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Abstract

This thesis puts forward two novel approaches to learning generalised low rank
models over multi-relational databases. It focuses on learning Quadratically
Regularised Principal Component Analysis models over the non-materialised data
matrix, which is the result of a natural join query over a multi-relational database.
This is achieved by providing variants of two existing fundamental algorithms:
alternating minimisation and eigen-decomposition. These variants use factorised
learning, a recent computational paradigm that decomposes the learning task into
batches of aggregates which are pushed past the join query. We call these variants
Factorised Alternating Minimisation - FAM, and Factorised Eigen-Decomposition -
FED. We analyse FAM and FED from a computational complexity point of view
and also benchmark our implementations regarding their complexity and numerical
precision. This thesis is the first to look into factorised learning of Quadratically
Regularised Principal Component Analysis models over multi-relational databases.
When executed over Housing and Retailer data sets, FAM and FED achieve orders of
magnitude speed-up compared to state-of-art approaches which materialise the data
matrix. Computing generalised low rank models orders of magnitude faster means
that more models can be computed and can be maintained up to date in the presence
of changes to the underlying data. Hence, one could use one measure of performance
(speed), to improve a seemingly orthogonal measure of performance (accuracy).
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Conventions and Notations

N . . . . . . . . . . . . . The set of natural numbers 0, 1, 2, . . . .

N∗ . . . . . . . . . . . . . N \ {0}, i.e. 1, 2, 3, . . . .

Sm×n . . . . . . . . . . . The set of matrices with m rows and n columns whose
elements are members of the set S.

v . . . . . . . . . . . . . . We use bold lower case letters for vectors. Further-
more, if v ∈ Rm then v ∈ Rm×1 i.e. we interpret
vectors as columns.

vT . . . . . . . . . . . . . The transpose of v.

‖v‖2 . . . . . . . . . . . . The Euclidean norm of a vector ‖v‖2 =
√
vTv.

x . . . . . . . . . . . . . . We use lower case letters for scalars.

A . . . . . . . . . . . . . We use upper-case capitals in italics for matrices.

A:,j . . . . . . . . . . . . . Denotes the jth column of A.

Ai,: . . . . . . . . . . . . . Denotes the ith row of A.

Ai,j . . . . . . . . . . . . Denotes the element in row i and column j of A.

‖A‖F . . . . . . . . . . . The Frobenius norm of A ∈ Rm×n :
√

m∑
i=1

n∑
j=1

A2
i,j.

Tr(A) . . . . . . . . . . . The trace of the square matrix A ∈ Rn×n is
n∑
i=1

Ai,i.

In . . . . . . . . . . . . . For a given n ∈ N∗, In ∈ Rn×n denotes the identity
square matrix defined by the Kronecker delta function:

δi,j =
{

1 i = j,
0 i 6= j.

orthonormal matrix . . . We call a matrix “orthonormal” and denote it by Q if
its columns q1 . . .qn for some n ∈ N∗ are orthogonal

unit vectors i.e. qTi qj =
{

1 i = j,
0 i 6= j.

Immediately we

get QTQ = In.

orthogonal matrix . . . . We call an orthonormal matrix “orthogonal” if it is
square i.e. Q ∈ Rn×n. Hence we get QQT = In too.

vii



1
Introduction

1.1 Motivation

This thesis investigates the problem of learning Quadratically Regularised Principal

Component Analysis (L2-PCA) models over multi-relational databases. The primary

motivation for considering L2-PCA is Data Science where Principal Component

Analysis (PCA) is a key technique used to analyse data. PCA is a templatised

method for dimensionality reduction which produces a compact representation

of data whilst minimising information loss. PCA can be also used to [4]: discover

patterns in data, produce less noisy and more informative representations of the

data, perform matrix completion, and prepare data before further analysis such as

clustering or finding the k-nearest neighbours. Thus, PCA is an important class

of machine learning (ML) models. L2-PCA is considered over classic PCA for the

same reason as Ridge Regression is considered over classic Linear Regression: the

(L2) regularisers prevent the model from over-fitting [5].

Furthermore, multi-relational databases are considered because over 60% of the

data that enterprises rely on is represented in relational form [24], [25]: 86% in

Retail, 83% in Insurance, 82% in Marketing, 77% in Finance.

1



1. Introduction 2

Let L2-PCA’s input data matrix be described as the non-materialised result1:

A = Q(D) ∈ Rm×n of an arbitrary fixed query Q over a multi-relational database

D which in materialised listing form has m tuples and each tuple has n attributes.

A’s rank-k L2-PCA can be formulated as:

minimise: ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F (1.1)

subject to: X ∈ Rm×k and Y ∈ Rk×n, (1.2)

where k is a user-defined parameter representing the dimensionality reduction rank

and γ ≥ 0 is a tunable hyper-parameter that penalises PCA to avoid over-fitting.

Figure 1.1: Today’s workflow for computing L2-PCA over multi-relational databases.

The workflow (Fig. 1.1) used today by data scientists to train L2-PCA model

is structure-agnostic. We see that the internal structure of the multi-relational

database is completely thrown away and replaced by the materialised data matrix

A ∈ Rm×n which is computed by some Database Management System (DBMS)

such as PostgreSQL. This computation is highly costly both from a memory and

a time complexity point of view as the number of rows that the resulting

matrix A has can be exponential in the number of relations joined by Q.

Matrix A is then exported in some generic representation (possibly CSV) then is

loaded into a company’s favourite ML toolkit (e.g. TensorFlow - Google, PyTorch -

Facebook). This data pipelining is also very expensive as it is likely to move GiBs

of data. Then, after A is loaded into the ML toolkit, state-of-art algorithms are
1In case the data matrix A ∈ Rm×n contains categorical features (columns), they are expanded

using one-hot encoding. In this situations, n will actually become O(nd) where d is the size of
the largest active domain among the categorical features. This worst-case number of columns is
actually over estimating the complexity results as LMFAO uses a more succinct encoding based
on FAQ-width [9] (see equation 2.19 for more details).



1. Introduction 3

used to produce the desired low rank model of A. There is potentially exponential

redundancy in this workflow coming from the fact that the matrix A is materialised.

This causes cross products between relations to be expanded while the relational

structure (potentially exponentially more succinct) is thrown away.

The relational structure comes with a fresh opportunity: aggregates over the

columns of A, such as the product between two columns of A, can be efficiently

computed by batch aggregate query engines like LMFAO [12], F [17] and AC/DC

[18], directly over the input database, without materialising A. LMFAO is able

to evaluate aggregates over the columns of A as batches of operations which

it pushes past the joins of the query Q and thus evaluates the aggregates

exponentially faster than naive approaches which use materialised A. This

performance is achieved by factorisation of the join query Q, which essentially

exploits the distributivity of × over ∪ (relational algebra -RA- terminology). This

enables LMFAO to compute aggregates over A’s columns without computing the

actual joins. This computation paradigm is called factorised computation. More

details about factorised computation can be found in Section 2.4.

1.2 Contributions

This thesis introduces two novel algorithms for computing L2-PCA models over the

data matrix A which is the non-materialised result of a join query Q over a multi-

relational database D. The first algorithm, Factorised Alternating Minimisation

(FAM), is a version of Alternating Minimisation, an iterative approximation

which at convergence produces A’s L2-PCA. The second algorithm, Factorised Eigen-

Decomposition (FED), is a closed form solution based on A’s Singular Value

Decomposition (SVD) and spectral theorems of linear algebra ([1] Chapter 6.4 page

318 and Chapter 6.7 page 352). Its core component is the eigen-decomposition of

ATA. Both algorithms use factorised computation paradigm to efficiently

calculate the necessary aggregates over A’s columns in order to perform the

learning tasks.
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Figure 1.2: The workflow proposed by this thesis.

Fig. 1.2 displays the proposed workflow for training the L2-PCA model of the

non-materialised data matrix A ∈ Rm×n. The core idea is to use the recent LMFAO

aggregate query engine to efficiently compute (without depending on m) batches of

aggregates over A’s columns as required by FED and FAM algorithms such that

the full listing representation of A is never materialised while W ∈ Rk×n (such that

X = AW T ) and Y ∈ Rk×n, are computed. Observe that the computed matrices W

and Y do not depend on m. Furthermore, even though X can be materialised, in

order to make a prediction one actually needs a single row of X say Xi,: = Ai,:W
T

where Ai,: is the join of one tuple from each of the input relations:

Ai,j ≈ Xi,:Y:,j = (Ai,:W T )Y:,j. (1.3)

This can be calculated and cached in O(nk). Note that in the classic algorithms,

when X and Y are both materialised, predicting Ai,j is O(k). This is the trade-off

we have to pay in order to train the L2-PCA model and make predictions without

depending on the number of rows m of the data matrix A.

A direct application of L2-PCA is low rank matrix completion. The data matrix

A can be the result of non equi-joins (such as left outer joins), in which case NULL

values will appear amongst A’s entries. These NULL values can be replaced by

default values (e.g. 0 in continuous case). Hence, L2-PCA can be naturally used to

impute these missing values. One can recover a unknown matrix A ∈ Rm×n of rank

k from as little as Ω(nk log n) known entries [7].
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Asymptotic time complexity results:

When computing the L2-PCA of the data set matrix A = Q(D) ∈ Rm×n, the two

complexities below do not depend onm, but rather on |D|fhtw(Q) where |D| = ∑
R∈D
|R|

and |R| is the number of tuples in relation R. Furthermore, fhtw(Q) is the fractional

hyper-tree width [23] of the query Q.

• FAM can iteratively compute a rank-k approximation of A ∈ Rm×n’s L2-PCA

in O(n2k × iterations+ n2|D|fhtw(Q)) time complexity, where n2|D|fhtw(Q) is

the time LMFAO takes to compute the covariance matrix (ATA) required

by FAM and iterations is the number of steps until convergence to global

minimum (proof in Appendix A.1.2 of [7]) or a hard limit set by the user (full

details in Chapter 3).

• FED can compute an arbitrary-rank closed-form solution to L2-PCA in

O(n3 + n2|D|fhtw(Q)) time complexity where n2|D|fhtw(Q) is the time LMFAO

takes to compute the covariance matrix (ATA) required by FED (full details

in Chapter 4).

In case the query result A contains categorical features (columns), these need to

be expanded using one-hot encoding. Thus, the number of columns of A becomes

at most nd where d is the size of the largest active domain among the categorical

features and n is the original number of columns. Thus, A ∈ Rm×nd. However,

we will redefine n := nd in categorical case because of simplicity and consistency

between the complexity analysis for numerical and categorical data matrix A. In

the categorical case, LMFAO [12] actually uses a more succinct encoding

than the assumed one-hot using FAQ-width [9], thus it achieves a factor

of d speed-up where d is the size of the largest categorical active domain.

FAM and FED can be exponentially faster than any approach that depends

on the full listing (materialised) representation of the data matrix A ∈ Rm×n, which

can have size m = |D|ρ∗(Q) � |D|fhtw(Q), as the difference between ρ∗(Q) (fractional

edge cover [22]) and fhtw(Q) (fractional hype-tree width [23]) can be as large as
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the number of relations in Q (section 3.1 of [8]). See more details about query size

measures in Section 2.4.

Implementation:

FAM and FED have been successfully implemented in C++ programming

language and connected to LMFAO. Details are presented in Chapter 5.

Experimental speed-up results:

Extensive performance experiments measuring the speed of calculating the L2-

PCA of the data matrix A which is the result of a join query over the multi-relational

databases Dhousing and Dretailer have been conducted in Chapter 6. These experiments

empirically showed that both FAM and FED implementations outperform by

several orders of magnitude the current state-of-art PCA libraries (Scikit-

Learn, TensorFlow, PyTorch) on top of PostgreSQL both from a time and memory

complexity point of view even when the state-of-art algorithms are calculating

a simpler model: A’s PCA.

1.3 Outline

The structure of the remaining chapters is as follows:

Chapter 2 introduces the mathematics which underpins PCA and L2-PCA

alongside the topic of factorised joins over multi-relational databases.

Chapter 3 presents Factorised Alternating Minimisation algorithm for com-

puting L2-PCA, along with its asymptotic complexity analysis and numerical

stability discussion.

