault, Berthold
Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivaku-
mar Vaithyanathan. SystemML: Declarative machine learning on MapReduce.

64

https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/favorita-grocery-sales-forecasting

In Proceedings of the 27th International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany, pages 231–242. IEEE Computer
Society, 2011.

[34] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick Reiss, Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. SystemML:
Declarative machine learning on Spark. PVLDB, 9(13):1425–1436, 2016.

[35] Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker
Markl. Bridging the gap: towards optimization across linear and relational
algebra. In BeyondMR@SIGMOD, page 1. ACM, 2016.

[36] Dylan Hutchison, Bill Howe, and Dan Suciu. LaraDB: A minimalist kernel
for linear and relational algebra computation. In BeyondMR@SIGMOD, pages
2:1–2:10. ACM, 2017.

[37] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On
the expressive power of query languages for matrices. In ICDT, volume 98 of
LIPIcs, pages 10:1–10:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

[38] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher
Ré. LevelHeaded: Making worst-case optimal joins work in the common case.
CoRR, abs/1708.07859, 2017.

[39] Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. To-
wards linear algebra over normalized data. PVLDB, 10(11):1214–1225, 2017.

[40] Robert A. van de Geijn. Notes on Householder QR factorization. http:

//www.cs.utexas.edu/users/flame/Notes/NotesOnHouseholderQR.pdf,
2014. [Online; last accessed on 2018-08-24].

65

http://www.cs.utexas.edu/users/flame/Notes/NotesOnHouseholderQR.pdf
http://www.cs.utexas.edu/users/flame/Notes/NotesOnHouseholderQR.pdf

Appendix A

Datasets

Figures A.1, A.2, A.3 show the variable orderings used to compute the factorised
representations of the datasets Retailer, Housing, and Favorita (respectively).

locn

zip

males

females

...

(Census)

total area

sell area

...

(Location)

dateid

rain

snow

...

(Weather)

ksn

subcategory

...

(Item)

inventoryunits

(Inventory)

Figure A.1: Visualisation of the variable order for the Retailer dataset

postcode

price

...

(House)

averagesalary

...

(Demographics)

typeeducation

...

(Institution)

openinghours

...

(Restaurant)

pricerange

...

(Shop)

nbbuslines

...

(Transport)

Figure A.2: Visualisation of the variable order for the Housing dataset

66

store

date

item

unit sales

...

(Sale)

family

...

(Item)

holiday type

locale

...

(Holiday)

transactions

(Transaction)

oilprice

(Oil)

city

state

store type

...

(Store)

Figure A.3: Visualisation of the variable order for the Favorita dataset

67

Appendix B

Factorised Householder

In this appendix we briefly discuss and present the obtained results (or rather
progress) related to the Householder reflections method used to obtain the QR de-
composition. In particular, we present an algebraic rewrite of the ‘Householder QR’
method, which shares similarities with the rewrite of the Gram-Schmidt process
described in Chapter 3.

It should be noted that this appendix is included for future reference, and is of
lesser quality than earlier chapters of this dissertation. Finally, [40] does a good job
at explaining the (out-of-database) Householder QR decomposition.

B.1 Rewriting Householder QR

B.1.1 Outline and definitions

We assume the familiar in-database setting where the matrix A ∈ Rm×n is defined
by a join query Q over database D. We introduce some notation and definitions to
express the rewritten (factorised) expressions.

First of all, we introduce slice notation: A[i : | j :] is the result of dropping the first
i− 1 rows and j − 1 columns of A. We have the following definitions:

e1 :=
[
1 0 · · · 0

]>
B(k) := Qk−1Qk−2 . . .Q1A

uk := B(k)[k : | k]−
∥∥B(k)[k : | k]

∥∥e1
Qk =

[
Ik−1 0

0 Q̃k

]
Q̃k := I − 2uku

>
k

〈uk, uk〉
A[k : j] =

[
ak,j ak+1,j . . . am,j

]>
Note that Q̃k is symmetric, from which it follows that Q is symmetric.

