Single-round vs Multi-round
Distributed Query Processing in

Factorized Databases

DO
NV
ILD

N

MI | MINA
S TIO
V | MEA
-

Lambros Petrou
Wolfson College

University of Oxford

Supervised by Prof. Dan Olteanu

Department of Computer Science, University of Oxford

A dissertation submitted in partial fulfilment
of the requirements for the degree of
Master of Science in Computer Science

Trinity 2015



Acknowledgements

First of all, I would like to express my greatest appreciation to my project supervisor,
Prof. Dan Olteanu, for his guidance, advices and feedback he provided me with the last
couple of months. I really enjoyed our discussions on the different aspects of the project,
many times occurred during midnight hours chatting online or during all-day meetings!

He supported me the whole time and was always available when I needed him.

Furthermore, I would like to thank my family and friends inside and outside of the
university circles that were near me and helped me successfully finish this degree each
one in his/her own way. I want to explicitly express my gratitude for my mother, since
she was always there for me, supporting me, financially and emotionally, to keep moving

forward and aiming for the best throughout my whole life.

In addition, a special thank you to University of Ozford that funded me this whole year
by nominating me for one of the HEFCE scholarships, which without it I would not
have been able to study at Oxford.

Finally, I would like to thank the famous Victoria's Secret for its amazing shows,
“Victoria's Secret Fashion Shows”, for the countless hours of multimedia content which
allowed me to think out-of-the box when things got ugly or when I needed a brain-

reboot, during the long programming sessions demanded by this project.

ii



Abstract

Wide adoption of cloud platforms, web services and analytics engines necessitates the
evaluation of complex queries not usually encountered a few years ago, for example
finding cliques of friends of a certain degree on social media data like the Facebook or
Twitter user graph. Traditional centralized systems are unable to cope with the amount
of data generated by such queries in form of intermediate and final results thus the de-

facto solution against such queries is distributed query processing.

However, existing relational distributed query engines spend non-trivial processing
power to compute redundant information that is then being communicated over the
network. This redundancy in computation and data representation is inherent in the

rather rigid relational data model.

We present a complete end-to-end distributed query engine that takes factorized data
as input, output, and uses it for intermediate results instead of relational data. Data
factorizations are succinct representations of relational data that use the distributivity
property over product (X) of union (U) to avoid redundant computation and data
representation. In order for our engine to be complete we implement several serialization
algorithms for factorizations (factorized representations) that retain the theoretical size
bounds and compression factor of factorizations over relational data. We investigate
factorizations sizes and propose an estimation function which aims in finding good
factorization trees (f-trees) for the data factorizations in order to minimize their size,
thus further reducing the communication cost. Finally, the distributed query engine
proposed implements Single round and Multi round execution modes using HyperCube

algorithm for optimal data shuffling among worker nodes.
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Chapter 1

Introduction
L0 MV Ot VABIONY . et e e e e 1
1.2 CONETIDUBIONS et 3
T3 OUELIIIC oo e 4

1.1 Motivation

Databases have become an indispensable component of computer systems, especially
since web services, cloud platforms and analytics engines have seen enormous adoption
and are of widespread use these days. We live in times when there is much more data
available than what our technology can process.

A special class of queries that is extensively used is that of conjunctive queries. There
are many use cases that need to evaluate join queries upon many relations, and recent
analytics engines and network analyzers require even more complex cyclic queries than
traditional joins (cliques of friends of a certain degree on social media data like the
Facebook user graph). These queries might have huge intermediate and final results and
handling such volumes is currently a major challenge faced by existing systems.

A lot of attention has been given to this problem recently by the community, industry
and research, with good results. However, in order to be able to process the so-called
Big Data, which stands for huge amount of data, the solution is most of the time
distributed query processing. If one machine cannot do it, why not use more! A major
challenge of paramount importance with distributed systems is data communication cost
among workers, therefore a lot of work has been done to investigate solutions that
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minimize as much as possible the communication incurred throughout the evaluation of

a query.

The approach to distributed query processing put forward in this thesis cuts down
dramatically the communication cost and thereby improves the overall performance of
query processing on large data volumes by order of magnitude. The main insight of our
approach is that existing relational distributed query engines spend non-trivial
processing power to compute redundant information that is then transferred over the
network. This redundancy in computation and data representation is inherent in the
rather rigid relational data model. We avoid it at large by settling for a more compact
representation system, called factorized databases, that has been previously introduced

for centralized, non-distributed systems [1]-[3].

Data factorization is a special representation of flat relational tables in more compressed
form, sometimes even exponentially more succinct. The succinctness of these
representations is achieved by algebraic factorization using the distributivity property
over product (X) of union (U). This compact representation is similar to the relationship
between logic functions in disjunctive normal form and their equivalent nested forms
obtained by algebraic factorization. FDB an in-memory query engine designed to work
with factorized representations. Previous work showed that by representing relational
databases with the corresponding factorized representation and delegating the query
processing to FDB it can outperform off-the-shelf relational engines by orders of

magnitude [2].

At the moment, FDB implementation follows a centralized single-node single-thread
model. As with relational systems it is natural to investigate distributed computation
in the context of FDB since factorization can drastically reduce the communication cost
and improve latency by minimizing the size of temporary results to be shipped across
the network. Therefore the goal of this project is to design, implement and benchmark
novel query evaluation techniques for distributed factorized databases that eventually

can compete and be compared with existing distributed systems over relational data.



1.2 Contributions

We build a complete end-to-end distributed query engine that takes factorized data as

input, output, and uses it for intermediate results.

In particular, the technical contributions of this thesis are as follows:

(1)  Our first goal is to minimize the communication cost of our system since it is the
main obstacle for the distributed processing. To this end, we would need to further
understand how different factorizations compare against each other with regard to
their sizes (number of singletons) even among those that have optimal f-trees, see
Section 2.3. We propose an estimation function, coined COST, which tries to
mitigate this issue by estimating the size of data factorizations using their f-tree
structure and statistics around their data values (i.e. number of unique values).
Ultimatum we would use this function to distinguish f-trees that asymptotically have

the same properties but in real-world their sizes differ significantly.

(2) Having insight on the data factorizations we can decide which one to use for
more succinct representation. Once we have the factorizations we need to ship them
over the network to other worker nodes in the cluster to evaluate the query. In order
to do this we have to serialize them into bytes and then be able to deserialize them
without losing information, neither on the data values nor the f-tree structure itself.
Therefore, the second contribution is the design and implementation of four (4)
serialization techniques for data factorizations which aim to retain the theoretical
compression factor of factorizations over flat relation tables. Each technique
introduces extra value compression capabilities making our serializations more
preferable than standard industry compression algorithms, like GZIP and BZIP2.
Additionally, one of the serializations integrates HyperCube algorithm, data shuffling

algorithm, in order to filter the factorization and serialize only the wanted values.

(3)  The final contribution of this work is the design, implementation and analysis of
the architecture of a distributed query processing engine, coined D-FDB, that

communicates factorizations end-to-end (using the serialization techniques) and uses
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FDB locally at each site to evaluate the query on local data. D-FDB provides two
modes of execution, namely Single-round and Multi-round, which differ in the
number of communication, hence processing, rounds they require before completely

evaluating a given query.

(4) The entire system was written in C++11 and the library boost::asio is used in
the communication module for networking. The source code can be found at:

https://github.com/lambrospetrou/fdb.git

1.3 Outline

The rest of this thesis is structured as follows:

e Chapter 2 provides the required theoretical background on factorization trees
and data factorizations, along with some related work on distributed query
processing.

e Chapter 3 presents an estimation function which aims to provide insights on
the size of data factorizations when they have the same theoretical properties.

e Chapter 4 discusses serialization techniques for data factorizations

e Chapter 5 delves into the insights of the distributed query processing engine
developed as part of this project and provides an overview of its architecture.

e Chapter 6 contains experimental evaluation for the size estimation function,
the serialization techniques and finally analyzes the end-to-end behavior of the
distributed engine D-FDB.

e Chapter 7 concludes and summarizes this work and discusses issues and

opportunities for future research.


https://github.com/lambrospetrou/fdb.git

Chapter 2

Preliminaries
2.1 Data FactoriZatilons . ..o o e 5
2.2 FacCtoriZation TS ...t e e e 6
2.3 Size Bounds for Data FactoriZations.......ceu. e 8
2.4 Related WOTK ... e 9

In this section we provide the theoretical background around previous work on factorized

databases [1] required for comprehending the work of this thesis.

2.1 Data Factorizations

A data factorization, or factorized representation, is a representation system for
traditional relational databases. A factorization is an algebraic expression that use the
distributivity property over product (X) of union (U) to represent the tuples in a relation
table. It consists of unions, Cartesian products and singletons (relations with one

attribute and one tuple).

A factorization of a relation over a schema S is of the following form:
e (@, which represents the empty relation over schema S
e <>, which represents the relation that contains the null tuple in case S = 0
e < A:a >, which represents a relation of a single tuple with value a for attribute
A where § = {A} and a is in the domain of A



e (E,VU..UE,), which represents the union of all the relations corresponding to
each factorization E;, where E;is a factorization over schema S

o (E;X..XE,), which represents the Cartesian product of the relations
corresponding to E;, where E; is a factorization over schema S;and S is the

disjoint union of all S;

Expressions of the form < A:a > are called A-singletons, or singletons of attribute A.

The total size of a factorization is defined as the number of singletons in the factorization.

Factorizations form a complete representation system for named relational data. This
means that all relational data can be represented by a factorization, named flat
representation. Flat representation is nothing but each tuple of the relational data being
represented as a product of singletons and the relation being the union of all these
singletons. Additionally, previous work showed that algebraic factorization can have
exponentially more succinct representations than the equivalent flat representation and
that its enumeration can be done in O(|E|.log(|E|)) space and pre-computation time

and 0(]S|.1og(|E|)) delay between consecutive tuples.

An example of a factorization is:
(KA:1>U<A:2>)X(<L:10UL:11 >)

The above factorizations represents the relation with two attributes (4, B), and four
tuples: (1, 10), (1, 11), (2, 10), (2, 11).

2.2 Factorization Trees

The structure of a factorization is defined by an f-tree (factorization tree).

Definition 2.1. [1]A factorization tree, or f-tree for short, over a schema S of attributes
is an unordered rooted forest with each node labelled by a non-empty subset of .S such

that each attribute of §'labels exactly one node.

Additionally, there are f-trees of a query. [1] Given a query, Q = m,0,(R; X ... X Ry),

we can derive the f-trees that define the factorizations of the query result Q(D) for any

6



input database D, which we call f-trees of Q. We consider f-trees where nodes are labelled
by equivalence classes of attributes in P. The equivalence class of an attribute A is the

set of A and all attributes transitively equal to A in ¢.

Additionally, it is defined that in any query f-tree T we have path constraints, that is a
condition where any attributes of the same relation taking part in the query are on the

same root-to-leaf path in T.
Definition 2.2. [1] An f-representation E over an f-tree T is recursively defined as follows:

o If T'is empty, then E =<>o0orE =0

o [If T'is a single node with {44, ..., Ax} as label, E = U, < A1:a > X .. X < Ap:a >.

o If T is a single rooted tree labelled by {44, ..., Ax} and a non-empty forest U of
children, then E =U,<A;:a>X ..X<Ap:a>XE;, where E, is the f-
representation over U and union U, is over a collection of unique values of a

o If T is a forest of trees Ty,..., Ty, then E = E; X ... X E},, where each E;is an f-

representation over T;

Assume that we have relations R(A4, B,C) and S(4,E) and the query
Q(A,B,C,E) = R(A,B,C)AS(AE)

A valid f-tree for this query will be as shown in Figure 2.1.

Figure 2.1: F-Tree for query R(A,B,C) join S(A,E)



Assuming the result of the query contains the tuples (1, 2, 3, 5) and (1, 2, 4, 5) its

factorization would be as in Figure 2.2.

A)
(1)

() H=
(Hm

Figure 2.2: Factorization of result of query Q with f-tree T

2.3 Size Bounds for Data Factorizations

Previous work also derived factorization size bounds on conjunctive queries results.

From [1]: For any database D and f-tree T, the size of the factorization for the query
result over 7T is at most |P|.|D|*T and there exist arbitrarily large databases D for
which the size of the factorization over T is at least |D|/|Q|S(™. The parameter s(T)
dictates the asymptotic size of factorizations over T, and provides an important quality

measure for f-trees.

Previous work so far considers parameter s(T) to be the optimality parameter, therefore
always trying to minimize it since f-trees with optimal s(@) will have the most succinct
factorizations. Such f-trees can be obtained by pushing up attribute nodes as much as
possible, carefully retaining the path constraints. It is much more preferred to have wide
f-trees with a lot of branches and each with small depth rather than narrow f-trees with

long branches of attributes.



We will compare against this optimality parameter in Chapter 3, where we present an

additional cost function that uses data factorizations too instead of just the f-tree, like

s(Q)-

2.4 Related Work

This project covers a wide range of topics, from serialization of tree-structures to
implementation of a distributed query engine. We refer related work in each chapter
where we introduce our contributions and compare with them but we briefly summarize

important work below.

This project aims to develop a distributed query processing engine, at the moment
dedicated to JOINs. Thus we directly relate to existing work on JOINs, even on
traditional relational data. Due to limitation in resources there has been extensive study
for multi-way join algorithms in order to reduce intermediate results and boost the

performance of multi-attribute join query evaluation.

On the one hand we have research in optimizing sequential algorithms. Previous work
by Schneider and DeWitt[4] investigated the trade-offs between using left-deep, right-
deep and bushy trees to optimize the query evaluation. More recently, Ngo et al. [5], [6]
presented NPRR, a worst-case optimal algorithm whose runtime is bounded by the
AGM bound. In addition, Veldhuizen[7] described another worst-case optimal algorithm
which had been developed and used by LogicBlox in their own Database Management

System, LeapFrog Triejoin.