Chapter 4 describes Factorised Eigen-Decomposition algorithm for comput-

ing L2-PCA, along with its asymptotic complexity analysis and numerical sta-

bility discussion.

Chapter 5 gives detail on the C++ implementation of FAM and FED algorithms.

The emphasis is on the key system design and algorithmic decisions.
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Chapter 6 depicts the experimental setup and data sets. The performance of

FAM and FED is contrasted against state-of-art PCA packages from TensorFlow, Py-

Torch and SkLearn which rely on PostgreSQL to compute the materialised join result.

Chapter 7 outlines related work on Factorised Learning and Linear Algebra

over databases.

Chapter 8 summarises the outcomes of this thesis and considers ideas for future

research in factorised learning generalised low rank models.



2
Preliminaries

Principal Component Analysis (PCA) uses the core of linear algebra i.e. matrices,

vector spaces and various operations between them. These basic concepts alongside

more advanced topics are explained in detail in Gilbert Strang’s Introduction to

Linear Algebra [1]. Precise references to this textbook will be given whenever linear

algebra results are invoked without proof.

2.1 Principal Component Analysis Formulations

PCA is a templatised method for dimensionality reduction which produces a

compact representation of data whilst minimising information loss. Let A ∈ Rm×n

be a data matrix. The following is a possible formulation for A’s PCA which seeks

the best rank-k approximation of A in the least squares sense: Assume Z ∈ Rm×n,

minimise : ‖A− Z‖2
F subject to: Rank(Z) ≤ k. (2.1)

Note that we assumed k ≤ Rank(A) and perhaps that min(n,m)� k.

Here is another formulation for the rank constraint:

Z = XY where X ∈ Rm×k and Y ∈ Rk×n, (2.2)

8



2. Preliminaries 9

which leads to:

minimise : ‖A−XY ‖2
F subject to: X ∈ Rm×k and Y ∈ Rk×n. (2.3)

In this formulation, the k columns of X and the k rows of Y represent a rank-

k approximation model (using top k principal components) for A. This again

assuming k ≤ Rank(A) and perhaps min(n,m) � k.

Finally, we formulate A’s Quadratically Regularised PCA (L2-PCA) - in the

Ridge Regression sense - by adding L2 regularisers:

minimise : ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F (2.4)

subject to: X,∈ Rm×k and Y ∈ Rk×n. (2.5)

Observe that L2-PCA is a generalised form of PCA (for instance, setting γ = 0

produces the least squares version).

2.2 Principal Component Analysis Solution

2.2.1 Formulation

Recall the matrix multiplication formulation for the rank constraint:

rank(Z) ≤ k ⇐⇒ Z = XY where X ∈ Rm×k and Y ∈ Rk×n, (2.6)

which led to (equation 2.3 in the introduction chapter):

minimise : ‖A−XY ‖2
F subject to: X ∈ Rm×k and Y ∈ Rk×n. (2.7)

2.2.2 Closed form solution

We factorise A using SVD decomposition (see Strang’s textbook chapter 6.7 p352 [1]):

A = UΣV T , (2.8)

where r = Rank(A) and:

• U =
[
u1 . . . ur

]
∈ Rm×r, UTU = Ir where ui are the left singular vectors.
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• Σ = diag(σ1, . . . , σr) ∈ Rr×r has the singular values σ1 ≥ · · · ≥ σr > 0.

• V =
[
v1 . . . vr

]
∈ Rn×r, V TV = Ir where vi are the right singular vectors.

Taking just the first k singular vectors and k singular values, we obtain Ak = UkΣkV
T
k

which by Eckart-Young theorem [3] is the best rank-k approximation of A.

Thus, we derive

X = UkΣ
1
2
k , (2.9)

Y = Σ
1
2
k V

T
k , (2.10)

as a possible closed form solution to Equation 2.7 minimisation problem. Note that

if XY is a solution, so is (XZ)(Z−1Y ) thus the solutions are not unique.

2.3 Quadratically Regularised PCA Solutions

Recall that we obtain L2-PCA formulation by adding regularisers:

minimise : ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F (2.11)

subject to: X,∈ Rm×k and Y ∈ Rk×n. (2.12)

where X ∈ Rm×k and Y ∈ Rk×n.

2.3.1 Closed form solution

As before, a solution will be given by the rank-k SVD of A, (A = UkΣkV
T
k ) where

the regulariser γ takes a key role in the diagonal matrix of singular values, Σ′k:

X = UkΣ
′ 12
k , (2.13)

Y = Σ′
1
2
k V

T
k , (2.14)

Σ′k = diag((σ1 − γ)+, . . . (σk − γ)+), (2.15)

where (x)+ = max(x, 0). A proof of correctness can be found in Appendix A.1.1

of Generalised Low Rank Models paper by M. Udell [7]. Observe that setting
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γ = 0 produces the solution to classical PCA. Choosing a good γ is done using

fundamental techniques such as cross-validation. In this thesis, γ is treated as

a parameter which is given to the algorithm.

2.3.2 Iterative Solution using Alternating Minimisation

Another way to minimise the objective 2.11 is to use an iterative approximation

approach: alternatively fix the value of X and optimise for Y and then fix the value

of Y and optimise for X until convergence to the global minimum of the objective

function 2.11. Of course that due to floating point precision, the iteration stops

when the change for both X and Y is less than τ per iteration where τ is a small

value representing the floating point error tolerance.

The iterative algorithm is given by the following:

Xt+1 = AY T
t (YtY T

t + γIk)−1, (2.16)

Yt+1 = (XT
t+1Xt+1 + γIk)−1XT

t+1A. (2.17)

The full derivation of the algorithm can be seen in the Appendix A.2, using

matrix calculus formulae explained in Appendix A.1. Observe that setting γ = 0

produces the Alternating Minimisation solution for classical PCA. Furthermore,

observe that the iteration for Y looks precisely as n simultaneous Ridge Regressions

(one for each of A’s columns).

2.4 Factorised Joins Over Multi-Relational Databases

This thesis uses factorised computation solely for the purpose of comput-

ing the covariance matrix of the data set on which L2-PCA is applied.

This computation is done completely using previous work and this thesis

simply builds applications on top of it.

A database is defined as efficient, reliable, convenient, and safe multi-user storage
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of and access to massive amounts of persistent data [27]. A multi-relational

database is a database which is stored using at least two relations.

Structured Query Language (SQL) is a programming language for relational

queries over relational databases. A query Q is a request for information which

can be compiled and evaluated over a multi-relational database D. The result of a

query Q is a relation.

This thesis considers specifically SUM aggregate joins, such as:
SELECT SUM(ai ∗ aj )
FROM r e l a t i o n 1 NATURAL JOIN r e l a t i o n 2 . . .

which expresses (ATA)i,j - the inner product between the columns i and j of the

data matrix A which is the result of a join query Q over a multi-relational database

D. If the data matrix A is the result of a non equi-join, then it contains NULL

values. Fortunately, SUM aggregates are not affected as NULL values can be

replaced with default values (e.g. 0 in the continuous case) which do not affect the

sum expressed by the aggregate.

Factorised Databases (FDB) are introduced in detail in [8] using Figure 2.1 as

support for the core definitions.

Definition 1 A Factorised Database (FDB) is defined using Figure 2.1 by its

components: (note that a complete formal definition can be found in [8])

• a Multi-Relational Database consisting of three relations: Sales, Branch and

Competition alongside their Natural Join - sub-figure (a),

• hypergraph of the natural join of the relations - sub-figure (b),

• variable order ∆ defining a possible nesting structure of the factorised join -

sub-figure (c)

• the factorised query ∆(D), grounding the variable order ∆ over the database

D - sub-figure (d).
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Figure 2.1: Factorised definitions by example, as presented in Factorised Databases [8]
Section 2: A Factorization Example

Definition 2 Factorised computation is defined by taking an algorithm and decom-

posing it into batches of aggregates which can be pushed past the joins of a query by

using the distributivity of × over ∪ (see sub-figure (d) of Figure 2.1).

Examples of factorised computation of aggregates:

• The query:
SELECT SUM(1)
FROM sa l e s NATURAL JOIN branch

NATURAL JOIN compet i t ion

which aggregates over the multi-relational database presented in Figure 2.1

represents the cardinality of the join result. In this case, one simply turns ∪ in

+ and × in ∗ in sub-figure (d) of Figure 2.1. Each data value is interpreted as

a unit 1 and then the arithmetic expression is evaluated bottom up, yielding

|∆(D)| without materialising the join.

• The query:
SELECT SUM(C∗P)
FROM sa l e s NATURAL JOIN branch

NATURAL JOIN compet i t ion
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which aggregates over the columns C and P of the multi-relational database

presented in Figure 2.1 represents the inner product between columns C and

P of the natural join in sub-figure (a). This aggregate can be pushed past

the join query as well. One turns all values except for C and P into 1, then

just as before turns ∪ into + and × into ∗. A bottom up evaluation of the

arithmetic expression yields SUM(C*P) without materialising ∆(D).

As presented in Theorem 3.4 of [8], there are several complexity measures which

this thesis will use when discussing factorised computation:

Theorem 1 ([22], [23], [31] ) For an arbitrary join query Q and an arbitrary

database D, the query result A = Q(D) can have:

• a flat representation of size O(|D|ρ∗(Q)) [22]

• a factorised representation (say E) over d-trees of size O(|D|fhtw(Q)) [23]

Theorem 3.8 of [8] gives the desired aggregate evaluation complexity:

Theorem 2 (Generalisation of [30] [17]) Given a variable order ∆ and a factorised

representation E over ∆, any SQL aggregate of the form SUM(X), MIN(X) or

MAX(X) where X is an expression in the semi-ring (N[∆],+, ∗, 0, 1) can be computed

in one pass over E.

Furthermore, the measures ρ∗(Q) and fhtw(Q) are fractional edge cover number

[22] and the fractional hyper-tree width [23] of the query Q. The following

inequation holds:

1 ≤ fhtw(Q) ≤ ρ∗(Q) ≤ |Q| (2.18)

where |Q| is the number of relation literals present in the join query Q.

Proposition 1 Using the above two theorems, the recent LMFAO query engine 12

can efficiently make use of the factorised join representation and compute aggregates

such as SUM(ai ∗ aj) in O(|D|fhtw(Q)). One application of this is the computation

of S = ATA for which Si,j is precisely the SUM(ai ∗ aj) aggregate. Thus, S can be

calculated in O(n2|D|fhtw(Q)).
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A key observation to mention here concerns the case when A has categorical features.

A categorical feature means a column whose entries are not in R but rather members

of a discrete set, called the domain of the category. This thesis over-estimates

the true complexity for computing S. The complexity, as presented in this thesis,

will be assuming one-hot encoding. Thus, computing S will take O(n2d2|D|fhtw(Q))

where d is the size of the largest active domain among categorical features (in the

worst case, each column is replaced by d new columns). However, LMFAO is using a

sparse encoding which is more succinct than one-hot, depending on the FAQ-width

(presented in detail in the Appendix of [9]). This efficient encoding reduces the

complexity by a factor of d, obtaining the following complexity for calculating S:

O(n2d|D|fhtw(Q)) (2.19)



3
FAM: Factorised Alternating

Minimisation

Chapter 2 introduced the preliminaries. This chapter presents in detail Factorised

Alternating Minimisation (FAM) algorithm for computing the Quadratically Regu-

larised Principal Component Analysis (L2-PCA) of some input data matrix described

as the non-materialised result: A = Q(D) ∈ Rm×n of a query Q over a multi-

relational database D which in materialised listing form has m tuples and each

tuple has n attributes. Furthermore, we assume m � n.