68

We show how some definitions relate to each other:

B(k) =


r11 r12 r1n
0 r22 r2n
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . . rk−1,k−1 r(k−1),n
0 0 B(k)[k : | k] . . . B(k)[k : |n]


B(k)[(k − 1) : |j] =

[
rk−1,j B(k)[k : |j]

]>
R = B(n+1) = QnQn−1 · · ·Q1A

=

[
In−1 0

0 Q̃n

] [
In−2 0

0 Q̃n−1

]
· · · Q̃1A

=


B(2)[1, 1] B(2)[1, 2] B(2)[1, 3] · · · B(2)[1, n]

0 B(3)[2, 2] B(3)[2, 3] · · · B(3)[2, n]

0 0 B(4)[3, 3] · · · B(4)[3, n]
...

...
. . .

. . .
...

0 0 0 · · · B(n+1)[n, n]


We use the following property that follows from the definition of the matrix product.
For any (compatible) matrices X and Y = (y1, . . . ,yp), we have:

(XY)[i : j |u : v] = X[i : j]Y [: |u : v] i.e.: (XY)[i : | k] = X[i :]yk

We use this to show an essential expression for B(k+1)[k | j]; i.e. the following recur-
sive property:

B(k+1)[k : | j] = Qk[k :]B(k)[: | j]

=

[
Ik−1 0>

0 Q̃k

]
[k :] ·B(k)[: | j]

=
[
0 Q̃k

]
·B(k)[: | j]

= Q̃kB
(k)[k : | j]

For completeness, note that here 0 has m− k + 1 rows and k − 1 columns.
Similarly to cofactors for F-GS, we introduce the notion of base terms, which are
expressions that can be efficiently computed using factorised computations.

〈A[k : | i], A[k : | j]〉 =
m∑
t=k

at,i · at,j ∀i, j ∈ [n] ∀k ∈ [n+ 1]

〈A[k : | j], e1〉 = A[k, j] = ak,j ∀j ∈ [n] ∀k ∈ [n+ 1]

Our goal is to rewrite the Householder QR decomposition algorithm to expressions
in base terms. More concretely, we set out to (inductively) show that we can express:

B(k)[k : | j] = A[k : | j] +
k−1∑
i=1

α
(k)
i,j A[k : | i] ∀k ∈ [n+ 1], k − 1 ≤ j ≤ n

69

Where α
(k)
i,j denote scalars expressed (entirely) in base terms. Hence, B(k)[k : | j] is

a linear combination in the (trimmed) columns of A.
As an introduction to the idea and the (slightly convoluted) notation we start with
finding expressions for B(2)[2 : | 2] and B(3)[3 : | 2] as an introduction, before moving
to the general case.

B.1.2 A Simplified Example

We consider B(2)[2 : | 2] and B(3)[3 : | 2] (instead of the more general B(2)[2 : | j] and
B(3)[3 : | j]) to further simplify the expressions. We start by rewriting the following
terms:

u1 = a1 − ‖a1‖e1

Q̃1 = I − 2
u1u

>
1

〈u1, u1〉

Using that ‖a1‖ =
√
〈a1, a1〉 is a base term, we can focus on rewriting 〈u1, u1〉:

〈u1, u1〉 = 〈a1 − ‖a1‖e1, a1 − ‖a1‖e1〉
= 〈a1, a1〉 − 2‖a1‖〈a1, e1〉+ ‖a1‖2〈e1, e1〉
= 2〈a1, a1〉 − 2‖a1‖a1,1

c1 :=
1

〈a1, a1〉 − ‖a1‖a1,1
=

2

〈u1, u1〉

Using c1 we can denote B(2)[1 : | 2] = B(2)[: | 2] as:

B(2)[: | 2] = Q̃1B
(1)[: | 2] = Q̃1a2

= (I − c1u1u
>
1)a2

= a2 − c1〈u1, a2〉u1

〈u1, a2〉 = 〈a1 − ‖a1‖e1, a2〉
= 〈a1, a2〉 − ‖a1‖〈e1, a2〉
= 〈a1, a2〉 − ‖a1‖a1,2

We can now concisely express B(2)[: | 2] in base terms.

