
Updates in Factorised Databases

Laura Draghici

St Hugh’s College

Dr. Dan Olteanu

Supervisor

Dissertation submitted in partial fulfilment of the degree of Master of Science in

Computer Science, Department of Computer Science, University of Oxford

September 2013

Abstract

Factorised databases are relational databases that use compact factorised rep-

resentations at the physical layer to reduce data redundancy and boost query

performance. Succinctness is achieved by algebraic factorisation using distribu-

tivity of product over union and commutativity of product and union. Factorised

databases use the so-called factorisation trees to define the structure of their

representations. This thesis studies the problem of updates (insertion/value

modification/deletion) in the context of such databases.

We study two types of insertions. We first discuss an algorithm that inserts

a tuple into a factorised representation. We also propose and experimentally

compare three algorithms for bulk insertion which, in the context of factorised

databases, is defined as the construction of a factorised representation for the

relation consisting of the tuples to be inserted.

We provide two approaches for value modifications and deletions on factorised

databases. The first approach is supported without restructuring for a given

update statement by a rather restricted class of factorisation trees and generates

as a result a single representation. The second approach described is supported

without restructuring by a wider class of factorisation trees, but generates a

result that consists of a union of f-representations over the same f-tree.

Acknowledgements

I would like to express my most sincere gratitude to my supervisor Dr. Dan Olteanu for his

constant guidance and for the many hours we spent discussing about the project. I would

also like to thank Jakub Závodný for participating in our discussions and helping me with

experiments.

I thank my parents for their unconditional love and support, especially in the difficult

moments of writing this thesis.

Finally, many thanks to Paul Baltescu and Liana Baltescu for their unending support

and encouragement throughout the year.

Contents

1 Introduction 1

1.1 Motivation and Challenges . 2

1.2 Contributions . 5

1.3 Outline . 6

2 Preliminaries 7

2.1 Factorised Representations . 7

2.2 Factorisation Trees . 8

2.2.1 Factorisation Trees for Relations . 8

2.2.2 Factorisation Trees for Queries . 9

2.3 Size Bounds For Factorised Representations 11

2.4 Restructuring Operators . 12

2.4.1 The Push-up Operator . 12

2.4.2 The Swap Operator . 12

2.4.3 Selection Operators . 13

3 Insertions 15

3.1 Efficient Insertions on Factorised Representations 15

3.1.1 Nesting Structures Supporting Efficient Insertions 15

3.1.2 Incremental Factorisation Maintenance 17

3.2 Bulk Insertions . 20

3.2.1 TF Algorithm: Factorisation over Tree Nesting Structures 20

3.2.2 PF Algorithm: Factorisation over Path Nesting Structures 21

3.2.3 RCF Algorithm: Factorisation using Rectangle Coverings 26

3.2.4 Comparison of Bulk Insertion Algorithms 32

3.2.5 Experimental Evaluation . 36

4 Value Modifications 43

4.1 Nesting Structures Supporting Efficient Value Modifications 44

4.1.1 The Case of a Result Consisting of One Factorised Representation . 44

4.1.2 The Case of a Result Consisting of a Union of Factorised Represen-

tations over the Same Factorisation Tree 48

4.2 Supporting Value Modifications by Restructuring 60

4.3 Experimental Evaluation . 61

5 Deletions 65

5.1 Nesting Structures Supporting Efficient Deletions 66

5.1.1 The Case of a Result Consisting of One Factorised Representation . 66

5.1.2 The Case of a Result Consisting of a Union of Factorised Represen-

tations over the Same Factorisation Tree 68

5.2 Supporting Deletions by Restructuring . 71

5.3 Experimental Evaluation . 72

6 Implementation 74

6.1 Bulk Insertions . 74

6.2 Value Modifications and Deletions . 77

7 Related Work 79

8 Conclusions and Future Work 81

8.1 Conclusions . 81

8.2 Future Work . 82

Bibliography 84

Chapter 1

Introduction

Relational databases are present at the core of many systems that need to store, process and

retrieve information. Often, these systems need to handle large amounts of information.

The database system they use should not only be able to store this information, but it also

needs to offer fast techniques to process the data it stores in order to meet the requirements

of the systems using it.

Factorised representations of relational data offer a solution to such requirements. A

factorised representation is a more compact representation of a relation that can be obtained

by algebraic factorisation using distributivity of product over union and commutativity of

product and union. The main idea behind a factorised representation is that the relation

it represents has some hidden structure. By exploiting this structure, we can construct

factorised representations that are, in some cases, exponentially more succinct than the

relations they represent. Such hidden structures are present, for example, in relations that

satisfy join dependencies. Results of conjunctive queries also present such structures that

are independent of the database and can always be inferred from the queries only. The

structures of factorised representations are defined by the so-called factorisation trees −
unordered rooted forests of trees.

Factorised representations are relational algebra expressions that use the union and

Cartesian product symbols and unary relations with a single value called singletons. These

three types can also be used to represent any relation as a union of products of singletons,

where each product of singletons represents a single tuple of the relation.

Example 1.1. Figure 1.1 shows relation R0 and its representation as a union of products of

singletons, denoted by P0. The same figure also shows a factorised representation E0 of R0

and the factorisation tree T0 defining the structure of E0. Notice that E0 can be obtained

from P0 by factoring out either singletons, or unions of singletons. For the first two products

of singletons we factor out 〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉. For the last four singletons, the

1

A B C D

1 2 3 2
1 2 3 4
2 4 5 5
2 5 6 5
2 4 5 7
2 5 6 7

(a) Relation R0

P0 = 〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × 〈D : 2〉 ∪
〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × 〈D : 4〉 ∪
〈A : 2〉 × 〈B : 4〉 × 〈C : 5〉 × 〈D : 5〉 ∪
〈A : 2〉 × 〈B : 5〉 × 〈C : 6〉 × 〈D : 5〉 ∪
〈A : 2〉 × 〈B : 4〉 × 〈C : 5〉 × 〈D : 7〉 ∪
〈A : 2〉 × 〈B : 5〉 × 〈C : 6〉 × 〈D : 7〉

(b) Relation R0 represented as a union of products of singletons

E0 = 〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × (〈D : 2〉 ∪ 〈D : 4〉)∪
〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉)× (〈D : 5〉 ∪ 〈D : 7〉)

(c) A factorised representation of relation R0

A

B

C

D

(d) Factorisation tree T0 defining the structure of E0

Figure 1.1: Relation R0, its representation as a product of singletons P0, a factorised representation
E0 of R0 and the f-tree T0 defining the structure of E0

factorisation is performed in several steps: we factor out 〈A : 2〉 × 〈D : 3〉 for the first two

products in this group, then we factor out 〈A : 2〉 × 〈D : 7〉 for the last two products in the

group. Finally, we can factor out 〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉).
Notice also how E0 follows the structure of T0. The root of T0 is labelled by attribute

A. Similarly, E0 has a union of A-singletons as its top-most union. The root of T0 is the

parent of two subtrees, imposing in any factorised representation following its structure a

product between representations over these subtrees. E0 satisfies this constraint and each

of its A-singletons is in a product with a representation over the path (B,C) and another

representation over a tree consisting only of node D. �

1.1 Motivation and Challenges

Factorised representations lie at the foundation of a new kind of relational database sys-

tem that represents relations more succinctly than traditional relational database systems.

Previous work [3] introduced FDB, an in-memory query engine for factorised databases

and showed that for select-project-join queries this engine can outperform other relational

engines such as SQLite and Postgre-SQL by orders of magnitude. More recently, the frame-

work has been extended to support queries with order-by clauses and aggregates [5] and

results have shown that a similar performance gap between FDB and other relational en-

gines holds in these cases too. In addition to evaluation techniques, the engine was also

2

E1 = 〈D : 2〉 × 〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 ∪
〈D : 4〉 × 〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 ∪
〈D : 5〉 × 〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉)∪
〈D : 7〉 × 〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉)

(a) Factorised representation E1

D

A

B

C

(b) Factorisation tree P1

defining the structure of E1

Figure 1.2: Factorised representation E1 representing relation R0 from figure 1.1a over factorisation
tree P1

extended with optimisation techniques that take into consideration not only the time to

compute the result representation, but also the size of the result representation.

There is no previous work, however, on updates on factorised representations, without

which we could not have a fully usable relational database system. This thesis aims to

cover this missing part of the current framework by giving a detailed theoretical insight

into the problems that insertion, value modification and deletion statements raise in the

context of factorised representations, as well as propose algorithms that perform these types

of updates.

The main problem that the task of updates on factorised representations raises is that

some update statements cannot be performed directly on the existing factorised represen-

tation. We will use the factorisation tree that defines the structure of the factorised repre-

sentation to be updated to decide whether the representation supports the given statement

or not. If the statement is not supported by the existing representation, we will first need

to restructure it such that the new structure of the representation supports the given state-

ment.

Example 1.2. Consider the following insertion statement on factorised representation E0

shown in Figure 1.1c:

I1 = Insert into E0 values (A:1, B:2, C:3, D:5)

This insertion statement is supported by E0 without restructuring. The result repre-

sentation is

〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × (〈D : 2〉 ∪ 〈D : 4〉 ∪ 〈D : 5〉)∪
〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉)× (〈D : 5〉 ∪ 〈D : 7〉)

Consider also the following insertion statement:

I2 = Insert into E0 values (A:2, B:3, C:5, D:8)

3

This statement cannot be performed without restructuring representation E0. To pre-

serve the current structure of E0 defined by T0, each A-singleton should be in a product

with a representation over path (B,C) and a union of D-singletons. After inserting the

product of singletons 〈A : 2〉 × 〈B : 3〉 × 〈C : 5〉 × 〈D : 8〉, such a product cannot be built

for singleton 〈A : 2〉.
Figure 1.2a shows factorised representation E1 obtained from E0 by restructuring. The

factorisation tree P1 that defines the structure of E1 is also shown in Figure 1.2b. Unlike

E0, E1 supports the insertion of tuple (A:2, B:3, C:5, D:8) without any other additional

restructuring step. To perform the insertion, we simply need to add the product of singletons

〈D : 8〉×〈A : 2〉×〈B : 3〉×〈C : 5〉 to the top-most union of E1. Notice though that in order

to be able to perform I2, we had to restructure E0 to a representation that has a larger size.

Consider now the following value modification statement on representation E0:

U1 = Update E0 set D = D+1 where D = A+3

This value modification statement can be performed directly on E0. Notice that each

D-singleton is in a product with exactly one A-singleton, so the condition of U1 can be

checked for each D-singleton before updating its value. The result representation is

〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × (〈D : 2〉 ∪ 〈D : 5〉)∪
〈A : 2〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 5〉 × 〈C : 6〉)× (〈D : 6〉 ∪ 〈D : 7〉)

Consider also the value modification statement shown below:

U2 = Update E0 set A = 3 where D = 7

This is another example of an update statement that cannot be performed without

restructuring. The problem here is that singleton 〈A : 2〉 is in a product with a union of

D-singletons. One of the singletons in this union satisfies the condition, while the other does

not satisfy it. The update of singleton 〈A : 2〉 would produce an incorrect representation,

since this would correspond to an update of attribute A for both singletons 〈D : 5〉 and

〈D : 7〉. We can perform this update statement if we restructure representation E0 to E1.

Finally, let’s also look at a deletion statement:

D1 = Delete from E0 where C = 6 and D = 7

Again, this statement cannot be performed without a prior restructuring step. Notice

that singletons 〈C : 6〉 and 〈D : 7〉 are placed inside different unions that are found in a

product. Removing the product 〈B : 5〉 × 〈C : 6〉 and the singleton 〈D : 7〉 would again

lead to an incorrect result representation. This delete statement can be performed if we

restructure E0 to E1. In fact, E1 supports, without restructuring, the insertion of any tuple

and any delete statement. �

4

1.2 Contributions

The contributions of this work are as follows:

• We characterise all factorisation trees that allow the insertion of any tuple without

prior restructuring in any representation following their structure. We also charac-

terise all factorised representations that allow the insertion of a given tuple without

prior restructuring and give an algorithm that performs the insertion of a tuple in a

factorised representation.

• We present three algorithms for bulk insertion in factorised databases. In the context

of factorised databases, bulk insertion is defined as the construction of a factorised

representation for the relation consisting of all tuples we want to insert. The first

algorithm builds the factorised representation of a given relation over a given factori-

sation tree. The second algorithm is given a path instead of a factorisation tree and

can discover nesting structures hidden in the data that are consistent with the path

taken as input. The last algorithm uses rectangle coverings of Boolean matrices rep-

resenting the occurrence of various partial factorised representations to compute even

more succinct factorised representations. We will show how rectangle coverings of

matrices can be used as encodings of factorised representations and present a greedy

heuristic that searches rectangle coverings that generate the most succinct factorised

representations of a relation.

• We compare the three bulk insertion algorithms from a theoretical point of view and

experimentally. We prove that the second algorithm computes a representation that

has a smaller or equal size than the representation computed by the first bulk insertion

algorithm, whenever the path considered by the second algorithm is consistent with

the structure of the factorisation tree considered by the first algorithm. We also prove

that the third algorithm builds a representation that is at least as good, in terms of

size, as the second algorithm. Experimental evaluation has also been conducted and

confirms our theoretical claims.

• We propose two techniques of performing value modification statements on factorised

representations. The first technique generates a result consisting of a single factorised

representation, while the second produces a result consisting of a union of factorised

representations over the same factorisation tree. For both cases, we characterise all

factorisation trees that allow a given value modification statement without restruc-

turing on any representation following their structure.

5

• We approach the deletion task similarly to the value modification task. The two

techniques developed for value modifications can be applied to deletions also, with

only minor changes. For both techniques, we precisely characterise all factorisation

trees that allow a given deletion statement without restructuring on any representation

following their structure.

• We evaluate the performance of one of our value modification and deletion techniques

against SQLite updates. For statements that do not require restructuring of the

existing representation, results have shown that our algorithms can be up to four

orders of magnitude faster than traditional update algorithms implemented by SQLite.

For statements that require restructuring, our algorithms still perform better that

SQLite updates, by one order of magnitude for all cases considered.

• The bulk insertion algorithms and the first technique proposed for value modifica-

tions and deletions have been implemented on top of an existing implementation of a

factorised database system.

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 introduces the theory of factorised representations and factorisation trees.

• Chapter 3 discusses insertions in factorised representations. The first section of this

chapter focuses on the insertion of one tuple at a time, while the second section

presents and compares three algorithms for bulk insertion in factorised databases.

• Chapter 4 describes techniques to change the values of a factorised representation.

• Chapter 5 presents techniques to delete values from a factorised representation.

• Chapter 6 gives an overview of the module implementing updates on factorised rep-

resentations and discusses key implementation details.

• Chapter 7 discusses work related to factorised representations.

• Finally, chapter 8 concludes this work and discusses some areas for future research.

6

Chapter 2

Preliminaries

This chapter describes previous work [18, 3] on factorised databases needed to understand

the thesis.

2.1 Factorised Representations

We consider relational databases with named attributes. A schema S is a set of attributes.

A tuple t of schema S is a mapping from S to a domain D. A relation R over S is a set of

tuples of schema S. A database D is a collection of relations.

We will use the notation t(A) to refer to the value to which an attribute A in the schema

of the tuple t is mapped.

A factorised representation of a relation R is an algebraic expression that uses unions,

Cartesian products and singleton relations to represent the relation R.