Recall the Alternating Minimisation solution for A’s L2-PCA (from Chapter 2):

Xt+1 = AY T
t (YtY T

t + γIk)−1, (3.1)

Yt+1 = (XT
t+1Xt+1 + γIk)−1XT

t+1A. (3.2)

3.1 Inlining of the Iterative Solution

In order to use factorised computation, we notice that when the equation for Xt+1

is inlined in the equation for Yt+1 and the matrices are conveniently bracketed

using associativity, one can rewrite the classic Alternating Minimisation to perform

operations that only depend on ATA which, as explained in Section 2.4, does not

require A to be materialised in order to be computed:

16
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Yt+1 =
((
AY T

t (YtY T
t + γIk)−1

)T(
AY T

t (YtY T
t + γIk)−1

)
+ γIk

)−1

(3.3)
(
AY T

t (YtY T
t + γIk)−1

)T
A, (3.4)

=
((

(YtY T
t + γIk)−1Yt

)
(ATA)

(
Y T
t (YtY T

t + γIk)−1
)

+ γIk

)−1

(3.5)(
(YtY T

t + γIk)−1Yt
)
(ATA), (3.6)

Let us use the following notation:

S := ATA ∈ Rn×n, (3.7)

Zt := (YtY T
t + γIk)−1 ∈ Rk×k, (3.8)

Wt := ZtYt ∈ Rk×n. (3.9)

Then:

Yt+1 =
((

(YtY T
t + γIk)−1Yt

)
(ATA)

(
Y T
t (YtY T

t + γIk)−1
)

+ γIk

)−1

(3.10)(
(YtY T

t + γIk)−1Yt
)
(ATA), (3.11)

=
(
(ZtYt)S(Y T

t Z
T
t ) + γIk

)−1
(ZtYt)S, (3.12)

= (WtSW
T
t + γIk)−1WtS, (3.13)

Xt+1 = AY T
t (YtY T

t + γIk)−1, (3.14)

= AW T
t . (3.15)

The factorised query engine (LMFAO) efficiently calculates S = ATA inO(n2|D|fhtw(Q))

where fhtw(Q) is the fractional hypertree width of the query Q. Thus, we do not

depend on the number of rows (m) of the (non-materialised) matrix A when

computing S. Furthermore, we only work with matrices whose sizes depend solely

on n and k thus each iteration’s complexity is independent of the number of

rows (m) of the data matrix A.
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3.2 Convergence Analysis

The alternating minimisation algorithm converges to the global optimum (proof

in Appendix [A.3]). The convergence checks are:

‖Yt+1 − Yt‖2
F ≤ τ, (3.16)

‖Xt+1 −Xt‖2
F = ‖AW T

t − AW T
t−1‖2

F ≤ ‖A‖2
F‖W T

t −W T
t−1‖2

F ≤ τ, (3.17)

where ‖A‖2
F can be precomputed as Tr(S) and we already know Wt and Wt−1

as they are required to compute Yt and Yt−1. We used the submultiplicativity of

Frobenius norm in inequation 3.17 which is a simple consequence of the remarkable

Cauchy-Buniakovsky-Schwartz inequality (proof in Appendix [B.2.1]).

3.3 FAM Pseudo-code

1 /∗ Note that the p o s s i b i l i t y o f s e t t i n g a hard l i m i t f o r
2 i t e r a t i o n s has been removed f o r r e a d a b i l i t y reasons . ∗/
3
4 FUNCTION FAM ( S , k , &Y , &W ) : void // output parameters Y and W
5 gamma := 10−4

6 tau := 10−6

7
8 Yt := [Ik|0] ∈ Rk×n // the i n i t i a l guess o f c o r r e c t shape
9 Wt := 0 ∈ Rk×n // the c o r r e c t shape

10
11 done := false
12 whi le done 6= true do
13 Zt := (YtY T

t + Ikγ)−1

14
15 Wold := Wt

16 Wt := ZtYt

17
18 Bt := (WtSWT

t + Ikγ)−1

19
20 Yold := Yt

21 Yt := BtWtS
22
23 i f Tr(S)‖Wold −Wt‖2

F ≤ τ and ‖Yold − Yt‖2
F ≤ τ

24 done := true
25
26 Y := Yt

27 W := Wt

28 �

Given S = ATA and k the desired low rank, it produces Y and W such that X =

AW T and XY is an approximation of the best rank k embedding of A. Due to Tr(S)

being large relative to the machine precision, we will only require ‖Wold−Wt‖2
F ≤ τ .
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3.4 Complexity Analysis

Theorem 3 Let the data matrix A = Q(D) ∈ Rm×n be the result of an arbitrary

fixed join query Q over an arbitrary fixed multi-relational database D. Let fhtw(Q)

[23] be the fractional hypertree width of Q. Factorised Alternating Minimisation

computes rank-k L2-PCA of A given by matrices Y ∈ Rk×n and W ∈ Rk×n,

such that X = AW T and A ≈ XY is the best rank-k approximation of A, in

O(n2k × iterations+ n2|D|fhtw(Q)) time.

Proof 1 We analyse the complexity of FAM’s internal operations over A ∈ Rm×n

and rank k.

• S = ATA takes O(n2|D|fhtw(Q)) time complexity (see Proposition 1) using

LMFAO engine (computed once and cached). If A has categorical features,

then this is actually over-estimating the total complexity as n is replaced by

nd (as we assume one-hot encoding) where d is the size of the largest active

domain among the categorical features. In practice, LMFAO unleashes the full

potential of factorised computation by using a more succinct representation

based on FAQ-width [9] and achieves an extra O(d) time complexity speed-up.

• ‖A‖2
F = Tr(S) takes O(n) trivially (computed once and cached).

• YtY
T
t + γIk takes O(k2n) as Yt ∈ Rk×n and Ik ∈ Rk×k.

• Zt = (YtY T
t + γIk)−1 takes O(k3) using Cholesky decomposition.

• Wt = ZtYt takes O(k2n) as Zt ∈ Rk×k and Yt ∈ Rk×n.

• WtSW
T
t + γIk takes O(n2k+ k2n) = O(n2k) as k is significantly smaller than

n and Wt ∈ Rk×n, S ∈ Rn×n, W T
t ∈ Rn×k and Ik ∈ Rk×k.

• Bt = (WtSW
T
t + γIk)−1 takes O(k3) using Cholesky decomposition.

• Yt+1 = BtWtS takes O(n2k+k2n) = O(n2k) as k is significantly smaller than

n and Bt ∈ Rk×k, Wt ∈ Rk×n and S ∈ Rn×n.
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Looking at the pseudo-code, the time complexity of an iteration step is: O(n2k) +

O(nk2) +O(k3) = O(n2k) as k is significantly smaller than n. The precomputation

of S = ATA which takes O(n2|D|fhtw(Q)) therefore the total complexity is:

O(n2k × iterations+ n2|D|fhtw(Q)) � (3.18)

The complexity of the classic Alternating Minimisation algorithm can be reduced to

O(n2k×iterations+n2m). Our complexity in Equation 3.18 can be exponentially

faster than any alternating minimisation approach that depends on the full listing

(materialised) representation of A = Q(D), which can have size m = |D|ρ∗(Q) �

|D|fhtw(Q), as the difference between ρ∗(Q) (fractional edge cover) and fhtw(Q)

(fractional hypertree width) can be as large as the number of relation literals in Q

(see inequality 2.18).

3.5 Numerical Stability Optimisation

It can be shown that floating point standard IEEE754 is biased towards small

values. The domains for 64-bit double and 80-bit long double can represent values in

immense ranges (for example the range for long double is ≈ [−1.18×104932,−3.65×

10−4951]∪ [3.65× 10−4951, 1.18× 104932]). Out of all these values, 50% of the floating

point numbers which can be represented are in the interval (−1, 1). See more details

in Appendix C.1.

Analysing equation[3.13]:

Yt = (WtSW
T
t + γIk)−1WtS (3.19)

⇐⇒ Yt =
(
Wt

S

α
W T
t + γ

α
Ik

)−1

Wt
S

α
(3.20)

where α = Tr(S)
n

(3.21)

We used the fact that the constant α comes out of the inverse as 1
α
and then used

commutativity of scalar with matrices. This observation implies that we can factor

away a constant α from S without affecting the result. Hence, the values of S
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can be kept small. There is empirical evidence that this observation improves

the numerical stability of FAM by orders of magnitude for the Housing data set

(see the penultimate experiment in Chapter 6).

3.6 Chubby 6= Bad

It is often the case that it is costly (or impossible) to obtain many data points.

In fields such as medical research it is more likely to have a small number of data

points which through complicated analysis produced large numbers of features (each

sample can represent a patient’s medical record). Principal Component Analysis

(with its various applications) is nevertheless vital in this domain as well.

Just as before, we assume that the data matrix on which we apply quadratically

regularised PCA on is the result of a query Q over a factorised database D:

A = Q(D) ∈ Rm×n. The key difference is that we now assume n � m.

3.6.1 Solution using Alternating Minimisation

Recall that the iterative algorithm is given by the following recurrences:

Xt+1 = AY T
t+1(Yt+1Y

T
t+1 + γIk)−1, (3.22)

Yt+1 = (XT
t Xt + γIk)−1XT

t A, (3.23)

obtained from the objective function:

L(X, Y ) = ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F , (3.24)

by fixing X and minimising for Y alternating with fixing Y and minimising for X.

3.6.2 Inlining of the Iterative Solution Revisited

This time the tables have turned: we inline the equation for Yt+1 in the equation for

Xt+1 then we can group the matrices such that we perform operations that do not

depend on the number of columns (n) of the factorised database data matrix A:
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Xt+1 = A

(
ATXt(XT

t Xt + γIk)−1
)

(3.25)(
(XT

t Xt + γIk)−1XT
t A(ATXt(XT

t Xt + γIk)−1) + γIk

)−1

(3.26)

= (AAT )
(
Xt(XT

t Xt + γIk)−1
)

(3.27)((
(XT

t Xt + γIk)−1XT
t

)
(AAT )

(
Xt(XT

t Xt + γIk)−1)
)

+ γIk

)−1

(3.28)

Let us use the following notation:

G := AAT ∈ Rm×m, (3.29)

Kt := (XT
t Xt + γIk)−1 ∈ Rk×k, (3.30)

Lt := XtKt ∈ Rm×k. (3.31)

Then:

Xt+1 = (AAT )
(
Xt(XT

t Xt + γIk)−1
)

(3.32)((
(XT

t Xt + γIk)−1XT
t

)
(AAT )

(
Xt(XT

t Xt + γIk)−1)
)

+ γIk

)−1

(3.33)

= G(XtKt)
(
(KT

t X
T
t )G(XtKt) + γIk

)−1
, (3.34)

= GLt(LTt GLt + γIk)−1, (3.35)

Yt+1 = (XT
t Xt + γIk)−1XT

t A, (3.36)

= LTt A. (3.37)

During iterations, we do not depend on the number of columns (i.e. n) in the time

complexity for computing the solution to the quadratically regularised PCA, as we

work with matrices whose sizes depend only on m and k.

We will now focus on proving that equations 3.35 and 3.37 can be recovered

equivalently assuming FAM runs on G = AAT instead of S = ATA:

• clearly S became G.
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• assuming we rename Yt to XT
t , we obtain:

Zt = (YtY T
t + γIk)−1 = (XT

t Xt + γIk)−1 = KT
t

Wt = ZtYt = KT
t X

T
t = (XtKt)T = LTt

• furthermore, we conclude the proof by obtaining:

Xt+1 = ATW T
t = ATLt = (LTt A)T = Y T

t+1 �

Thus, we obtain in W the value LT and in Y the value XT which means that

one implementation suffices for both scenarios. �



4
FED: Factorised Eigen-Decomposition

The previous chapter presented Factorised Alternating Minimisation (FAM) al-

gorithm for performing Quadratically Regularised Principal Component Analysis

(L2-PCA). This chapter focuses on the details of Factorised Eigen-Decomposition

(FED) algorithm for computing the L2-PCA of some input data set described

as the non-materialised data matrix: A = Q(D) ∈ Rm×n of a query Q over a

multi-relational database D which in materialised listing form has m tuples and

each tuple has n attributes. Furthermore, we assume m � n.