On the other hand we have studies on algorithms which run efficiently on parallel
systems, with shared-nothing systems and MapReduce being among the most popular
evaluation frameworks. For example, Zhang et al. [8] studied multi-way Theta-join
decompositions into MapReduce jobs. Bruno et al. [9] investigated algorithms that
handle skew (data imbalance) and Polychroniou et al. [10] tried to make the best tradeoff

between CPU and network cost.



In the middle of these opposites we have research in algorithms that optimize multi-way
joins in distributed systems by investigating data partitioning and shuffling for
minimization of the communication cost. Afrati and Ulman [11] present an algorithm to
compute any conjunctive query in a single MapReduce job and later Afrati et al. [12]
presented GYM, a multi-round algorithm that uses parallel semi-joins to explore
tradeoffs between the number of rounds of communication and the computation cost.
Finally, Shumo et al. [13] refined the HyperCube algorithm to use practical sizes for the
hypercube and showed that it can be significantly faster than other algorithms because

of good data shuffling.

In this thesis we use HyperCube algorithm adapted on factorizations for our distributed
query processing and our experiments, see Section 6.4, confirm that it is currently among

the state-of-the-art shuffling algorithms.

Regarding factorized databases there is no similar work at the moment that investigates
distributed processing with factorizations end-to-end and as it seems from our
experiments it is a very promising and interesting area for further exploration. Current
work on FDB tries to extend join capabilities and investigate machine learning

techniques directly upon factorizations.
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Chapter 3

Finding good Factorization Trees

3.3.1 Initial thoughts ....ccooooie
3.3.2 Proposed Tdea .......ccoiiiiiiiiiiiii e
34 ALGOTTEIINS ..

3.1 Motivation

Previous work on Factorized Databases [1] provides searching for good factorization

trees (f-tree) based on asymptotic bounds and the size of the input. It has been proven

to be optimal, many times generating exponentially more compressed representations

than normal flat relational databases.

Although complexity bounds are nice, there are a lot of cases where they are not

sufficient and we need more explicit properties. For example, given a database @, the

previous work might find that the optimal f-tree has parameter s(Q) = 2, where s(Q) is

the cost measurement function, and that there are multiple trees with this property.

But the question is which of those f-trees having parameter s(@Q)) = 2 is better ? At the

moment, the implementation just uses the first f-tree that has the optimal parameter.

11



What we really want to investigate is how to find a good f-tree, using more refined
parameters, that will also depend on the data we want to factorize and not only on the
f-tree structure which ignores data (except relation sizes). The reason why this is an
important part of the project is that in a distributed system, see discussion in
experiments Section 6.4, the biggest bottleneck is communication and data distribution.
Therefore, although s(@)) provides optimal trees we want to minimize communication

cost, thus requiring an f-tree that results in the smallest factorization size possible.

For example, in real-world scenarios it can happen that two f-trees have the same s(Q)
parameter, let's say 2, but they might differ in size with a factor of 4x. More precisely,
f-tree A can produce a factorization with 1 million singletons (value nodes) where f-tree
B can produce a factorization of 4 million singletons. Asymptotically, we cannot
discriminate the two, but in real life using f-tree B will result in excessive data
distribution thus increasing our communication cost a lot, so it does matter in the end-

to-end processing.

3.2 Contribution

This chapter's contribution is a COST function that given an f-tree and certain statistics
(number of unique values per attribute, number of unique values per attribute under
any other attribute of the f-tree) returns an estimation of the total factorization size
(number of singletons, value nodes) that would occur if our database (factorization) was

factorized based on that given f-tree.

3.3 Idea

The requirement is to have a cost function that would take into account the actual
values of a database instance in order to be able to compare in a more precise manner

f-trees that are asymptotically optimal.

Let's start with some facts about FDB factorizations:
1. each union has its values ordered in ascending order

2. each union has unique values

12



3. a factorization may have many relation dependencies and each dependency forces
its attributes to exist along a single path in the f-tree (like a linear linked list)

4. some attributes belong to many relations, thus have many dependencies

-
0.0,0;0

R (A, B

S(B.C

T(C,A)
R(D,E)
S(E,G)
T(G,F)
U (F, D)

Figure 3.1: F-Tree after joining R(A,B,C),
S(A,B.D), T(A,E), U(E,F)

OnO

Figure 3.2: Triangle and Square
queries

Considering the above facts, we used the number of unique values per union, also unique
values per attribute. Additionally, the dependencies matter a lot since in complex queries
like triangles or squares, see Figure 3.2, we have all the attributes in a single path,

forming a single linked list and each level down the path affects the factorization size.
We define cost of a factorization the total number of value nodes or singletons, thus the

sum of the number of value nodes for each attribute. For example the factorization in

Figure 3.3 has 20 value nodes (black nodes) so the cost for that f-tree is 20.

13



Figure 3.3: Example factorization over f-tree in Figure 3.1

3.3.1 Initial thoughts

A first idea was to use an f-tree as a reference tree and based on some statistics
calculated on this reference tree we would calculate the factorization estimated size for

any other arbitrary f-tree.

Given an f-tree and its factorization, we calculate for each attribute the average number
of unique values (children of a union) under any of its ancestor attributes. The average

is taken over all the ancestor's children values.

Notation
(1)  XuY denotes the average number of unique values of attribute X under a single
value of attribute Y, where Y is an ancestor of X.
(2)  wnig(X) denotes the average unique number of values among all the unions of

attribute X.

14



For example, assuming the f-tree in Figure 3.1 and its factorization, see Figure 3.3, we

have the following statistics:

o unique values per attribute: uniq(A), uniq(B), uniq(C), uniq(D), uniq(E), uniq(F)
o number of unique wvalues per attribute X wunder an ancestor attribute Y:
BuA, CuA, CuB, DuA, DuB, EuA, FuA, Fuk

Having the above statistics calculated, given any other f-tree T the estimated size of the
factorization would be calculated by summing the estimated number of nodes for each
attribute. To calculate the cost for an attribute X, a path between X and its parent in
T should be found inside the reference tree, followed by the multiplication of all the
pair-wise averages (XuY) along the path to get an estimation for the number of values
of X.

This approach quickly turned out to be wrong and over-estimating because of the
excessive usage of estimates when we multiplied them for all the attribute pairs along

the path.

3.3.2 Proposed Idea

The final solution is based on the same intuition but in a more precise and more accurate
way. Instead of depending on estimates of a reference tree which lead to artificial over-
estimation, statistics such that we can use them with any f-tree should be calculated,
regardless of the input f-tree. Recall that our cost function should be able to accept an

arbitrary f-tree and return the estimation size as accurate as possible.

As a result, the following properties (statistics) are used during estimation:

(1)  Awverage number of unique values of attribute X under any attribute Y (single
value of Y), denoted as XuY, where Y is an ancestor of X.

(2) Average unique number of values among all union nodes for each attribute,
denoted as unigq(X) where X is an attribute.

(3) Flat size of the database (number of tuples).
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Another observation is that the number of nodes for each attribute in the factorization
is related to all of its ancestor attributes and not only to its parent. For example, in
figure 3.1, the number of nodes for attribute C depend both on B and A, therefore we

somehow have to incorporate them in our estimation for attribute C.

In the following formula COST(X) denotes the estimated number of value nodes
(singletons) for attribute X in the result factorization.
Input:

(1) f-tree T

(2)  XuY and unig(X), as described above

(3) flat factorization size

Estimation Formula

uniq(X) if Xtree root

COSTRO = {min(COST(parent(X)) * MINaveracex ), FLATsizg)  if X internal

Where: MIN_AVERAGE(X, T) = the minimum average XuY, where Y is an ancestor
of X along the path from X to the root of f-tree T. Y should also exist in a common
relation with X (dependency).

The above formula gives an estimation for the number of value nodes for a given
attribute in a given factorization tree. The total size of the factorization is the sum of

the individual cost for each attribute.

It is important that we take into consideration dependencies and only use XuY averages
for the ancestor attributes that are in a common relation with attribute X since we do

not know the relationship of X with attributes in other relations.

Additionally, we restrict the estimation size of the number of values per attribute to the
flat size of the representation since that is the maximum amount of singletons we can
have for each attribute, which is the worst case where each tuple is a separate path in

the factorization.
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3.4 Algorithms

In this section the pseudocode for the complete factorization size estimation procedure

is provided that implements the COST function described above.
Estimate Factorization Size

The algorithm is an iteration over the attributes in the factorization tree in a BFS-
traversal order memoizing the estimations of already visited attributes to use in their

descendants cost calculation.

Algorithm 3.1 calculates the estimated size of the representation that will be created
based on the input factorization tree. The algorithm assumes that the averages are
already calculated and are ready to be used. This is common in the databases-world
where some properties are calculated off-line in order to be used during runtime (value

histograms, unique values, selectivity, etc.).

The complexity of the algorithm is quadratic to the number of attributes in the
factorization tree, O(N?) since we visit each attribute exactly once and for each
attribute we call the min_average() function which has linear complexity, or more
precisely its complexity depends on the longest root-to-leaf path (we visit each

attribute's ancestor in the f-tree).
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Algorithm 3.1: Calculate estimated size for factorization using given f-tree

// @fTree: the f-tree to estimate the size for, if used for factorization

// @FLATSIZE: the flat size in number of tuples

double estimate_size(FactorizationTree *fTree, unsigned int FLATSIZE) {
// queue for BFS - holds pairs of attribute IDs <parentID, childID>
queue<pair<int, int>> Q;
// memoization array of costs estimated - size = number of attributes
vector<double> costs(ftree->num_of_attributes());

// cost for the root

rootID = fTree->root->ID;

costs[rootID] = uniq(rootID);

// add root's children in queue

for each child attribute CA in fTree->root->children {
Q.push_back({rootID, CA->ID});

}

while (!Q.empty()) {
parent_child = Q.pop_front();
parentID = parent_child->first;
childID = parent_child->second;

// calculate the minimum of all averages XuY where X = childID and
// Y is every ancestor of X in the fTree that belongs to a common

// relation (dependency) with X.

double min_est = min_average(fTree, childID);

// calculate the cost for this attribute

// COST(X) = min(COST(par(X)) * min(all averages XuY), FLAT_SIZE)

costs[childID] = min((costs[parentID] * min_est), FLATSIZE);

// add the attribute's children to the BFS queue
for each child attribute CA in fTree->node(childID)->children {
Q.push_back({childID, CA->ID});

}

// the total cost estimation is the total number of value nodes
// which is the sum of all the value nodes for each attribute
return sum(costs);
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For the sake of completion the code for min__averages() function is provided below.

Algorithm 3.2: Find min XuY for an attribute

// @fTree: the factorization tree we currently estimate the size
// @attributeID: the attributeID we want the estimated number of nodes
double min_average(FactorizationTree *fTree, attributeID) {

// get the attribute node

cN = fTree->node(attributelD);

// the maximum average for each attribute is its unique values
double min_est = uniq(attributeID);

// we now traverse the path from the current attribute up to the root
// and check the average of children with each ancestor
// ONLY if it belongs to common relation/dependency (hyperedge)
while (cN != NULL) {
if (same_hyperedge(attributeID, cN->ID)) {
min_est = min(min_est, XuY(attributeID, cN->ID));

}

cN = cN->parent;

}

return min_est;

The complexity of the above pseudocode is linear in the longest path from an attribute
node to the root and it finds the minimum average number of children (unique values)
of the current attribute under any ancestor attribute in the current f-tree.

The maximum amount of children (unique values) of any attribute under any other

attribute is the amount its unique values since we have unique values in our union nodes.
Calculate averages

The previous algorithm that estimates factorization size assumes existence of the
averages XuY for each pair of attributes in the same hyper-edge (relation/dependency).

A procedure was implemented that calculates this but it is code-specific to be included

in the thesis so we only provide a pseudocode for it showing the idea behind it.
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The function returns a two-dimensional matrix with size (N x N, where is the number of
attributes. Matriz/X][Y] corresponds to the notation used above, XuY, which means
that cell located at row X and column Y has the average number of children (unique
values) among all unions of attribute X which are located below each value of the

attribute Y.

Algorithm 3.3: Calculate averages

// @fTree: the factorization tree used for the representation '@fRep’
// @fRep: an input factorization of the database instance we examine
double[][] calculate_averages(FactorizationTree *fTree, FRepresentation *fRep) {
double matrix[fTree->number_of_attributes()][fTree->number_of_attributes()];
for each attribute A in fTree->nodes {
// make the current attribute A root of the factorization
make_root_attribute(A, fRep, fTree);
// traverse the factorization in either DFS or BFS mode and calculate
// all the averages where attribute A is the parent since now all
// other attributes are below attribute A
averages = calculate_averages_for_root(A, fRep);
update_matrix(matrix, averages);

}

return matrix;

The above algorithm's runtime could be improved but it is orthogonal to the project
and only used during the off-line pre-processing of the database instance to generate the

averages, thus its sub-optimality is not a serious concern.

The real need was to provide a fast cost function that during runtime could determine

the size of the factorization given an arbitrary f-tree.
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Chapter 4

Serialization of Data Factorizations
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4.1 Motivation

An important part of the project investigated ways to serialize, and possibly compress,
factorizations (f-representations). It is important to support serialization and
deserialization of a factorization both in a centralized setting and in a distributed setting.
For example, sometimes we want to save an instance of a database on disk to manipulate
and further process it later. In some other cases we want to ship data over the wire to

neighboring nodes which need the data for additional processing on their side.
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In general, serialization is the method of efficiently converting an in-memory
factorization into a byte stream which is stored or transferred and later can be
deserialized into the exact source factorization.

An important aspect of serialization and deserialization is that they have to be efficient
in both processing time and space since we want to retain the major benefit of
factorizations, which is the compression factor compared to corresponding flat
representations. Thus, having a serialization that would take a lot of space or requiring
a lot of time to process would be inappropriate for our setting, especially for the

distributed system that is the goal.

4.2 Contributions

The contributions made to the project out of this chapter are four (4) serialization
techniques for Data Factorizations and one (1) serialization technique for Factorization

Trees, namely:

(2) Factorization Tree (De)serializer - this is the only serialization technique for
f-trees and is used in conjuction any of the factorization serialization techniques.
(3) Simple Raw (De)Serializer - a simple serialization technique that is fast and

retains the compression factor over flat representations.