Definition 2.1. [18] A factorised representation, or f-representation for short, over a schema

S, is a relational algebra expression of the form:

• ∅, representing the empty relation over schema S,

• 〈〉, representing the relation consisting of the nullary tuple, if S = ∅,

• 〈A : a〉, representing the unary relation with a single tuple with value a, if S = {A}
and a is a value in the domain D,

• (E1 ∪ . . . ∪ En), representing the union of the relations represented by Ei, where each

Ei is an f-representation over S,

• (E1 × . . .×En), representing the Cartesian product of the relations represented by Ei,

where each Ei is an f-representation over some schema Si such that S is the disjoint

union of all Si.

7

An expression 〈A : a〉 is called an A-singleton. The size of an f-representation |E| is the
number of singletons in E.

Proposition 2.1. [18] Factorised representations form a complete representation system

for relational data.

This representation system is complete because any relation R has at least one repre-

sentation, called flat representation. In this representation, each tuple is represented by a

product of singletons and the relation is the union of all these products. Using algebraic

factorisation, we can compute nested f-representations that can be exponentially more suc-

cinct than their equivalent flat representation. Although much more compact than the

flat representation, they still allow efficient enumeration of all products of singletons. The

enumeration requires O(|E|) space and precomputation time and O(|S|) delay between two

consecutive products of singletons.

The system mentioned above is not injective because one relation can have several

f-representations. The space of possible f-representations of a relation is defined by the

distributivity of product over union.

2.2 Factorisation Trees

2.2.1 Factorisation Trees for Relations

The nesting structures of f-representations are defined by factorisation trees.

Definition 2.2. [18] A factorisation tree, or f-tree for short, over a schema S is an unordered

rooted forest with each node labelled by a non-empty subset of S such that each attribute

of S occurs in exactly one node.

Definition 2.3. [18] An f-representation E over a given f-tree T is recursively defined as

follows:

• If T is empty, then E = ∅ or E = 〈〉.

• If T is a single node labelled by {A1, . . . Ak}, then E =
⋃

a〈A1 : a〉 × . . .× 〈Ak : a〉.

• If T is a single tree with a root labelled by {A1, . . . Ak} and a non-empty forest U of

children, then E =
⋃

a〈A1 : a〉×. . .×〈Ak : a〉×Ea, where each Ea is an f-representation

over U and the union
⋃

a is over a collection of distinct values a.

• If T is a forest of trees T1, . . . , Tk, then E = E1 × . . . × Ek, where each Ei is an

f-representation over Ti.

8

R1 A B C

1 2 5
1 2 6
1 3 5
1 3 6
2 4 7
2 4 8

S1 A B C

1 2 5
1 2 6
1 3 5
1 3 7

Figure 2.1: Relations R1 and S1

In an f-representation over f-tree T , the attributes labelling a node in T have equal

values in the represented relation. Throughout the thesis, we will also consider that the

distinct values a in a union
⋃

a are sorted. This sorting is important for query evaluation and

the insertion, value modification and deletion algorithms presented in subsequent chapters

will preserve it.

An f-tree T defines the nesting structure of the f-representation. In case of a rooted

tree, we group the tuples by the values of the attributes labelling the root and then re-

cursively apply the procedure to lower subtrees. A forest of trees denotes that attributes

in different subtrees are independent and we can create a product of f-representations over

those subtrees.

Not all relations over a schema S can be represented over a particular f-tree. The

relations that can be represented over an f-tree are only those that allow products of f-

representations over subtrees that are siblings in the f-tree.

Any f-representation has a parse tree. Its internal nodes are labelled by ∪ or × opera-

tions, while the leaves are labelled by singletons or empty relations.

Example 2.1. Consider the schema S = {A,B,C}, f-tree T1 over S: A

B C

and relations

R1 and S1 shown in Figure 2.1.

The f-representation of R1 over f-tree T1 is

〈A : 1〉 × (〈B : 2〉 ∪ 〈B : 3〉)× (〈C : 5〉 ∪ 〈C : 6〉) ∪ 〈A : 2〉 × 〈B : 4〉 × (〈C : 7〉 ∪ 〈C : 8〉)

Relation S1 cannot be represented over f-tree T1. The f-representation should have the

form 〈A : 1〉 × EB × EC , where EB is a union of B-singletons and EC is a union of C-

singletons, but for relation S1 we cannot put in a product the union of B-singletons and

the union of C-singletons. �

2.2.2 Factorisation Trees for Queries

We consider conjunctive queries having the form Q = πP(σϕ(R1 × . . . × Rn)), where

R1, . . . , Rn are distinct relation symbols over disjoint schemas S1, . . . ,Sn, P is the pro-

9

AR, AT

BR, BS

C D

E

AR, AT

BR, BS

C

D E

AR, AT

C

D

E

Figure 2.2: F-trees T2, T3 and T4.

jection list, P ⊆ ⋃

i Si and ϕ is a list of equalities between attributes. The size of Q is

|Q| = n.

We can use f-representations over f-trees to represent in a succinct form the results of

conjunctive queries. Such representations use less memory and can be computed faster than

their equivalent flat representations, but still allow fast enumeration of all tuples. F-trees

that define f-representations of the query result Q(D) for any input database D can be

inferred directly from the query Q. The nodes of these f-trees are labelled by classes of

attributes. Each such class consists of attributes that are transitively equal in the selection

condition of Q.

Proposition 2.2. [18] Given a conjunctive query Q, Q(D) has an f-representation over

an f-tree T for any database D iff any two dependent nodes lie along the same root-to-leaf

path in T .

The condition in the proposition given above is called the path constraint. The at-

tributes of a relation are dependent: we have seen in Example 2.1 that we cannot make

any assumptions about the structure of a relation. These are the only dependent attributes

in an equi-join query (a conjunctive query that does not project away any attribute). For

such a query, we can always put non-join attributes from different relations in different sub-

trees of the factorisation tree. For general conjunctive queries, however, we can also have

dependent attributes in different relations. Such dependencies can arise if some relations

are joined on a set of attributes and all these attributes are then removed. In such a case,

non-join attributes which were previously independent can become dependent.

Example 2.2. Let’s consider the relations R, S and T over schemas {AR, BR, C}, {BS , D}
and {AT , E} and the query Q1 = σϕ(R × S × T) with ϕ = (AR = AT , BR = BS). The

left f-tree in Figure 2.2 is a valid f-tree for Q1, while the f-tree in the middle is not be-

cause BS and D are not on the same root-to-leaf path. A valid f-tree for the query

Q2 = π{AR,AT ,C,D,E}(Q1) is f-tree T4, shown in the right column of Figure 2.2. Notice

that attributes C and D are on the same path of T4. Projecting away both BR and BS

introduced their dependency. �

10

2.3 Size Bounds For Factorised Representations

Previous work [18] has derived tight size bounds for f-representations of results of conjunc-

tive queries. The following theorem describes these size bounds.

Theorem 2.4. [18] For any non-Boolean query Q = πP(σϕ(R1 × . . . × Rn)), there is a

rational number s(Q) such that:

• For any database D, there exists an f-representation of Q(D) with size at most |P| ·
|D|s(Q).

• For any f-tree T of Q, there exist arbitrary large databases D for which the f-representation

of Q(D) over T has size at least (|D|/|Q|)s(Q).

To explain the significance of the rational number s(Q) we should consider the hyper-

graph of Q. This hypergraph has one node for each attribute class of Q and one hyperedge

for each relation symbol R. Each hyperedge includes all nodes with attributes in the corre-

sponding relation. For an attribute symbol A labelling a node in an f-tree T , let path(A)

represent the set of attributes labelling the nodes in T from root to the node labelled by

A (including the node labelled by A). Let’s also consider the restriction of query Q to an

attribute A: QA = (σϕA
(RA

1 × . . .×RA
n)), where the selection condition and the relations in

the query are restricted to the attributes in path(A) and the database D is projected onto

the attributes in path(A). The idea is to cover all attributes in QA with a number of their

relations as small as possible. This corresponds to the fractional edge cover number of the

query hypergraph ρ∗(QA), which can be computed as the cost of an optimal solution to the

following linear program:

minimise
∑

i

xRi

subject to
∑

i:Ri∈rel(A)

xRi
≥ 1, for each attribute class A,

xRi
≥ 0, for all i

where rel(A) is the set of all relations including attributes from the attribute classA and xRi

is the weight associated to relation Ri (and the corresponding hyperedge in the hypergraph).

We can now define: s(T) = maxA∈P ρ∗(QA) and s(Q) = minT s(T).

The number s(T) can be computed in polynomial time. Computing s(Q), however,

might take exponential time because we might need to enumerate and compute the fractional

edge cover for an exponential number of f-trees.

11

Example 2.3. Consider f-tree T2 in Figure 2.2. To compute s(T2), we first need to compute

the fractional edge cover for each root-to-leaf path. We have ρ∗(QC) = 1 and ρ∗(QE) = 1

because the paths of these restricted queries can be covered by a single relation. We also

have ρ∗(QD) = 2. In this case, we need to assign xS = 1 to be able to cover the node labelled

by D; the associated hyperedge will also cover the node labelled by (BR, BS). Finally, to

cover the node labelled by (AR, AT), we need xR + xT = 1. s(T) is the maximal possible

ρ∗(QA) over all attributes A, so s(T2) = 2. �

2.4 Restructuring Operators

Previous work [3] describes query evaluation techniques on f-representations. F-representations

support selection, projection and Cartesian product, but in some cases we cannot apply

these operations directly on the given f-representation and we need to restructure it first.

Such restructuring steps will be necessary in some cases before value modification or deletion

statements also. More precisely, we sometimes need to apply the swap operator described

in a subsequent section.

All restructuring operators need to preserve the path constraint, the increasing order of

values a in any union expression
⋃

a and normalisation. We say that an f-tree is normalised

if there are no nodes that could be brought at higher levels in the f-tree without violating

the path constraint.

2.4.1 The Push-up Operator

The push-up operator factors out common expressions. It is shown in Figure 2.3a. We can

apply this operator whenever we have a parent node A and one of its children B together

with all its descendants are independent of A. In such a case, B can be brought up in the

f-tree and become a sibling of A. This restructuring operation will decrease the size of the

f-representation. Before the restructuring, an f-representation over the f-tree rooted in node

B may occur several times in the f-representation, once for each A-singleton. Because it

occurs once for each A-singleton, it can be factored out and after the restructuring, it will

occur only once in a product with the f-representation over the f-tree rooted in A.

We can normalise an f-tree by performing a bottom-up traversal and applying the push-

up operator on each node of the f-tree as many times as possible.

2.4.2 The Swap Operator

The swap operator exchanges a node B with its parent node A. It is shown in Figure

2.3b. Before the restructuring, the values are first grouped by A and then by B, while in

the restructured f-representation the values are first grouped by B and then by A. The

12

. . .

A

B

TB

TA

7→ . . .

B

TB

A

TA

(a) push-up operator

. . .

A

TA B

TAB TB

7→ . . .

B

A

TA TAB

TB

(b) swap operator

. . .

A

TA

B

TB

7→ . . .

A,B

TA TB
(c) merge operator

. . .

A

C1

. . .

CK

B

T0 T1 . . . Tk

7→ . . .

A,B

T0 C1

T1 . . .

. . . CK

Tk

(d) absorb operator

Figure 2.3: Restructuring operators

descendants of B are split into two categories: those that depend on both A and B and

those that depend only on B. The descendants that depend only on B (represented as TB
in the figure) can go up in the f-tree together with B such that, after the restructuring, the

f-representations over TB will be in a product with the f-representations over the subtree

rooted in A; this preserves normalisation. The descendants that depend on A and B will

become children of A; this is necessary to preserve the path constraint.

2.4.3 Selection Operators

The next two restructuring operators are useful for selection queries with equality condi-

tions of the form A = B. The merge operator can be applied when A and B are siblings,

while the absorb operator can be applied when A is an ancestor of B. In any other case,

we first need to restructure the f-tree using the swap operator until we reach one of the two

cases mentioned above.

The merge operator merges the sibling nodes A and B into a node labelled by the

attributes of A and B. The children of both A and B will become the children of the new

node. The merge operator is shown in Figure 2.3c. The new f-representation will keep only

A and B singletons (and associated f-representations) whose values occur in both unions

13

⋃

a〈A : a〉 × Ea and
⋃

b〈B : b〉 × Fb, where Ea is an f-representation over TA and Fb is an

f-representation over TB. The procedure is implemented as a sort-merge join to preserve

the value order constraint.

The absorb operator absorbs a node B into its ancestor A. It is shown in Figure

2.3d. Node B will be removed from the f-tree and all attributes labelling it will be added

to the set of attributes labelling node A. Similar to the case of the merge operator, the

new f-representation will keep only A and B singletons (and associated f-representations)

whose values occur in both unions
⋃

a〈A : a〉 × Ea and
⋃

b〈B : b〉 × Fb, where Ea is an f-

representation over the f-tree rooted in A and Fb is an f-representation over the f-tree rooted

in B. Since each union of B-singletons is found inside a union of A-singletons, for each A-

singleton we keep at most one B-singleton (together with its associated f-representation).

In case a descendant of B was dependent on B, but not on some ancestors of B, that

descendant can go up in the f-tree without violating the path constraint. For this reason,

after absorbing node B in node A, we also need to normalise the f-tree.

The last two operators can be performed in one pass over the f-representation. However,

such efficient algorithms can be applied only under an additional assumption: that the

values a in an union
⋃

a〈A : a〉 × Ea are distinct. This assumption might not hold for an

f-representation on which a value modification statement was performed. As we will see

in Chapter 4, the value modification algorithm will need an additional step following the

update of the f-representation which restructures the resulting f-representation such that

we have distinct values a in all unions
⋃

a〈A : a〉 × Ea.

14

Chapter 3

Insertions

This chapter presents techniques of insertion in an f-representation. The first section of the

chapter studies the insertion of one tuple in an f-representation over a given f-tree. We will

first characterise the f-trees that allow the insertion of any tuple in any f-representation

following their structure without prior restructuring. Then, we will discuss the case where

an f-representation is defined by an f-tree that does not allow the insertion of any tuple

without prior restructuring, but the structure and the data in the f-representation allows

the insertion of particular tuples. We will state the condition under which such insertions

are possible and present an algorithm that performs the insertion of a tuple if it is possible.

We will see that the class of f-trees that allow insertions is very restrictive. This was one

of the reasons why we turned our attention to bulk insertion, which is presented in the second

section. The bulk insertion procedure builds a factorised representation of the relation

representing the tuples to be inserted. We discuss three algorithms for bulk insertion. The

first algorithms builds the f-representation of the relation over a given f-tree. The second

one takes as input a path and derives from the path an f-tree over which the relation is

representable; at the same time, it builds the f-representation over that f-tree. The last one

is similar to the second one, the difference being that it tries to find more common patterns

in the data in an attempt to reduce the size of the f-representation as much as possible.

3.1 Efficient Insertions on Factorised Representations

3.1.1 Nesting Structures Supporting Efficient Insertions

The following theorem characterises all f-trees that allow the insertion of any tuple in any

f-representation following their structure:

Theorem 3.1. Given an f-tree T over schema S, we can insert any tuple t of schema S
on any f-representation over T without prior restructuring iff the f-tree T is a single path.

15

Before proving the theorem, let’s have a closer look at f-trees that are paths and f-

representations over such f-trees. An f-representation over a path will first group its values

by the first attribute, then by the second one and so on until it reaches the leaf. The only

products present in such an f-representation are products between a singleton and a partial

f-representation over a subpath. The quality of such an f-representation is low, because it

was precisely the branching into several subtrees that saved the most in terms of size.