4.1 Eigenvalue Eigenvector Decomposition

Computing the SVD of A can be very expensive. However, we will rewrite the

algorithm which computes A’s SVD using the eigen-decomposition of ATA, taking

advantage of the fact that we can use factorised computation to efficiently compute

S = ATA using the recent LMFAO [12] query engine:

S = ATA
eigenvalue-eigenvector decomposition−−−−−−−−−−−−−−−−−−−−→ LΛL−1. (4.1)

Hence, by the spectral theorems[B.3] we have:

LΛL−1 = LΛLT . (4.2)

24



4. FED: Factorised Eigen-Decomposition 25

On the other hand:

A = UΣV T (4.3)

⇐⇒ S = ATA = V ΣUTUΣV T (4.4)

⇐⇒ S = V Σ2V T because U is orthonormal (4.5)

Therefore, we know that S = V Σ2V T for some orthonormal matrix V and some

diagonal matrix Σ2. But we already have means to obtain these kinds of matrices

using equation 4.2. Therefore, we can retrieve:

V = L (4.6)

Σ = Λ 1
2 . (4.7)

For the curious reader, it is always the case that in equation 4.7 we have

non-negative eigenvalues for S, proof in appendix[B.3.1].

We can recover Y and W produced by alternating minimisation, except in

closed form solution, as presented in section[2.3.1]:

Y = Σ′
1
2
k V

T
k , (4.8)

W = Σ′−
1
2

k V T
k (4.9)

The equation 4.9 comes from the equation 3.15 (X = AW T ) corroborated with the

equation 2.13 (X = UkΣ
′ 12
k ), when A = UkΣkV

T
k . Also, the k chosen (eigenvector,

eigenvalue) pairs will be the top k pairs with the greatest eigenvalues.

Observe the fact that since we obtain the full matrix Σ, we can pick the rank

k of the decomposition by simply looking at the sum representation and choosing

k with a satisfying reconstruction accuracy:

accuracy = 1− relativeError = 1− ‖A
′ − Ak‖2

F

‖A′‖2
F

= 1− ‖UnΣ′nV T
n − UkΣ′kV T

k ‖2
F

‖UnΣ′nV T
n ‖2

F

= 1−
‖
n∑
i=1

(σi − γ)+uivTi −
k∑
i=1

(σi − γ)+uivTi ‖2
F

‖
n∑
i=1

(σi − γ)+uivTi ‖2
F

= 1−

n∑
i=k+1

(σi − γ)2
+

n∑
i=1

(σi − γ)2
+

=

k∑
i=1

(σi − γ)2
+

n∑
i=1

(σi − γ)2
+

.
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Note that Factorised Alternating Minimisation (FAM) did not have such a rank

revealing property, but rather assumed the rank is given as an argument. Hence,

since FED takes the reconstruction accuracy as an argument, this method seems

to be superior in this respect.

4.2 Pseudo-code - FED

1 FUNCTION FED (S, k,&Y,&W,accuracy ) : void // output parameters Y and W
2 L := Seigenvectors // ordered in d e c r e a s i n g value o f e i g e n v a l u e s
3 D := diag(Seigenvalues) // in d e c r e a s i n g order σ1 ≥ · · · ≥ σn

4
5 γ := 10−4

6 EPS := 10−8

7
8 sum := 0
9 f o r i := 1 to n do

10 Di,i := max
(

0,
√
Di,i − gamma

)
11 sum := sum+D2

i,i

12
13 current := 0
14 f o r i := 0 to n do
15 current := current+D2

i,i

16 k = max (k, i+ 1)
17 i f current+ EPS ≥ accuracy ∗ sum break
18
19 f o r i := 0 to k do
20 Σ′i,i := Di,i

21 V:,i := L:,i
22
23 Y := Σ′−

1
2 V T

24 W := Σ′−
1
2 V T

25 �

Given S = ATA and the desired low rank k or the required reconstruction accuracy,

we return Y and W such that X = AW T and ‖A′−XY ‖2
F

‖A′‖2
F
≥ accuracy where the

chosen rank is the maximum between the given k and the smallest rank which

satisfies the requested reconstruction accuracy (note that full rank gives 100%

reconstruction accuracy) and A′ = UΣ′V T , with Σ′ = diag((σi−γ)+), i ∈ {1, . . . , n}

and a+ = max(0, a).

4.3 Complexity Analysis

Theorem 4 Let A = Q(D) ∈ Rm×n be the result of an arbitrary fixed join query Q

over an arbitrary fixed multi-relational database D. Let fhtw(Q) [23] be the fractional
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hypertree width of Q. Factorised Eigen-Decomposition computes arbitrary-rank (k)

L2-PCA of A given by matrices Y ∈ Rk×n and W ∈ Rk×n, such that X = AW T

and A ≈ XY is the best rank-k approximation of A, in O(n3 + n2|D|fhtw(Q)) time.

Proof 2 The time complexity for eigen-decomposition is 9n3 steps (as presented by

the interface of the algorithm [21]) and ATA is computable in O(n2|D|fhtw(Q)) by

LMFAO [12] (see Proposition 1). Thus, in total we have O(n3 + n2|D|fhtw(Q)). �.

Notice here that if A has categorical features, then this is actually over-

estimating the total complexity as n is replaced by nd (as we assume one-hot

encoding) where d is the size of the largest active domain among the categorical

features. In practice, LMFAO unleashes the full potential of factorised computation

by using a more succinct representation based on FAQ-width [9] and achieves an

extra O(d) time complexity speed-up.

According to Golub & Van’s textbook Matrix Computations [6], the best algorithm

for computing SVD: A = UΣV T ∈ Rm×n is O(n3 + n2m), hence our approach can

be exponentially faster than any SVD approach that depends on the full listing

(materialised) representation of A = Q(D), which can have size m = |D|ρ∗(Q) �

|D|fhtw(Q), as the difference between ρ∗(Q) (fractional edge cover) and fhtw(Q)

(fractional hypertree width) can be as large as the number of relation literals in Q

(see inequality 2.18).

4.4 Numerical Stability

The numerical stability of FED falls back on the numerical stability of self-adjoint

eigen-decomposition classified as good by Eigen’s catalogue of decompositions [20].

4.5 FAM vs FED

In this case where ATA is efficiently computed, it turns out that one prefers the

closed form solution when: iterations× k ≥ 9n where k is the low rank given as

argument to FAM algorithm. Thus, if n is very small (hundreds) and k is very small

(tens) then the closed form solution is preferred from a time complexity point of view.
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4.6 Chubby 6= Bad

Again, it can sometimes be costly (or impossible) to obtain many data points.

Throughout this section, the assumption is that the data set we apply quadratically

regularised PCA on is the result of a query Q over a factorised database D.

Furthermore, we assume that the result of the query is a non-materialised relation

which has m ∈ N∗ tuples (data points) with n ∈ N∗ attributes with n � m. We

represent the result of the query as the matrix A ∈ Rm×n.

4.6.1 Closed form solution via Eigen-Decomposition

We take advantage of the fact that we have computed G = AAT which is symmetric:

G
eigenvalue-eigenvector decomposition−−−−−−−−−−−−−−−−−−−−→ LΛL−1. (4.10)

Hence, by the spectral theorems[B.3] we have:

LΛL−1 = LΛLT . (4.11)

On the other hand:

A = UΣV T (4.12)

⇐⇒ G = AAT = UΣV TV ΣUT (4.13)

⇐⇒ G = UΣ2UT because V is orthonormal (4.14)

Therefore, we know that G = UΣ2UT for some orthonormal matrix U and some

diagonal matrix Σ2. But we already have means to obtain these kinds of matrices

using equation 4.11. Therefore, we can retrieve:

U = L (4.15)

Σ = Λ 1
2 . (4.16)

For the curious reader, it is always the case that in equation 4.16 we have non-

negative eigenvalues for G proof in appendix[B.3.1].
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But now we can recover Xfinal and Lfinal produced by alternating minimisation,

except in closed form solution, as presented in section[2.3.1]:

Xfinal = UkΣ
′ 12
k (4.17)

Lfinal = UkΣ
′− 1

2
k (4.18)

The equation 4.18 comes from the equation 3.37: Y = LTA with the equation 2.14:

Y = Σ′
1
2
k V

T
k , when A = UkΣkV

T
k . Also, the k chosen (eigenvector, eigenvalue)

pairs will be the top k pairs with the greatest eigenvalues.

Proof that classic FED algorithm produces the same result (transposed):

• We set S = AAT instead of ATA. Thus, the eigen-decomposition actually

produced Uk and Σk instead of Vk and Σk.

• Thus, FED sets:

Y = Σ′
1
2
k V

T
k = Σ′

1
2
k U

T
k = (UkΣ

′ 12
k )T = XT

final

W = Σ′−
1
2

k V T
k = Σ′−

1
2

k UT
k = (UkΣ

′− 1
2

k )T = LTfinal �

Therefore we can use the same FED algorithm with AAT as input and obtain

the desired results. �



5
Implementation

The previous two chapters introduced Factorised Alternating Minimisation (FAM)

and Factorised Eigen-Decomposition (FED) algorithms for computing Quadratically

Regularised Principal Component Analysis (L2-PCA) model. This chapter discusses

the essential design decisions regarding programming FAM and FED. The focus

will be on scalability, reliability and speed of the two implementations. The two

algorithms are implemented in C++ programming language, using Eigen template

library for linear algebra. The programs were written on top of knowledge mainly

gathered from the following courses: 1st-Year Linear Algebra, 2nd-Year OOP, 2nd-

Year Concurrent Programming, 2nd-Year Compilers, 3rd-Year Computer Architecture

and 4th-Year Concurrent Algorithms and Data Structures. The chapter begins

by explaining the choice of programming language.

5.1 Why C++ Programming Language

The main reason why C++ programming language is chosen is because C++ is the

closest programming language to Intel 64 Architecture [26] instruction set, which

is used by most of today’s processors. Therefore, the code is (almost) translated

straight to Intel 64 instructions. Furthermore, there are many free C++ compilers

available. This thesis uses g++ from the GNU Compiler Collection (GCC). The main

30
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reason behind it is that it supports state-of-art compilation optimisation flags such

as −O3 and Ofast. Using such a compilation flag will cause the compiler to: use

heuristics regarding access patterns (for memory hierarchy), loop unrolling, heuristic

predictions and Single Instruction Multiple Data (SIMD) operations, creating little

to no redundant assembly instructions (note here that interpreted languages tend to

have redundant instructions introduced by the byte code interpreters, redundancies

which are non-trivial for a compiler to eliminate).

Among the positive aspects of C++ programming we find:

• Its remarkable compilation and run-time speed (due to closeness to I-64

Architecture as previously mentioned). Note here that C and Fortran might

achieve faster execution times, however the lack of template libraries tipped

the balance towards C++.

• Memory management is done by the user. This implies that there are no

graphs of references that are being constructed in the background, alongside

reachability algorithms which try to detect unreachable memory regions. Thus,

the program run-time is smooth and easy to benchmark, focusing again on

performance. Note here that we are going to avoid using any kind of smart

C++ pointers.

• LMFAO [12] query engine is written in C++.

There are negative aspects of C++ programming (otherwise all programs would

be written in C++):

• Memory leaking is easily caused by the lack of a garbage collection system.

• Objects can be passed by reference or by value (as a copy), thus it is easy to

write inefficient C++ code.

• It is easy to create Segmentation Faults by dereferencing NULL or previously

deleted (dangling) pointers.
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• There are few to no good IDEs, thus command line debugging is common

practice among C++ programmers.

One might prefer to trade the easy difficulty of writing buggy/inefficient code for

the chance of writing extremely efficient (and profilable) code.

5.2 Why Eigen for Linear Algebra

Eigen is a C++ template library for linear algebra algorithms. The fact that it is a

template library implies that it is easy to install as it will be inlined and compiled

by the compiler at run-time (there are only headers, no .cpp files). Thus, it is easy

to use regardless of Operating System (OS) or compiler version.

There are quite a few remarkable advantages of using Eigen for linear algebra:

• It supports dense and sparse matrix linear algebra,

• Since it is templatised, it supports the use of variable data types,

• It uses Expression Templates (ET) which allow lazy evaluation, and

removal of temporary containers,

• It allows 64-bit and 80-bit SIMD optimisations,

• It automatically spawns multiple threads if algorithms support it,

• The algorithms used are carefully selected for reliability, numerical stabil-

ity and memory-time complexity trade-offs are always taken into consideration,

• Google’s TensorFlow is built on top of Eigen (this indicates the trust of a

major company),

• And nevertheless, it is very elegant to code with and has plenty of detailed

documentation available [19].