(4) Byte (De)Serializer - an extension to the Simple serialization technique to
only store the required number of bytes for each value.

(5) Bit (De)Serializer - a further extension to Byte serialization to only store the
required number of bits for each value, with specialized methods that can be
extended in the future to better support more values to allow better compression.

(6) Bit Serializer HyperCube - the serialization technique that is used in the
distributed system which differs from the normal Bit Serializer in that it does not
ship all the values of a union but only those that should be shipped based on the
Dimensions ID given (this will be explained thoroughly in Chapter 5).
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During the preliminary stages, I also implemented a Boost-based serialization technique
using Boost::Serialization library but it has been abandoned because it turned out to be

very bloated and did not satisfy our requirements (explained in-detail later).

4.3 Factorization Serializations

In this section I will describe the different approaches I have taken for the serialization

leading to the final version used in the distributed system.

4.3.1 Example

Let us first define an example scenario that we use throughout the chapter.

Assume that we started with four (4) relations, R(A,B,C), S(A,B,D), T(A,E) and
U(E,F), and applied a NATURAL JOIN operator on all of them, resulting in the final

table shown below.

MMHHP—‘H)—‘H:D
— = NN === =T
NN N == = =0
== == NN = =T
N~ NN NN NN ™
— = N =N RN T

2 1 2 1 2 2
Figure 4.1: Result after Natural JOIN on some R, S, T, U relations
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Figure 4.2: Example f-tree for the join result in Figure 4.1

. Union °

. Multiplication values
. Union values
. Operand values ° e

Figure 4.3: Example factorization over the f-tree in Figure 4.2

We will use the f-tree in Figure 4.2, named Fxample f-tree to factorize the result of the
JOIN (see relational table in Figure 4.1) with the Data Factorization based on that f-

tree being shown in Figure 4.3.
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We explain below the in-memory representation of Data Factorizations as implemented

at the moment. A factorized representation contains the following types of nodes:

1. Union nodes just contain a list of the values for that specific attribute union

2. Multiplication values are value nodes that act like Multiplication nodes since their
attribute is a multiplication attribute (based on f-tree) and they have two or
more Union nodes as children
Union values are value nodes that just have one Union node as a child

Operand values is just another node type to denote leaf values

4.3.2 F-Ttree serialization

An f-tree is the back-bone component of a factorization since it defines the structure of
the representation and all the relations between the attributes of the query.

The serialization of an f-tree is the same for all the different factorization serialization
techniques and is implemented as a separate module since it is a small data structure

(a few KBs) and we do not mind using the simplest serialization for it.

We use the same structure as an f-tree definition file for its serialization. As a result,

the serialization of the f-tree show in Figure 4.2 is as follows:

int
int
int
int
int
int
1011014
RSTU
2345
A,B,C
A,B,D
A,E

E,F

MmO N ®™ > o0
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The first line defines the number of attributes /N and relations M in the f-tree, followed
by N lines declaring the name of each attribute and its data type. The current FDB
implementation assigns IDs to the attributes in the order they are defined here with the
first attribute (A in this example) being given ID zero (0) and the last attribute (F in
this example) being given ID five (N-1).

The next line defines the tree-relationship since for each attribute we specify the ID of
its parent attribute. A has parent ID -1 which means A is root, then B has parent ID 0,
C has parent ID 1, D has parent ID 1, E has parent ID 0 and F has parent ID 4.

Then we similarly have a line containing the relation names, again being given IDs
internally, with the following line specifying for each relation its parent attribute node.

The last M lines are just the relations enumeration with their attributes.

The serialization of an f-tree uses Text format and it is prefixed with its size length to
allow the deserializer to know up-front the total f-tree serialization size in order to read
all the information at once (prefixing messages with their total size is common in

message passing protocols).

The serialized f-tree (including its size header) is prefixed in the final serialization of the
Data Factorization such that it can be deserialized first and allow us to use it during

the factorization deserialization.

4.3.3 Boost Serialization

As a first attempt to provide serialization/deserialization we decided to wuse
Boost::Serialization library since it gathered high rating reviews among the online
community and since Boost was already being used for the networking modules of the
system it seemed to be a great fit.

The purpose of Boost::Serialization library is to allow developers to provide an easy way
to add serialization to their existing data structures without writing a lot of boilerplate
code since it can be described more or less like a memory dump of a data structure into

a stream (file, socket, etc.).
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The integration of the library in FDB and the actual implementation was pretty
straightforward. There were some special methods required to be added in each class we
wanted to be serializable according to certain library rules. However, the end result was

really disappointing due to very big serialization size.

As I mentioned, this is more of a memory dump of the structure, including any pointers
and their destination objects, in order to easily allow the deserializer to create the exact
data structure. The major problem here and the reason of the bloated serialized output
is that the existing FDB implementation is not as space-efficient as it should be and

that overhead is transferred into the serialization.

The current data structure of a factorization has a lot of overhead, like keeping all the
values of a Union as a Double-Linked-List thus introducing excessive amount of pointers.
As a result, the serialization module was dumping everything, more importantly the
pointer references, to allow re-creation during deserialization leading to a bloated

outcome, both in terms of raw size in bytes but also in long serialization times.

In our first preliminary experiments the serialized representation was almost the same
size as the flat-relational representation, thus completely eliminating the compression

factor of FDB over flat databases, which was unacceptable!

In order to use Boost::Serialization and at the same time having quality serialization we
had to write custom code for each implementation class for every data structure we use
to omit certain fields or doing my own book-keeping for the pointers and references to
avoid all this going into the serialized output. Eventually, this was not worth it since
Boost was still going to add some overhead which cannot be removed, like class

versioning.

The first attempt failed but led to some interesting observations. Although the current
implementation was poorly done, a good serialization does not need all that information
and we could also take advantage of the special structure of a factorization to make it

as succinct as possible.
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4.3.4 Simple Raw (De)Serializer

Before going into details for this serialization technique we state some observations made

after investigating the reasons that led to failure of the previous attempt for serialization.

e Each factorization is strictly associated with a factorization tree (f-tree) that
defines its structure.

e The main types of a node in a factorization are the Multiplication (cross product)
and the Summation (union) node types.

e The values inside a union node can be stored in continuous memory, thus
avoiding the excessive overhead of Double-Linked-Lists due to the pointers for
each value.

e There is necessity to de-couple the data, values, from the factorization structure

since a lot of overhead comes with the representation and not the data.

Apart from the above observations, the trick that led to this serialization method is that
the only nodes required to be serialized are the Union nodes along with their values.
Since each factorization strictly follows an f-tree, it became obvious to use the f-tree as
a guide during serialization and deserialization leading to a more succinct outcome which

just contains the absolute minimum of information, the values!

The problem with generic serialization techniques, like Boost described above is that all
information goes into the serialized outcome to allow correct deserialization. We can
avoid this overhead in our case since we know the special structure of the factorization
and therefore we can use the f-tree to infer the structure of the representation and load

the values from the serialized form as we go along during deserialization.

4.3.4.1 Idea

The main idea of Simple Serializer is that we traverse the factorization in a DFS (Depth-
First-Search) order and every time we find a Union node we serialize it, then recurse to

the next. The serialization of a union node is simple and just contains a number N
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indicating the number of values in that specific union, followed by N values of the

attribute represented by that union.

For example, if a specific union of attribute A (of type int) has the values

[3, 6, 7, 8, 123, 349], its serialization would be:

63678123 349

It is important to mention that we use Binary read and write methods during
serialization and deserialization and for each children count we use 32-bit unsigned
integer values whereas for the actual values the corresponding number of bytes required

for that attribute data type (i.e. double = sizeof(double) = 8 bytes) is used.

The serialization of a factorization is just a sequence of children counts followed by their
corresponding values. The important benefit of this serialization technique is that only

the absolute minimum information required to recover the representation is stored.

Moreover, Simple Serializer assumes that we already deserialized the f-tree (discussed

previously) and we can use it to infer the structure of the representation.

4.3.4.2 Algorithms

Simple Serializer, see Algorithm 4.1, is an extension of the well-known DFS traversal

algorithm for trees with in-order value processing.

The representation has two types of nodes, thus leading to two different treatments in
serialization. When a multiplication node is encountered, the algorithm recurses on its
descendants without serializing anything since the multiplication information can be
inferred from the f-tree. When a union node is encountered we first serialize the number
of values in that union, followed by the serialization of all the values. At the end we

recurse on each of child to complete the DFS-traversal.
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Algorithm 4.1: Simple Serializer

// @node: the starting node of our serialization (initially root of factorization)
// @fTree: the factorization tree to be used as guide
// @out: the outpout stream to write the serialization
dfs_save(Operation *op, FactorizationTree *fTree, ostream *out) {
if (is_multiplication(op)) {
// in multiplication nodes we just recurse without serializing
for each child attribute CA in op->children { dfs_save(CA, fTree, out); }
} else if (is_union(op)) {
// in union we serialize the number of children and values
write_binary(out, op->childrenCount);
// serialize union values
for each child value V in op->children { write_binary(out, V); }

// recurse only if the union's attribute is not leaf in the f-tree
if (!is_leaf_attribute(fTree, node->attributeID)) {
for each child value CV in op->children { dfs_save(CV, fTree, out); }

The algorithm iterates over the values twice since all the values of a union have to be
serialized completely and then move on to the next union, like in an in-order traversal.
Additionally, the f-tree is used to determine if a union belongs to an attribute which is

leaf in the f-tree to avoid unnecessarily recursions.

Simple Deserializer, see Algorithm 4.2, is not as simple as its counterpart but it is easy
as soon as some key things are explained.

First of all, only factorization nodes of type Union are serialized, so we know that during
the deserialization phase we only deserialize union nodes, hence the creation of a Union
node just from the start of the function (opSummation). Then we read the children
counter for this union and such many values from the input stream (note that we use

binary format in deserializer too to match the serializer).

Now that the values for the union are read we have to use the f-tree to determine what
type of factorization node each value should represent. If the current union being
deserialized represents a leaf attribute (currentAddr) (like C, D and F in the example)

we just append the values in the union node using a special Operand node.
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Algorithm 4.2: Simple Deserializer

// @in: the input stream from which we deserialize the factorization
// @currentAttr: the current attribute node in the f-tree (initially the root)
FRepNode* dfs_load(istream *in, FTreeNode *currentAttr) {
// we know that we only deserialize unions so create a new union
Operation *opSummation = new Summation(currentAttr->name,
currentAttr->ID,
currentAttr->value_type);
// deserialize the children count and the values for this union
unsigned int childrenCount = read_binary(in);
vector<Value*> values = read_binary_many(in, value_type, childrenCount);

// now use the f-tree to infer factorization structure
if (is_leaf_attribute(currentAttr)) {
// just append the values to the current union and return
for each value V in 'values' { opSummation->addChild(V, new
Operand(...)); }
return opSummation;
} else {
// this is an internal attribute node therefore we need to check if
// we have to create a multiplication node for each of child values
if (!is_multiplication_attribute(currentAttr)) {
// not a product attribute so just store children and recurse
for each value V in 'values' {
opSummation->addChild(V, dfs_load(in, currentAttr->firstChild));
}
return opSummation;
} else {
// each value of the union is a multiplication operation
for each value V in 'values' {
Operation *opMult = new Multiplication();
opSummation->addChild(V, opMult);
// recurse on attribute child add it to this multiplication
for each child attribute CA in currentAttr->children {
opMult->addChild(new Value(CA->attributeID),
dfs_load(in, CA));
} // end for each attribute in the product
}
return opSummation;
} // end of if product attribute
} // end of if leaf_attribute

If the current union represents an internal attribute node (like A, B, E) we have to
check if this is a multiplication attribute, meaning that it has 2 or more child attributes
in the f-tree (like A and B). If the current attribute is not product/multiplication we
just add the values to the current union (opSummation) and as a subtree node we add
whatever the recursion on that value will return. If the current attribute is a
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multiplication then we need to create a factorization node of type Multiplication for each
value and each child of this multiplication will be the recursion result on each of the
current attribute's children. For example, if the current attribute (currentAttr) is B it
means that is has two children, attribute C and attribute D. Therefore each value of
union B will have a node of type Multiplication that has two subtrees, one for each of

the C'and D attributes and their subtree nodes will be the respective recursion result.

4.3.5 Byte (De)Serializer

Byte (De)Serializer is an extension of the Simple Raw (De)Serializer technique where
the only difference is that it just stores required bytes only for each value and not all

the number of bytes of each data type.

4.3.5.1 Idea

If we really wanted each value to have only the required amount of bytes then somehow
we would need to store that amount somewhere in the serialization in order to allow the
deserializer to know how many bytes to read. It is easy to see that with millions of
values, having a companion byte indicating the number of required bytes for each value
could be excessive. Therefore, we decided for each attribute to use the required amount
of bytes to cover the maximum value occurred for that attribute. Therefore, we record
different required-bytes for each attribute and we avoid the overhead of having them
for each value since we just store them once as a serialization header at the very

beginning.

We also apply the same logic to the union children counts, thus for each attribute we
store two values, required-bytes for union children and required-bytes for union values.
These two counters for each attribute are serialized in full binary format (8-bit unsigned
numbers) at the beginning of the serialization. Therefore the deserializer will read these

counters and then it will know exactly the amount of bytes to read for each union node.
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4.3.5.2 Algorithms

Byte Serializer

The dfs_save() method is the same as the Simple Serializer with the only difference
that the 2 lines writing to the output stream a) the children count and b) the actual
values, use a special variant of the write_binary() method that accepts a third argument

denoting the number of bytes to write from the given value.

However, in order to know this required-bytes for each attribute union children and
values we have to do a pass over the factorization and gather statistics around the actual
values. This means that Byte Serializer traverses the whole factorization twice, but as
the experiments show it does not hurt a lot in processing time and helps a lot in space-

efficiency.