If Proof. In this part of the proof, we assume that we are given an f-tree T that is a path

and a tuple t over its schema and we want to prove that the tuple can be inserted in any

f-representation over T .

Let f-tree T be the path (A0, A1, . . . An) and the tuple t = (A0 : α0, A1 : α1, . . . An : αn).

Any f-representation over T will have the following form:

⋃

a0

〈A0 : a0〉 ×
(

⋃

a1

〈A1 : a1〉 ×
(

. . .×
⋃

an

〈An : an〉
)

. . .

)

To insert the tuple t in this f-representation, we first search α0 in the list of values a0 in
⋃

a0
〈A0 : a0〉. If we do not find it, we build the f-representation of tuple t over T and add

it to the top-most union of the f-representation such that the increasing order of the values

a0 is preserved. If we find it, we apply this technique recursively for the f-representation

found in a product with singleton 〈A0 : α0〉 and the value α1. If α1 is also present in the

list of values a1 in
⋃

a1
〈A1 : a1〉, we continue to go at lower levels of the f-tree until we find

a value αi that is not present in the list of value ai of the union
⋃

ai
〈Ai : ai〉. If we reach

the leaf An and find αn in the list of values an in
⋃

an
〈An : an〉, it means that the tuple we

wanted to insert is already present. �

Only If Proof. In this part of the proof, we are given an arbitrary f-representation over an

f-tree T and an arbitrary tuple over the schema of T . We know that it is possible to insert

the tuple in the f-representation and we want to prove that the f-tree is a path.

We will prove this part of the theorem by contradiction. We assume that the f-tree

T is not a path. This means that the f-tree has at least one node that has at least two

children. Let A be the parent node, B and C the children nodes and TB and TC represent

all descendants of B and C, respectively.

The insertion can be performed following the procedure described in the ”if” proof until

we reach node A, because A is the first node that has more than one child. When reaching

node A, however, the insertion procedure will have to continue on two paths. We can

notice that if the insertion leads to the addition of new singletons on both f-representations

over these paths, then we end up adding more than one tuple. This happens because the f-

representations on which we perform the insertions are found in a product. This means that

16

A

B

C

D

E F

Figure 3.1: F-tree T5

the insertion of an arbitrary tuple t is not possible for any f-representation over T , which

contradicts the hypothesis. We can conclude that the assumption made in the beginning of

the ”only if” proof is wrong and the f-tree is indeed a path. �

3.1.2 Incremental Factorisation Maintenance

There are cases where the f-tree of an f-representation is not a path, but it is still possible

to insert certain tuples in the f-representation. Let’s have a look at a few such cases.

Example 3.1. Consider f-tree T5 in Figure 3.1 and f-representation E2 over T5 shown below

E2 =〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × 〈D : 4〉 × (〈E : 1〉 ∪ 〈E : 2〉 ∪ 〈E : 3〉)× 〈F : 5〉

We can insert tuple (A:3, B:5, C:1, D:3, E:7, F :2) in E2, because there is no A-singleton

with value 3 in this f-representation. To perform the insert, we simply need to put the

product of singletons 〈A : 3〉 × 〈B : 5〉 × 〈C : 1〉 × 〈D : 3〉 × 〈E : 7〉 × 〈F : 2〉 in a union with

the existing f-representation.

We can also insert tuple (A:1, B:5, C:1, D:3, E:7, F :2) in E2, because there is no

B-singleton with value 5 under singleton 〈A : 1〉. The new f-representation will be:

〈A : 1〉 × (〈B : 2〉 × 〈C : 3〉 × 〈D : 4〉 × (〈E : 1〉 ∪ 〈E : 2〉 ∪ 〈E : 3〉)× 〈F : 5〉∪
〈B : 5〉 × 〈C : 1〉 × 〈D : 3〉 × 〈E : 7〉 × 〈F : 2〉)

We can also insert tuple (A:1, B:2, C:3, D:4, E:7, F :5) in E2. This insertion will

add only singleton 〈E : 7〉 to the union of E-singletons. However, we cannot insert tuple

(A:1, B:2, C:3, D:5, E:3, F :5). This insertion should add singleton 〈D : 5〉 and the new

f-representation would be:

〈A : 1〉 × 〈B : 2〉 × 〈C : 3〉 × (〈D : 4〉 ∪ 〈D : 5〉)× (〈E : 1〉 ∪ 〈E : 2〉 ∪ 〈E : 3〉)× 〈F : 5〉

The addition of singleton 〈D : 5〉 caused in fact the addition of 3 new tuples instead

of 1. The tuples introduced are (A:1, B:2, C:3, D:5, E:1, F :5), (A:1, B:2, C:3, D:5, E:2,

F :5), (A:1, B:2, C:3, D:5, E:3, F :5) �

17

The following proposition states the condition that has to be satisfied in order to be

able to insert a given tuple in an f-representation over an arbitrary f-tree.

Proposition 3.1. We can insert a tuple t of schema S in an f-representation E over an f-

tree T without prior restructuring if for each product of f-representations E0×E1× . . .×Ek

reached by the insertion procedure, there is at most one f-representation Ei where new

singletons are added and all other f-representations Ej , j 6= i, represent a single tuple over

the schema of Ej. In addition to this, this tuple must be the same with the tuple resulted

from the restriction of the tuple t to the schema of Ej.

Figure 3.2 shows the pseudo-code of an algorithm that performs the insertion of a tuple

in an f-representation. If the tuple can be inserted, the insertion is performed. Otherwise,

the f-representation remains unchanged and the procedure returns an error. There are two

subroutines: the insert subroutine performs the insertion, if it is possible, while the check

subroutine tests if the f-representation received as an argument represents only the tuple

received as an argument.

The insert subroutine will first check the structure of the f-tree. If the f-tree is a forest

of trees, we first need to check if the insertion is possible. We call the check subroutine

for each tree. If all subroutines return true, it means that the f-representation E given as

an argument represents exactly the tuple we want to insert. In this case, no other steps

are required. If more than one check subroutine returns false, then the insertion is not

possible and the algorithm returns an error. If exactly one check subroutine returns false,

then the insertion is possible so far and we recursively call the insert procedure for the

f-representation for which the check subroutine returned false. We do not need to call the

insert subroutine for any other f-representation, because all others represent exactly the

data we wanted to insert over their associated f-trees. If the f-tree is a rooted tree T , then

we need to search the tuple value for the attribute labelling the root of the f-tree in the list

of singleton values in the current union. If we find it, then we recursively call the insert

procedure for the f-representation found in a product with the singleton containing the tuple

value. Otherwise, we need to build the f-representation of the tuple over T and add it to

the current union.

The time complexity of this algorithm is O(|E|). In general, the insertion procedure

does not scan the entire f-representation, so the computation time can be even sublinear.

For example, given an f-representation over a rooted f-tree, we first scan the singletons

in the top-most union. If we do not find the tuple value corresponding to the attribute

labelling the root of the f-tree in this list, then we do not need to scan any other part of

the f-representation. If this tuple value is found, we need to scan only the f-representation

18

procedure insert(f-tree T , f-representation E, tuple t)
if T is empty then return done

if T is a forest T1, . . . , Tk then
Let E = E1 × . . .× Ek

for 1 ≤ i ≤ k do
check(Ti, Ei, t)

if all check subroutines returned true then
return done

if more than one check subroutine returned false then
return error

if exactly one check subroutine returned false then
Let Ti be the subtree for which the check subroutine returned false
return insert(Ti, Ei, t)

if T is a single rooted tree A(U) then
Let E = 〈A : a1〉 × Ea1 ∪ . . . ∪ 〈A : an〉 × Ean

if t(A) ∈ {a1, . . . , an} then
return insert(U , Et(A), t)

else
Let t∗ be the restriction of t to the attributes in the schema of T
Build the f-representation F of tuple t∗ over T
E = E ∪ F
return done

procedure check(f-tree T , f-representation E, tuple t)
if T is empty then return true

if T is a forest T1, . . . , Tk then
Let E = E1 × . . .× Ek

for 1 ≤ i ≤ k do
check(Ti, Ei, t)

if all check subroutines returned true then
return true

else
return false

if T is a single rooted tree A(U) then
Let E = 〈A : a1〉 × Ea1 ∪ . . . ∪ 〈A : an〉 × Ean

if n = 1 and a1 = t(A) then
return check(U , Ea1 , t)

else
return false

Figure 3.2: Insertion of a tuple in an f-representation

19

found in a product with the singleton containing the value. All other f-representations will

not be scanned.

The insertions performed by the insert procedure are very efficient because they can be

applied directly on the f-representation. If the f-tree is not a path and the insert procedure

cannot perform the insertion, then the f-representation will first need to be restructured by

repeatedly applying the swap operator until the f-tree of the resulting f-representation is a

path.

3.2 Bulk Insertions

This section presents three techniques of bulk insertion in an f-representation. All three

procedures take as input a set of tuples, but do not attempt to insert these tuples in an

existing f-representation, because this can require, in many cases, the restructuring of the

existing f-representation. Instead, they build a new f-representation for the input relation.

The resulting f-representation will be a union of two f-representations that can have different

nesting structures: the initial f-representation on which we wanted to perform the insertion

and the f-representation built by the bulk insertion procedure. The advantage of this

technique is that the size of the two f-representations can be much smaller than the size of

a single f-representation representing the same relation. The disadvantage is that whenever

we perform queries or apply restructuring operators on the new f-representation, we will

have to work on two separate f-representations.

3.2.1 TF Algorithm: Factorisation over Tree Nesting Structures

The Tree Factorisation algorithm, or TF algorithm for short, takes as input an f-tree T
and a relation R and computes the f-representation of R over T . Previous work [18] has

already studied the factorisation of a relation over an f-tree. The following lemma is stated

in [18]:

Lemma 3.1. [18] Let R be a relation over schema S and T be an f-tree over S. If there

is an f-representation of R over T , then it is unique up to commutativity of union and

product.

The construction of an f-representation of a relation over a given f-tree is also presented

in [18]. The procedure shown in Figure 3.3 follows closely this technique. The notation

πT (R) used in the procedure denotes the projection of relation R on the attributes of T .

We notice that the f-representation computed by the TF algorithm does not represent

exactly the relation if the relation is not representable over the f-tree given. In this case, the

20

procedure tf(f-tree T , relation R)
if T is empty then

if R is empty then E = ∅
if R consists of the nullary tuple then E = 〈〉

if T is a single node A then
Let A = πA(R)
E =

⋃

a∈A〈A : a〉
if T is a single rooted tree A(U) then

Let A = πA(R)
E =

⋃

a∈A〈A : a〉 × tf(U , πU (σA=a(R)))

if T is a forest of f-trees T1, . . . , Tk then
E = tf(T1, πT1(R))× . . .× tf(Tk, πTk(R))

return E

Figure 3.3: TF algorithm: Factorisation of a relation over an f-tree

relation represented by the f-representation built is an upper bound of the initial relation

in the sense that the new relation contains all tuples in the initial relation, but can also

contain some extra tuples. The following example illustrates this case.

Example 3.2. Recall from Example 2.1 f-tree T1 and relation S1, which is not representable

over T1. The output of the TF algorithm for T1 and S1 will be the following f-representation:

〈A : 1〉 × (〈B : 2〉 ∪ 〈B : 3〉)× (〈C : 5〉 ∪ 〈C : 6〉 ∪ 〈C : 7〉)

This factorisation represents a relation that includes all the tuples of S1 and has two

additional tuples: (A:1, B:2, C:7) and (A:1, B:3, C:6). �

3.2.2 PF Algorithm: Factorisation over Path Nesting Structures

Sometimes we do not know the f-tree over which the relation is factorisable. In this case

we can use the Path Factorisation algorithm, or PF algorithm for short, which takes as

input a path and a relation. The key feature of this algorithm is that it can infer from the

path and the relation given, f-trees over which the relation or a subset of its tuple can be

represented. Unlike the factorisation produced by the TF algorithm in which all partial

f-representations over a certain schema have the same structure, the factorisation produced

by the PF algorithm can contain partial f-representations that have the same schema, but

different nesting structures. By allowing more than one nesting structure, the PF algorithm

can reduce even more the size of the f-representation.

21

procedure pf(path P, relation R)
if P is empty then

if R is empty then return ∅
if R consists of the nullary tuple then return {〈〉}

Let A = πA(R)
if P is a single node A then return {⋃a∈A〈A : a〉}
if P is a path tree A(PA) with root A and PA the path child of A then

for each a ∈ A do
La = pf(PA, πPA

(σA=a(R)))

Compute I =
⋂

a∈A La

E = ∅
for each a ∈ A do

Ea = 〈A : a〉
for each F ∈ La and F /∈ I do

Ea = Ea × F

E = E ∪ Ea

return I ∪ {E}

Figure 3.4: PF algorithm: Factorisation of a relation over a path

Definition 3.2. Let R be a relation over schema S and E an f-representation of R. A

factor of R is an f-representation E1 over a schema S1 ⊆ S such that there is another

f-representation E2 over schema S2 = S \ S1 with E = E1 × E2.

The pseudo-code of the PF algorithm is shown in Figure 3.4. The pf procedure returns

the factors of the relation taken as input. Whenever the output contains more than one

factor, the f-representation of the relation can be computed by putting the factors in a

product. For a path consisting of a single node A, the pf procedure returns a single factor

representing a union of A-singletons. For a path with more than one node and root A,

we first compute the list of distinct A values in the relation. For each value a in this list,

we also compute the list of factors for the relation containing all tuples that have a as A

value by recursively applying procedure pf. The procedure then computes the intersection

of all factor lists. Since the factors in the intersection occur in each factor list, they can

appear in the f-representation only once, in a product with the f-representation containing

all other factors. The procedure returns a set containing all factors in the intersection and

an f-representation containing all other factors.

Each time the pf procedure returns a list of factors of size greater than 1, the f-tree of

the f-representation is changed from a path to a forest with several trees. Each factor is an

f-representation over a tree in this forest. If all intersections computed by the PF algorithm

22

are empty, then the list of factors returned by the PF algorithm will have only one factor

that is exactly the f-representation of the relation over the input path.

Example 3.3. We exemplify the PF algorithm with relation S shown below and the path

(A,B,C,D,E). In the following figures, we considered

Sv1,...,vk = πS\{Attr(v1),...,Attr(vk)}(σAttr(v1)=v1,...,Attr(vk)=vk(S)),

where S is the schema of S, v1, . . . , vk are values of tuples of relation S and Attr(v) repre-

sents the attribute to which a value v of a tuple of S is associated.

S A B C D E

a1 b1 c1 d1 e1
a1 b1 c1 d1 e2
a1 b1 c1 d2 e1
a1 b1 c1 d2 e2
a1 b1 c2 d1 e1
a1 b1 c2 d1 e2
a1 b1 c2 d2 e1
a1 b1 c2 d2 e2
a1 b2 c1 d3 e3
a1 b2 c2 d3 e3
a2 b2 c1 d1 e1
a2 b2 c3 d1 e1

Sa1 B C D E

b1 c1 d1 e1
b1 c1 d1 e2
b1 c1 d2 e1
b1 c1 d2 e2
b1 c2 d1 e1
b1 c2 d1 e2
b1 c2 d2 e1
b1 c2 d2 e2
b2 c1 d3 e3
b2 c2 d3 e3

Sa2 B C D E

b2 c1 d1 e1
b2 c3 d1 e1

During the first pf procedure call, we find two distinct values for root A: a1 and a2. We

proceed to the next recursion level with Sa1 first. Here, we have again two distinct values

for B: b1 and b2. We proceed to depth 2 with Sa1,b1 first.