Since no perfect linear algebra library exists, there are a few drawbacks as well:
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• It is sometimes difficult to understand whether one should use column major

or row major matrices (this can lead to poor performance.)

• Sometimes there is incomplete documentation and undefined behaviour can

thus easily leak in the program by incorrectly initialising objects.

5.2.1 Why Dense Matrices

It is the case that LMFAO query engine can compute the matrix S = ATA where

A = Q(D), the result of an arbitrary query Q over a multi-relational database

D when A has categorical features. A compressed version of one-hot encoding

will then be used. This means that a sparse representation of ATA might come

in handy. However, we will be using dense matrices and the reason for this is

because we often have to take inverses of matrices, and the inverse of a sparse

matrix can be dense. See the proof in appendix [B.1.1].

5.3 Matrix Utility Library

Using a templatised class called MatrixUtil provides several features. The main

feature is that the algorithms implemented as static members of this class can be

used with different data types such as: int, float, double, long double, complex.

Being tied to a class is a preference as all the relevant linear algebra algorithms

alongside their documentations would follow OOP conventions. Furthermore, being

a template class, it has the implementation as part of the header. Hence, just as

Eigen library, it does not require any pre-compilation and can be used as is.

1 template <typename T>
2 c l a s s MatrixUtil
3 {
4 p r i v a t e :
5 typede f Eigen : : Matrix<T , Eigen : : Dynamic , Eigen : : Dynamic> MatrixT ;
6 s t a t i c constexpr long double EPS = 1e−16;
7 s t a t i c constexpr long double tau = 1e−5;
8 p u b l i c :
9 [ . . . ]

10 }
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5.4 Factorised Alternating Minimisation Imple-
mentation

See below the interface:

1 template <typename T>
2 c l a s s MatrixUtil
3 {
4 [ . . . ]
5 s t a t i c void FactorisedAlternatingMinimisation ( MatrixT ATA ,
6 i n t rankK ,
7 MatrixT &W ,
8 MatrixT &Y ,
9 i n t iterations = −1) ;

10 /∗∗
11 ∗ Given the matrix ATA ( i . e . 'ATA ' ) , and a ' rankK ' , perform I n l i n e d
12 ∗ L2−PCA on matrix A. This w i l l produce the e igen matrix 'W' such that
13 ∗ X = AWT and the e igen matrix 'Y ' such that XY i s the best rank−k
14 ∗ approximation o f A. I f s p e c i f i e d , the a lgor i thm w i l l perform ' i t e r a t i o n s '
15 ∗ otherw i se i t w i l l i t e r a t e u n t i l the i t e r a t i o n improvement i s below ' tau ' :
16 ∗ i f ( ( Wold − Wt) . squaredNorm ( ) < tau &&
17 ∗ ( Yold − Yt) . squaredNorm ( ) < tau )
18 ∗ done = true ;
19 ∗ Complexity per i t e r a t i o n : O(N2rankK) where N = 'ATA. s i z e ( ) ' .
20 ∗ Speed : Very f a s t
21 ∗/
22 [ . . . ]
23 }

See below the implementation:

1 template<typename T>
2 void MatrixUtil<T >:: FactorisedAlternatingMinimisation ( MatrixT ATA ,
3 i n t rankK ,
4 MatrixT &W ,
5 MatrixT &Y ,
6 i n t iterations )
7 {
8 MatrixT Yt = MatrixT : : Zero ( rankK , ATA . rows ( ) ) ;
9 MatrixT Yold = MatrixT : : Zero ( rankK , ATA . rows ( ) ) ;

10 MatrixT Wt = MatrixT : : Zero ( rankK , ATA . rows ( ) ) ;
11 MatrixT Wold = MatrixT : : Zero ( rankK , ATA . rows ( ) ) ;
12 MatrixT S = ATA , Zt , Ztaux , Bt , Btaux ;
13
14 T traceS = S . trace ( ) ;
15 T avgTr = traceS / ( 1 . 0 ∗ ATA . rows ( ) ) ;
16 f o r ( i n t i = 0 ; i < rankK ; ++i )
17 Yt ( i , i ) = 1 ;
18
19 MatrixT Ik = MatrixT : : Zero ( rankK , rankK ) ;
20 f o r ( i n t i = 0 ; i < rankK ; ++i )
21 Ik ( i , i ) = 1 ;
22
23 MatrixT Ikgamma = MatrixT : : Zero ( rankK , rankK ) ;
24 MatrixT IkgammaPeTr = MatrixT : : Zero ( rankK , rankK ) ;
25 MatrixT SpeTr = S ∗ ( 1 . 0 / avgTr ) ;
26
27 T gamma = 0 . 0 0 0 1 ;
28 Ikgamma = Ik∗ gamma ;
29 IkgammaPeTr = Ik ∗( gamma / avgTr ) ;
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30
31 i n t currentIteration = 0 ;
32 bool done = f a l s e ;
33
34 Eigen : : LLT<MatrixT> choleskySolver ;
35 whi l e ( ! done ) {
36 ++currentIteration ;
37
38
39 choleskySolver . compute ( Yt ∗ Yt . transpose ( ) + Ikgamma ) ;
40 Zt = choleskySolver . solve ( Ik ) ;
41
42 Wold = Wt ;
43 Wt = Zt∗Yt ;
44
45
46 choleskySolver . compute ( Wt∗ SpeTr ∗Wt . transpose ( ) + IkgammaPeTr ) ;
47 Bt = choleskySolver . solve ( Ik ) ;
48
49 Yold = Yt ;
50 Yt = Bt∗Wt∗ SpeTr ;
51
52 i f ( ( Wold − Wt ) . squaredNorm ( ) < tau &&
53 ( Yold − Yt ) . squaredNorm ( ) < tau )
54 done = true ;
55 i f ( iterations == currentIteration )
56 done = true ;
57 }
58 W = Wt ;
59 Y = Yt ;
60 }

The algorithm uses Eigen library Cholesky LLT matrix factorisation whenever an

inverse was computed. The main features of this algorithm are: very high speed

and proved numerical stability. The algorithm has as requirement that the

matrix to be Cholesky decomposed is positive-definite. The matrices we want

to perform Cholesky decomposition on (in order to invert them) are all positive-

definite (proof in Appendix B.3.1). Furthermore, the complexity analysis matches

with the one analysed on the pseudo-code: O(n2k × iterations+ n2|D|fhtw(Q)).

Furthermore, the reason why we work with dense matrices (except the obvious reason

of speed) is that the inverse of a sparse matrix can be dense. Thus, it is not worth

the slow-down of using sparse matrices at all. Proof of this claim in Appendix B.1.1.

5.5 Factorised Eigen Decomposition Implemen-
tation

See below the interface:
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1 template <typename T>
2 c l a s s MatrixUtil
3 {
4 [ . . . ]
5 s t a t i c void FactorisedEigenDecomposition ( MatrixT ATA ,
6 i n t rankK ,
7 MatrixT &W ,
8 MatrixT &Y ,
9 double accuracy = 0) ;

10 /∗∗
11 ∗ Given the matrix ATA ( i . e . 'ATA ' ) , and a ' rankK ' , perform
12 ∗ Quadrat i ca l l y Regu la r i s ed PCA (L2−PCA) on matrix A. This w i l l produce
13 ∗ the matrix 'W' such that X = AWT and matrix 'Y ' such that XY i s the
14 ∗ best rank−k approximation o f A. The method w i l l use e igen−decompos it ion .
15 ∗ I f ' accuracy ' i s provided , then the a lgor i thm w i l l use the minimum rank
16 ∗ k ≥ rankK which a c h i e v e s the reques ted ' accuracy ' . For example
17 ∗ rankK = rank(ATA) i f 100% accuracy i s r e q u i r e d .
18 ∗ Complexity : O(N3) a c t u a l l y about 9N3 s t e p s .
19 ∗ Numerical S t a b i l i t y : Good ( eva luated by Eigen )
20 ∗/
21 [ . . . ]
22 }

See below the implementation:

1 template<typename T>
2 void MatrixUtil<T >:: FactorisedEigenDecomposition ( MatrixT ATA ,
3 i n t rankK ,
4 MatrixT &W ,
5 MatrixT &Y ,
6 double accuracy )
7 {
8 MatrixT L = MatrixT : : Zero ( ATA . rows ( ) , ATA . rows ( ) ) ;
9 MatrixT Diag = MatrixT : : Zero ( ATA . rows ( ) , ATA . rows ( ) ) ;

10 VectorT D = VectorT : : Zero ( ATA . rows ( ) ) ;
11
12 Eigen : : SelfAdjointEigenSolver<MatrixT> eigenDecomposer ( ATA ) ;
13
14 L = eigenDecomposer . eigenvectors ( ) ;
15 D = eigenDecomposer . eigenvalues ( ) ;
16
17 T EPS = 1e−8;
18 T gamma = 1e−4;
19
20 T sum = 0 ;
21 auto VSTimeStart = Clock : : now ( ) ;
22 f o r ( i n t i = 0 ; i < ATA . rows ( ) ; ++i ) {
23 Diag ( i , i ) = max ( ( T ) 0 , sqrt ( D ( ATA . rows ( ) − i − 1) ) − gamma ) ;
24 sum += Diag ( i , i ) ∗ Diag ( i , i ) ;
25 }
26
27 /∗∗
28 ∗ We w i l l choose the rank which meets the r e q u i r e d accuracy .
29 ∗/
30
31 T current = 0 ;
32 f o r ( i n t i = 0 ; i < ATA . rows ( ) ; ++i ) {
33 current += Diag ( i , i ) ∗Diag ( i , i ) ;
34 rankK = max ( rankK , i + 1) ;
35 i f ( current + EPS >= accuracy ∗ sum )
36 break ;
37 }
38
39 MatrixT V = MatrixT : : Zero ( ATA . rows ( ) , rankK ) ;
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40 MatrixT Sh = MatrixT : : Zero ( rankK , rankK ) ;
41 MatrixT Shinv = MatrixT : : Zero ( rankK , rankK ) ;
42
43 f o r ( i n t i = 0 ; i < rankK ; ++i ) {
44 Sh ( i , i ) = sqrt ( Diag ( i , i ) ) ;
45 Shinv ( i , i ) = 1 .0 / Sh ( i , i ) ;
46 V . col ( i ) = L . col ( ATA . rows ( ) − i − 1) ;
47 }
48
49 Y = Sh∗V . transpose ( ) ;
50 W = Shinv ∗V . transpose ( ) ;
51 }

The algorithm uses Eigen library self-adjoint eigen-decomposition which performs

the eigen-decomposition of a self-adjoint matrix as follows: it reduces the matrix

to tridiagonal form and then the matrix is brought to diagonal form with implicit

symmetric QR steps with Wilkinson shift. The main features of this algorithm are:

speed and numerical stability. Details can be found in Section 8.3 of Golub

& Van Loan, Matrix Computation [6]. The matrix on which we want to perform

eigen-decomposition is self-adjoint (symmetric for real matrices). Furthermore,

the overall complexity analysis matches with the one analysed on the pseudo-

code: O(n3 + n2|D|fhtw(Q)).

5.6 Parallelism

Note that Eigen library can be set at compile time to use the available CPU

Cores in order to run algorithms in parallel (in addition to SIMD operations).

During local machine tests, up to 4 times speed-up was achieved for some matrix

operations (block matrix multiplications) and 2 times speed-up for computing

matrix inverses. More details about these test can be seen in the Test Driven

Development (TDD) section 5.7.

5.7 Test Driven Development

The tests have been performed using Google Test platform:

1 #i n c l u d e " matrix_engine . h "
2
3 i n t main ( i n t argc , char ∗∗ argv ) {
4 testing : : InitGoogleTest(&argc , argv ) ;



5. Implementation 38

5 re turn RUN_ALL_TESTS ( ) ;
6 }

See below part of the tests used while developing. Test Driven Development

principles have been successfully used. Tests which failed and then progressively

passed were key for checking implementation correctness. Furthermore, both classic

and chubby FAM and FED algorithms have been implemented and the theoretical

results have been checked. This implied both implementation correctness and

empirical proof of the observations regarding chubby matrices.