B(2)[: | 2] = a2 − c1
(
〈a1, a2〉 − ‖a1‖a1,2

)
u1

= a2 −
〈a1, a2〉 − ‖a1‖a1,2
〈a1, a1〉 − ‖a1‖a1,1

(
a1 − ‖a1‖e1

)
= a2 + α

(2)
1,2a1 + β(2)e1

α
(2)
1,2 = −

〈a1, a2〉 − ‖a1‖a1,2
〈a1, a1〉 − ‖a1‖a1,1

β(2) = −α(2)
1,2‖a1‖

Similarly, we find that B(2)[2 : | 2] can than be expressed as:

B(2)[2 : | 2] = a2[2 :] + α
(2)
1,2a1[2 :] + β(2)e1[2 :]

= A[2 : | 2] + α
(2)
1,2A[2 : | 1]

70

Hence, B(2)[2 : | 2] is given by a linear combination of the first and second columns
of A after dropping the first row. For illustrative purposes, we show how we could
have directly derived this result.

B(2)[2 : | j] = (Q1B
(1))[2 : | j] = (Q1A)[2 : | j]

= (I − c1u1u
>
1)[2 :] · aj

=
(
I[2 :]− c1u1[2 :]u>1

)
aj

= aj [2 :]− c1〈u1, a1〉u1[2 :]

= A[2 : | j]− c1〈u1, a1〉
(
A[2 : | 1]− ‖a1‖e1[2 :]

)
Next, we do the same for B(3)[3 : | 2] using the expression for B(2)[2 : | 2].

u2 = B
(2)[2 : | 2]−

∥∥B(2)[2 : | 2]
∥∥e1

〈B(2)[2 : | 2], B(2)[2 : | 2]〉 = 〈A[2 : | 2] + α
(2)
1,2A[2 : | 1], A[2 : | 2] + α

(2)
1,2A[2 : | 1]〉

= 〈A[2 : | 2], A[2 : | 2]〉+ 2α
(2)
1,2〈A[2 : | 2], A[2 : | 1]〉+

(α
(2)
1,2)

2
〈A[2 : | 1], A[2 : | 1]〉

So, we can compute
∥∥B(2)[2 : | 2]

∥∥ and proceed with 〈u2, u2〉 in order to obtain Q̃2:

〈u2, u2〉 = 〈B(2)[2 : | 2]−
∥∥B(2)[2 : | 2]

∥∥e1, B(2)[2 : | 2]−
∥∥B(2)[2 : | 2]

∥∥e1〉
= 〈B(2)[2 : | 2], B(2)[2 : | 2]〉 − 2

∥∥B(2)[2 : | 2]
∥∥〈B(2)[2 : | 2], e1〉

+
∥∥B(2)[2 : | 2]

∥∥2〈e1, e1〉
= 2〈B(2)[2 : | 2], B(2)[2 : | 2]〉 − 2

∥∥B(2)[2 : | 2]
∥∥〈B(2)[2 : | 2], e1〉

〈B(2)[2 : | 2], e1〉 = 〈A[2 : | 2] + α
(2)
1,2A[2 : | 1], e1〉

= 〈A[2 : | 2], e1〉+ α
(2)
1,2〈A[2 : | 1], e1〉

= a2,2 + α
(2)
1,2a2,1

c2 :=
2

〈u2, u2〉

=
1

〈B(2)[2 : | 2], B(2)[2 : | 2]〉 −
∥∥B(2)[2 : | 2]

∥∥〈B(2)[2 : | 2], e1〉

We use c2 to start rewriting B[2 : | 2] to base terms:

B(3)[2 : | 2] = Q̃2B
(2)[2 : | 2]

= (I − c2u2u
>
2)B

(2)[2 : | 2]
= B(2)[2 : | 2]− c2〈u2, B

(2)[2 : | 2]〉u2

〈u2, B
(2)[2 : | 2]〉 = 〈B(2)[2 : | 2]−

∥∥B(2)[2 : | 2]
∥∥e1, B(2)[2 : | 2]〉

= 〈B(2)[2 : | 2], B(2)[2 : | 2]〉 −
∥∥B(2)[2 : | 2]

∥∥〈e1, B(2)[2 : | 2]〉

Note that there are no new terms in 〈u2, B
(2)[2 : | 2]〉, hence let:

c′2 := c2〈u2, B
(2)[2 : | 2]〉

71

This allows us to cleanly express B(3)[2 : | 2] in base terms:

B(3)[2 : | 2] = B(2)[2 : | 2]− c′2u2

= B(2)[2 : | 2]− c′2
(
B(2)[2 : | 2]−

∥∥B(2)[2 : | 2]
∥∥e1)

= A[2 : | 2] + α
(2)
1,2A[2 : | 1]− c′2

(
A[2 : | 2] + α

(2)
1,2A[2 : | 1]