Sa1,b1 C D E

c1 d1 e1
c1 d1 e2
c1 d2 e1
c1 d2 e2
c2 d1 e1
c2 d1 e2
c2 d2 e1
c2 d2 e2

Sa1,b2 C D E

c1 d3 e3
c2 d3 e3

At depth 3, we have to compute the factors of two relations that are equal Sa1,b1,c1 =

Sa1,b1,c2 .

Sa1,b1,c1 D E

d1 e1
d1 e2
d2 e1
d2 e2

Sa1,b1,c2 D E

d1 e1
d1 e2
d2 e1
d2 e2

Sa1,b1,c1,d1 E

e1
e2

Sa1,b1,c1,d2 E

e1
e2

23

At depth 4, we reach the leaf E of the path. Both relation Sa1,b1,c1,d1 and relation

Sa1,b1,c1,d2 return a list of factors containing a single factor: 〈E : e1〉 ∪ 〈E : e2〉.
Returning at depth 3, we have Ld1 = Ld2 = {〈E : e1〉 ∪ 〈E : e2〉}. Their intersection is

I = {〈E : e1〉 ∪ 〈E : e2〉} and the list of factors returned is

{〈D : d1〉 ∪ 〈D : d2〉, 〈E : e1〉 ∪ 〈E : e2〉}.
At depth 2, we have Lc1 = Lc2 = {〈D : d1〉 ∪ 〈D : d2〉, 〈E : e1〉 ∪ 〈E : e2〉}. Their

intersection contains both factors and the list of factors returned is

{〈C : c1〉 ∪ 〈C : c2〉, 〈D : d1〉 ∪ 〈D : d2〉, 〈E : e1〉 ∪ 〈E : e2〉}.
At depth 1, we have Lb1 = {〈C : c1〉 ∪ 〈C : c2〉, 〈D : d1〉 ∪ 〈D : d2〉, 〈E : e1〉 ∪ 〈E : e2〉}

and Lb2 = {〈C : c1〉 ∪ 〈C : c2〉, 〈D : d3〉, 〈E : e3〉}. We compute I = {〈C : c1〉 ∪ 〈C : c2〉}
and the list of factors returned is

{〈C : c1〉 ∪ 〈C : c2〉,
〈B : b1〉× (〈D : d1〉∪ 〈D : d2〉)× (〈E : e1〉∪ 〈E : e2〉)∪〈B : b2〉×〈D : d3〉×〈E : e3〉}.

At depth 0, we have La1 = {〈C : c1〉 ∪ 〈C : c2〉, 〈B : b1〉 × (〈D : d1〉 ∪ 〈D : d2〉) × (〈E :

e1〉 ∪ 〈E : e2〉) ∪ 〈B : b2〉 × 〈D : d3〉 × 〈E : e3〉} and La2 = {〈C : c1〉 ∪ 〈C : c3〉, 〈B : b2〉, 〈D :

d1〉, 〈E : e1〉}. We should notice here that relations Sa1 and Sa2 were factorised over different

nesting structures: relation Sa1 was factorised over a forest with two trees, one over schema

{B,D,E} and the other consisting of node C, while relation Sa2 was factorised over a forest

with four trees, each consisting of only one node. The intersection La1 ∩ La2 is empty, so

the result is a list with a single factor:

〈A : a1〉×(〈C : c1〉 ∪ 〈C : c2〉)×
(〈B : b1〉 × (〈D : d1〉 ∪ 〈D : d2〉)× (〈E : e1〉 ∪ 〈E : e2〉) ∪ 〈B : b2〉 × 〈D : d3〉 × 〈E : e3〉)∪

〈A : a2〉×(〈C : c1〉 ∪ 〈C : c3〉)× 〈B : b2〉 × 〈D : d1〉 × 〈E : e1〉 �

The order of the attributes in the path considered by the PF algorithm has a high impact

on the nesting structures inferred by the algorithm. The following proposition characterises

all f-trees that can be inferred from a path P.

Proposition 3.2. Consider a path P over schema S and an f-tree T over the same schema.

The PF algorithm can infer T given P if P follows a topological sorting of T .

The condition stated in the proposition above is necessary, but not sufficient. The

relation given to the PF algorithm (or a subset of its tuples) should be factorisable over the

f-tree T in order for the PF algorithm to infer this f-tree.

The mechanism of f-tree inference from a path is based on the fact that the PF algo-

rithm is able to promote an f-representation one level up at each recursion depth. All f-

representations in the intersection list are promoted and instead of remaining under the par-

ent attribute in the f-representation parse tree, they become siblings with an f-representation

24

A

B

C D

E

F

Figure 3.5: F-tree T6

F

(a) F-tree at depth 5

D F

(b) F-tree at depth 4

C D F

(c) F-tree at depth 3

C D E

F

(d) F-tree at depth 2

B

C D

E

F

(e) F-tree at depth 1

A

B

C D

E

F

(f) F-tree at depth 0

Figure 3.6: F-trees inferred at various levels of the PF algorithm from path (A,B,E,C,D, F)
which follows the topological sorting of f-tree T6.

whose schema includes the parent attribute. The promotion of an f-representation is possi-

ble if all attributes of its schema are independent of the parent attribute. If the given path

P does not follow the topological sorting of the f-tree T , it means that there are at least

two nodes A and B such that B is a descendent of A in T and an ascendant of A in P.

When the PF algorithm reaches the level of B, the f-representation whose schema includes

attribute A cannot be promoted, since node A and node B are dependent. This means that

node A will remain under node B in all f-trees inferred by the PF algorithm.

Example 3.4. We will exemplify the promotions of partial f-representations during the

PF algorithm for path (A,B,E,C,D, F) and a relation factorisable over f-tree T6 shown

in Figure 3.5. We show in Figure 3.6 only the f-trees of the f-representations at each

recursion level. At depth 5, the f-representation over node F is built. At depth 4, this

f-representation is pushed up, since D and F are independent nodes in T6. At depth 3, the

f-representation over node D and the f-representation over node F are promoted because

node C is independent of D and F . At depth 2, we can promote only the f-representations

over node C and node D. The f-representation over F remains under E. At depth 1, we

can promote the f-representation over the path (E,F) since both nodes are independent of

B. At depth 0, none of the f-representations is promoted.

Let’s also have a look at the f-trees inferred by the PF algorithm if the path does not

follow a topological sorting of f-tree T6. We consider the path (C,D,A,B,E, F). Figure

3.7 shows the f-trees inferred at each recursion level. We should notice in this example that

the last 4 nodes in the path considered follow a topological sorting of f-tree T6. Sometimes,

the PF algorithm is able to infer the independence of certain nodes or f-trees for subpaths

25

F

(a) F-tree at depth 5

E

F

(b) F-tree at depth 4

B E

F

(c) F-tree at depth 3

A

B E

F

(d) F-tree at depth 2

D

A

B E

F

(e) F-tree at depth 1

C

D

A

B E

F

(f) F-tree at depth 0

Figure 3.7: F-trees inferred at various levels of the PF algorithm from path (C,D,A,B,E, F),
which does not follow the topological sorting of f-tree T6.

that follow a topological sorting of the f-tree, although the entire path does not follow

a topological sorting of the f-tree. In this example, the PF algorithm was able to infer

products between f-representations over B and f-representations over the path (E,F).

At depth 1, the topological sorting of T6 is not satisfied any more as nodeD occurs before

its ascendant A. Nodes E and F are independent of node D, but the partial f-representation

over path (E,F) cannot be promoted since it occurs inside a larger f-representation whose

f-tree includes node A. A similar situation is encountered at depth 0. �

3.2.3 RCF Algorithm: Factorisation using Rectangle Coverings

Similar to the PF algorithm, the RCF algorithm has as input a relation and a path over the

schema of the relation. It can be considered an extension of the PF algorithm and inherits

some of its properties, such as the ability to infer nesting structures over which the relation

is representable. We have seen in the previous section that the PF algorithm factors out

only f-representations that are common to all tuple groups. The RCF algorithm aims to

build a more compressed f-representation by factoring out, in addition to factors common

to all tuple groups, f-representations that are common to only a subset of the tuple groups.

Definition 3.3. Let R be a relation over schema S, A ∈ S and A = πA(R). For a ∈ A, let’s

also define Ra = πS\{A}(σA=a(R)), La as the set of factors of relation Ra and L =
⋃

a∈A La.

The A-factor matrix M of relation R is a Boolean matrix of size |A|×|L| defined as follows:

Mi,j =

{

1, if Fj ∈ Lai

0, otherwise

We considered that the sets A and L are ordered. In this context, ai represents the i-th

value in A and Fi represents the i-th factor in the list of factors L.

26

Example 3.5. Let R2 be a relation over a schema S, A ∈ S and πA(R2) = {a0, a1, a2, a3}.
Let the lists of factors be:

La0 = {F0, F1, F2, F3}
La1 = {F0, F1, F2, F4}
La2 = {F1, F2, F3, F5}
La3 = {F0, F1, F4, F6}

The union of these factor lists is L = {F0, F1, F2, F3, F4, F5, F6}. Each row of the A-

factor matrix corresponds to a value ai, i ∈ {0, 1, 2, 3} and each column corresponds to a

factor contained by L. The A-factor matrix of R2 is

F0 F1 F2 F3 F4 F5 F6

a0 1 1 1 1 0 0 0
a1 1 1 1 0 1 0 0
a2 0 1 1 1 0 1 0
a3 1 1 0 0 1 0 1

�

Definition 3.4. A rectangle of a Boolean matrix M is a pair of sets (R,C) such that for

each pair (i, j), i ∈ R and j ∈ C, we have Mi,j = 1. R represents the set of rows and C

represents the set of columns.

Definition 3.5. A rectangle covering of a Boolean matrix M is a set of rectangles RC =

{(Rk, Ck)}, such that for each pair (i, j) with Mi,j = 1 there is at least one rectangle

(R,C) ∈ RC with i ∈ R and j ∈ C.

There are certain rectangle coverings of an A-factor matrix of a relation that can encode

f-representations of the relation. The following proposition states the conditions that a

rectangle covering must satisfy in order to encode an f-representation. We will then show

how an f-representation is built from a rectangle covering of an A-factor matrix.

Proposition 3.3. A rectangle covering RC of an A-factor matrix M of a relation R is an

encoding of an f-representation if it satisfies the following two conditions:

• The rectangles in the covering do not overlap, i.e. for any two rectangles (Ri, Ci) ∈
RC, (Rj , Cj) ∈ RC, there is no pair (k, l) such that k ∈ Ri, l ∈ Ci and k ∈ Rj , l ∈ Cj

• For any two rectangles (Ri, Ci) ∈ RC, (Rj , Cj) ∈ RC, if Ri ∩ Rj 6= ∅, then either

Ri (Rj, or Rj (Ri.

Definition 3.6. We say that a rectangle (Ri, Ci) is row-included in another rectangle

(Rj , Cj) if Ri ⊂ Rj .

27

Definition 3.7. Consider a rectangle covering RC of an A-factor matrix M of a relation R.

We say that a rectangle (Ri, Ci) ∈ RC is directly row-included in rectangle (Rj , Cj) ∈ RC
if (Ri, Ci) is row-included in (Rj , Cj) and there is no other rectangle (Rk, Ck) ∈ RC row-

included in (Rj , Cj) such that (Ri, Ci) is row-included in (Rk, Ck).

We show below how an f-representation is built from a rectangle covering RC of an A-

factor matrix of a relation R. Let A be the ordered list of distinct A values of relation R and

L be the ordered list of factors that generated the factor matrix. Also let P = {P1, . . . , Pk}
be the set of rectangles in RC that are not row-included in any other rectangles. The

f-representation E(P) over a rectangle P ∈ P can be built as follows:

• If P = ({r1, . . . , rm}, {c1, . . . , cn}) is a rectangle that does not row-include other rect-

angles, the f-representation encoded by P is

E(P) = Fc1 × . . .× Fcn × (〈A : ar1〉 ∪ . . . ∪ 〈A : arm〉),
ai ∈ A, ∀i ∈ {r1, . . . , rm}, Fj ∈ L, ∀j ∈ {c1, . . . , cn}

• If P = ({r1, . . . , rm}, {c1, . . . , cn}) is a rectangle that includes other rectangles, let

I1, . . . , Ip be the rectangles that are directly row-included by rectangle P . The f-

representation encoded by P is

E(P) = Fc1 × . . .× Fcn × (E(I1) ∪ . . . ∪ E(Ip)), Fj ∈ L, ∀j ∈ {c1, . . . , cn}

The f-representation encoded by the rectangle covering RC is E(RC) =
⋃

P∈P E(P),

where P is the set of rectangles in RC that are not row-included in any other rectangles.

Any A-factor matrix has at least one rectangle covering that encodes an f-representation,

a so-called flat rectangle covering. Each rectangle of such a covering has in its set of rows

a single row r and the set of columns contains all non-zero columns of row r, i.e.

RC = {({r}, {j;Mr,j = 1}); 0 ≤ r < n}, where n is the number of rows in the A-factor matrix M

Coverings containing rectangles that span over several rows can produce smaller f-

representations, because the factors corresponding to the columns in such a rectangle appear

only once in the f-representation instead of once for each row in the rectangle. Using the

distributivity of product over union, we can expand an f-representation obtained from a

non-flat covering and obtain the f-representation that the flat covering produces.

28

Example 3.6. Let’s consider the A-factor matrix in Example 3.5. A rectangle covering of

this matrix that encodes an f-representation is C = {R0, R1, R2, R3, R4, R5, R6}, where
R0 = ({0, 1, 2, 3}, {1}) R4 = ({1}, {4})
R1 = ({0, 1, 2}, {2}) R6 = ({2}, {3, 5})
R2 = ({0, 1}, {0}) R7 = ({3}, {0, 4, 6})
R3 = ({0}, {3})

The f-representation for this rectangle is

F1 × (F2 × (F0 × (F3 × 〈A : a0〉 ∪ F4 × 〈A : a1〉) ∪ F3 × F5 × 〈A : a2〉)∪
F0 × F4 × F6 × 〈A : a3〉) �

The RCF algorithm searches the rectangle covering that encodes the smallest f-representation

for a given relation. One way to find the best rectangle covering for an A-factor matrix

of a relation would be to enumerate all rectangle coverings for that matrix and choose the

best one, but this procedure can be computationally too expensive. The RCF algorithm

uses an heuristic to find a good rectangle covering. At each step in this heuristic, the RCF

algorithm has to choose between several rectangles. In order to do this, we need to asso-

ciate weights to rectangles. We would like the RCF algorithm to choose the rectangle cover

that generates the smallest f-representation, so a good idea would be to choose first the

rectangles that save the highest number of singletons. This motivates the following weight

for a rectangle (R,C):

w(R,C) = (|R| − 1)
∑

c∈C

|Fc|

This weight can be interpreted as the number of singletons that the rectangle (R,C)

saves. Each factor in the rectangle occurs only once in the f-representation, instead of |R|
times, so we are able to save |R| − 1 occurrences of each factor in the rectangle. We should

notice that it assigns weight 0 to rectangles that have a single row because such rectangles

do not factor out anything and the number of singletons saved is indeed 0.