1 TEST ( Matrix , FactorisedAlternatingMinimisationTest1 ) {
2 cout <<setprecision (25) <<fixed ;
3 Eigen : : MatrixXd A ( 6 , 4 ) , ATA , W , Y , X , approx ;
4 A << 1 , 2 , 3 , 2 ,
5 4 , 5 , 6 , 3 ,
6 1 , 2 , 8 , 1 ,
7 4 , 4 , 7 , 4 ,
8 1 , 1 , 5 , 1 ,
9 1 , 2 , 3 , 4 ;

10 ATA = A . transpose ( ) ∗ A ;
11 MatrixUtil<double >: : FactorisedAlternatingMinimisation ( ATA , 2 , W , Y ) ;
12 cout << "W: \ n " << W << endl << endl ;
13 cout << "Y: \ n " << Y << endl << endl ;
14
15 X = A∗W . transpose ( ) ;
16 approx = X ∗ Y ;
17 cout << " approx : \ n " << approx << endl << endl ;
18 }
19
20 TEST ( Matrix , FactorisedEigenDecompositionTest1 ) {
21 cout <<setprecision (25) <<fixed ;
22 Eigen : : MatrixXd A ( 6 , 4 ) , ATA , W , Y , X , approx ;
23 A << 1 , 2 , 3 , 2 ,
24 4 , 5 , 6 , 3 ,
25 1 , 2 , 8 , 1 ,
26 4 , 4 , 7 , 4 ,
27 1 , 1 , 5 , 1 ,
28 1 , 2 , 3 , 4 ;
29 ATA = A . transpose ( ) ∗ A ;
30 MatrixUtil<double >: : FactorisedEigenDecomposition ( ATA , 2 , W , Y , 1 . 0 ) ;
31 cout << "W: \ n " << W << endl << endl ;
32 cout << "Y: \ n " << Y << endl << endl ;
33
34 X = A∗W . transpose ( ) ;
35 approx = X ∗ Y ;
36 cout << " approx : \ n " << approx << endl << endl ;
37 cout << " o r i g i n a l : \ n " << A << endl << endl ;
38 }
39
40
41 TEST ( Matrix , MultithreadingTest ) {
42 cout << "Number o f threads : " << Eigen : : nbThreads ( ) << endl ;
43 i n t N = 500 ;
44 i n t M = 800 ;
45 Eigen : : MatrixXd A = Eigen : : MatrixXd : : Zero ( M , N ) ;
46
47 Eigen : : MatrixXd S = Eigen : : MatrixXd : : Zero ( N , N ) ;
48 Eigen : : MatrixXd B = Eigen : : MatrixXd : : Zero ( N , N ) ;
49 Eigen : : MatrixXd C = Eigen : : MatrixXd : : Zero ( N , N ) ;
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50 Eigen : : MatrixXd Cinv = Eigen : : MatrixXd : : Zero ( N , N ) ;
51
52 Eigen : : MatrixXd Ik = Eigen : : MatrixXd : : Zero ( N , N ) ;
53 f o r ( i n t i = 0 ; i < N ; ++i )
54 Ik ( i , i ) = 1 ;
55 f o r ( i n t i = 0 ; i < M ; ++i )
56 f o r ( i n t j = 0 ; j < N ; ++j )
57 A ( i , j ) = 11∗( i+1) ∗( j+1) ;
58 cout << " Computed A" << endl ;
59 S = A . transpose ( ) ∗ A ;
60 cout << " Computed covar iance matrix " << endl ;
61 S = S + Ik ; // make i t i n v e r t i b l e
62 cout << " Computed i n v e r t i b l e matrix " << endl ;
63 B = S + Ik ∗5 ;
64 cout << " Computed second i n v e r t i b l e matrix " << endl ;
65 auto t1 = Clock : : now ( ) ;
66 C = S ∗ B ; /// 3 t imes f a s t e r when us ing 4 threads
67 auto t2 = Clock : : now ( ) ;
68
69 std : : cout << " Time taken to mult ip ly : "
70 << std : : chrono : : duration_cast<std : : chrono : : nanoseconds >(t2 − t1 ) . count ( )←↩

/ 1e6
71 << " m i l i s e c o n d s \n " ;
72
73 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
74 // Test ing v ar i ous i n v e r t i n g mechanisms //
75 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
76
77 Eigen : : LLT<Eigen : : MatrixXd> choleskySolver ;
78 Eigen : : LDLT<Eigen : : MatrixXd> choleskySolver2 ;
79 Eigen : : PartialPivLU<Eigen : : MatrixXd> LUSolver ;
80 auto t3 = Clock : : now ( ) ;
81 LUSolver . compute ( C ) ;
82 Cinv = LUSolver . solve ( Ik ) ;
83
84 //Cinv = C. i n v e r s e ( ) ;
85
86 // c h o l e s k y S o l v e r . compute (C) ;
87 //Cinv = c h o l e s k y S o l v e r . s o l v e ( Ik ) ;
88
89 // c h o l e s k y S o l v e r 2 . compute (C) ;
90 //Cinv = c h o l e s k y S o l v e r . s o l v e ( Ik ) ;
91
92 auto t4 = Clock : : now ( ) ;
93
94 std : : cout << " Time taken to i n v e r t : "
95 << std : : chrono : : duration_cast<std : : chrono : : nanoseconds >(t4 − t3 ) . count ( )←↩

/ 1e6
96 << " m i l i s e c o n d s \n " ;
97 cout << " Checking that the i n v e r s e i s c o r r e c t " << endl ;
98 assert ( Cinv∗C == Ik ) ;
99 cout << " Done a l l OK" << endl ;

100 }
101
102 TEST ( Matrix , FactorisedAlternatingMinimisationTest2 ) {
103 freopen ( CATEGORICAL_MATIN , " r " , stdin ) ;
104
105 i n t N , M ;
106 scanf ( "%d " , &N ) ; M = N ;
107 Eigen : : MatrixXd ATA = Eigen : : MatrixXd : : Zero ( N , M ) ;
108 i n t i , j ;
109 double val = 0 ;
110 // f o r ( i n t i = 0 ; i < N; ++i ) {
111 // f o r ( i n t j = 0 ; j < M; ++j ) {
112 whi l e ( scanf ( "%d%d%l f " , &i , &j , &val ) == 3)
113 ATA ( i , j ) = val ;
114
115 Eigen : : MatrixXd Y1 , W1 ;
116
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117 auto t1 = Clock : : now ( ) ;
118 MatrixUtil<double >: : FactorisedAlternatingMinimisation ( ATA , 7 , W1 , Y1 ) ;
119 auto t2 = Clock : : now ( ) ;
120 cout << setprecision (30) << fixed ;
121 cout << " Matrix W \n " ;
122 cout << W1 << endl << endl ;
123 cout << " Matrix Y \n " ;
124 cout << Y1 << endl << endl ;
125 fclose ( stdin ) ;
126 }
127
128 TEST ( Matrix , FactorisedEigenDecompositionTest2 ) {
129 freopen ( CATEGORICAL_MATIN , " r " , stdin ) ;
130
131 i n t N , M ;
132 scanf ( "%d " , &N ) ; M = N ;
133 Eigen : : MatrixXd ATA = Eigen : : MatrixXd : : Zero ( N , M ) ;
134 i n t i , j ;
135 double val = 0 ;
136 whi l e ( scanf ( "%d%d%l f " , &i , &j , &val ) == 3)
137 ATA ( i , j ) = val ;
138 Eigen : : MatrixXd Y1 , W1 ;
139
140 MatrixUtil<double >: : FactorisedEigenDecomposition ( ATA , 7 , W1 , Y1 ) ;
141
142 cout << setprecision (30) << fixed ;
143 cout << " Matrix W \n " ;
144 cout << W1 << endl << endl ;
145 cout << " Matrix Y \n " ;
146 cout << Y1 << endl << endl ;
147 fclose ( stdin ) ;
148 }

The full testing environment can be found on the GitHub repository of this thesis

[29] in the "tests" folder. The MatrixUtil library can be found in the "include"

folder. The repository is ready to be tested and the setup is explained in the

"readme.md" file alongside a quick "how to run" guide.
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Experiments

Chapters 3 and 4 depicted the theory behind Factorised Alternating Minimisation

(FAM) and Factorised Eigen-Decomposition (FED) algorithms. Chapter 5 focused

on practice: the C++ implementations of FAM and FED. The current chapter

concentrates on benchmarking FAM and FED runtime performance on both real-

life and in-house tailored data sets. Both algorithms will calculate the rank-k

Quadratically Regularised Principal Component Analysis (L2-PCA) of a complete

data matrix A = Q(D) ∈ Rm×n which is the result of a natural join query Q over a

multi-relational database D. This will be done in both cases by computing matrices

Y ∈ Rk×n and W ∈ Rk×n such that X = AW T and A ≈ XY .

Two types of extensive runtime performance experiments are conducted. The

first type of experiment uses the Housing data set and varies the number of tuples m

of the result matrix A. The second type of experiment uses the Retailer data set and

varies the number of attributes n of the result matrix A. All experiments assume that:

64-bit precision is used, the chosen low-rank is k = 7 and regulariser γ = 0.0001.

6.1 Summary of Findings

• FAM and FED successfully computed the rank-7 L2-PCA models for all 20

Housing data sets and for all 4 Retailer data sets. The competitor algorithms

41
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(SkLearn/TensorFlow/Torch on top of PostgreSQL) have only managed to

compute the rank-7 PCA models for Housing data sets 1 to 6, running out

of memory on Housing data sets 7-20 and on all Retailer data sets. FAM

and FED were more than 4 orders of magnitude faster than the quickest

competitor (Torch).

• When varying the number of tuples m of the query result matrix A ∈ Rm×n

(using Housing 1-20 data sets), only the computation of ATA performed

by LMFAO [12] was significantly affected due to its dependence on

the data set size |D|. The execution of FED stayed the same as n is fixed

throughout the Housing data sets. The execution of FAM differed only slightly

in the number of iterations due to the different actual values of ATA.

• When varying the number of attributes n of the query result matrix A ∈ Rm×n,

FAM became more efficient than FED. FAM is quadratic in n (and

linear in the chosen low rank and iterations) while FED is cubic in n. A cubic

function grows faster than a quadratic function, thus it is indeed expected of

FED to become slower than FAM as n increases.

• The numerical precision of FAM algorithm has been tested on the Housing

and Retailer data sets. Empirical tests provided evidence that factoring out a

constant α from ATA in the iterative algorithm played to our advantage for

the Housing data sets. The main reason is that FAM used smaller intermediary

results which are more accurately represented [28].

6.2 Data Sets

6.2.1 Housing Data Set

Housing data set (Dhousing) has the relational schema presented in Figure 6.1. There

are 20 versions of this data set, from housing-1 up to housing-20, each of increasing

number of rows m of the query result A = Qhousing(Dhousing) ∈ Rm×n. Qhousing is

the natural join of all the relations of the housing data set. All the data sets have
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the same number of columns n = 28. Housing data set was artificially created and

has only continuous numerical values. The table below illustrates the sizes of the

data matrix A given different versions of the data set:
#housing 1 4 6 7 14 20

rows 25000 1600000 5400000 14700000 102900000 400000000
columns 28 28 28 28 28 28
size (GiB) 0.006 0.417 1.126 3.836 26.856 104.4

The matrix A can be materialised using the query Qhousing as follows:

1 CREATE TABLE joinres AS (
2 SELECT ∗
3 FROM Shop NATURAL JOIN House NATURAL JOIN Restaurant
4 NATURAL JOIN Demographics NATURAL JOIN Institution
5 NATURAL JOIN Transport
6 ) ;

where House, Demographics, Transport, Restaurant, Shop and Institution are

relations which differ with the size of the data set (from Housing-1 to Housing-20).