We skip the dfs_save() method code since it is exactly the same as described above and

we provide the first pass algorithm that gathers statistics about the unions.

The statistics gathering procedure is pretty straight-forward. We do a DFS-traversal on
the factorization and whenever we are at a union node we update the required bytes for
the number of children and for the values of that specific attribute represented by that
union node. The required_bytes() method returns the number of active value bytes

starting from the LSB (least significant byte) to the MSB (most significant byte).

In the pseudocode attribute_info is a field of the Byte Serializer class and its type is as

shown below:

struct AttrInfo {
uint8_t required_value_bytes;
uint8_t required_union_bytes;

This structure represents the header for each attribute that is written before the actual
factorization serialization as part of the header and each counter is an 8-bit unsigned

integer (thus 2 bytes per attribute required).
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Algorithm 4.3: Byte Serializer - statistics gathering

// @attribute_info: used below = it is a field of the Byte Serializer class
// @node: node to start gathering statistics (initially the factorization root)
// @fTree: the factorization tree of the representation
void dfs_statistics(Operation *op, FactorizationTree *fTree) {
if (is_multiplication(op)) {
// multiplication nodes children are unions so just recurse on them
for each child union CU in op->children { dfs_statistics(CU, fTree); }
} else {
// check if the current attribute required-bytes need to be updated
children_bytes = required_bytes(op->childrenCount);
if (attribute_info[op->attributeID].required_union_bytes < children_bytes)
attribute_info[op->attributeID].required_union_bytes = children_bytes;
// check value bytes
for each child value CV in op->children {
val _bytes = required_bytes(CV);
if (attribute_info[op->attributeID].required_value_bytes < val bytes)
attribute_info[op->attributeID].required_value_bytes = val_bytes;
// recurse if this is not a leaf attribute in the f-tree
if (!is_leaf_attribute(fTree, op->attributeID)) {
dfs_statistics(CV, fTree);

}
} // end for each child value

Byte Deserializer

The Byte Deserializer is exactly the same as the Simple Deserializer with the only
difference that the 2 lines where it reads from the input stream the number of children
and the values themselves it uses a third argument to the read binary() method that

specifies the number of bytes to read.

Before calling the method dfs_load() we separately read the counters for the required-

bytes needed for union children and values respectively.

4.3.6 Bit (De)Serializer

The final version of the serialization technique is Bit Serializer. As the name suggests it

follows the same idea as the Byte Serializer but instead of working at byte-level, it works
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at bit-level. Therefore, instead of storing the minimum amount of required bytes for

each union count and each value, it stores only the required bits.

4.3.6.1 Idea

The idea of this serialization technique came up after we tested applying state-of-the-
art compression algorithms like GZIP and BZIP2 upon our own Simple and Byte
serializers. We saw that applying these compression algorithms reduced the output size
by a constant factor ranging from 1-4x while at the same time increased the processing

(serialization and deserialization) time significantly!

Although serialization is different than compression and should not be mixed
(serialization is used for saving and loading a structure whereas compression is used to
exploit values to reduce size), in our case it was obvious that we could be more space-
efficient by exploiting the data in our factorizations. We achieved similar or close enough
compression on our factorizations in a fraction of the time required by BZIP2
compression for example, which provides the best compression at the cost of slow

processing.

I want to emphasize that serialization is different than compression and that this chapter
aimed at serialization of data factorizations. But, the knowledge of our structure allows
us to exploit certain factorization properties and at the same time be more space-efficient
without increasing processing time significantly. Additionally, although we have some
kind of compression, we do not have the drawback of standard compression algorithms
(GZIP, BZIP?2) that need the decompress the whole fragment first and then do any
processing, since we are still able to deserialize each union separately and process it

before we move to the next one.

4.3.6.2 Algorithms

The algorithms are identical to those of Byte Serializer and Byte Deserializer with the
exception that instead of using the required_ bytes() method it uses the required bits()

method to only write the specific bits required to the output stream.
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4.3.6.3 Bit Stream

This serialization technique requires bit-level precision when reading and writing values,
but as we know all system calls and existing functionality provided by the standard

libraries work at byte-level precision.

Therefore, in order to provide this functionality we implemented custom input and
output streams (obitstream and ibitstream classes) that are used upon the underlying
standard binary byte streams and use those in the Bit Serializer and Bit Deserializer.
These custom bit streams basically allow for a given value to write only certain bits of
its memory representation and respectively can read a certain number of bits from an

input stream and reinterpret them as a data type in memory.

Briefly an explanation how the bitstreams work. When a value is written or read we use
internally an in-memory bytes buffer to write and read from certain amount of bits.
Whenever the bytes available in the internal buffer are insufficient to satisfy a read
operation it is refilled by reading bytes from the underlying input stream. Whenever the
internal buffer fills (or at user's request) the internal buffer is flushed to the underlying
output stream. Therefore, this implementation of bit streams works upon the underlying
standard binary streams of C++ and use buffers to handle the required read and write

operations.

In addition, an important feature that makes this serializer great is that in future work
specialized read /write methods could be provided for certain data types (floats, doubles,
strings) and further increase compression without adding processing overhead by
applying compression algorithms. The current implementation of bit streams heavily
uses C++ templates therefore this extension should be trivial to implement in a future

project.
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4.4 Final remarks

We described a serialization for f-trees and three serialization techniques for Data
Factorizations. The serialization module provides helper methods inside the package
fdb::serialization that allows a user of the library to serialize and deserialize a full

factorization with its f-tree easily.

Namely the fdb::serialization::serialize(FRepTree*, ostreamé&) receives a data
factorization, FRepTRee, and a reference to an output stream and serializes both f-tree
and representation into the stream.

Its counterpart function fdb::serialization::deserialize(istreamé& ) deserializes from

the input stream and returns an FRepTRee.

4.4.1 Serializations illustrated

In this section we provide an illustration of the aforementioned serialization techniques
and how they compare against the binary flat table serialization. The example

factorization is used, see Figure 4.3.

The separator | is just used for illustration purposes to separate the different fragments
of each serialization. In real-world it does not exist and the bytes of each fragment are

contiguous.

Flat tuples binary serialization

111121 ]111122|111221]111222 122121 ]|122122]212
111212121 ]212122

total bytes = number of tuples * number of attributes * sizeof(int) =9 * 6 * 4 = 216

Simple Serializer

2ala2 | 2blb2|1cl|2dld2|1c2|1dl|1el|2F1f2 ] 1bl|1c2]| 1dl]| 2
ele2 | 11| 21 f2

total bytes = (number of unions * sizeof(wint__32)) + ( sizeof(int) * number value nodes)
= (14 * 4) 4+ (20 * 4) = 136 bytes
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Bit / Byte Serializer

Recall that Byte Serializer and Bit Serializer use the same serialization form as the
Simple Serializer but store only the required amount of bytes and bits respectively for

each attribute union children count and union max value.

For the example we illustrate here the Byte Serializer just needs 1 byte for both the
union children counts and for the max value occurred in each attribute. Therefore its
total serialization size would be 34 bytes.

Bit Serializer needs 2 bits to represent max values and max number of children occurred

in each attribute so the serialization size is reduced to 68 bits, thus requiring 9 bytes.

We should note that both these serializers require a header that for each attribute has
2 bytes denoting the max number of bytes/bits used in each union or value (i.e. 6
attributes * 2 bytes each in the header). Thus, the total serialization size for Byte and

Bit Serializers is 46 and 21 bytes respectively.
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Chapter 5

Distributed Query Processing in FDB
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In this section, we present the design and implementation of D-FDB, a distributed query
engine that uses FDB [1] for distributed query processing on factorized data. We describe
how the system integrates HyperCube [13] algorithm for shuffling the data among
workers and also describe how the system can be used for Single and Multi-round
executions, where single or multi refers to the number of communication rounds to

completely evaluate the query.
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5.1 Motivation

Distributed query processing has become an absolute necessity in today's DBMS systems.
The reason is simple, once you cannot process your data using a single machine (data
too large to fit in memory or query processing too slow) you either have to partition it
and process one part at a time by storing intermediate results on disk or you do

distributed processing.

Utilization of many machines has become the de-facto way to scale services to support
either huge number of requests or the so-called Big Data, meaning huge amount of data
to be processed. There are a lot of existing systems that offer distributed query
processing; almost all the current NoSQL database systems are layered upon a
distributed scalable system in order to be able to achieve the high throughput and low
latencies they advertise [14][15]. Therefore it is natural to investigate distributed
computation in the context of FDB and delegation of query processing to clusters of
nodes in order to enable processing on Big Data and speed up complex queries that are

too slow with single node processing.

This chapter describes D-FDB, a distributed query processing engine designed to work
across a cluster of nodes, using the HyperCube algorithm to shuffle data among worker

nodes and FDB query engine for query processing on each site on local data partitions.

5.2 Contributions

The contributions of this chapter are as follows:

e Implementation of the HyperCube algorithm over factorizations for data shuffling
in a cluster of nodes and its integration with Bit Serializer, as described in
Chapter 4, resulting in Bit Serializer HyperCube used for distribution.

e Design and implementation of an end-to-end distributed query engine that is able
to receive a query, load the input from local storage at each site, distribute data
over TCP, execute the query on received data using the existing FDB query

engine, and finally gather results. Major differentiation of this system from
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existing ones is that we use factorizations end-to-end.
Factorization Input => FDB Processing on factorized data =>
Factorization Output

e Different distributed execution modes, namely Single round and Multi round
execution. Single round execution only shuffles and transmits data between the
nodes once and then executes the whole query on each of the nodes in the system,
whereas Multi round execution splits the query into individual JOINs and repeats

the Single round execution for each partial query.

D-FDB at the moment supports only JOIN queries on one or many attributes.

5.3 HyperCube on Factorizations

In this section, we introduce the HyperCube algorithm that previous work [13] has
shown to be state of the art approach to data distribution in distributed query processing.
In addition, we present an algorithm that explains how HyperCube works on
factorizations and finally, how we integrated it with the Bit Serializer, resulting in a

new serializer coined Bit Serializer HyperCube.

5.3.1 HyperCube preliminaries

In this section, we present the theoretical background behind HyperCube algorithm

which is used in our Bit Serializer HyperCube.

Several data management systems, especially analytics engines, operating on large-scale
data nowadays are equipped with large amounts of main memory which is used during
the evaluation of complex analytics queries. Traditional systems based on secondary
storage required many disk I/O operations to load and save intermediate results, thus
their main bottleneck is disk I/O, whereas for an in-memory database system that
bottleneck has been replaced by the communication cost incurred during query
evaluation since large amounts of data needs to be reshuffled among the workers at the

beginning of each processing round.
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Our focus is on conjunctive queries, which have always been important (mostly with
star-joins of a large table with other smaller feature relations). Recently data engines
are required to be able to process complex queries including cyclic-queries on huge tables
either for analytics or for analyzing graphs for networks.

Example of a simple cyclic query is the triangle, which does a self-join two times on a
relational table. A traditional DBMS would evaluate this query by doing one join first
and then another join of the initial table with the intermediate result. Recent work [5],
[6] and [11] presented algorithms that evaluate multi-join queries, eliminating
requirement for huge intermediate results. The algorithm by Afrati and Ullman [11] was
later extended by Bearne et al. [16], [17] who named that algorithm HyperCube and
proved it was optimal, but its proof was not practical in a real scenario since it assumed
that we can have fractional number of servers. Last year, Shumo et al. [13] provided a
refinement of the algorithm that does not depend on fractional servers, thus making it
practical, and showed that for many queries it can significantly reduce the amount of

data communicated during query processing.

We briefly explain the idea behind HyperCube which is used in our serializer during
distributed query evaluation. HyperCube is used as the data shuffling algorithm before
applying a multi-way join operator on the data received. Therefore, each worker has to
receive all the data he needs to correctly evaluate the multi-way join without affecting

the result and at the same time retaining the single communication round.

We will use an example scenario to explain the algorithm.

Assume we have a cluster of P nodes (in our example P = eight nodes) and our database
consists of four relations:

a) R(A, B)

b) U(A, C)

¢) T(B, D)

d) S(C, D)
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We want to evaluate the following conjunctive query:
Q(A,B,C) = R(A,B)A U(A,C) A T(B,D) A S(C,D)

First, we need to find ND factors that their product equals P (how to find these factors
is out of this project's scope and can be found in the aforementioned work, but it suffices
to say that ND is related to the number of join-attributes). We name these factors pi,

with ¢ ranging from 1 to ND, therefore we have:
P = plx p2*...x pND

Let us use ND = 3 and all factors equal to two (pl = p2 = p3 = 2). We say that we

have three dimensions and each dimensions size of two.

Our cluster of nodes is modelled into a virtual hypercube which has ND dimensions and
in each dimension it has the respective pi size. Each node represents a point in this
hypercube and is identified by a vector of ND values, one in each dimension. In our

example, our cluster is formed as the hypercube illustrated in Figure 5.1.

p,=2

Figure 5.1: Cluster of 8 nodes in a HyperCube formation
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We can see that there are two nodes in each dimension. Below we provide a possible

assignment of the identifying vector for each node (multi-dimensional IDs).

Node X: [Position in p1, Position in p2, Position in p3]
Node 1: [0 0 0 |
Node 2: [00 1
Node 3: [0 11
Node 4: [0 10
Node 5: [101
Node 6: [1 11 ]
Node 7: [11 0 ]
Node 8: [1 00 |

]
]
]
]

Additionally, each dimension represents an attribute in the JOIN query. For example
in our query, dimension pI represents attribute A, dimension p2 represents attribute B
and dimension pJ represents attribute C. HyperCube also uses a hash function for each
join/hashed attribute, chosen independently from the others, which has a co-domain of

the dimension size that represents that attribute.