Figure 3.8 shows the pseudo-code of the RCF algorithm. The rcf procedure takes as

arguments a path and a relation and returns the factors of that relation. It computes the set

of distinct A values, where A is the root of the path and for each group of tuples sharing the

same A value, it also computes the list of factors by recursively calling the rcf procedure. It

builds the A-factor matrix of the relation and the set Q representing all rows of the matrix.

It then repeatedly calls the extractRectangles procedure until the set of rows is empty.

The extractRectangles procedure takes as arguments a set of rows Q and an A-factor

matrix and returns a set of rectangles over the matrix. This set of rectangles cover entirely

a subset of rows Qe ⊆ Q; all these rows will also be removed from Q. We start with

29

procedure rcf(path P, relation R)
if P is empty then

if R is empty then return ∅
if R consists of the nullary tuple then return {〈〉}

Let A = πA(R)
if P is a single node A then return {⋃a∈A〈A : a〉}
if P is a path tree A(PA) with root A and PA the path child of A then

for each a ∈ A do
La = pf(PA, πPA

(σA=a(R)))

L =
⋃

a∈A La

Build the A-factor matrix M using L and A
Q = {0, 1, . . . , |A| − 1}
Cov = ∅
while Q 6= ∅ do

Cov = Cov ∪ extractRectangles(Q,M)

Compute E(Cov)
Let EF be the set of factors of f-representation E(Cov)
return EF

procedure extractRectangles(set of rows Q, A-factor matrix M)
Let R = {r}, r ∈ Q
Let C = {i;Mr,i = 1}
Let P = (R,C)
Q = Q \ {r}
R = ∅
while Q 6= ∅ do

Compute Pi = (Ri, Ci) = (R ∪ {i}, {j; j ∈ C and Mi,j = 1}), ∀i ∈ Q
if |Ci| = 0, ∀i ∈ Q then

break
else

Find row r ∈ Q such that w(Pr) = max(w(Pi)), ∀i ∈ Q
Let Pr = (Rr, Cr)
Q = Q \ {r}
Create new rectangle S = (RS , CS) = (R, {j; j ∈ C and j /∈ Cr})
if CS 6= ∅ then

R = R∪ {S}
Create new rectangle T = (RT , CT) = ({r}, {j;Mr,j = 1 and j /∈ Cr})
if CT 6= ∅ then

R = R∪ {T}
P = Pr

R = R∪ {P}
return R

Figure 3.8: RCF algorithm: Factorisation of a relation over a path using rectangle coverings

30

(a) Current rectangle before expansion

7→

(b) Current rectangle and new rectangles af-
ter expansion

Figure 3.9: RCF Algorithm: the rectangles built during an expansion round

a single rectangle whose set of rows consists of only one row r and the set of columns

contains all its non-zero columns. Then, we repeatedly try to expand this rectangle to form

a rectangle that spans over several rows. The expansion has several rounds, each round

adding one new row to the current rectangle. During an expansion round, we compute the

weights of all rectangles resulted from the expansion of the current rectangle with a row

from Q and we choose a row r that leads to the rectangle with the highest weight. The

current rectangle changes during the expansion and two new rectangles are built. Figure

3.9a shows the current rectangle P before expansion coloured in yellow and blue. The

yellow part corresponds to factors that can be found in row r also, while the light blue part

corresponds to factors that are not present in row r. Row r is also divided into two parts:

the grey part represents the factors found in the current rectangle also, while the dark blue

part represents the factors not included by the current rectangle. Figure 3.9b displays the

rectangles after expansion: the common factors of row r and rectangle P are kept in the

current rectangle, while the non-common factors form new rectangles.

The expansion of the rectangle ends when there isn’t any row that can be added to the

current rectangle. This happens in two situations:

• The set of rows Q is empty.

• The is no other row r ∈ Q such that the current rectangle has common factors with

r.

When the set of rows Q is empty, the rectangle covering built by the rcf procedure

covers all rows of the A-factor matrix. The rcf procedure computes the f-representation E

encoded by this rectangle covering and returns a set containing the factors of E.

31

3.2.4 Comparison of Bulk Insertion Algorithms

This section compares the bulk insertion algorithms described in previous sections. We first

show that the f-representation built by the PF algorithm is, in terms of size, at least as

good as the f-representation built by the TF algorithm if the PF algorithm is given a path

that follows the topological sorting of the f-tree considered by the TF algorithm. Then, we

will show that the f-representation built by the RCF algorithm is, in terms of size, at least

as good as the f-representation built by the PF algorithm.

Theorem 3.8. Consider an f-tree T over schema S and a relation R representable over

T . If the path used by the PF algorithm for representation construction follows a topological

sorting of T , then the PF algorithm builds an f-representation of R that is, in terms of

size, at least as good as the f-representation of R over T .

Proof. We will prove this theorem by induction over the number of attributes of schema S.
Base case: Let’s consider a path with a single node A. In this case, the algorithms return

the same f-representation: 〈A : a1〉∪〈A : a2〉∪ . . .∪〈A : an〉 where a1, a2, . . . , an are distinct

A values of relation R.

Induction step: We assume that the hypothesis holds for all relations over schemas with

k or less nodes, k ≥ 1. We also assume given an f-tree T over schema S, |S| = k+1, a path

P over the same schema and a relation R factorisable over T . We assume that the path P
follows a topological sorting of the f-tree T and we want to prove that the f-representation

built by the PF algorithm using path P for representation construction is at least as good

as the f-representation of R over T .

Let A be the root of the path P and PA be the path child of P. Path P follows a

topological sorting of f-tree T , which means that all nodes in PA are either descendants of

A in T , or belong to subtrees of T that are independent of A. Let UA = {U1, . . . , Um} be

the forest representing all descendants of node A in T and TA = {T1, . . . , Tn} be the forest

of trees independent of node A in T .

The PF algorithm computes A = πA(R) and the list of factors La for each relation

Ra = πS\{A}(σA=a(R)), a ∈ A by recursively applying the PF algorithm for each such

relation and path PA. Since R is representable over T , each relation Ra is representable

over the f-tree T ∗ = UA ∪ TA. Path P follows a topological sorting of f-tree T , so path PA

will also follow a topological sorting of f-tree T ∗. We can apply the induction step for each

pair (Ra,PA), a ∈ A as both conditions are satisfied. Applying the induction hypothesis, we

can assume that the f-representation built by the PF algorithm for a pair (Ra,PA), a ∈ A
is as good as the f-representation of Ra over T ∗.

32

A

B

C D

E

(a) F-tree T7

B

C D

E

(b) F-tree T8

C B

D

E

(c) F-tree T9

Figure 3.10: F-trees T7, T8, T9

F-tree T ∗ is a forest with m+ n trees, so each relation Ra, a ∈ A can be represented as

a product of m+ n f-representations. This means that the output La of the PF algorithm

for a pair (Ra,PA), a ∈ A must be a set with at least m+ n factors:

La = {Ea,U1
, . . . , Ea,Um} ∪ {Ea,T1

, . . . , Ea,Tn}

In the equation above, we used the notation Ea,T to denote the factor of relation Ra, a ∈
A over the schema of the f-tree T .

Node A is independent of all f-trees in TA, which means that the f-representation over

the schema of the f-tree containing A can be put in a product with the f-representations

over the schemas of the f-trees in TA. As a result, we have

Ea1,Ti
= Ea2,Ti

= . . . = Eal,Ti
, ∀i ∈ {1, 2, . . . , n} and A = {a1, a2, . . . , al}

The intersection list computed by the PF algorithm contains a factor over the schema of

each tree in TA. The f-representations over schemas of f-trees in UA do not appear in general

in the intersection list because the f-trees of UA contain nodes that are dependent on node A.

The PF algorithm builds a single f-representation over f-tree T0: A

U1 U2 . . . Um

.

The f-representation of R over T is a product of f-representations over f-trees T0, T1, . . . , Tn.

The PF algorithm returns a set of factors over the schemas of T0, T1, . . . , Tn that are at least

as good as the f-representations over these f-trees. By putting the factors in a product, we

can obtain an f-representation of relation R that is at least as good as its f-representation

over f-tree T .

There are cases when the intersection list computed by the PF algorithm contains f-

representations over the schemas of f-trees in UA. The f-representation produced by the PF

algorithm includes these f-representations only once, while the f-representation over f-tree

T contains these f-representations once for each group of tuples sharing the same A value.

In such a case, the size of the f-representation produced by the PF algorithm is smaller than

the size of the f-representation over T . �

33

Example 3.7. Consider relation R shown below, representable over f-tree T7 shown in

Figure 3.10a.

R A B C D E

a1 b1 c1 d1 e1
a1 b1 c1 d2 e1
a1 b1 c2 d1 e1
a1 b1 c2 d2 e1
a1 b2 c1 d1 e1
a1 b2 c1 d3 e1
a1 b2 c2 d1 e1
a1 b2 c2 d3 e1
a2 b3 c3 d3 e3
a2 b3 c3 d4 e3
a3 b1 c1 d1 e4
a3 b1 c2 d1 e4

The f-representation of R over T7 is

E3 = 〈A : a1〉 × (〈B : b1〉 × (〈C : c1〉 ∪ 〈C : c2〉)× (〈D : d1〉 ∪ 〈D : d2〉)∪
〈B : b2〉 × (〈C : c1〉 ∪ 〈C : c2〉)× (〈D : d1〉 ∪ 〈D : d3〉)× 〈E : e1〉)∪

〈A : a2〉 × 〈B : b3〉 × 〈C : c3〉 × (〈D : d3〉 ∪ 〈D : d4〉)× 〈E : e3〉∪
〈A : a3〉 × 〈B : b1〉 × (〈C : c1〉 ∪ 〈C : c2〉)× 〈D : d1〉 × 〈E : e4〉

The f-representation produced by the PF algorithm using any path that follows a topo-

logical sorting of f-tree T7 is

E4 = 〈A : a1〉 × (〈B : b1〉 × (〈D : d1〉 ∪ 〈D : d2〉)∪
〈B : b2〉 × (〈D : d1〉 ∪ 〈D : d3〉))× (〈C : c1〉 ∪ 〈C : c2〉)× 〈E : e1〉)∪

〈A : a2〉 × 〈B : b3〉 × 〈C : c3〉 × (〈D : d3〉 ∪ 〈D : d4〉)× 〈E : e3〉∪
〈A : a3〉 × 〈B : b1〉 × (〈C : c1〉 ∪ 〈C : c2〉)× 〈D : d1〉 × 〈E : e4〉

Notice that f-representation E3 contains the factor 〈C : c1〉 ∪ 〈C : c2〉 three times, while

E4 contains this factor only two times. The TF algorithm builds the f-representation of

relation Ra1 = πB,C,D,E(σA=a1(R)) over the forest shown in Figure 3.10b, since it follows

entirely the structure of the f-tree given. However, relation Ra1 is also representable over

the forest shown in Figure 3.10c and the factorisation over this forest is smaller. The PF

algorithm detects that relation Ra1 is representable over T9 and builds the f-representation

over this f-tree. �

34

Theorem 3.9. The RCF algorithm builds an f-representation that is, in terms of size, at

least as good as the f-representation produced by the PF algorithm for a given relation R

and the same path P used for representation construction.

Proof. We will prove this theorem by induction over the number of attributes of schema S
of relation R.

Base case: Let’s consider a path with a single node A. In this case, the algorithms return

the same f-representation: 〈A : a1〉∪〈A : a2〉∪ . . .∪〈A : an〉 where a1, a2, . . . , an are distinct

A values of relation R.

Induction step: We assume that the hypothesis holds for all relations with k or less

attributes, k ≥ 1 and we want to prove that the RCF algorithm produces an f-representation

that is at least as good as the f-representation produced by the PF algorithm for a relation

R over a schema S, |S| = k + 1 and a path P over the same schema.

Let A be the root of path P and PA be the path child of P. Both algorithms compute

A = πA(R) and the list of factors for each relation Ra = πS\{A}(σA=a(R)), a ∈ A by

recursively applying the algorithm for each such relation and path PA. Let La,pf be the

factor list of relation Ra, a ∈ A computed by the PF algorithm. Also, let La,rcf be the factor

list of relation Ra, a ∈ A computed by the RCF algorithm. We can apply the induction

step for each relation Ra, a ∈ A and assume that the factors in La,rcf are at least as good

as the factors in La,pf , ∀a ∈ A.

The f-representation produced by the PF algorithm can be encoded by the following

rectangle covering

RC ={({0, 1, . . . , |A| − 1, }, {j;Fj ∈ Ipf})}∪
{({i}, {j;Fj /∈ Ipf and Mi,j = 1}); i ∈ {0, 1, . . . , |A| − 1}}
where Ipf =

⋂

a∈A

La,pf and Fj is the j-th factor in the ordered set L =
⋃

a∈A

La,pf

This covering contains a rectangle that represents the intersection of all factor lists, if

this intersection is not empty. If there are factors that are not present in the intersection

list, it also contains exactly one rectangle for each row i of the matrix. Each such rectangle

has as columns all non-zero columns of the A-factor matrix whose corresponding factors are

not present in the intersection.

The RCF algorithm will produce the same rectangle covering if the factors in the in-

tersection list are the only factors that occur several times in the lists of factors. Since

the factors in each list La,rcf are at least as good as the factors in La,pf , ∀a ∈ A, the f-

representation built by the RCF algorithm is at least as good as the f-representation built

by the PF algorithm.

35

If there are factors which do not occur in the intersection list, but occur in the factor list

of at least two relations Rai and Raj , ai ∈ A, aj ∈ A, i 6= j, the rectangle covering computed

by the RCF algorithm includes rectangles which are not found by the PF algorithm and

which span over several rows. The factors in such rectangles are represented fewer times in

the f-representation produced by the RCF algorithm than in the f-representation computed

by the PF algorithm. �

Example 3.8. Consider relation R from Example 3.7 and f-tree T7 shown in Figure 3.10a.

The f-representation produced by the RCF algorithm for relation R using any path that

follows a topological sorting of f-tree T7 is

E5 = (〈C : c1〉 ∪ 〈C : c2〉)× (〈A : a1〉 × (〈B : b1〉 × (〈D : d1〉 ∪ 〈D : d2〉)∪
〈B : b2〉 × (〈D : d1〉 ∪ 〈D : d3〉))× 〈E : e1〉∪

〈A : a3〉 × 〈B : b1〉 × 〈D : d1〉 × 〈E : e4〉)∪
〈A : a2〉 × 〈B : b3〉 × 〈C : c3〉 × (〈D : d3〉 ∪ 〈D : d4〉)× 〈E : e3〉

The f-representation E5 produced by the RCF algorithm contains the factor 〈C : c1〉 ∪
〈C : c2〉 only once, while f-representation E4 produced by the PF algorithm for the same

relation using the same path (discussed in Example 3.7), contains this factor twice. The

PF algorithm does not factor out the f-representation 〈C : c1〉∪ 〈C : c2〉 since it occurs only
for values a1 and a2. The RCF algorithm, on the other hand, will factor out this union of

singletons. �

3.2.5 Experimental Evaluation

This section describes two experiments we performed for bulk insertions and theirs results.

The first experiment considers relations representable over a given f-tree and reports ex-

ecution time and representation sizes for all three bulk insertion algorithms presented in

previous sections. The second experiment involves only the PF and RCF algorithms since it

considers relations that are not necessarily representable over f-trees that present branching

into several children, but the data they represent has some common patterns that can be

identified by the PF and RCF algorithms and lead to compressed f-representations.

Experimental Setup All experiments were performed on an Intel(R) Xeon(R) X5650

2.67GHz/64bit/59GB running VMWare VM with Linux 3.5.0. All results (wall-clock time

for the first experiment and representation size for the second experiment) were averaged

over 10 runs.