Figure 6.1: Structure of the Relational Database for Housing data set. This structure is
completely thrown away by today’s usual workflow which creates a data matrix out
of it.
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6.2.2 Retailer Data Set

Retailer data set (Dretailer) has the relational schema presented in Figure 6.2. There

are 4 versions of this data set, from retailer-1 up to retailer-4, each of increasing

number of columns n of the query result A = Qretailer(Dretailer) ∈ Rm×n. All the

data sets have the same number of rows m = 84055800. Retailer data set is used in

real life by a large US Retailer for forecasting user demands and sales. The table

below illustrates the sizes of the data matrix A given the versions of the data set:
#retailer 1 2 3 4
rows 84055800 84055800 84055800 84055800

columns 33 158 3804 6433
size (GiB) 20.666 98.949 2382.310 4028.759

The matrix A can be materialised using the query Qretailer as follows:

1 CREATE TABLE joinres AS (
2 SELECT ∗
3 FROM Inventory NATURAL JOIN Location NATURAL JOIN Census
4 NATURAL JOIN Item NATURAL JOIN Weather
5 ) ;

where Inventory, Location, Census, Item, Weather are relations which differ with

the size of the data set (from Housing-1 to Housing-20).

Figure 6.2: Structure of the Relational Database for Retailer data set. This structure is
completely thrown away by today’s usual workflow which creates a data matrix out
of it.
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6.3 Varying the Number of Rows in A

The first experiment involves varying the number of rows in the result data matrix.

This is done by using the Housing data set. To simplify the analysis, we split the

computation of the low rank model in two phases.

The first phase consists of the computation of the data matrix in case of

SkLearn/TensorFlow/Torch, or the computation of the covariance matrix ATA

in case of FAM and FED.

Figure 6.3: The materialisation of the data matrix, required by the prior state-of-art
approaches.

As Figures 6.3 and 6.4 illustrate, there is already a time gap of three orders

of magnitude between the precomputation required by the current state of art

algorithms for PCA implemented by SkLearn/TensorFlow/Torch (which require A

materialised) compared to FAM and FED which only require ATA. As presented

in Figure 6.3 to compute A one needs to load the database D into PostgreSQL,

compute the natural join query Q(D) and export the data in a CSV format. The

data then would get loaded into Python such that it is ready to be processed by
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state-of-art PCA libraries. PostgreSQL ran out of 12GiB available RAM when

computing Housing 7-20 and Retailer data sets.

Figure 6.4: The computation of the covariance matrix, required by FAM and FED.

Note here that the size of ATA can be exponentially smaller than the size

of A. Thus, LMFAO [12] successfully computed ATA for all Housing data sets

(Figure 6.4). We can already see a time gap of more than three orders of magnitude

between the precomputation required by the current state-of-art approach and the

precomputation required by the approach proposed by this thesis.

The second phase involves the actual model computation task. This requires A

to be computed for the current state-of-art approaches and ATA to be computed

for this thesis’s proposed approach.

As it can be seen in Figure 6.5, between the state-of-art approaches, Torch is

the fastest at computing the rank-7 PCA model. Again, because of the 12GiB main

memory constraint, only data sets housing-1 up to housing-6 could be processed.

One more observation is that the time it took to compute the join is similar to

the time it took to compute the model using Torch.
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Figure 6.5: The computation of the simpler rank-7 PCA model by SkLearn/Tensor-
Flow/Torch state-of-art libraries.

Figure 6.6 shows FAM and FED’s performance when computing rank-7 L2-

PCA over the housing data sets, contrasted with the performance of the main

competitor (Torch) on the first 6 versions of the housing data sets. We see another

four orders of magnitude gap between factorised computation approach (FAM and

FED) and the main competitor, Torch.

Another key insight given by Figure 6.6 is that both FAM and FED’s run times

do not depend on the number of rows (m) of the data matrix A ∈ Rm×n. Hence,

the run time is constant throughout the housing data sets. Furthermore, FAM is

slower than FED by almost two orders of magnitude on housing data sets. This

is as expected since the number of columns of A (n) is only 28 and FED depends

solely on this. See Chapters 3 and 4 for formal complexity results.

Careful inspection of Figures 6.6 and 6.4 show that FAM and FED are actually

orders of magnitude faster than LMFAO’s computation of ATA. Thus, the

overall run time of the approach proposed by this thesis is spent computing

the covariance matrix.
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Figure 6.6: The competition factorised (FAM and FED) vs state-of-art (Torch) on
learning rank-7 L2-PCA, respectively rank-7 PCA.

6.4 Varying the Number of Columns in A

The second experiment involves varying the number of columns in the result data

matrix. This is done by using the Retailer data set which has categorical features.

To simplify the analysis, the low rank model computation is split in two phases.

Figure 6.7: The computation of the covariance matrix, required by FAM and FED.
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The first phase is the computation of the covariance matrix using LMFAO (see

Figure 6.7). Due to 12GiB main memory constraint, none of the Retailer data set

versions fit in the main memory for the state-of-art approaches to be tested. The

full power of LMFAO is unleashed when computing the covariance matrix for the

4th Retailer data set of size 84055800× 6433 which materialised would occupy about

3.93 TiB representation space, while the covariance matrix is of size 6433× 6433

which is only 315.73 MiB. Recall (Section 2.4) that the time complexities presented

in Chapters 3 and 4 are actually over estimating by a factor of d where d is the

size of the largest categorical active domain. This is because LMFAO uses a more

succinct encoding than the presumed one-hot, which depends on the FAQ-width [9].

The second phase is performing the actual learning task. FAM and FED compete

in learning rank-7 L2-PCA over the four Retailer data sets.

Figure 6.8: The factorised competition FAM vs FED on learning rank-7 L2-PCA over
Retailer data set.

Analysing Figure 6.8 we immediately see that FAM is orders of magnitude faster

than FED for retailer-2 up to and including retailer-4 data sets. In case of FAM, the

dominant running time is spent on phase one (the computation of the covariance

matrix) while in the case of FED, the time it took to learn arbitrary rank L2-PCA

is proportional to LMFAO’s covariance matrix computation (see Figure 6.7).
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Note the fact that since there are infinitely many solutions to the minimi-

sation problem (see Section 2.2.2), FAM and FED will not produce identical

low-rank models.

6.5 Numerical Precision

Figure 6.9: The average, minimum and maximum entry of ∂W and ∂Y for rank-7
L2-PCA of Housing data sets.

Chapter 3 proposed a numerical precision optimisation in Equation 3.20. The

following experiment will provide some empirical evidence towards why Equation

3.20 benefits FAM algorithm. Both versions of FAM, the one which factors α out

of S and the version which does not, are executed and (Wα, Yα) respectively (W,Y )

denote the resulting rank-7 models. Let ∂W and ∂Y be the entry-wise absolute

value difference: |Wα − W | and |Yα − Y |.

Figure 6.9 shows the average, minimum and maximum entries of ∂W and ∂Y

matrices for housing data sets {1, 5, 10, 15, 20}. Notice the fact the maximum and

average absolute difference between the two versions of FAM grows as the entries

in the covariance matrix become bigger. A close inspection of the matrix contents
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showed that the entries of Y and W would become larger than the entries of Yα
and Wα, intuitively indicating a correlation with the fact that non scaled covariance

matrix has large entries. The minimum differences seem random.

6.6 Covariance Matrix - numerical precision

Numerical precision tests have been conducted to compare the usage of LMFAO

with the naive approach for computing the covariance matrix. The naive approach

was feasible to test on the Housing data sets 1 up to 10. For the Housing data

sets 11 up to 20 and the Retailer data sets 1 up to 4 there was not sufficient main

memory available (recall the 12GiB constraint).

The results showed that for Housing data sets 1 up to 10, the values involved

in calculations were integers in the range [20, 253) which as discussed in appendix

C.1 can be fully represented by 64-bit double datatype in C++. Thus, regardless

of the approach, the calculations would not include any rounding error.

However, for sufficiently large data sets, we expect LMFAO to be significantly

more numerically accurate as it performs exponentially fewer floating point additions

and multiplications thus exponentially fewer rounding errors are expected to occur.



7
Related Work

7.1 Factorised Learning

Previous research in Machine Learning (ML) model training using factorised

computation paradigm covers a few of the classic ML algorithms. Let a data

matrix be defined as the result of a natural join query over a multi-relational

database. The following algorithms have been considered:

[17] considers Linear Regression models. The focus is on computing the least

squares regression models over a non-materialised data matrix. This work is

tangential to this thesis as Factorised Alternating Minimisation (FAM) computes

in parallel (using matrix operations) Ridge Regression models for each iteration

step (one regression per column of the data matrix) in a factorised fashion.

[9] shows an approach to optimise a general objective function which includes

Principal Component Analysis (PCA). This proposes an alternative approach to the

two presented in this thesis, an approach that uses Batch Gradient Descent (BGD)

with Armijo line search rather than closed form solution or iterative approximations.

[10] focuses on functional aggregate queries (FAQs) and explaining how the

following models can be learnt in a factorised fashion: Robust Linear Regression

with Huber loss, linear support vector machine (SVM) and K-means clustering.
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7.2 Factorised Linear Algebra

Particular attention has been offered to linear algebra performed over data matrices

as previously defined:

[16] focuses on the Gram-Schmidt algorithm which produces the QR factorisation

of the data matrix. This can be used effectively to learn Linear Regression,

Cholesky Decomposition, Moore-Penrose pseudo-inverse and Singular Value De-

composition and thus it can be used to compute generalised low rank models

in a factorised fashion.

[11] introduces MorpheusPy, a tool which uses manual re-writings of some linear

algebra operations in a factorised computation fashion to optimise linear algebra

on top of multi-relational databases using NumPy. This approach has, however,

limited applicability given by the ’supported’ re-written linear algebra operations.

However, it can compute Linear Regression, Logistic Regression, K-means and

Generalised Non-negative Matrix Factorisation.

7.3 Non-factorised Linear Algebra

There are competitors worthy of being mentioned even though they do not use

the factorised computation paradigm:

MADlib supports a Low-Rank Matrix Factorisation [13] procedure and Singular

Value Decomposition [14]. MADlib uses high performance mathematics libraries

with special aggregate functions [15]. It successfully computed the Singular Value

Decomposition of a truncated version of the Retailer data set for a subset of up

to 100 one-hot encoded columns.



8
Conclusion

8.1 Summary

This thesis’ goal was to present different approaches for computing generalised

low rank models over multi-relational databases using the factorised computa-

tion paradigm. In particular, it focused on Quadratically Regularised Principal

Component Analysis (L2-PCA) and showed two successful approaches: Factorised

Alternating Minimisation (FAM) and Factorised Eigen-Decomposition (FED). The

computational complexity analysis revealed a time complexity gap between the

factorised approach (FAM and FED) and the current state-of-art approaches which

materialise the data matrix. As a result, FAM and FED could be used to compute

L2-PCA over multi-relational data sets orders of magnitude larger than what the

current state-of-art can compute, without requiring extra computational power.

The data matrices used were complete matrices produced by natural join queries,

in order to check the run time performance. However, as previously mentioned,

FAM and FED can be also executed on matrices with missing values. The time

complexity speed-up brings new opportunities. One opportunity is that models can

be kept up-to-date more often which directly affects the accuracy. Another implied

opportunity is that more models can be computed within the time budget needed by
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the competing systems to compute one model. This also directly affects the accuracy

of the final model which can be a combination of generalised low rank models.

8.2 Future Work

If I had more time, I would have liked to investigate the Machine Learning (ML)

accuracy of the models produced by FAM and FED. Furthermore, I would have

analysed how the runtime performance can be used to improve the accuracy of

ML models which use low rank models as inputs.

A direct application of L2-PCA is the prediction of missing values in matrices.

In order to test runtime performance, our queries over Housing and Retailer data

sets were natural joins, which produced complete data matrices. A direction of the

thesis could be a data imputation application that can recover an unknown matrix

A ∈ Rm×n of rank k from as little as Ω(nk log n) known entries [7].

Another direction in which I would have liked to delve into, given more time,

is the numerical stability of FAM and FED algorithms. This is because speed

and correctness of an algorithm are essential, as is numerical stability. Not to be

confused with over-fitting, numerical errors can easily crop up and alter a low rank

model to a state where its predictions are simply incorrect.

A fascinating direction which covers an even wider range of the generalised

low rank models is to use gradient descent to minimise the objective function.