)
+ c′2

∥∥B(2)[2 : | 2]
∥∥e1

= A[2 : | 2]− c′2A[2 : | 2] +
(
α
(2)
1,2 − c

′
2α

(2)
1,2

)
A[2 : | 1] + c′2

∥∥B(2)[2 : | 2]
∥∥e1

= A[2 : | 2] + α
(3)
2,2A[2 : | 2] + α

(3)
1,2A[2 : | 1] + β(3)e1

α
(3)
1,2 = α

(2)
1,2 − c

′
2α

(2)
1,2

α
(3)
2,2 = −c

′
2

β(3) = −α(3)
2,2

∥∥B(2)[2 : | 2]
∥∥

Finally, we find that B(3)[3 : | 2] can than be expressed as:

B(3)[3 : | 2] =
(
B(3)[2 : | 2]

)
[2 :]

=
(
A[2 : | 2] + α

(3)
2,2A[2 : | 2] + α

(3)
1,2A[2 : | 1] + β(3)e1

)
[2 :]

= A[3 : | 2] + α
(3)
2,2A[3 : | 2] + α

(3)
1,2A[3 : | 1] + β(3)e1[2 :]

= A[3 : | 2] + α
(3)
2,2A[3 : | 2] + α

(3)
1,2A[3 : | 1]

B.1.3 Generalised Expression

We proceed to generalise this, using proof by induction, that is we assume that for
some k:

B(k)[k : | j] = A[k : | j] +
k−1∑
i=1

α
(k)
i,j A[k : | i]

We start by rewriting B(k+1)[k : | j] to find the necessary terms.

uk = B
(k)[k : | k]−

∥∥B(k)[k : | k]
∥∥e1

Q̃k = I − 2
uku

>
k

〈uk, uk〉
B(k+1)[k : | j] = Q̃kB

(k)[k : | j]

=
(
I − 2

uku
>
k

〈uk, uk〉

)
B(k)[k : | j]

= B(k)[k : | j]− 2
〈uk, B(k)[k : | j]〉
〈uk, uk〉

uk

72

We can further expand the terms 〈uk, uk〉 and 〈uk, B(k)[k : | j]〉

〈uk, B(k)[k : | j]〉 = 〈B(k)[k : | k]−
∥∥B(k)[k : | k]

∥∥e1, B(k)[k : | j]〉
= 〈B(k)[k : | k], B(k)[k : | j]〉 −

∥∥B(k)[k : | k]
∥∥〈e1, B(k)[k : | j]〉

= 〈B(k)[k : | k], B(k)[k : | j]〉 −
∥∥B(k)[k : | k]

∥∥B(k)[k, j]

〈uk, uk〉 = 〈B(k)[k : | k]−
∥∥B(k)[k : | k]

∥∥e1, B(k)[k : | k]−
∥∥B(k)[k : | k]

∥∥e1〉
= 〈B(k)[k : | k], B(k)[k : | k]〉 − 2

∥∥B(k)[k : | k]
∥∥〈e1, B(k)[k : | k]〉

+
∥∥B(k)[k : | k]

∥∥2〈e1, e1〉
= 〈B(k)[k : | k], B(k)[k : | k]〉 − 2

∥∥B(k)[k : | k]
∥∥B(k)[k, k]

+ 〈B(k)[k : | k], B(k)[k : | k]〉
= 2〈B(k)[k : | k], B(k)[k : | k]〉 − 2

∥∥B(k)[k : | k]
∥∥B(k)[k, k]

Note how we only need to rewrite two expressions to base terms for a complete
rewrite. First, we introduce a more convenient expression for B(k)[k : | k] using

α
(k)
k,k = 1, i.e.:

B(k)[k : | k] = A[k : | k] +
k−1∑
i=1

α
(k)
i,kA[k : | i] =

k∑
i=1

α
(k)
i,kA[k : | i]

〈B(k)[k : |k], B(k)[k : |j]〉 = 〈
k∑
i=1

α
(k)
i,kA[k : | i], A[k : | j] +

k−1∑
i=1

α
(k)
i,j A[k : | i]〉

=

k∑
i=1

(
α
(k)
i,k 〈A[k : | i], A[k : | j] +

k−1∑
t=1

α
(k)
t,j A[k : | t]〉

)
=

k∑
i=1

(
α
(k)
i,k 〈A[k:|i], A[k:|j]〉+

k−1∑
t=1

α
(k)
i,k α

(k)
t,j 〈A[k : |i], A[k : |t]〉

)