36

package

date

customer

item

price

(a) F-tree T10

package

date

customer

item

price

(b) F-tree T11

customer

package

date item

price

(c) F-tree T12

customer

package

date

item

price

(d) F-tree T13

customer

date

package

item

price

(e) F-tree T14

Figure 3.11: F-trees T10, T11, T12, T13 and T14

Experimental Design We use the same synthetic dataset used in [5] for experimen-

tal evaluation. It consists of three relations: Orders(package, date, customer), Items(item,

price) and Packages(package, item). We control its size using the scale parameter s: there

are 100 · s items, 40 · s packages and 12800 · s2 orders. We model a realistic scenario by

scaling the data statistics as follows. The number of different dates scales linearly with s,

the number of customers scales with
√
s. The number of dates each customer places an

order follows a binomial distribution with mean proportional to
√
s. The average number of

placed orders on such days is 2 and the ordered packages are chosen uniformly at random.

We considered 5 database scales. For the largest scale, the natural join R of all relations has

66M tuples which makes 330M singletons. The size of the factorisation of this join relation

over f-tree T10 is 1.5M singletons. By scaling the database, the factorisation size grows as

s3 while the join size grows as s4.

Experiment 1 For this experiment, we ran the TF algorithm for relation R and f-trees

T10,T12 and T14 shown in Figure 3.11. For the PF and RCF algorithms, we considered three

different paths: T11, T13 and T14 shown by the same figure. Path T11 follows a topological

sorting of f-tree T10, so the PF algorithm using this path builds the f-representation of

relation R over T10. Path T13 does not follow a topological sorting of f-tree T10, but the

PF algorithm still infers some products between partial f-representations. The nesting

structure built by the PF algorithm using this path is represented by f-tree T12. The last

path considered, T14, is also not following a topological sorting of f-tree T10, but unlike the

previous case, the PF algorithm can no longer infer any products and the f-representation

built is exactly the f-representation of R over path T14. We ran the bulk insertion algorithms

for all 5 database scales, except for the case of path T14. The size of the f-representations

built by all three algorithms using this path were too large to fit into main memory for scale

5.

37

 1

 10

 100

 1000

 10000

 1 2 4 8 16

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database scale

Performance of TF, PF and RCF algorithms

TF algorithm for f-tree 10
TF algorithm for f-tree 12
TF algorithm for f-tree 14
PF algorithm for path 11
PF algorithm for path 13

PF algorithm for path 14
RCF algorithm for path 11
RCF algorithm for path 13
RCF algorithm for path 14

(a) Performance of TF, PF and RCF algorithms for various f-trees and database scales.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 4 8 16

S
iz

e
[s

in
gl

et
on

s]

Database scale

Size of f-representations computed by PF and RCF algorithms

PF algorithm for path 11
PF algorithm for path 13
PF algorithm for path 14

RCF algorithm for path 11
RCF algorithm for path 13
RCF algorithm for path 14

(b) Size of representations computed by the PF and RCF algorithms for various paths
and database scales. The size of the representation computed by the TF algorithm is equal
to the size of the f-representation produced by the PF algorithm for all relation instances
considered.

Figure 3.12: Bulk insertions experiment 1: Time and representation sizes for TF, PF and RCF
algorithms.

38

Figure 3.12a shows the times for all three algorithms. As expected, the TF algorithm

is the most efficient. The PF algorithm is slower than the TF algorithm, because at each

recursive level, except for the last one, it has to compare several f-representations in order

to compute the intersection list. To fasten this step, the f-representations are hashed to a

positive number and only if the hash values are equal, the f-representations are compared.

Even so, the PF algorithm has to compare partial f-representations whenever the intersec-

tion list is not empty, which explains the constant gap we have between the TF and PF

algorithms. The RCF algorithm is the slowest. Similar to the PF algorithm, it has to

compare at each recursion level, except for the last one, several partial f-representations in

order to compute the union of all factor lists which is needed to build the factor matrix. In

addition to this, it has to compute a rectangle covering for the factor matrix which takes

polynomial time with respect to the size of the matrix. The gap between the PF and the

RCF algorithms is increasing with the database scale because the factor matrices are larger

for larger database scales.

Figure 3.12b shows the size of f-representations built by the PF and RCF algorithms.

Representations sizes for the TF algorithm are not displayed since they are equal to the

sizes of the representations produced by the PF algorithm in all cases considered. We notice

that the f-representations built by the PF and RCF algorithms considering path T11 are

almost one order of magnitude smaller than the f-representations built using path T13. A

large gap can also be observed between f-representations over path T13 and f-representations

over path T14. We also notice that the RCF algorithm produces an f-representation smaller

than the f-representation computed by the PF algorithm for all cases considered. For path

T11, the PF algorithm factors out partial f-representations over path (item, price). A closer

look at the rectangle coverings found by the RCF algorithm showed that, in addition to

this, the RCF algorithm also factors out some unions of customer singletons or price sin-

gletons. For path T13, both PF and RCF algorithms factor out f-representations over path

(item, price), but the RCF algorithm also factors out some price singletons. In the case of

path T14, the PF algorithm does not factor out anything, while the RCF algorithm factors

out for certain tuple groups price singletons and partial f-representations over the path

(package, item, price).

Experiment 2 In this experiment we consider a single relation R representing the

natural join of relations Orders, Packages and Items, with 237693 tuples and 40 distinct

package values. Initially, this relation is representable over f-tree T10. We then randomly

choose a number K of tuples and change the value of one of their attributes to a new value

different from all values in the relation. The effect of this update is that all products present

39

in the f-representation of R over T10 that contain updated values are broken and the relation

is no longer representable over T10. It may contain tuple groups that are still representable

over this f-tree since there may still be products that do not contain any updated values.

This experiment examines the size of representations built by the PF and RCF algorithms

when such updates are performed on various attributes of the relation taken as input. For

all cases considered, both algorithms use path T11 for representation construction.

Figure 3.13 shows the size of the representations when we update package, date and

customer values. For all three attributes, the plots follow the same trend. The left col-

umn shows the evolution of the representation size for the RCF algorithm as the number

of modified tuples increases from 0 to 100. The middle column compares the size of f-

representations computed by the PF and RCF algorithms for the same interval of modified

tuples. The size of the f-representation produced by the PF algorithm grows much faster

than the size of the f-representation produced by the RCF algorithm such that for 100

tuples changed, the size for the PF algorithm is more than one order of magnitude larger

than the size for the RCF algorithm. The representation sizes for the PF algorithm have

a very high standard deviation for cases that change less than 100 tuples because for such

cases the number of products broken for the same number of tuples changed varies highly

and each product covers around 6000 tuples.

The right column displays representation sizes for both algorithms and larger numbers

of updated values. We notice that the size of the f-representation computed by the PF

algorithm continues to grow very fast until K = 10000, but then the increase is slower. For

K = 10000, all tuples groups that have the same date and package value, but more than

one customer value have at least one modified value, which means that from this point

on, the PF algorithm is not able to factor out any f-representations. After this point, the

increase of the representation size is linear since we continue to introduce distinct values

for the updated attribute. The RCF algorithm follows a similar trend. We notice that the

f-representation size for the RCF algorithm is closest to the f-representation size for the PF

algorithm for K = 50000 when all products are broken. As the number of modified tuples

increases, the RCF algorithm can factor out more f-representations that occur several times

in the group of updated tuples, which explains the increasing gap we notice between the

PF algorithm and RCF algorithm for K > 50000.

Overall, the main results discovered are the following:

• The PF and TF algorithms compute f-representations that have the same size if the

f-tree considered by the TF algorithm can be inferred from the path used by the PF

algorithm for representation construction. In general, the f-representation computed

40

by the PF algorithm can have a smaller size, but for all cases considered in the

experiments performed, the algorithms built f-representations of the same size.

• The RCF algorithm can produce f-representations that are more than one order of

magnitude smaller that the f-representations produced by the PF algorithm if both

algorithms use the same path for representation construction.

• The path used by the PF and RCF algorithms for representation construction influ-

ences highly the size of the f-representations produced. The f-representations produced

by the algorithms using paths that follow a topological sorting of an f-tree over which

the relation is representable can be up to one order of magnitude smaller than the

f-representations produced using paths that do not follow such a topological sorting.

41

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed tuples

Updates on package

RCF algorithm

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed tuples

Updates on package

PF algorithm RCF algorithm

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 50000 100000 150000 200000 250000

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed values

Updates on package

PF algorithm RCF algorithm

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed tuples

Updates on date

RCF algorithm

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed tuples

Updates on date

PF algorithm RCF algorithm

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50000 100000 150000 200000 250000

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed values

Updates on date

PF algorithm RCF algorithm

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed values

Updates on customer

RCF algorithm

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80 90 100

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed values

Updates on customer

PF algorithm RCF algorithm

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50000 100000 150000 200000 250000

R
ep

re
se

nt
at

io
n

si
ze

 [s
in

gl
et

on
s]

Number K of changed values

Updates on customer

PF algorithm RCF algorithm

Figure 3.13: Bulk insertion experiment 2: updates on package, date and customer. The left column shows the size of the representations computed
by RCF algorithm for 0 ≤ K ≤ 100. The middle column shows the size of the representations computed by PF and RCF algorithms for 0 ≤ K ≤ 100.
The right column shows the size of the representations computed by PF and RCF algorithms for 0 ≤ K ≤ |R|.

42

Chapter 4

Value Modifications

This chapter presents two techniques to change the values of an f-representation. Both

techniques approach the value modification task from a static analysis perspective as the

reasoning behind them considers only the shape of the f-tree that defines the f-representation

to be updated and not the data in the f-representation. This approach is the norm in

database research as it is performed on the small update statements, instead of the large

data.

The first value modification technique described in this chapter produces a single result

f-representation. Under this constraint, we characterise all f-trees that allow a given value

modification statement without a prior restructuring step on any f-representation following

their structure. We also present an algorithm that performs a given value modification

statement using this approach. The algorithm was implemented on top of an existing

implementation of a factorised database and experimentally evaluated against the SQLite

open-source relational engine.

The conditions that the f-trees must satisfy in order to support a statement using the

first value modification technique without restructuring can be relaxed by allowing the

result of the query to be a union of f-representations over the same f-tree, instead of a single

f-representation. This is the approach used by the second value modification technique

described in this chapter. We characterise all f-trees that support a given statement without

restructuring using this value modification technique and discuss the algorithm that builds

the union of result f-representations from the f-representation to be updated.

We consider value modification statements of the following form:

U = Update E set
∧

1≤i≤m

Ai = fi(Ai1 , . . . Aisi
, ci1 , . . . citi)

where
∧

1≤j≤n

Bj θj gj(Bj1 , . . . Bjsj
, cj1 , . . . cjtj)

where

43

- E is an f-representation of a relation R over schema S
- Ai, Aik , 1 ≤ k ≤ si, 1 ≤ i ≤ m are attributes of schema S of the same type

- cik , 1 ≤ k ≤ ti are constant values of the same type as attribute Ai, 1 ≤ i ≤ m

- Bj , Bjl , 1 ≤ l ≤ sj , 1 ≤ j ≤ n are attributes of S of the same type

- cjk , 1 ≤ k ≤ tj are constant values of the same type as attribute Bj , 1 ≤ j ≤ n

- fi, 1 ≤ i ≤ m and gj , 1 ≤ j ≤ n are functions that take as arguments either values of

attributes of S, or constants
- θj , 1 ≤ j ≤ n are comparison operators

Throughout this chapter, we will refer to attributes Ai, 1 ≤ i ≤ m in the assignment

clause of the statement as target attributes and attributes Aik , 1 ≤ k ≤ si as attributes that

target attribute Ai depends on. For a given statement of the form shown above and an

f-tree T , we define the head attribute of condition Bj θj gj(Bj1 , . . . Bjsj
, cj1 , . . . cjtj) as the

attribute Bk occurring in this condition and labelling the node found at the lowest level in

f-tree T . If there are several such attributes, any of them can be used as a head attribute.

All other attributes in a condition will be referred to as non-head attributes. For simplicity,

we will assume that an attribute of S is the head attribute of at most one condition, but

all algorithms described in this chapter can easily be extended to admit several conditions

with the same head attribute. Throughout this chapter and the following, we will use the

notation CU,A to denote the condition of a statement U with head attribute A. When the

context is clear, we will drop the statement annotation.

4.1 Nesting Structures Supporting Efficient Value Modifica-

tions

This section studies value modification statements that can be performed on the f-representation

given without changing its nesting structure. Since the f-representation does not require

restructuring, these statements can be performed very efficiently.

4.1.1 The Case of a Result Consisting of One Factorised Representation

The following proposition characterises all f-trees that support a given value modification

statement whose result consists of a single f-representation.

Proposition 4.1. Consider an f-tree T and a value modification statement U . We can

perform statement U on any f-representation over T without restructuring and obtain a

single result f-representation if the following conditions are satisfied for each target attribute

A of the statement:

44

1 The node labelled by A is on the same root-to-leaf path in T with all nodes labelled by

attributes that A depends on.

2 The level of the node labelled by attribute A in T is greater or equal than the levels of

all nodes labelled by attributes that A depends on.

3 The node labelled by attribute A is on the same root-to-leaf path in T with all nodes

labelled by attributes present in conditions of statement U .

4 The level of the node labelled by attribute A in T is greater or equal than the levels of

all nodes labelled by head attributes of conditions of statement U .

5 The subtree of T rooted in A is a path.

This proposition enforces that the attributes in all conditions of a statement are on the

same root-to-leaf path. The target attributes can be spread over several paths, as long as

they are found on the same path with the attributes they depend on and the attributes

present in conditions and have lower levels than all these attributes.

Let’s see what could happen if conditions 1 or 2 in Proposition 4.1 are not satisfied. Let

B be an attribute that a target attribute A depends on found in T either on another path

than A, or at a lower level. In both cases, an f-representation over T may contain a product

between an A-singleton and a union of B-singletons. Since this A-singleton is ”shared” by

all B-singletons in the union, the update cannot be performed.

A similar situation is encountered whenever conditions 3 or 4 are not satisfied. Let C be

the head attribute of a condition of the value modification statement found either on another

path than a target attribute A, or at a lower level. In such cases, an f-representation over

T may contain a product between an A-singleton and a union of C-singletons. The update

cannot be performed because for some of the C-singletons in this union the condition may

be satisfied, while for others it may not be satisfied.

The update can be performed when condition 5 is not satisfied, but the result f-

representation might violate two constraints imposed on factorised representations in pre-

vious work [18]:

• For any union expression
⋃

a〈A : a〉 or
⋃

a〈A : a〉 × Ea in the f-representation, all

values a are distinct.

• The products of singletons obtained by expanding the f-representation using the dis-

tributivity of product over union are distinct.

45

If we expect a result f-representation that satisfies the conditions mentioned above,

then an additional step will need to be performed after the value modification statement

is performed. During this step, we merge all singletons inside a union that have the same

value. If the singletons merged are found in products with other f-representations, then

we will have to merge those f-representations too in a single f-representation representing

the data in all the f-representations merged. Merging such f-representations is not always

possible unless the f-tree defining their structure is a single path.