This is particularly powerful as it does not require closed form solutions to exist

and can be applied to L2-PCA as well.

These could be possible starting points for my future DPhil/PhD/Research work.
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A
Quadratically Regularised PCA

This chapter covers key proofs regarding the alternating minimisation algorithm

for computing the Quadratically Regularised PCA.

A.1 Continuous Mathematics

Matrix calculus will be used in order to simplify some of the calculations. The

following formulae build on top of the 1st-Year Continuous Mathematics course.

Throughout this section only (Section A.1), the bold lower case letters will refer

to vectors which can be either in column or in row matrix form.

A.1.1 Matrix Calculus

Assuming w ∈ RN , fi : RN 7→ R for i ∈ {1, 2, . . . ,M}, and f : RN 7→ RM ,

f(w) =
(
f1(w), . . . , fM(w)

)
the following notation conventions are used:

∂fi(w)
∂w

=


∂fi(w)
∂w1...
∂fi(w)
∂wN

 , (A.1)

∂f(w)
∂w

=
[
∂f1(w)
∂w · · · ∂fM (w)

∂w

]
. (A.2)

57



A. Quadratically Regularised PCA 58

The following formulas will be used to simplify calculations. Their usage is easy

but their proofs can be tedious:

∂(Xw)
∂w

= XT , for X ∈ Rm×n and w ∈ Rn×1 (A.3)

∂(wTX)
∂w

= X, for X ∈ Rm×n and w ∈ Rm×1 (A.4)

∂(wTXw)
∂w

= XTw +Xw, for X ∈ Rn×n and w ∈ Rn×1 (A.5)

For more details, see Chapter 4.1.3.1 of Murphy’s textbook: Machine Learning:

A Probabilistic Perspective [2].

A.2 Alternating Minimisation Derivation

This section focuses on deriving the solution to Alternating Minimisation algorithm.

Quadratically Regularised PCA was formulated as:

minimise ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F , (A.6)

where X ∈ Rm×k and Y ∈ Rk×n.

Assume X is fixed and that we optimise Y . We rewrite the objective as:

‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F = γ‖X‖2

F +
n∑
i=1

(‖ai −Xyi‖2
2 + γ‖yi‖2

2), (A.7)

where the vectors ai and yi with i ∈ {1, . . . , n} are the columns of A and Y .

Since this is a sum of quadratic functions in yi, each of the terms is minimised

(independent of the others) when the partial derivative with respect to each yi is

zero. We rewrite each term of the sum in matrix form:

‖ai −Xyi‖2
2 + γ‖yi‖2

2 = (ai −Xyi)T (ai −Xyi) + γyTi yi, (A.8)

= aTi ai − 2yTi XTai + yTi XTXyi + γyTi yi, (A.9)

and now take the partial derivative ∂
∂yi

of the objective function A.6 for each

i ∈ {1, . . . , n}:

∂

∂yi
(−2yTi XTai + yTi XTXyi + γyTi yi) = −2XTai + 2XTXyi + 2γyi; (A.10)
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setting it to zero, gives (for each i):

0 = −2XTai + 2XTXyi + 2γyi, (A.11)

yi = (XTX + γIk)−1XTai. (A.12)

But now, the puzzle can be put together: let Ŵ = (XTX + γIk)−1XT . Hence:

Y =
[
y1 . . . yn

]
, (A.13)

=
[
Ŵa1 . . . Ŵan

]
, (A.14)

= ŴA, (A.15)

= (XTX + γIk)−1XTA. (A.16)

This is the closed form solution for the matrix Y ∈ Rk×n which minimises the

objective function A.6 when matrix X ∈ Rm×k is fixed.

In order to find the matrix X which minimises the objective function when the

matrix Y is fixed, we will use the property of Frobenius norm: ‖A‖F = ‖AT‖F
and rewrite the objective as:

‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F = ‖AT − Y TXT‖2

F + γ‖XT‖2
F + γ‖Y T‖2

F .(A.17)

We apply now the exact same approach as before, and obtain (mutatis mutandis):

XT = ((Y T )TY T + γIk)−1(Y T )TAT , (A.18)

= (Y Y T + γIk)−1Y AT . (A.19)

Therefore,

X = ((Y Y T + γIk)−1Y AT )T , (A.20)

= AY T (Y Y T + γIk)−1. (A.21)

The iterative algorithm will finally be given by the following:

Xt+1 = AY T
t (YtY T

t + γIk)−1, (A.22)

Yt+1 = (XT
t+1Xt+1 + γIk)−1XT

t+1A. � (A.23)
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The proof however, depends on the inverse (XTX + γIk)−1, γ > 0 existing for any

matrix X ∈ Rm×n proof of this fact can be found in Appendix [B.3.2].

A.3 Alternating Minimisation Convergence

Recall the objective function:

F (X, Y ) = ‖A−XY ‖2
F + γ‖X‖2

F + γ‖Y ‖2
F , γ > 0. (A.24)

One can fix X and rewrite it as a sum of convex functions in (yi):

F (X, Y ) = γ
k∑
i=1
‖xi‖2

2 +
n∑
i=1

(‖ai −Xyi‖2
2 + γ‖yi‖2

2), γ > 0, (A.25)

symmetrically, one can rewrite it as a sum of convex functions in (xi). We know

that the square function is convex, and by the definition of a convex function, a sum

of convex functions is trivially convex. Therefore, by taking the derivatives with

respect to yi and setting them simultaneously to zero (as we previously did), we

find the Y (and symmetrically the X) which is the global minimum of the objective

function F when X (and symmetrically Y ) is fixed. This means that with every

step, we decrease the value of the objective function.

The objective function is bounded below by 0 as it is a sum of squares. Also,

at every step we decrease the objective function, therefore by Weierstrass’s Theorem

for Convergence, the function converges. This is not a powerful enough result,

as we claim that the algorithm converges to the global optimum not to a local

optimum. The full proof is not trivial and can be found in Appendix A.1.2 of

Generalised Low Rank Models paper by M. Udell [7]. �



B
Linear Algebra

B.1 Inverse of a Matrix

Often, calculating the inverse of a matrix is required. More about positive definite

matrices can be found in Strang’s textbook [1].

B.1.1 Sparse Matrices

Theorem 5 The inverse of a sparse matrix is not necessarily sparse.

Proof 3 Take matrix An ∈ Rn×n to be the bi-diagonal matrix which has ones on

the principal diagonal and on the next diagonal above:

An =



1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
... ... ... . . . ... ... ...
0 0 0 . . . 1 1 0
0 0 0 . . . 0 1 1


Observe that the ratio of nonzero entries in An tends to zero for large n:

lim
n→∞

n+ (n− 1)
n2 = 0. (B.1)

thus, An is sparse. However, its inverse A−1
n :

A−1
n =


0 if i > j
1 if i ≤ j and j − i even
−1 if i ≤ j and j − i odd
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has a non zero ratio for large n:

lim
n→∞

n2 −
(
n
2

)
n2 = 1

2 . � (B.2)

B.2 Frobenius Norm

B.2.1 Submultiplicativity

Proof of submultiplicativity of Frobenius Norm (‖AB‖2
F ≤ ‖A‖2

F‖B‖2
F ):

Assume A ∈ Rm×n and B ∈ Rn×k arbitrary fixed:

‖AB‖2
F =

m∑
i=1

k∑
j=1

(Ai,:B:,j)2 (B.3)

=
m∑
i=1

k∑
j=1
|Ai,:B:,j|2 (B.4)

(CBS) ≤ (
m∑
i=1
‖Ai,:)‖2

2)(
k∑
j=1
‖B:,j‖2

2) (B.5)

= ‖A‖2
F‖B‖2

F (B.6)

CBS is the remarkable Cauchy-Buniakovsky-Schwartz inequality. �

B.3 Spectral Theorems

Spectral Theorems(Gilbert Strang[1] page 318 chapter 6.4):

• The eigenvalues of a real symmetric matrix are real and the eigenvectors of a

real symmetric matrix are real.

• Eigenvectors of a real symmetric matrix (when they correspond to different

λ’s) are always perpendicular.

• Every symmetric matrix S has a complete set of orthogonal eigenvectors.

Thus, S = LΛL−1 becomes S = LΛLT .

• All symmetric matrices are diagonalizable - there are always enough eigenvec-

tors to diagonalize S = ST .
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B.3.1 XTX-like Matrix Properties

Let X ∈ Rm×n arbitrary fixed. This subsection will analyse some properties of a

symmetric matrix XTX ∈ Rn×n and corollary, the same properties will follow

for the symmetric matrix XXT ∈ Rm×m by replacing X with XT as proofs

remain unchanged.

Theorem 6 XTX (corollary - XXT ) is positive semi-definite.

Proof 4 Let x ∈ Rn×1 be an arbitrary fixed column vector:

xT (ATA)x = (Ax)T (Ax) = ‖Ax‖2
2 ≥ 0 � (B.7)

Theorem 7 XTX (corollary - XXT ) has non-negative eigenvalues.

Proof 5 Let (λ, v) be an arbitrary fixed eigenvalue-eigenvector pair of XTX. Using

the result above, we have:

vT (XTX)v ≥ 0 (B.8)

⇐⇒ λvTv ≥ 0 (B.9)

⇐⇒ λ‖v‖2
2 ≥ 0 (B.10)

But by the spectral theorem v is a real eigenvector, thus ‖v‖2
2 ≥ 0. But then λ has

to be non-negative.

B.3.2 (XTX + γI)-like Matrix Properties

Recall X ∈ Rm×n arbitrary fixed.

Theorem 8 If γ > 0 then XTX + γIn is invertible (corollary for XXT + γIm).

Proof 6 We now check what happens to the eigenvalues of XTX (which we already

know that are non negative) when we add γIn with γ > 0:

(XTX + γIn)vi = (XTX)vi + γvi (B.11)

= λivi + γvi (B.12)

= (λi + γ)vi. (B.13)

The eigenvalues shifted by γ > 0. Thus the eigenvalues are all strictly positive which

means, XTX + γIn is invertible (corollary, XXT + γIm is invertible). �



C
Numerical Stability

C.1 Floating Point Standard

C.1.1 64-bit Precision (double)

Figure C.1 represents the IEEE754 [28] standard convention on how 64-bit precision

floating point numbers (double in C++) are represented.

Figure C.1: 64-bit floating point number representation.

The formula for a 64-bit floating point (normal) number n given by s|e|f bit

pattern where s is bit 63 and f contains bits 51 to 0 (from left to right) is:

n := (−1)s(1.f)2e−b (C.1)

where b = 1023 is the bias. Observe now the following inequality:

1.f ≤ 2 ∀f ∈ {0, 1}52.
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Let us fix s = 0. Then immediately by equation C.1 n ≥ 0. Furthermore, for all e

such that e−b ≤ −1 ⇐⇒ e ≤ b−1 ⇐⇒ e ∈ {0, . . . , 1022} we get n < 1. But then:

n ∈ [0, 1) ∀f ∈ {0, 1}52 ∧ ∀e ∈ {1, . . . , 1022}

which means that n ∈ [0, 1) for 252 × (210 − 2) = 262 − 253 combinations of bit

patterns. For e = 0 there are another 252 numbers which are denormalized, all

between [0, 1). Thus, there are 262 − 252 numbers in [0, 1). By symmetry, we get

another 262 − 252 numbers in (−1, 0]. Therefore, there are about 263 − 253 numbers

in (−1, 1) out of all the 264 possible bit patterns. Thus, approximately 1
2 −

1
2048

of the numbers that can be represented using double C++ data type, are in the

interval (−1, 1), i.e. about 50%. The same calculation can be done for long double

data type and still 50% is obtained. This gives strong evidence that working with

small numbers (in absolute value) is essential to avoid introducing rounding errors.

The gap between x and succ(x) for x ∈ [252, 253) is 252 × 2−52 = 1. This is

one way of defining εmachine = 2−52 ≈ 10−16 which represents the machine precision

when using double data type. It is also the distance |1− succ(1)|. Note that this

implies that for x ≈ 284 the gap |x − succ(x)| ≈ 232. Hence, one rounding when

working with large x can have catastrophic effect on the result.
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