Furthermore, we assume that all four relations are partitioned uniformly and distributed
among the nodes. Fach server during the single communication round, will load its
local partition Zi of each relation Z from its local secondary storage and for each tuple

T decides which nodes should receive it as follows:

(1) Create a multi-dimensional vector ID similar to those assigned to each node, let's
call it CTV, initialized with *, hence [ * * * ]

(2) For every attribute ¢ in relation Z that is among the JOIN-attributes of the query,
it hashes the value Tt/ and assigns the hashed value to the vector CTV

(3) If CTV contains no * then it can be used as the multi-dimensional ID for the
node that should receive the tuple. If CTV contains * it means that the current
relation Z does not contain all the hashed/join attributes, therefore that tuple T

should be sent to more than one nodes.
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To identify the required nodes we use CTV, with every * acting as a wildcard for
ALL values in that dimension, meaning that if CVT = [ 0 1 * | the tuple should
be sent to the nodes with IDs [0 1 0 Jand [0 1 1 ].

To make this clear, we can see from our example that all tuples from relation R will be
sent to two nodes since only dimensions p! and p2 can be defined by its tuples. This
holds for all relations in our example since all of them only contain two out of the three

hashed attributes.

HyperCube's advantage over other shuffle techniques (i.e. hashing an attribute to all
nodes) is that it is more resilient to data load imbalance (a.k.a skew) since it is more
difficult to send the same value for a column to the same node since it depends on the

other hashed columns too.

The intuition to HyperCube's correctness is that since we use the same hash function
to hash values of the same attribute/column, then all required tuples to evaluate
correctly the JOIN will end up in the same node. The wildcard is used to ensure that
even if a tuple does not contain a hashed attribute it will be sent to the nodes for the
missing dimension since they might need that tuple based on the rest values which

might contain a hashed attribute.

The methodology to identify the proper values for ND number of factors/dimensions
and the size of each dimension are not part of this project, thus not presented here. In
experiments, we used the query configuration files to specify the HyperCube dimensions

required for the query we wanted to evaluate.

5.3.2 Bit Serializer HyperCube

Bit Serializer HyperCube's main purpose is to be used during the communication stages
in D-FDB query processing phase. Each node needs to send data over the wire to other
nodes, therefore we use this special serializer to take into account the HyperCube

configuration used and serialize only the fraction of the factorization required.
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5.3.2.1 Arguments

Before explaining the arguments of the algorithm we explain some important topics used

throughout this chapter, using an example f-tree, see Figure 5.2.

Figure 5.2: Example f-tree

This f-tree has five attributes, and each attribute internally gets an ID ranging from
zero to (N-1), where N in this case equals five. Assume that the IDs for these attributes

are as below:

ID(A) = 0
ID(B) = 1
ID(C) = 2
ID(D) = 3
ID(E) = 4

Moreover, let us consider that we want to use HyperCube and hash on attributes A and
F (we support hashing attributes regardless their position in the f-tree). Also, our cluster
will contain 6 nodes. There are four possible HyperCube configurations in order to use

all nodes, as shown below.
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Notation K z M means that we assign a dimension of size K to attribute A and a

dimension of size M to attribute E.

Confl1l:1x6
Conf 2: 6 x 1
Conf 3: 2 x 3
Conf 4: 3 x 2

In addition, each node will be assigned a multi-dimensional ID based on the HyperCube
configuration used. For this example, let's use the third HyperCube configuration (Conf
3), thus creating the node IDs below (basically we iterate over all possible values in each

dimension).

Node 1: [0, O]
Node 2: [0, 1]
Node 3: [0, 2]
Node 4: [1, 0]
Node 5: [1, 1]
Node 6: [1, 2]

Bit Serializer HyperCube was designed to accept the following arguments:

(1) The factorization to be serialized

(2) Bitset or vector (array) with size the number of attributes in the f-tree, where
each set bit corresponds to an attribute that is to be hashed

(3)  Vector (array) with size the number of attributes in the f-tree. Each value in this
array corresponds to the node's dimension ID for that attribute taken from its multi-

dimensional ID

Let us provide the actual arguments used by Bit Serializer HyperCube for our example.

(1) The factorization to be serialized
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(2) Bitset of size six with the bits set for attributes A and E:[1 000 1 |
(3)  For each node we call the serialize method of the serializer passing in the multi-

dimensional node ID expanded to have size of N.

For example, if we were to serialize for node 6 the vector ID [ 1 0 0 0 2 ] would be

used whereas for node2[ 0000 1 ].

As you can see each node's expanded ID is a vector of size N (number of attributes).
Each position 7' in this vector either has zero if attribute with ID T is NOT among the
hashed attributes or has the node's ID in dimension T as specified in the node's multi-

dimensional ID.

5.3.2.2 Hashing and HC_Params

HyperCube's performance depends on value hashing and proper use of hash functions.
In this project we decided to use the same hash functions as existing work that showed
good results [13]. The hashing library used is MurmurHash3 [18] which is open-source
and available online. The library provides methods that given a series of bytes create
hash values of size 128-bits and 32-bits. We decided to use the 128-bit version and just
use the first 64-bits (starting from the Least-Significant-Bit).

Additionally, these hash functions accept a seed index as argument which affects the
result hash values. In order for the HyperCube to work as expected we need to use the
same seed index for attributes that are to be joined together, or attributes that are
named differently in the factorization but represent the same logical attribute. In
addition, it would be better to use different seed indices for different joined attributes
to avoid distribution issues that might result in skewing of data partitioning and
shuffling. Therefore, we have a pool of some seed indices that are given to each hashed
attribute (seeds taken from online prime number resources and previous work on

HyperCube).
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HC Params

The structure hc__params is a structure passed as argument in the serialize function of
Bit Serializer HyperCube and contains the three arguments described in the previous
Section 5.3.2.1 to allow the serializer to use the right hash function for each attribute

value during validity check.

5.3.2.3 Algorithms

In this section we present the algorithms behind bit serialization using HyperCube.

Recall, that HyperCube shuffling hashes the value in each hashed attribute and based
on these hashed values sends the whole tuple to the nodes that have their multi-
dimensional IDs matching the hashed values, attribute-wise (the hashed value of a

column has to match the node's dimension ID on that column).

HyperCube implementation in flat databases handles tuple as a whole, therefore can
apply hash functions in all the required attributes and find the matching nodes for the
tuple instantly. In our case, factorizations, do not have all the information about a tuple
in a single place since each tuple is assembled by retrieving a value from each attribute

union along the factorization.

A naive approach would traverse the factorization, hash the values in each union and
send them to each node that matches the hashed value in its multi-dimensional ID. This
would lead to incorrect results since a single attribute union cannot determine the
destination nodes. In order to be able to decide whether each value in a factorization
should be sent to each node we have to make sure that the value exists in at least one
tuple that is valid for that node, and we cannot know that before traversing all attribute

unions in the factorization.

As a result, our algorithm consists of two phases, namely the masking phase and the

serialization phase. During the masking phase we create bitset masks for each union
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denoting whether each value is valid to be sent to the examined node, and during the

serialization phase the valid values are serialized in the exact way Bit Serializer works.

An important optimization in the algorithm is that during the second phase there is no
need to visit unions that do not have any valid values to be serialized. Therefore, there
is lot of gain since we can skip complete subtree branches from the top-most point we

notice that a value is invalid.

Figure 5.3: Example factorization

For example, assume we are serializing the factorization seen in Figure 5.3 and the node
we examine has the multi-dimensional ID [ 1 0 0 0 1 0]. If the value al hashes into
zero (0) then we know that the whole branch under a1 should not be visited since it will

be not serialized for this node (dimension ID for this node is one - 1).

It is important to distinguish between deciding if a value is valid for a node and when
it is not. When we are at a union examining the values to be serialized we can reject a
value instantly if it does not hash to the proper value to match the node's multi-

dimensional ID, thus complete subtrees, but we cannot know for sure if it is valid unless
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we examine its entire subtree. For example, if al hashes into one (1), which is valid, it
might still be invalid for the node we examine if €2, which is the other hashed attribute
in our example case, does not hash into this node's dimension ID.

In order to take advantage of the opportunity to skip subtrees we have to keep-track of
which values are valid in each union. One way was to create a virtual layer upon the
factorization that keep this information, but we decided to simply use a vector to hold
all union states (value bitmasks). Once the masking phase is finished the states inside
the vector should be in the order we are going to visit the valid unions during the
serialization phase, which is not too difficult to maintain since we are doing a DFS

traversal in both cases.

In the rest of this section we will provide and explain the algorithms for the two phases
that implement the Bit Serializer HyperCube. As can be seen from the code, we included
the masking phase into the first round of Bit Serializer that gathers statistics about
maximum values and bits required, therefore we still only do two passes over the

factorization.

Masking phase - statistics gathering - first pass

Entry point of the masking phase is method dfs_statistics() which is called initially
given the root of the factorization and recursively visits all other nodes. As previously
explained, the algorithm cannot determine if a node or value is valid without recursing
on its subtree. We also differentiate the two scenarios, a) Multiplication nodes and b)
Union nodes in the factorization. When the current node is multiplication we want to
make sure that we have valid values in ALL the subtrees since a tuple is assembled by
the product of these subtrees, thus one of them being empty means no result. If the
current node is a union it is treated separately by the handle union() method, see

Algorithm 5.2.
Let’s delve into the union handling. First of all, we create a union state and put it in

the masks vector, at the same time recording its index position. The reason we want to

use an index and we don't always refer to the top state is that we will recurse again, so
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possibly another state will be pushed (by a descendant), hence we need a way to access

the state for the current union.

Algorithm 5.1: Bit Serializer HyperCube - gather statistics - first pass

// @node: node in the factorization to start serialization (initially root)
// @fTree: the f-tree used by the current factorization
// @hc_p: the HyperCube parameters as defined in Section 5.3.2.2
// @return: True iff *node contains values to be serialized
bool dfs_statistics(Operation *op, FactorizationTree *fTree, hc_params *hc_p) {
if (is_multiplication(op)) {
if (op->children is empty) return false;
bool valid_child = true;
uint64_t current_mask = mMasks.size();
for each child attribute CA in op->children {
// recurse on each union and make sure all of them are valid
valid_child &= dfs_statistics(CA, fTree, hc_p);
if (!valid_child) {
mMasks.resize(current_mask);
return false;

}

return true;

} else if (is_union(op)){
// special treatment for unions since they contain the values to be hashed
return handle_union(op);

The logic behind HyperCube is in the next lines where we iterate over all the current
union's values. For each value C'V we first check if it is a valid value. The validity of a
value depends on whether this is a union of a hash-attribute or not. If it isn't, then the
value is automatically valid, otherwise we hash the value and check it against the multi-
dimensional ID of the node (use of the hc_params). If the value is not valid then we
append into our mask-state a false bit and continue to the next child immediately, thus
skipping the invalid subtree entirely. If the value itself is valid, we have to make sure
that its subtree is valid before marking it as true, therefore if there is a subtree (not leaf
attribute) we recurse and only when the returned result is success we mask the current

value as valid.
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Algorithm 5.2: Bit Serializer HyperCube - gather statistics - first pass: handle union

// @mMasks: class field - vector that contains the state for each union

//

// @op: the union node in the factorization to gather statistics

// @fTree: the f-tree used by the current factorization

// @hc_p: the HyperCube parameters as defined in Section 5.3.2.2

// @return: True iff *op contains values to be serialized

bool handle_union(FRepNode *node, FactorizationTree *fTree, hc_params *hc_p) {
// add our bitmask into the states vector keep reference to our state's

position
mMasks.push_back(); iMask = mMasks.size() - 1;

// now we check each value if it is valid and if yes make sure
// that its subtree has a valid result too before masking it valid
for each value child CV in op->children {
// make sure that the value hashes to the right Node dimension ID
// if this union is of a hashed-attribute otherwise the value is
// always valid and will be serialized
if (is_valid_value(CV, hc_p)) {
if (is_leaf_attribute(op->attributeID, fTree)) {
// leaf attribute means valid value instantly
mMasks[iMask].push_back(true);
// also gather statistics about required bits
update_required_bits(CV);
} else {
// make sure the subtree contains valid values too
if (dfs_statistics(cCv, fTree, hc_p)) {
mMasks[iMask].push_back(true);
update_required_bits(CV);
} else {
// the value's subtree is invalid so the value is too
mMasks[iMask].push_back(false);

}
} else {

mMasks[iMask].push_back(false);
}
} // end for each value child
// count the valid children
valid_children = count(mMasks[iMask], true);
// make sure that we have valid values to serialize otherwise
// we have to return false such that our parent knows we are invalid
if (valid_children == 0) {
// remove our and all of our descentants state from the vector
mMasks.resize(iMask);
return false;

update_required_union_bits(valid _children);
return true;
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Whenever the value is valid, we also calculate and update the required bits for that
attribute. When all the children have been processed we have to ensure that this union
has at least one valid value, otherwise it should not be serialized. If it does not, then we

return false immediately denoting this union invalid.

It is important to understand the reason why the states vector is being resized to match
the current union's index (iMask), also used in case of multiplication node. Note, that
resizing the vector to size N, all elements above and including N will be removed.
Observing the traversal over the values and the recursion calls it is easy to see that we
do a DFS-like traversal over the factorization. However, not all nodes will be visited
since at any point one node might be invalid and therefore instantly return false to its
parent, hence propagating the failure upwards to the current union. Therefore the
number of states pushed into the masks vector is undetermined and can range from zero
to the number of nodes in the subtree of each value. When the current union is invalid
(children list empty) it means that none of our valid children (if any) will be serialized

in the result, therefore their states need to be removed from the vector.

During the serialization process we do a DFS traversal on the factorization and each
time a union node is encountered we get the first available state from the vector and
serialize recursively only the valid values. Therefore, the states vector should only
contain masks for the unions that are valid to be serialized and in the order they will

be serialized.

To complete the union handling, the function just updates the required bits for the

union children counter in case it is valid and return success to its caller.
Serialization phase - second pass
The second phase, the serialization, of our algorithm is identical to the second phase of

the regular Bit Serializer. The only difference is that instead of serializing all the values

in each union we use its mask state to identify the valid children and serialize those
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only. Respectively, recurse on them only. Each union takes the next available mask

state from the states vector, starting from index 0 moving upwards.
Complexity

The complexity of serializing a factorization using Bit Serializer HyperCube and Bit
Serializer is asymptotically the same. They both incorporate two passes over the whole

factorization.