Example 4.1. Recall f-tree T1: A

B C

from Example 2.1 and consider the following

f-representation over it:

E6 = 〈A : 1〉 × (〈B : 1〉 ∪ 〈B : 2〉)× (〈C : 2〉 ∪ 〈C : 3〉)∪
〈A : 2〉 × (〈B : 2〉 ∪ 〈B : 4〉)× (〈C : 2〉 ∪ 〈C : 5〉)

Consider also the value modification statement

U3 = Update E6 set A = 3

This statement satisfies conditions 1-4 of Proposition 4.1, so the update can be per-

formed. The result f-representation is

E7 = 〈A : 3〉 × (〈B : 1〉 ∪ 〈B : 2〉)× (〈C : 2〉 ∪ 〈C : 3〉)∪
〈A : 3〉 × (〈B : 2〉 ∪ 〈B : 4〉)× (〈C : 2〉 ∪ 〈C : 5〉)

Notice that singleton 〈A : 3〉 occurs twice in the top-most union of E7 and the product

of singletons 〈A : 3〉 × 〈B : 2〉 × 〈C : 2〉 occurs twice if we expand E7 to a single union of

products of singletons.

The merging step following the value modification should change E7 such that the new

f-representation has the form 〈A : 3〉 × EB × EC , where EB is a union of B-singletons

and EC is a union of C-singletons. Such an f-representation cannot be built because we

cannot build a single product between a union of B-singletons and a union of C singletons

to represent the following union of products:

(〈B : 1〉 ∪ 〈B : 2〉)× (〈C : 2〉 ∪ 〈C : 3〉)∪ (〈B : 2〉 ∪ 〈B : 4〉)× (〈C : 2〉 ∪ 〈C : 5〉) �

If the subtree TA rooted in a target attribute A is a single path, the merging procedure

can always be performed because the only products present in an f-representations over TA
are between a singleton and a union of other f-representations. The procedure should be

applied to each union of target singletons after the f-representation has been updated and

should follow the steps described below:

46

procedure valueModification(f-tree T , f-representation E, statement U)
if T is empty then return

if T is a forest T1, . . . , Tk then
Let E = E1 × . . .× Ek

for each Ti whose schema contains a target attribute of statement U do
valueModification(Ti, Ei, U)

if T is a single rooted tree A(U) then
Let E =

⋃

a〈A : a〉 × Ea

for each singleton 〈A : a〉 in E do
if A is not the head attribute of any condition of U or

A is head attribute of a condition CA of U and value a satisfies CA then
if A is a target attribute of statement U then

Update value a of singleton 〈A : a〉
if the schema of U contains target attributes of statement U then

valueModification(U , Ea, U)

Sort items of union
⋃

a〈A : a〉 × Ea using values a as sorting keys

Figure 4.1: Value modification procedure that generates a result consisting of a single f-
representation

• If the target attribute A labels the leaf of TA, then the union has the form E =
⋃

a∈A〈A : a〉, where A is a multiset. The new union will keep a single instance of each

distinct singleton in the initial union E.

• If the target attribute A does not label the leaf of TA, let B be the attribute labelling

its child. Depending on whether B labels the leaf of TA or not, the union will have

one of the following forms

E =
⋃

a∈A

〈A : a〉 ×
(

⋃

b∈B

〈B : b〉
)

or E =
⋃

a∈A

〈A : a〉 ×
(

⋃

b∈B

〈B : b〉 × Eb

)

,

where A and B are multisets

The main idea is to factor out A-singletons that occur several times in union E. We

keep a single instance of each distinct singleton 〈A : a〉 of E and put it in a product

with the union of the B-singletons occurring in all unions that were found in the

initial f-representation in a product with singleton 〈A : a〉. The newly formed unions

of B-singletons may contain a B-singleton several times, since the singletons come

from different unions of B-singletons of E. We will have to recursively apply the same

procedure to each newly formed union of B-singletons. The procedure will, in fact,

be recursively applied until we reach unions over the attribute labelling the leaf of TA.

47

A B C

1 3 7
1 5 7
1 4 6
1 6 6

(a) Relation R3

E8 =〈A : 1〉 × (〈B : 3〉 ∪ 〈B : 5〉)× 〈C : 7〉
〈A : 1〉 × (〈B : 4〉 ∪ 〈B : 6〉)× 〈C : 6〉

(b) Relation R3 represented as a union of f-representations over
f-tree T1

Figure 4.3: Representation of a relation as a union of f-representations over the same f-tree

Figure 4.1 shows the pseudo-code of a procedure that performs a value modification

statement U on an f-representation E over f-tree T and produces a single result repre-

sentation. The procedure updates E in-place and can be applied only if conditions 1-4 of

Proposition 4.1 are satisfied for statement U and f-tree T . Notice that the procedure checks

a condition of U when it reaches a singleton corresponding to the head attribute of the con-

dition. Among the attributes involved in the condition, the head attribute is found at the

lowest level in f-tree T . We can check the condition at this point because the values of all

other attributes involved in the condition are known. After performing this procedure, the

merging procedure we previously described should be applied to the result representation.

The time complexity of this algorithm is O(|E|). It may be even sublinear in some cases

because the procedure scans only singletons in unions
⋃

a〈A : a〉 × Ea or
⋃

a〈A : a〉 where
A is either a target attribute, or an ancestor of a target attribute.

4.1.2 The Case of a Result Consisting of a Union of Factorised Repre-

sentations over the Same Factorisation Tree

We can relax the conditions stated in Proposition 4.1 and enlarge the class of f-trees that

support a given value modification statement without restructuring by representing the

result of the statement as a union of f-representations over the same f-tree. This new

formalism for relation representation is more expressive than the formalism considered so

far (which represented relations only as a single f-representation over an f-tree), since there

are relations that are representable as a union of f-representations over the same f-tree, but

not representable as a single f-representation over the same f-tree. The following example

illustrates this case.

Example 4.2. Recall f-tree T1 from Example 2.1. Consider also relation R3 shown in

Figure 4.3a. This relation does not admit an f-representation over f-tree T1, since any

such representation should have the form 〈A : 1〉 × EB × EC , where EB is a union of B-

singletons and EC is a union of C-singletons. However, it can be represented as a union of

f-representations over f-tree T1. Figure 4.3b shows this representation. �

48

The main idea of the approach proposed in this section for value modification is to split

the f-representation to be updated into several f-representations over the same f-tree using

the distributivity of product over union such that one of these factorisations represents only

tuples of the relation represented that satisfy all conditions of the statement. Since this

f-representation satisfies all conditions, we can update all its target attributes. All other

f-representations in the union computed will represent tuples that violate at least one of

the conditions and do not need to be updated.

Example 4.3. Consider f-tree T15: A

B C D

and the value modification statement

U4 = Update E9 set A = 5 where B < 3 and C = 5 and D > 7

where E9 is an f-representation over T15. This statement cannot be performed on any f-

representation over T15 and produce a single result representation because the attributes in

its conditions are spread over three different paths. E9 has the following form:

E9 =
⋃

a

〈A : a〉 ×
(

⋃

b

〈B : b〉
)

×
(

⋃

c

〈C : c〉
)

×
(

⋃

d

〈D : d〉
)

=
⋃

a

〈A : a〉 × (EB
+ ∪ EB

−)× (EC
+ ∪ EC

−)× (ED
+ ∪ ED

−)

where EB
+ represents the union of B-singletons that satisfy the condition of statement

U4 on attribute B and EB
− represents the union of B-singletons that do not satisfy this

condition. Similar notations have been used for attributes C and D. We can split E9 into

four f-representations using the distributivity of product over union:

E9 =
⋃

a

〈A : a〉 × (EB
+ ∪ EB

−)× (EC
+ ∪ EC

−)× (ED
+ ∪ ED

−)

=
⋃

a

〈A : a〉 × EB
+ × EC

+ × ED
+ ∪

⋃

a

〈A : a〉 × EB
+ × EC

+ × ED
− ∪

⋃

a

〈A : a〉 × EB
+ × EC

− × (ED
+ ∪ ED

−) ∪
⋃

a

〈A : a〉 × EB
− × (EC

+ ∪ EC
−)× (ED

+ ∪ ED
−)

Notice that all four representations follow the structure of T15. Notice also that the first

f-representation has only B, C and D values that satisfy the conditions of statement U4 and

all A-singletons in this f-representations can be updated. The second f-representation has

only D-singletons that do not satisfy condition CU4,D, the third f-representation contains

only C-singletons that violate condition CU4,C and the last representation has only singletons

49

that do not satisfy condition CU4,B, so none of the A-singletons in these f-representations

needs to be updated.

Notice also that after we perform the value modification, the relation represented might

not necessarily be representable over f-tree T15, but it is still representable as a union of

f-representations over this f-tree. �

The following proposition characterises all f-trees that support a given value modification

statement whose result consists of a union of f-representations over the same f-tree.

Proposition 4.2. Consider an f-tree T and a value modification statement U . We can

perform statement U on any f-representation over T without restructuring and obtain a

result consisting of a union of f-representations over the same f-tree if

• For each target attribute A, the following conditions are satisfied:

1 The node labelled by A is on the same root-to-leaf path in T with all nodes labelled

by attributes that A depends on.

2 The level of the node labelled by attribute A in T is greater or equal to the levels

of all nodes labelled by attributes that A depends on.

3 The subtree of T rooted in A is a path.

• For each condition C of statement U , all nodes of T labelled by attributes involved in

condition C are on the same root-to-leaf path of T .

The conditions that an f-tree T has to satisfy in order to support a statement that

generates a union of result representations are less tight than the conditions for the f-tree to

support a statement that generates a single result representation from two points of view:

• We no longer need to have each target attribute on the same root-to-leaf path of T
with all attributes in conditions of the given statement.

• We no longer need to have the target attributes at lower levels in T than all attributes

in conditions of the given statement.

The constraints presented above can be discarded for a value modification statement

that produces a union of result f-representations, because in this case we no longer need to

check the conditions before updating a target value. We will update a single f-representation

that contains only target values for which all conditions of the statement are satisfied.

In order to be able to describe formally the union of result representations for a given

statement, we need to define several concepts.

50

Definition 4.1. Let T be an f-tree and U be a value modification statement on an f-

representation over T . A metacondition M of statement U and f-tree T is a subset of

the set of conditions of U such that the attributes of all conditions in M are on the same

root-to-leaf path in T .

Let the schema of T be S = {A1, . . . , An}. Consider also the product of singletons

P = 〈A1 : a1〉 × . . .× 〈An : an〉. We say that P satisfies a metacondition M of U and T if

it satisfies all conditions of M . We say that P does not satisfy metacondition M if there

is at least one condition in M that the product does not satisfy. We will use the same

terminology for a tuple t = (A1 : a1, A2 : a2, . . . , An : an).

Definition 4.2. Consider a metacondition M of an f-tree T and a value modification

statement U on an f-representation over T . Let HM be the set of head attributes of all

conditions of M . The head attribute of metacondition M is the attribute in HM found at

the lowest level in T .

All other condition head attributes in HM will be referred to as non-head attributes of

metacondition M .

Definition 4.3. Let T be an f-tree and U be a value modification statement on an f-

representation over T . A metacondition partition of statement U and f-tree T is a partition

of the set of conditions of U such that each set of the partition is a metacondition of

statement U and f-tree T .

Definition 4.4. Consider an f-tree T , a value modification statement U on an f-representation

over T and a metacondition partition P of U and T . We say that P is a minimal meta-

condition partition if there is no other metacondition partition of U and T of a smaller

size.

Example 4.4. Consider f-tree T6 in Figure 3.5 and the value modification statement

U5 = Update E10 set E = 7 where A = 3 and B = 4 and C = 5 and D = 6 and F = 8

where E10 is an f-representation over T6.
An example of a metacondition partition of U5 and T6 is {{CA, CB}, {CC}, {CD}, {CF }}.

This is not a minimal metacondition partition because we can find other partitions with a

smaller size. Below are a few examples of minimal metacondition partitions of U5 and T6:

{{CA, CB, CC}, {CD}, {CF }}, {{CA, CB, CD}, {CC}, {CF }}
{{CA, CF }, {CB, CC}, {CD}}, {{CA, CF }, {CB, CD}, {CC}} �

The following proposition characterises the size of a minimal metacondition partition of

a value modification statement and an f-tree.

51

Proposition 4.3. Consider any minimal metacondition partition P of an f-tree T and a

value modification statement U on an f-representation over T . The size of P is equal to the

the number of paths in T that contain attributes involved in conditions of U .

The intuition behind this proposition is evident. Each metacondition of partition P
should include only conditions whose attributes lie on the same root-to-leaf path in T , so

we cannot have less metaconditions in a partition of U and T than the number of paths in

T that contain attributes present in conditions of statement U .

In any minimal metacondition partition, we have exactly one metacondition for each

path in T that contains attributes involved in conditions of statement U . These paths

are not necessary root-to-leaf paths, they can be partial paths of root-to-leaf paths. If the

head attribute of a condition is part of several such paths, we can place the condition in

the metacondition corresponding to any of these paths. The fact that some conditions can

be placed in several metaconditions is precisely the reason we can have several minimal

metacondition partitions.

Definition 4.5. Consider an f-tree T , an f-representation E of a relation R over T and a

value modification statement U on E. Consider also a set M of metaconditions of U and T ,

where each metacondition can be either positively annotated, or negatively annotated. A

fragment f-representation of E and M is an f-representation over T that represents only a

subset of the tuples of relation R. Each tuple represented by the fragment f-representation

satisfies all positively annotated conditions in M and does not satisfy any negatively anno-

tated condition in M.

The fragment f-representation of an f-representation E and a set of annotated meta-

conditions M will be denoted throughout this chapter and the following by F (E,M). A

fragment f-representation F (E,M) can always be represented over f-tree T defining the

structure of E because each metacondition M ∈ M consists of conditions whose attributes

are on the same root-to-leaf path of f-tree T .

Example 4.5. Consider f-representation E11 over f-tree T16, both shown in Figure 4.5.

Also consider the following value modification statement:

U6 = Update E11 set A = 12 where A ≤ B and B ≤ D and C ≤ E

A fragment f-representation of E11 is shown below:

F (E11, {{CU6,E}+, {CU6,B, CU6,D}−}) = 〈A : 4〉 × (〈B : 2〉 × (〈D : 1〉 ∪ 〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 4〉)∪
〈B : 5〉 × (〈D : 2〉 ∪ 〈D : 3〉)∪
〈B : 7〉 × (〈D : 4〉 ∪ 〈D : 5〉))∪

× (〈C : 7〉 × 〈E : 8〉 ∪ 〈C : 11〉 × 〈E : 12〉)

52

A

B

D

C

E

(a) F-tree T16

E11 = 〈A : 4〉 × (〈B : 2〉 × (〈D : 1〉 ∪ 〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 4〉)∪
〈B : 5〉 × (〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 7〉 ∪ 〈D : 9〉)∪
〈B : 7〉 × (〈D : 4〉 ∪ 〈D : 5〉 ∪ 〈D : 11〉))∪

× (〈C : 6〉 × (〈E : 2〉 ∪ 〈E : 3〉 ∪ 〈E : 5〉)∪
〈C : 7〉 × (〈E : 4〉 ∪ 〈E : 6〉 ∪ 〈E : 8〉)∪
〈C : 11〉 × (〈E : 9〉 ∪ 〈E : 10〉 ∪ 〈E : 12〉))

(b) F-representation E11 over T16

Figure 4.5: F-tree T16 and f-representation E11

Notice that all tuples represented by F (E11, {{CU6,B, CU6,D}−, {CU6,E}+}) satisfy meta-

condition {CU6,E}. None of them satisfies metacondition {CU6,B, CU6,D}; for each tuple rep-

resented by the fragment f-representation shown above either condition CU6,B, or condition

CU6,D, or both are not satisfied. �

The fragment f-representation F (E,M) can be computed directly from E, without

first flattening E, finding all products of singletons that correspond to tuples that F (E,M)

should represent and refactorising them over the structure of the f-tree defining E. Figure 4.6

shows the pseudo-code of the procedure that builds the fragment f-representation F (E,M)

directly from E. The fragment representation is built while scanning E. Whenever the

procedure reaches a union of A-singletons, it keeps all singletons in the union scanned if

attribute A is not head attribute of any condition contained by a metacondition of M. If A

is a condition head attribute, it selects only a part of the singletons in the union scanned,

depending on whether the values of the singletons satisfy or not the condition on A and

whether the metacondition containing the condition is positively annotated or negatively

annotated:

• If the metacondition containing the condition on A is positively annotated, we keep

only the singletons whose values satisfy the condition.