〈e1, B(k)[k : | j]〉 = B(k)[k, j] = A[k, j] +
k−1∑
i=1

α
(k)
i,j A[k, i]

Using these general derivations we can succinctly denote:

〈B(k)[k : | k], B(k)[k : | k]〉 =
k∑
i=1

k∑
j=1

α
(k)
i,k α

(k)
j,k 〈A[k : | i, A[k : | j]〉

B(k)[k, k] =

k∑
i=1

α
(k)
i,kA[k, i]

〈uk, uk〉 = 2〈B(k)[k : | k], B(k)[k : | k]〉 − 2
∥∥B(k)[k : | k]

∥∥B(k)[k, k]

= 2
(k∑
i=1

k∑
j=1

α
(k)
i,k α

(k)
j,k 〈A[k : | i, A[k : | j]〉

)

− 2
∥∥B(k)[k : | k]

∥∥ k∑
i=1

α
(k)
i,kA[k, i]

73

Hence, letting ck,j := −2 〈uk, B
(k)[k : | j]〉

〈uk, uk〉
we can express B(k+1)[k : | j] as follows:

ck,j := −2
〈uk, B(k)[k : | j]〉
〈uk, uk〉

= −
〈B(k)[k : | k, B(k)[k : | j]〉 −

∥∥B(k)[k : | k]
∥∥B(k)[k, j]

〈B(k)[k : | k, B(k)[k : | k]〉 −
∥∥B(k)[k : | k]

∥∥B(k)[k, k]

B(k+1)[k : | j] = B(k)[k : | j] + ck,juk

= A[k : | j] +
k−1∑
i=1

α
(k)
i,j A[k : | i] + ck,j

(
B(k)[k : | k]−

∥∥B(k)[k : | k]
∥∥e1)

= A[k : | j] +
k−1∑
i=1

α
(k)
i,j A[k : | i] + ck,j

(k∑
i=1

α
(k)
i,kA[k:| i]

)
− ck,j

∥∥B(k)[k:| k]
∥∥e1

= A[k : | j] + ck,jα
(k)
k,kA[k : | k] +

k−1∑
i=1

(
α
(k)
i,j + ck,jα

(k)
i,k

)
A[k : | i]

− ck,j
∥∥B(k)[k : | k]

∥∥e1
= A[k : | j] +

(k∑
i=1

α
(k+1)
i,j A[k : | i]

)
− ck,j

∥∥B(k)[k : | k]
∥∥e1

α
(k+1)
i,j =

{
α
(k)
i,j + ck,jα

(k)
i,k i < k

ck,j i = k

Finally, B(k+1)[k + 1: | j] directly follows, such that:

B(k+1)[k + 1: | j] = B(k+1)[k : | j][2 :]

=
(
A[k : | j] +

(k∑
i=1

α
(k+1)
i,j A[k : | i]

)
− ck,j

∥∥B(k)[k : | k]
∥∥e1)[2 :]

= A[k + 1: | j] +
(k∑
i=1

α
(k+1)
i,j A[k + 1: | i]

)
− ck,j

∥∥B(k)[k : | k]
∥∥e1[2 :]

= A[k + 1: | j] +
k∑
i=1

α
(k+1)
i,j A[k + 1: | i]

This concludes the proof by induction. Using above results we can compute R
and Q efficiently. However, in practice we can generally avoid materialising Q and
instead rely on applying the Householder reflections u1,u2, . . .un [40].

74

B.1.4 Explicit Expressions

Even though above shows that it is possible to compute Q and R in terms of
efficiently computable inner-products, explicit expressions are necessary for an actual
implementation. We provide such expressions here, using above notation and results.