The HyperCube version, however, has the additional overhead of hashing the values in
unions of hashed attributes. Although it has constant overhead it still adds up to the
total processing time. Furthermore, this version might skip certain subtrees when values
are invalid which can speed up the second phase significantly. Both points affect runtime
of the HyperCube serialization but its performance strictly depends on the values of

each factorization and on the number of hashed attributes.
Deserialization

Bit Serializer HyperCube is perfectly compatible with the regular Bit Deserializer.

Therefore one can use it to deserialize hypercube serializations into factorizations.

5.4 System Architecture
In this section, we present the architecture of D-F'DB and how its individual components

communicate and coordinate during the execution of a query. An abstract overview of

the whole distributed architecture is illustrated in Figure 5.4.
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Figure 5.4: D-FDB Architecture — cluster of 8 nodes in a 3-D HyperCube formation

5.4.1 Architecture model

The design of the system follows the master-worker model, where one node acts as a
master which coordinates the worker nodes. The worker nodes form a cluster and its
size can range from one to multiple nodes. In D-FDB implementation the master node
is used only for coordination, to provide abstract synchronization during the different
stages of execution to the worker nodes who are working entirely asynchronous while a
query is being processed. Therefore the communication with the worker nodes is kept
minimal.

Additionally, we do not require the master node to be a standalone machine, hence
giving someone the option to have any of the worker nodes in the cluster act like the

master node of the system too. The master's responsibility is just to receive a single
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message from each worker node at the beginning of each phase denoting their status

(ready to proceed) and responding back with the next phase initiation signal.

Moreover, the entire distributed query engine can be used entirely on a single machine
using separate processes to simulate the nodes of the cluster. This not only provides an
easy way to debug and test the framework in its current and future state but it also lets
us exploit multi-processor and multi-core machines (machine resources are shared). The
current FDB implementation is centralized and single threaded so this customization is

very welcome since it enables parallel query execution.

All configuration options about the topology (master, worker nodes) and the query to

be processed are specified using two simple configuration files, see Section 5.5.

5.4.2 System Protocol

The system, once given a distributed query processing request, starts the distributed
runner in each site (node). This is a special class that determines whether the running

process is a master or a worker and initiates the main execution thread.

The distributed execution of a query has the following four stages.

(1) Initial Handshake

The purpose of this stage is to ensure that all nodes are up and running, ready to
process the query. Each worker node sends a hello message to the master in order to
signal its existence in the cluster. Once the worker sends this message, it blocks until
the response from the master comes back. Before sending the hello message though,
each worker spawns a separate thread/process and runs the ReaderData (see
Section 5.4.3).

The master node on the other side, upon starting, waits to receive N hello messages,
where N is the number of worker nodes. As soon as all have been received, it
broadcasts to the workers a message signaling initiation of the next stage,

Connection Establishment.
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(2) Connection establishment

In this stage each worker node establishes TCP connection with all other workers,
in order to be able to send and receive messages without establishing new connections
every single time during the query execution.

When a node receives the Connection Establishment initiation message, it spawns a
new thread/process and runs the WriterData (see Section 5.4.3) which is going to
initiate connection to ReaderData of all the worker nodes in the cluster. When all
the connections have been established and cached, each worker sends a
ConnectionEstablishmentFinished message to the master and blocks.

The master again just waits to receive N ConnectionEstablishmentFinished messages
and once it does, it broadcasts the QueryEzecution message to signal initiation of

the next stage.

(3) Query execution
This is the most important stage of the whole distributed query processing. In this
stage each worker will parse the query configuration, load the local inputs in memory
and will evaluate the query based on the distribution mode requested (Single round
vs  Multi round). When the query has been fully evaluated, the
QueryEzecutionFinished message is sent to the master.
The master waits for N QueryFEzecutionFinished messages and once all have been

received, it broadcasts the initiation message for the final stage.

(4) Results gathering
This is the stage where information regarding the partial results on each worker is
being communicated. For example, each worker can send a path to the master node
where the partial query result is located. Moreover, this stage is the final stage of
the distributed query processing so the workers can do any cleanup on resources

allocated and terminate gracefully.

The whole query processing is done in stage 3, including data partitioning, shuffling and
f-plan execution on local factorizations. The rest stages were required for bootstrapping
the system and in a real-world scenario where a cluster of nodes is already up and

running they would not even exist. Therefore, it is nice to have the query processing

o8



isolated in order to be able to reason correctly about each processing phase and also
about the end-to-end experience of the system which can easily be measured on the

master node.

5.4.3 Communication in the cluster

In the previous section, System protocol, we mentioned ReaderData and WriterData.
These two classes, runnables in separate threads, are responsible for all the data

transmission among worker nodes, both in Single and in Multi round execution.

ReaderData is initiated during Stage 1 and it starts by creating a TCP socket listener
ready to accept connections from the WriterData threads during Stage 2. WriterData is
initiated during Stage 2 and instantly tries to connect to all worker nodes, specifically

to the ReaderData threads running on them.

In Stage 3, query execution stage, the two services are responsible to send and receive
factorizations over the network using TCP. Specifically, ReaderData in each execution
round (one for Single-mode, many for Multi-mode) waits on each of the N worker TCP
streams in order to receive this round's factorization from that node. It uses the Bit
Deserializer to deserialize data received into in-memory factorizations, skipping all those
that are empty or invalid. On the other side, WriterData is responsible to take the input
factorizations (or the previous round's result) and serialize it to all worker nodes using
the Bit Serializer HyperCube which implements the shuffling HyperCube algorithm on

factorizations. If no values are valid to be sent to a node, the empty factorization is sent.

Some design rules were applied for data communication and are enumerated below.

(1) Each worker will send a single factorization to each other worker during each
communication round of the query execution stage. In case no valid values exist then
the empty factorization is sent (the f-tree and a zero-sized factorization).

(2)  All factorizations sent in the same communication round should have the same

f-tree, because they are merged into a global one which is then used for the f-plan

59



evaluation (query operations). This is due to a limitation of FDB being unable to
merge factorizations of different f-trees.
(3) The factorizations are serialized into the TCP streams using Bit Serializer

HyperCube and deserialized on the other side using Bit Deserializer.

The decoupling of data communication from the execution thread, even reading data
from writing data, turned out to be very useful because it made the implementation
more modularized and more extensible, thus giving us the opportunity to make
improvements on any side without affecting the other. Most importantly, since reading
and writing are decoupled and they run in parallel, we achieve concurrency throughout
the communication phase since a worker can send data to one node and receive from

another at the same time.

5.4.3.1 Ordered communication

In all distributed systems there is a certain point of time where each node has to
communicate data with other nodes. Many times all nodes have to send data to many

other nodes, see Figure 5.5.

One issue we faced while designing the system was the actual order of data transmission
among worker nodes. It is a problem that appears in every distributed system but there
is no published work on how this should be done, at least reasoning about efficiency.
Even related work studying algorithms for better data partitioning and shuffling, like
HyperCube, relevant to this problem, do not address this decision-problem in their
publications. We had numerous ideas and thoughts but we concluded in two designs

and finally implemented one, with the other being added for investigation in the future.
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Figure 5.5: Worker nodes communication data

We now present the two ideas considered for communication inside the cluster.

Idea 1 - Ordered communication

In this approach, ReaderData and WriterData will read and write data to other workers

following a specific order aiming to achieve good throughput. ReaderData fully reads a

message from one node before proceeding to the next one, while WriterData fully writes

data to one node before writing to the next one.

The specific ordering in reads and writes aims to maximize possibility for high

throughput and maximum overlap between reads and writes in the cluster. We want to

avoid having a node waiting to receive data from one node, while another node is blocked

waiting to send data to a third busy node. For example, let us go through the following

communication ordering in a cluster of 5 worker nodes.

Writing ordering
Node 1: 23 4 5
Node 2: 3 4 5 1
Node 3: 4 512
Node 4: 5128
Node 5: 12 3 /4
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Reading ordering
Node 1: 5 4 3 2
Node 2: 154 3
Node 3: 215 4
Node 4: 3215
Node 5: 4 3 2 1



The first block defines the order of writes for each node. Node 1 for instance, will send
data to node 2, then node 3, then node 4 finally node 5. The second block defines the
order of reads for each node. For example, Node 3 will read from node 2, then node 1,

then node 5 and finally node 4.

The important thing in this ordered communication, is that if we distinguish 4
communication rounds (vertical division) we can see that no node is ever stalled or
blocked without reading or writing. Additionally, there is a pairing between the reads
and the writes, which means that for any given node A, the writes targeting A will be
done in the same order as A will do the corresponding reads. In our tests, the idea works
as expected, however, there were some cases when a node had to write more data than

the rest, thus causing some nodes to wait for it to finish.

Idea 2 - Round robin communication

A second approach to the communication problem utilizes round-robin communication.
The intuition is that instead of fully communicating with one node before moving on to
the next one (either when writing or reading), we could write less to all nodes and iterate

more times.

For example if node A has to send data of 1000 MB to all other nodes, instead of sending
the whole 1000MB at one node at a time, it sends the first 100MB to all of them, then
the next 100MB to all of them, and so long. This approach aims to keep all nodes busy
at all times and possibly avoids having nodes blocked at a node that is doing a long
read/write. For each partial data communication we can either use ordering like above

or random pairing.

The disadvantage of this approach compared to the ordered one is that we need to keep
track of the required information while sending (or receiving) for all nodes. For example,
when serializing a factorization (Bit Serializer HyperCube) we use some statistics and a
vector that holds a state for each union node. In this approach we have to calculate and

have in-memory this information regarding all nodes.
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Unfortunately, due to limited time we did not compare the two solutions and only

implemented the first one.

5.5 Query processing and configuration files

In this section we will provide a description of the two modes supported for distributed
query execution, namely Single and Multi-round execution, and then explain how these
are implemented during the ezecution stage of our system. Finally, we present the

configuration files we use to specify the type of execution and the query to evaluate.

5.5.1 Single vs Multi round

The distributed query engine presented in this chapter supports two modes of execution,
with each mode being different in the number of communication (hence computation)

rounds before completely evaluating the query.

5.5.1.1 Single round

Single round execution refers to multi-way JOIN operations when a query requires
joining more than one attribute. Single round execution is based on the use of the
HyperCube algorithm which partitions and shuffles data considering all the attributes

to be joined at the same time.

A lot of work has been done by researchers investigating the costs in a distributed
system and it is widely acceptable that a major bottleneck in distributed execution is
the communication among worker nodes. Therefore, people try to devise algorithms that
try to eliminate this cost as much as possible, hence HyperCube and its variations,

whose aim is to reduce communication rounds to a minimum.
To summarize, single round execution means that each worker will send data to other

workers only once, hence the single communication round, followed by the complete

evaluation of the multi-attribute JOIN producing the final result.
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5.5.1.2 Multi round

Multi round execution refers to the evaluation of complex queries by partially processing
the query in each round until the whole query has been processed. For example, if the
query requires joining on 3 attributes we could either have an execution that evaluates
the two joins in the first round and the last one in the third round or we could even

have three rounds evaluating a single join in each round.

With multi round execution one can investigate more complex topics like query
decompositions into smaller queries that are easier to evaluate in separate rounds, that

at the same time do not necessarily need to be single attribute JOIN operations.

However, D-FDB at the moment only supports conjunctive queries (JOIN operations)

and a multi-round execution evaluates one join at a time.

5.5.2 Query execution phase

In this section we will describe how the above two modes are implemented in the

proposed distributed system, what are their limitations and how can they improved.

Query processing and result evaluation corresponds to Stage 3 as described in the System
protocol. Details about the query and the cluster topology are specified in configuration

files (will be described in the next section).

First, we present the steps taken to process a single round evaluation and then explain
how D-FDB builds on-top of that to provide multi round execution. Each worker has
three threads running, as previously described, a) main execution thread, b) ReaderData

for receiving data and ¢) WriterData for sending data.

(1) Execution thread starts loading the input factorization in memory (using the

configuration files to locate them).
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(2)  Then it signals ReaderData to start accepting factorizations from other workers
while at the same time the input factorization is given to WriterData in order to
begin writing data to other workers.

(3)  Once all factorizations from other workers have been received, the empty ones
are dropped and the valid ones are passed over to the main execution thread. Then
the special merge__same operator is used to merge the partial factorizations received
into a single factorization (recall that all factorizations sent in the same round use
the same f-tree).

(4) Last step of the processing uses the f-plan executor in order to evaluate the query
specified in the query configuration file on the local factorization and produce the
factorization result.

(5) Finally, each worker notifies master node that the query has been completely

evaluated.

The multi round execution is similar, wrapping steps 1 to 4 into a loop, one iteration
for each round, where the input for the first round is loaded from local storage and in

consecutive rounds we use the result of the previous round as input to the next round.

Merge Factorizations

Before evaluating the query, each worker has to merge the factorizations received into
a single factorization which will then be used to evaluate the final query result. As part
of this project we also implemented classes that given a list of factorizations based on

the same f-tree can merge them into one.

5.5.3 Configuration files

In this section we introduce the two main configuration files used that specify the

network topology and the query to be evaluated.
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5.5.3.1 Distributed Settings configuration

Distributed Settings configuration file

HHHHHH R R R
#it###E LINES STARTING WITH '#' or whitespace are skipped during parse!
HHHHHH R R R R

# number of nodes in the network

4

# all the IPs for each worker node (IP or IP:PORT format supported)

# each node will also receive an identification ID (uint32_t) based on its order
XXX.1l.xxx.36:11110

XxXX.1l.xxx.39:11110

XXX.1.XXx.60:11110

XXX.1.xXxx.65:11110

# specify the master node (IP or IP:PORT format supported)
XXX.1l.Xxx.36:11100

# now the query path
/home/lambros/dist-execution/dist_query.conf

H*

order of communication - data distribution
we follow a cyclic (shifting policy)

H*

WRITING ORDER - we will have N lines, one line for each node that defines
how that node should send its data

23

30

01

12

READING ORDER - we will have N lines, one line for each node that defines
how that node should read data

21

NPFRPOWHHFOWNERL H H

PO W
o wN

The excerpt above is part of a sample settings configuration file that contains all the
required information about the network topology regarding our cluster of nodes. It starts
by mentioning the number of worker nodes in the cluster, followed by their IPs. Recall
that you can use different ports on the same machine (same IP) to simulate different
nodes. In the next line (not commented) we specify the master node. The master node
is required to have a different port than ALL worker nodes but is not required to have

different IP, thus being on different machine.
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A path to the query configuration to be evaluated is provided in the next line and finally
we have the communication ordering as explained in Section 5.4. For the writing order
we have one line for each node that defines the order in which the node should read
data from, and for the reading order there is a line for each node that defines the order

in which the reads should be made.

In this simple example the ordering could be determined dynamically in runtime since
it follows a pattern (cyclic shifting), but we decided to keep it in the settings file in case
we want to try different orderings in the experimental evaluation, thus avoiding source

code changes.

5.5.3.2 Distributed Query configuration file

In this section we present an example query configuration file.

Distributed Settings configuration file

# number of input factorizations

1

# all the paths to the factorizations (serializations) to be used as input
# ---- NOTE::: if the node does not find the path specified it will try to
# load the path suffixed with '-n-NODE_ID-' before the extension

/home/lambros/dist-datasets/somedataset/nodes_4/input-groot.dat

# F-PLANS follow for each of the inputs to be applied during loading.
# each F-PLAN has a single line of an integer N, followed by N lines with actions
0

# query F-PLANs to be applied on the local factorization in each round
number of plans (one plan for each communication round)

+

1

2

merge attr_1 attr_2
merge attr_1 attr_3
end

# HyperCube configuration

# a single line will contain all the attribute names of the combined result
# which will give each attribute a GLOBAL ID (their position in the line)

# that is used internally to map the attributes from local representations.
attr_1,attr_2,attr_3,attr_4,attr_5,__ g root_

# the hashed columns should be specified now starting from @ to N using the

# GLOBAL IDs (position in the above line) (separated by space)

# (if there are more than 1 attributes that correspond to the same attribute

# logically but have different names just use one of them and group them below)
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1

the dimension for each hashed attribute (separated by space)

2

group synonym attributes that have different names but are the same

i.e. id_@, id_1, id_2 which can be renamed to avoid the limitation of FDB

to handle same name attributes

one number N specifies the number of groups and then for each group one line
- each group should start with the attribute that was specified in the

- hashed columns above!

O R HHFEHEFEHFENDNHEN

ttr_3,attr_1

We start by defining the path to the input factorization that will be loaded by each
worker from its local secondary storage. A feature that we found useful to have is that
if the path specified does not exist or fails to open, then each worker will try to load the

path suffixed by its numeric ID.

For example if the worker on node 2 tried to open the path on the above configuration
file and failed, it would then try to open the following path this time (note the -2 suffix):
/home/lambros/dist-datasets/somedataset /nodes_ 4/input-groot-2.dat

This little feature allowed us to have the input factorizations for all worker nodes in the
same common directory and each node would end up loading the correct factorization,
otherwise we would have to separately ship data to each node initially or use different

configuration files at each worker.

The following group of options specifies an f-plan to be applied on the input right after
loading it in memory, and consists of one line denoting how many lines followed with

the f-plan operations.

In addition, we continue to the f-plans of the main query. The next line denotes the
number of f-plans we want to evaluate. When this value is 1 we simulate Single round
execution whereas when this value is more than 1 we simulate Multi round execution

with each of the following f-plans be applied at the corresponding round.

The rest of the configuration is related to the HyperCube configuration. We start by

enumerating all the attributes that exist in the factorizations (they don't have to be in
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any specific order and their order does not relate to the IDs given to them inside their

respective factorization f-trees).

Right below the attribute names, we specify the attributes to be hashed. Each hashed
attribute is specified by using its position in the line above where all the attributes are
enumerated. In the example above the hashed attributes are attr 3 and attr 2, hence
the IDs 2 and 1(indexing starts from 0). Moreover, the implementation of the Multi
round execution uses one hashed attribute at each round, but can easily be extended to

support arbitrary f-plan by adding more options to the configuration file.

Below the hashed attributes, we specify the dimension size for each one of them in the
hypercube (in the above example both attributes got a dimension size of two, thus
requiring four nodes). Each node will automatically get a multi-dimensional ID based

on these dimensions.

The last part of the configuration makes it easy for us to group different attribute names
that refer to the same attribute. We wanted this functionality since in HyperCube we
want to use the same hash function for a specific hashed attribute, therefore we had to
somehow group all the attribute names referring to attr 3 together and assign them the
same hash function (seed index). Additionally, current FDB implementation has the
limitation that in an f-tree we cannot have an attribute name more than once, so many
times we had to rename some attributes and this configuration helped us overcome this

limitation easily.

This concludes our configuration files regarding query execution.
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Chapter 6

Experimental Evaluation
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In this section we will present experimental evaluation for the main contributions of this
project, namely the COST function for finding good f-trees explained in Chapter 3, the
serialization techniques detailed in Chapter 4 and D-FDB, the distributed query engine
as presented in Chapter 5.
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6.1 Datasets and evaluation setup

This section contains information regarding datasets used and the evaluation setup used

to record the reported times and sizes.

6.1.1 Datasets

We used two different datasets throughout the development and evaluation of the above

contributions, both described below.

(1) Housing

This is a synthetic dataset emulating the textbook example for the house price

market.

It consists of six tables:

House (postcode, size of living room /kitchen area, price, number of bedrooms,
bathrooms, garages and parking lots, etc.)

Shop (postcode, opening hours, price range, brand, e.g. Costco, Tesco,
Sainsbury's)

Institution (postcode, type of educational institution, e.g., university or school,
and number of students)

Restaurant (postcode, opening hours, and price range)

Demographics (postcode, average salary, rate of unemployment, criminality,
and number of hospitals)

Transport (postcode, the number of bus lines, train stations, and distance to

the city center for the postcode).

The scale factor s determines the number of generated distinct tuples per postcode

in each relation: We generate s tuples in House and Shop, log2(s) tuples in Institution,

s/2 in Restaurant, and one in each of Demographics and Transport. The experiments

that use the Housing dataset will examine scale factors ranging from 1 to 15.

(2) US retailer

The dataset consists of three relations:
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e [nventory (storing information about the inventory units for products in a
location, at a given date) (84M tuples)

e Sales (1.5M tuples)

e (learance (370K tuples)

e ProMarbou (183K tuples)

6.1.2 Evaluation setup

The reported times for the COST function and the serialization techniques were taken
on a server with the following specifications:

- Intel Core i7-4770, 3.40 GHz, 8MB cache

- 32GB main memory

- Linux Mint 17 Qiana with Linux kernel 3.13

The experiments to evaluate the distributed query engine D-FDB were run on a cluster
of 10 machines with the following specifications:

- Intel Xeon E5-2407 v2, 2.40GHZ, 10M cache

- 32GB main memory, 1600MHz

- Ubuntu 14.04.2 L'TS with Linux kernel 3.16

All experiments were run after the application was compiled with optimization flags

turned on (i.e. O3, ffastmath, ftree-vectorize, march=native) and with C'++11 enabled.

6.2 COST — Finding good f-trees

In this section we evaluate the COST function, analyzed in Chapter 3. Through the
following experiments we try to decide whether having a function that estimates the
factorization size, in number of singletons, using statistics (i.e. unique values per
attribute, number of unique values of attribute under another attribute’s single value)
derived from off-line preprocessing will give us better insights on f-tree selection

compared to the existing work that uses the theoretical size bounds of FDB, parameter

s(Q)-
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For this experiment we will only use the Housing dataset for which we devised the
optimal f-tree by hand, let’s call it Tree-O. Recall that Housing dataset JOINs six
relations on their common attribute postcode.

The optimal f-tree Tree-O is as shown in Figure 6.1.

hostcode,
averagesalary horse pricerangerest sainsburys typeeducation unemployment
nbbuslines ﬂ‘rt openinghoursrest tesco sizeinstitution nbhospitals
nbtrainstations unknown S crimesperyear
distancecitycentre parking pricerangeshop
I
nbbedlrooms openinghoursshop

nbbatl'[rooms
garden
kitcthsize
livingarea
price

Figure 6.1: Optimal f-tree for Housing

This f-tree has a parameter s(Q) = 2 and it is optimal, which means FDB cannot find
any f-tree asymptotically better than Tree-O. In order to evaluate our COST function
we change the order of some attributes in their relation paths and compare the real

factorization size in number of singletons with the estimation by COST.

The biggest desire here is for the estimations to follow the trend of real size with each
f-tree, if not predict exactly. All these f-trees have s(Q) = 2 therefore they are
indistinguishable by FDB.

From the experiments we made we noticed that while the scale factor increases the
behavior of the COST differs. We will present results for Housing scale factors 1, 5 and
9 that show this variance in accuracy and ten different f-trees. The f-trees can be found

in Appendix A.

In Figures 6.2, 6.3 and 6.4 we present the relation between real size and estimated size

for each of the 11 f-trees we examine (optimal and its varieties) for scale factors one,
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five and nine respectively. In small datasets, see Figure 6.2, we see that the COST
function estimates exactly the number of singletons in the factorization, which is the
same for all f-trees. This leads us to believe that the branches in the factorization become
single paths very early and the COST restricts its estimation by the total size of a

relation, hence always matching the real case.
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300000 300000 ©
< E

200000 200000

100000 100000

0 0
1 2 3 4 5 6 7 8 9 10 Tree-O
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Figure 6.2: Real vs COST (Housing - 1)

Moving to scale factor five, see Figure 6.3, we see that the real size now differs up to
150 000 singletons among some f-trees. The estimated size is very high sometimes due
to excessive usage of averages which can be misleading in many cases. However, we can
see that the trend of the estimated size follows the real size which shows that it could
be useful to at least be able to eliminate bad f-trees, always among those that have the

optimal s(@) parameter.
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Figure 6.3: Real vs COST (Housing - 5)

Really interesting is the fact that f-tree 9 is always estimated wrongly by COST, which
shows the weakness in using global averages, specifically the number of unique values
of an attribute X under any other attribute Y. F-Tree 9 modifies the optimal f-tree in
its fourth subtree (sainsburys, .., openinghoursshop) such that it is completely reverse,

thus having openinghoursshop on top, as child of postcode.
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Figure 6.4: Real vs COST (Housing - 9)

Similar results can be seen in Figure 6.4, where again the COST function overestimates
the size with some f-trees. F-Tree 1 swaps house with flat and f-tree 2 takes house as

leaf of its branch as seen in the optimal f-tree.
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In conclusion, although the COST is overestimating with some f-trees it can be used to

reject some bad f-trees.

6.3 Serialization of Data Factorizations

In this section, we evaluate each serialization technique examined and described in
Chapter 4. The factorizations we use to evaluate the serialization techniques are the

result of applying NATURAL JOIN on all the relational tables of the two datasets,
Housing and US retailer.

6.3.1 Correctness of serialization

The correctness test of each serialization was done both in-memory and off-memory
(using secondary storage). For equality comparison between two factorizations we use a
special function toSingletons() that traverses the factorization, encoding the singletons
into a string representation that contains a) attribute name, b) value and c¢) attribute
ID in text format, thus creating a huge string that contains the whole data of the

factorization.

For the in-memory tests we performed the following steps:
) Load the factorization from disk, let's call it OriginRep
) Serialize it in memory writing into a memory buffer (array of bytes)
3) Deserialize the buffer into a new instance of a factorization, let's call it SerialRep
) Check that the fields of SerialRep have valid values

) Use the toSingletons() method and create the string representation for OriginRep
and SerialRep and compare the two strings for equality. This ensures that not only
we recover the same number of singletons properly but also that the IDs and values
of those singletons are preserved during serialization and de-serialization, even with

problematic datatypes like floating point values.

For the off-memory tests we performed similar steps as in-memory with an extra
additional test to further prove correction.

(1) Load the factorization from disk, let's call it OriginRep
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(2) Serialize it to a file on disk (binary file mode)

(3) Open the file in read mode and de-serialize it into a new instance of a
factorization, let's call it SerialRep

(4)  Check that the fields of SerialRep have valid values

(5)  Use the toSingletons() method and create the string representation for OriginRep
and SerialRep and compare the two strings for equality.

(6) Enumerate the tuples encoded by the factorizations OriginRep and SerialRep
into two files. Compare the two files for equality using the standard command line
tool diff.

6.3.2 Serialization sizes

In this section we will examine the size of the serialization output against the flat size

of the input factorization (number of tuples).

The Flat serialization mentioned in some plots is the simplistic serialization of a flat
relational table into bytes. That is by writing the bytes of each value in each tuple one
after the other. Therefore, the total size would be equal to number of tuples *

number of attributes * 4 bytes if for example all values are of the data type integer.

Additionally, we used the standard compression algorithms GZIP and BZIP2 to
compress a) the output serializations and b) the flat serialization. We incorporated
compression in our experiments to investigate if applying these algorithms on the flat
serialization would reduce the size close to our serializations, and also we apply them
on the factorization serializations to analyze if there is still improvement to be made
regarding value compression as part of our serialization techniques. We will use the
notation GZI and GZ9 to denote compression using GZIP at minimum (1) and
maximum (9) compression levels respectively. Similarly for BZIP2 compression using
BZ1 and BZ9. The reason we have chosen these two compression techniques is because
a) they are widely available and used in almost all web services (e.g. HTTP, REST
APIs) and b) GZIP is a very fast algorithm with good compression, whereas BZIP2 is

slower but with much better compression, so we can have both choices tested.