‖B(k)[k : | k]‖ =

√√√√ k∑
i=1

k∑
j=1

α
(k)
i,k α

(k)
j,k 〈A[k : | i], A[k : | j]〉

〈uk, B(k)[k : | t]〉 = 〈B(k)[k : | k], B(k)[k : | t]〉 −
∥∥B(k)[k : | k]

∥∥B(k)[k, t]

=

(k∑
i=1

α
(k)
i,k

(
〈A[k : | i], A[k : | t]〉+

k−1∑
j=1

α
(k)
j,t 〈A[k : | i], A[k : | j]〉

))

−
∥∥B(k)[k : | k]

∥∥(ak,t + k−1∑
j=1

α
(k)
j,t ak,j

)

Finally, we add that for numerical stability (avoid catastrophic cancellation) one
should in practice use:

uk := B(k)[k : | k] + sign(B(k)[k, k])
∥∥B(k)[k : | k]

∥∥e1
B.2 A Final Word on Challenges

Above derivations constitute a (semi-)factorised rewrite of the Householder QR ap-
proach. Unfortunately, our approach requires some obscure notation which severely
obfuscates the obtained expressions. Nevertheless, if one can look past the seemingly
complex notation, the rewrite is not much more involved than that of factorised
Gram Schmidt. However, there are some challenges associated to this particular
rewrite.

First of all, this method requires the n×n submatrix of A where n is the number
of features. In other words, it requires materialising the first n tuples of A. Even
though n � m implies that this is computationally feasible, it is not in line with
the principles of factorised databases.

More importantly, it is unclear whether the result is suitable for completely fac-
torised applications. Whereas the n×n matrix R can be computed and materialised
easily, computing the m× n matrix Q should be avoided at all cost. Clearly, this is
no new observation and also applies to factorised Gram-Schmidt. The challenge is
applying the factorised Householder reflections uk without materialising A.

We briefly outline this challenge by attempting to solve linear least squares using
the factorised Householder QR result. Recall that as part of solving linear least
squares we need to compute QTb, where b denotes the label vector. We obtain the
following expressions:

75

b(k+1) = QkQk−1 · · ·Q1b

= Qkb
(k)

=

[
Ik−1 0

0 Q̃k

]
b(k)

=

[
Ik−1 0
0 I − ckuku>k

] [
b(k)[1 : k − 1]

b(k)[k : m]

]
=

[
b(k)[1 : k − 1]

b(k)[k : m]− ck〈uk, b(k)[k : m]〉uk

]
Q>b = QnQn−1 · · ·Q1b = b

(n+1)

These expressions seem similar to expressions we have seen in the rewritten House-
holder QR method. Consequently, the computation of Q>b = b(n+1) may allow a
(second) rewrite to base terms. However, we have not been able to find an appropri-
ate rewrite that does not require materialisingA. Nevertheless, even if such a rewrite
exists, the computation of this alternative QR decomposition (the α-constants and
R) alone is significantly more involved and expensive than F-GS.

76

	Introduction
	Contributions
	Outline

	Preliminaries
	Notation and definitions
	Basics
	Linear Algebra
	Orthogonality
	Linear Dependence and Rank

	Functions

	Linear Least Squares
	QR Decomposition
	Gram-Schmidt process
	Modified Gram Schmidt

	Solving Linear Least Squares

	One-Hot Encoding Categorical Variables
	Factorised Databases
	Cofactor Matrix
	Sparse Encoding for Categorical Variables
	Sigma: Sparsely Including Categorical Cofactors

	Factorised Gram-Schmidt
	Outline and Setting
	Rewriting the Gram-Schmidt Process
	From Equations to Algorithm
	Time and Space Complexity
	Complexity of F-GS
	Complexity of Listing-Based Approaches

	Applications of F-GS
	Doubly Factorised Linear Least Squares
	Singular-Value Decomposition
	Cholesky Decomposition
	Moore-Penrose Inverse

	Implementation
	Data Structures
	Sigma Matrix
	Ordering the Cofactors
	Matrices

	F-GS Variants
	Parallelisation
	Synchronisation
	Distribution of Work

	Detailed Description of F-GS

	Experiments
	Summary of Findings
	Experimental Setup
	Systems
	Environment

	Tasks
	Datasets
	Experimental Results
	QR Performance
	Comparison of F-GS Variants
	Breakdown of Factorised Decomposition
	Impact of Parallelisation
	Balancing the Workload Distribution

	End-to-End Linear Least Squares

	Related Work
	Conclusion
	Future Work

	Datasets
	Factorised Householder
	Rewriting Householder QR
	Outline and definitions
	A Simplified Example
	Generalised Expression
	Explicit Expressions

	A Final Word on Challenges