77



100000

10000

1000

100

Size (MB)

10

0,1

Scale Factor

e=@== Simple Raw === Byte e==i==Bit e=fil=F|at

Figure 6.5: Serialization sizes against Flat serialization (Housing)

In Figure 6.5, we present the sizes of the serializations after using each one of our
serialization techniques, Simple for Simple Raw Serializer, Byte for Byte Serializer and
Bit for Bit Serializer, against the flat serialization for the Housing dataset. As expected,
the flat serialization size is increasing by several orders of magnitude more than our
serializations. This confirms that our serializations retain the theoretical compression
factor brought by factorizing the relational table. Moreover, the figure shows that each
extension of our serialization brings some additional reduction in the total size with the

Bit Serializer being the best performing.
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Figure 6.6: Serialization sizes against Flat serialization (US retailer)

The same results are shown in Figure 6.6, where all the serialization sizes follow the
same pattern as the Housing dataset. The flat serialization is more than two orders of
magnitude larger than our fatter serializer, Simple Raw, with Byte and Bit following

with smaller output sizes and Bit being the best.

In addition, Figure 6.7, presents all three serialization techniques along with compression
algorithms applied on their output for additional compression. It is clear that Simple
Raw serialization which is just the byte enumeration for the values in the factorization
grows linearly as the scale factor increases. The second worst serialization is of Byte
Serializer without any compression applied, but it is far from the worst and close to the
rest of the sizes. A worthy observation is that after applying compression algorithms on-
top of Simple Raw we get smaller serialization than that of Byte’s, which means that
the values in this dataset are great candidates for compression. This can be also inferred
by the difference in the sizes between the Simple, Byte and Bit outputs since each one
uses a more refined technique to use as much less bytes as possible.

Another important point is that Bit serialization is almost perfect, since even when the
compression algorithms were applied on it its size did not reduce at all, which means

that for this dataset we already do sufficient compression to the values.
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Figure 6.7: Compression GZIP and BZIP2 applied on serializers

In Figures 6.8 and 6.9 we further explore the effect of additional compression on our
serializations. It is clear that the flat serialization can benefit significantly from
compression which is expected, but still Figure 6.8 shows that for Housing dataset there
is a difference between the maximum compression of BZIP2 and GZIP on flat
serialization and Bit serialization of two orders of magnitude.

In Figure 6.9 we have different results, which arise due to different datasets. In US
retailer dataset Bit serialization is still the best performing in terms of output-size but
the difference from the flat serialization having applied any of the compression
algorithms is not as big as with Housing dataset (only around one order smaller).
Additionally, the difference between our serializations is also smaller. Having
investigated the datasets better, we found that large amount of values in Housing
dataset are only single-digit numbers, therefore they have many leading zero-bits in
their representation in memory (sometimes 31 out of 32), hence the big gain using Bit
serialization. However, in US retailer dataset the values are more random and there are

less such values.

80



Although, the advantage is smaller in US retailer using our serialization technique is

still more preferable because as we will show later it is considerably faster.
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Figure 6.9: Compression GZIP, BZIP2 on Bit and Flat serializations (US retailer)

6.3.3 Serialization times

In this section we evaluate the time required to serialize factorizations using our

serializers with and without compression techniques on-top.
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Figure 6.10: Serialization times with compression only on Flat (Housing)

First of all, Figure 6.10, presents the serialization times for our serialization techniques
without any compression applied and the flat serializations with both compressions. The
reason that we decided to show ours without and flat with compression is that we will
never ship data over the network as is without compressing them due to the huge size,
therefore the default choice for a real-world application would be either GZIP or BZIP2
or some other algorithm with similar properties.

The performance of our serialization techniques is more than two orders of magnitude
even when applying minimum compression level on flat serialization with both GZIP

and BZIP2.

Figure 6.11 presents the times for all our serializations with and without compression
applied on-top. There is significant overhead added, as seen by comparing Bit
serialization without compression and Bit-BZ9 for example, or Byte with Byte-GZ9, but
even with compression added the serialization times are significantly faster than

compressing the flat serialization.
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Figure 6.12: Serialization times with compression (US retailer)

Figure 6.12, shows the same experiment, compression applied on-top of the serialization
and we see similar results. Compression upon the flat serialization is a lot slower than

compression upon our serializations, which in turn is slower than our serialization

without compression.
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6.3.4 Deserialization times
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Figure 6.14: Deserialization times for our de-serializers (US retailer)

In this section we examine the time needed to de-serialize a serialized factorization back

into a factorization in memory.

Both datasets have similar results, as seen in Figures 6.13 and 6.14. It is obvious that
BZIP?2 is the slowest in all three de-serializers. GZIP compression is fast and this is
shown in our results since the difference between de-serializing with and without this

compression is small, however it is still an overhead. It is remarkable to that even though
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Byte and Bit have additional complexity compared to Simple Raw de-serializer they

both have faster times, which is due to the smaller total size they process.

6.3.5 Conclusions

We performed a variety of experiments with all three serializations against two datasets

with different characteristics (one artificial with a lot of single-digit values, one real-

world dataset with complex values). We also compared our serialization against the flat

serialization with and without compression.

Analyzing the results of these experiments led to the following conclusions:

The three serializers retain the theoretical compression of factorizations against
flat relational tables into their serializations.

The flat serialization requires significantly more time to apply compression on its
data than our serializers with and without compression applied on them.

The benefit of applying additional compression over the three serialization
techniques depends mostly on the actual factorization values, but especially with
Bit Serializer, which is the final version, it is questionable whether the additional
overhead to compress is worthy.

We showed that it would be very interesting to explore additional extensions to
Bit Serializer in order to enhance its compression capabilities. An important
feature of our serialization algorithms is that during de-serialization we do not
have to process all the data as is the case with standard compression algorithms
that process large blocks each time.

Overall, we conclude that Bit Serializer can be the basis of more advanced
serialization techniques for factorizations and that even at this stage it can be a
great alternative to standard compression algorithms for systems that use

factorizations as a means of data communication.
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6.4 D-FDB — Distributed Query Processing

In this section we present our experimental results of evaluating D-FDB on the datasets
from Section 4.1, the distributed query processing engine we developed as part of this
thesis, explained in detail in Chapter 5. Unfortunately due to lack of time we were able
to benchmark and report times only for Single-round execution but since Multi-Round
is a wrapper around that, it should have similar behavior but we are planning to make

comprehensive evaluation using both execution modes.

6.4.1 Query

We will only provide measurements for one query executed on the US retailer dataset
which is a real-world dataset and has better properties around its values (recall the

difference seen in serialization).

The query we examine is the NATURAL join of all four relation tables on two attributes,
ksnid and locn. This conjunctive query has a result of 28845260 tuples if enumerated
in a flat regular relation table and in a single factorization requires 1826011 singletons,

having a compression factor of 15.8.

During the evaluation of this query we use our cluster of total ten (10) nodes in
configurations of four, six and eight nodes with one additional node acting as the master.
The reason why we were unable to use only two nodes is irrelevant to D-FDB. We
discussed in detail before, see Section 4.3.3, that the current in-memory representation
of a factorization is inefficient and requires a lot of additional memory accompanying
each singleton value. In D-FDB we use factorizations end-to-end and as a result we first
load the input as a factorization in memory. Unfortunately, the current of FDB cannot
fit in memory the factorization of the Inventory relation which has ~84M tuples (there
is roughly a 4x compression factor using factorization on that relation but still it is too

much for the current representation).

The initial data partitioning at each node was done using different hash function than

the one used during communication and the data was roughly the same size on all nodes.
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Moreover, the final result was almost uniformly distributed among the nodes (i.e. using
four nodes, we had partial results of 6944481, 7641621, 7522230, 6736928 tuples), which
verifies the good properties brought by using HyperCube.

6.4.2 Distributed-FDB vs FDB
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Figure 6.15 : Query evaluation on FDB and D-FDB (wall-clock time)

In Figure 6.15, we present the comparison between current FDB engine and our new
distributed query engine while evaluating the query. D-FDB is around 7.5x times faster

than FDB using four nodes, 11.5x times using 6 nodes and 14x times using 8 nodes.

It is obvious that D-FDB brings great improvement over the centralized FDB engine
and the theoretical compression factor brought by factorizations over flat tables further
boosts the processing time and obviously communication (relevant to experiments in

Section 6.3).

The reason that D-FDB’s speedup is more than linear over the number of nodes used is

that FDB’s input are flat tables and only the output is a factorization, whereas in D-
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FDB we use factorizations as input as well, which already has a 4x compression factor,

thus needs less time for loading and processing.

The times recorded for D-FDB are taken from the master node after all nodes sent the
message signaling success on query evaluation completely. We also validated manual

that the result of the query was the same as the centralized FDB output.

6.4.3 D-FDB time decomposition

This section investigates the time required for each segment in the Single-round
execution mode. What we really want to examine is how much time really is spent on

data communication and how much on query processing.
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Figure 6.16: D-FDB Loading vs Query Ezrecution

Figure 6.16 shows the total execution time for each different cluster configuration
segmented in Frecution and Loading segments.
(1)  Ezecution: Includes time for merging all the factorizations received into single
factorization and then evaluating the query on it.
(2)  Loading: The time required to deserialize the input and create the in-memory

representation of the factorizations. This time is significantly large and it should be
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a lot smaller but the current representation unfortunately is not as efficient as it

should be.
The times reported here are avregaes taken of the respective times for each node in each

configuration (i.e. in DFDB-4 we averaged the times of the four nodes).
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Figure 6.17: Segmentation of total (wall-clock) time for Single-round execution

Since D-FDB is a distributed engine we are very interested in the time devoted to
communication among the nodes. Figure 6.17, shows the times as seen in Figure 6.16
further segmented to show the communication (again average over the time spent on

communication by each node).

Examining the whole picture, we can see that the actual query processing (including
merging of factorizations) is less than half of the total time. As expected communication
cost is significant, roughly the same time needed for query processing, and confirms that
in distributed systems that operate in-memory one of the biggest bottlenecks is

communication.
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Obviously, communication time depends on many factors. One of them being the policy
on communication among the workers, see Section 5.4.3. Another one in our case, is
that as one node serializes a factorization, the node receiving the data has to deserialize
it at the same time, and as we presented before in Section 6.3.4, deserialization is much
slower than serialization, due to the fat current representation used in FDB (this can
also be seen by the large loading time during which we just deserialize the input in
memory). Therefore, there is still a lot of investigation and research to be done regarding

communication in distributed query processing around factorizations.

6.4.4 Conclusions

We examined evaluation of a multi-attribute join query over FDB and D-FDB. The
first being a centralized and the latter a distributed query engine. We showed that our
distributed query engine can outperform the centralized almost linearly. We also
investigated communication times during the query evaluation when using Single-round

execution mode and showed that it plays a significant role in the overall performance.

In conclusion, after these experiments we confirmed our intuition that distribution would
be a tremendous addition to the existing FDB engine which is already several orders of
magnitude faster than traditional relational systems, as shown by our previous work.
We strongly believe that further investigation of D-FDB and refinement in the several
issues discussed will lead to an amazing distributed query engine that can be integrated
in commercial Database Management Systems or even inspire adoption of factorizations

by other engines.
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Chapter 7

Future Work
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In this section we provide ideas and extensions to the contributions of this work that

we consider important and are great opportunities for research in future projects.

7.1 Serialization & Compression

Extend the bitstreams used in Bit (De)Serializer with specialized read and write
methods to provide even better compression in the serialized factorization. Integrating
compression techniques in the serialization process is very beneficial for Distributed FDB
since it can have advantages of state-of-the-art compression algorithms in a fraction of
their processing times.

Although our serialization technique does not require full deserialization before some
processing can occur, it would be interesting to examine if some operations (i.e. joins)

can be evaluated directly on the serialized form of a factorization without deserializing.

7.2 Distributed query processing

There are a lot of interesting aspects regarding distributed query processing.
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One research topic could be the investigation of how f-trees can affect communication
time, hence end-to-end processing time. For example, should each node apply f-plans on
its local factorization before transmitting it in order to reduce its size but at the same
time adding extra processing time? Is it better to just ship everything as is (based on
their existing f-tree) avoiding extra processing time but possibly shipping larger
factorization? Moreover, would it be better to use a global f-tree for the factorizations
at each site or should each node modify the local factorization in some way to use an f-
tree for faster processing of the query? These are all questions that were asked during

our discussions and meetings but never had time to investigate in-detail.

There is the topic of data communication, which is a well-known problem to all
distributed systems. At the moment we use ordered reads and writes, but what would
be the effect if random communication or other policy is used. For example, initially we
were planning to also test communication in Round-Robin style where a small fraction
of the serialization is sent to each node at a time in order to keep all network streams

busy, thus a node would never stall waiting for data.

Additionally, a more interesting subject is the actual query processing. We also briefly
hinted in brainstorming sessions the possibility of transmitting only the absolute
required data needed by the query and not the whole factorization. For example, if the
query joins at the root attribute of the f-tree then by serializing and transmitting just
the root attribute of the factorization, which is smaller than the whole factorization, we
could evaluate the join in much less time since we significantly reduce both
communication and computation costs. Of course, the result should be communicated
back to the nodes in order to generate the final result but this can be considered trivial.
This idea was one of the reason why we think the current serialization technique (Bit
Serializer) is good and should be further extended. Each union is handled separately and

therefore makes possible clever optimizations like the aforementioned partial processing.
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7.3 FDB query engine

In my opinion, an important aspect of future work in FDB is making it more generic
and more usable in scenarios outside the experiments reach. At the moment, most of
FDB functionality assumes single factorization as input. It should be extended to be
able to work with multiple inputs, merging them, inferring global f-trees in order to
combine different factorizations dynamically in run-time and evaluate queries on the

merged result.

Moreover, through the experiments conducted for this thesis we realized that the current
in-memory representation of factorizations is not ideal and it has a lot of overhead due
to excessive usage of double linked lists, which bring along a lot pointer book-keeping.
Therefore, some attention should be given in making the representation of a factorization
in memory as efficient as possible. Having a lighter in-memory representation will
instantly boost the distributed query processing too since the communication cost is a
bit less than half the total execution time and as we discussed in the experiments 6.3
and 6.4 this is mostly due to the slow deserialization, which in turn is slow because of

the fat representation in memory.
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