• If A is a non-head attribute of a negatively annotated metacondition, we keep all A-

singletons in the current union. For a singleton 〈A : a〉, let Ea be the f-representation

found in a product with it. We have the following difference between singletons that

satisfy the condition on A and singletons that do not satisfy it:

– If value a of singleton 〈A : a〉 does not satisfy the condition, then the fragment f-

representation will contain the product 〈A : a〉×Ea. The idea is that the fragment

f-representation we are building should represent all tuples that do not satisfy the

53

procedure buildFragment(E, T , set of annotated metaconditions M)
if T is empty then return E

if T is a forest T1, . . . , Tk then
Let E = E1 × . . .× Ek

return buildFragment(E1, T1, M) × . . .× buildFragment(Ek, Tk, M)

if T is a single node A then
if A is not head attribute of any condition in metaconditions of M then

return E
if A is head attribute of a condition in a metacondition M ∈ M then

Let CA be the condition whose head attribute is A
Let E =

⋃

a∈A〈A : a〉
R = ∅
for each singleton 〈A : a〉 in E do

if M is positively annotated and value a satisfies condition CA or
M is negatively annotated and value a does not satisfy CA then
R = R∪ 〈A : a〉

return R
if T is a single rooted tree A(U) then

Let E =
⋃

a∈A〈A : a〉 × Ea

if A is not head attribute of any condition in metaconditions of M then
return

⋃

a∈A〈A : a〉 × buildFragment(Ea,U ,M)

if A is head attribute of a condition in a metacondition M ∈ M then
Let CA be the condition whose head attribute is A
R = ∅
for each singleton 〈A : a〉 in E do

if A is a non-head attribute of M then
if M is positively annotated and value a satisfies CA then

R = R∪ 〈A : a〉 × buildFragment(Ea,U ,M)

if M is negatively annotated then
if value a satisfies condition CA then

R = R∪ 〈A : a〉 × buildFragment(Ea,U ,M)
else

R = R∪ 〈A : a〉 × Ea

if A is the head attribute of M then
if M is positively annotated and value a satisfies CA or

M is negatively annotated and value a does not satisfy CA then
R = R∪ 〈A : a〉 × Ea

return R

Figure 4.6: Construction of a fragment f-representation

54

current metacondition. Since we already have value a that violates a condition

in the current metacondition, we need to keep the entire f-representation Ea.

– If value a of singleton 〈A : a〉 satisfies the condition on A, then the fragment

f-representation will contain the product 〈A : a〉 × F (Ea,M). Since the current

metacondition is satisfied so far, we need to put singleton 〈A : a〉 in a product

with a factorisation representing tuples that violate this metacondition.

• If A is the head attribute of a negatively annotated metacondition, we keep only A-

singletons in the current union that do not satisfy the condition on A. If we reached

a union of such singletons, it means that all other conditions in the current meta-

condition are satisfied. In order for the fragment f-representation we are building to

represent only tuples that violate the current metacondition, we need to eliminate all

A-singletons that satisfy the condition on A.

Notice that procedure buildFragment can return ∅ as a result if none of the singletons

in the current union is selected. We can use the following rules to remove all ∅ occurrences

from the result representation, if there are any:

• Any product containing ∅ as a factor is entirely replaced by ∅.

• If ∅ is placed inside a union that contains other non-empty items, then the empty

item is simply removed. If the union consists only of empty items, then we replace

the union entirely with ∅.

The time complexity of procedure buildFragment isO(|E|), where E is the f-representation

for which we build the fragment.

Definition 4.6. Let T be an f-tree, E be an f-representation over T and U be a value

modification statement on E. Consider also a set of metaconditions M of U and T .

• For an empty set M, we define the f-set of E and M as F = {E}.

• For a non-empty set M = {M1,M2, . . . ,Mn}, we define the f-set of E and M as a

set of fragment f-representations of E, F = {F0, F1, . . . , Fn}, where

F0 =F (E, {M1
+,M2

+,M3
+, . . . ,Mn−2

+,Mn−1
+,Mn

+})
F1 =F (E, {M1

+,M2
+,M3

+, . . . ,Mn−2
+,Mn−1

+,Mn
−})

F2 =F (E, {M1
+,M2

+,M3
+, . . . ,Mn−2

+,Mn−1
−})

F3 =F (E, {M1
+,M2

+,M3
+, . . . ,Mn−2

−})
. . .

55

Fn−2 =F (E, {M1
+,M2

+,M3
−})

Fn−1 =F (E, {M1
+,M2

−})
Fn =F (E, {M1

−})

Example 4.6. Consider f-tree T16 and f-representation E11 shown in Figure 4.5. Consider

also the value modification statement U6 from Example 4.5 and the minimal metacondition

partition P1 = {{CE}, {CB, CD}}) of U6 and T16. The f-set of E and P1 is F = {F0, F1, F2},
where

F0 =F (E, {{CE}+, {CB, CD}+})
=〈A : 4〉 × (〈B : 5〉 × (〈D : 7〉 ∪ 〈D : 9〉) ∪ 〈B : 7〉 × 〈D : 11〉)

× (〈C : 7〉 × 〈E : 8〉 ∪ 〈C : 11〉 × 〈E : 12〉)
F1 =F (E, {{CE}+, {CB, CD}−})

=〈A : 4〉 × (〈B : 2〉 × (〈D : 1〉 ∪ 〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 4〉)∪
〈B : 5〉 × (〈D : 2〉 ∪ 〈D : 3〉) ∪ 〈B : 7〉 × (〈D : 4〉 ∪ 〈D : 5〉))∪

× (〈C : 7〉 × 〈E : 8〉 ∪ 〈C : 11〉 × 〈E : 12〉)
F2 =F (E, {{CE}−})

=〈A : 4〉 × (〈B : 2〉 × (〈D : 1〉 ∪ 〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 4〉)∪
〈B : 5〉 × (〈D : 2〉 ∪ 〈D : 3〉 ∪ 〈D : 7〉 ∪ 〈D : 9〉)∪
〈B : 7〉 × (〈D : 4〉 ∪ 〈D : 5〉 ∪ 〈D : 11〉))∪

× (〈C : 6〉 × (〈E : 2〉 ∪ 〈E : 3〉 ∪ 〈E : 5〉)∪
〈C : 7〉 × (〈E : 4〉 ∪ 〈E : 6〉) ∪ 〈C : 11〉 × (〈E : 9〉 ∪ 〈E : 10〉)) �

Theorem 4.7. Let T be an f-tree, E be an f-representation over T and U be a value

modification statement on E. Consider also a set of metaconditions M of U and T ,

M = {M1,M2, . . . ,Mn} and the f-set F = {F0, F1, . . . , Fn} of E and M. The follow-

ing statements are true:

1 F represents the same relation R that E represents.

2 F represents each tuple of relation R exactly once.

Proof. Let PF be the set of tuples represented by F and PE be the set of tuples represented

by E. We will prove the first statement of the theorem by double inclusion for sets PF and

PE .

56

The inclusion PF ⊂ PE is evident. The tuples represented by any representation Fi, 0 ≤
i ≤ n are represented by E also since Fi is a fragment f-representation of E.

Let’s also prove the inclusion PE ⊂ PF . Consider a tuple t ∈ PE . If t satisfies all

metaconditions in M, then t is represented by F0. It is not represented by any other

fragment f-representation of F , because any other factorisation represents tuples that do

not satisfy at least one metacondition.

If t does not satisfy all metaconditions, let M− be the set of metaconditions in M that t

does not satisfy. Consider also metaconditionMi ∈ M−, i = min{j;Mj ∈ M−}. The tuple t
is represented by the fragment f-representation Fn−i+1 = F (E, {M1

+,M2
+, . . . ,Mi−1

+,Mi
−}).

The tuples represented by Fn−i+1 satisfy the first i − 1 metaconditions and do not satisfy

metaconditionMi. Fn−i+1 does not have any restrictions for metaconditionsMi+1,Mi+2, . . .Mn,

which means that it includes both tuples that satisfy these metaconditions and tuples that

do not satisfy them.

Consider now any fragment representation Fj , 0 ≤ j < n−i+1. Such an f-representation

cannot represent t because all tuples represented by this representation satisfy metacondi-

tion Mi. Consider also any fragment representation Fn−j+1, 1 ≤ j < i. Fj cannot represent

t because all tuples represented by this representation do not satisfy metacondition j, which

t satisfies. As a result, Fn−i+1 is the only fragment representation that represents t.

To conclude, any tuple t ∈ PE is represented by a fragment f-representation in F . As a

result PE ⊂ PF .

We also showed that any tuple t ∈ PE is represented by a single fragment representation

of F , which means that each tuple of relation R is represented exactly once by F . �

Definition 4.8. Consider an f-tree T , a value modification statement U on an f-representation

over T and a minimal metacondition partition P of T and U . A free metacondition M of

partition P is a metacondition that satisfies the following constraints for each target at-

tribute A of statement U :

• Attribute A and all attributes involved in conditions of M are on the same root-to-leaf

path of T .

• Attribute A has a lower level in T than all attributes involved in conditions of M .

Figure 4.7 shows procedure splittingValueModification which performs a value modifi-

cation U on an f-representation E over f-tree T and produces a result that consists of a

union of f-representations over the same f-tree. The procedure can be applied only if the

conditions stated in Proposition 4.2 are satisfied for U and T . It builds a minimal metacon-

dition partition P of U and T and removes exactly one free metacondition from it, if the

57

procedure splittingValueModification(T , E, value modification U)
Build a minimal metacondition partition P = {M1, . . . ,Mn} of T and U
Let M = ∅
if P has at least one free metacondition then

Choose a free metacondition F ∈ P
M = F
P = P \ {F}

R = ∅
for 1 ≤ i ≤ n do

R = R∪ F (E, {M1
+, . . . ,Mi−1

+,Mi
−})

Build E0 = F (E, {M1
+, . . . ,Mn

+})
Build a new value modification statement U ′ on E0 that

has the same set clause as U and
its where clause consists of all conditions of metacondition M

valueModification(T , E0, U
′)

R = R∪ E0

return R

Figure 4.7: Value modification procedure that generates a result consisting of a union of f-
representations over the same f-tree

partition has such a metacondition. Then it builds the f-set of E and P, which represents

the basis of the union of result f-representations computed by the procedure. The procedure

also constructs a new value modification statement U ′ and performs it on the fragment f-

representation E0 of E that represents only tuples that satisfy all metaconditions of P. The

set of conditions of U ′ is either empty, or consists of the conditions of a free metacondition

of P. In both cases, all conditions of Proposition 4.1 are satisfied for U ′ and T such that U ′

is supported by f-tree T without restructuring and produces a single result representation.

Procedure valueModification shown in Figure 4.1 is used to perform it.

The time complexity of procedure splittingValueModification is O(n · |E|), where n is

the size of the minimal metacondition partition P of statement U and f-tree T . The time

complexity is dominated by the construction of the f-set of P and E. This f-set contains

O(n) fragment f-representations of E and the time needed to compute any such fragment

representation is O(|E|).

The following proposition characterises the number of f-representations in the union

representing the result of procedure splittingValueModification.

Proposition 4.4. Consider an f-tree T , an f-representation E over T and a value modifi-

cation statement U on E. Let P be a minimal metacondition partition of T and U , |P| = n.

58

Suppose f-tree T supports statement U without restructuring and the statement generates a

result that consists of a union of f-representations over the same f-tree.

• If statement U has an empty list of conditions, then the number of f-representations

in the result union is 1.

• If P has at least one free metacondition, then the number of f-representations in the

result union is n.

• If P does not have any free metaconditions, then the number of f-representations in

the result union is n+ 1.

If statement U has no conditions, then P is empty. The f-set generated by an empty

metacondition partition and any f-representation E contains a single f-representation which

is precisely E.

If statement U has at least one condition, then P is not empty. If P does not contain

any free metaconditions, then the union of result representations is generated by the f-set

computed using a set of metaconditions of size n. We have seen in Definition 4.6 that the

size of such an f-set is exactly n+ 1. If P contains at least one free metacondition, exactly

one free metacondition is removed from P. In this case, the union of result representations

is generated by the f-set computed using a set of metaconditions of size n− 1 and has size

n.

Consider the case where P has a single metacondition, which is a free metacondition.

In this particular case, f-tree T and statement U satisfy all conditions in Proposition 4.1,

so the statement can be performed using procedure valueModification which produces a

single result f-representation. Notice that in this case, the procedure splittingValueModifi-

cation produces a union containing a single f-representation. The f-set computed by this

procedure is generated by an empty set of metaconditions, such that it will contain only

the f-representation we want to update. Then, the procedure constructs statement U ′,

which, for this particular case, is exactly statement U . Finally, the splittingValueModi-

fication procedure uses the valueModification procedure to perform statement U ′ on the

only f-representation present in the union built. As a result, for this particular case, the

splittingValueModification procedure will produce a union with a single f-representation

which is exactly the f-representation produced by procedure valueModification. In fact, free

metaconditions were introduced precisely for this reason.

The resulting union of procedure splittingValueModification supports new value modifi-

cation statements. These can be performed by applying either procedure valueModification,

or procedure splittingValueModification (depending on which is supported by the f-tree) on

59

each f-representation in the result union. Notice that after repeatedly performing value

modification statements on the same relation using the splittingValueModification proce-

dure, the number of f-representations in the result union will be exponential in the number

of statements performed.

4.2 Supporting Value Modifications by Restructuring

We have discussed so far two techniques of performing a value modification statement. For

a given value modification statement, the first technique can be applied to only a restricted

class of f-trees. For the same statement, the second technique is supported by a larger class

of f-trees which includes the class of f-trees supporting the first technique. However, for a

given statement, there may be f-trees that do not support either of these two techniques.

In such cases, we first need to restructure the f-tree (together with the f-representation

defined by the f-tree) using the swap operator such that the new f-tree supports one of the

techniques described above. There are two possible approaches:

• We restructure the f-tree such that the new f-tree supports procedure valueModifica-

tion which produces a result consisting of a single f-representation.

• We restructure the f-tree such that the new f-tree supports procedure splittingValue-

Modification which produces a result consisting of a union of f-representations over

the same f-tree.

Each approach has its advantages and disadvantages. In order to apply procedure

valueModification for complex value modification statements, we will need in general a

more costly restructuring step, with many attribute swaps which could lead to a new f-

representation that has a large size. The advantage of this technique is that it produces

a single result representation. The second technique requires in general a more shallow

restructuring step which might generate an f-representation that has a smaller size than

the f-representation obtained after the restructuring step required by the first technique.

The disadvantage is that procedure splittingValueModification produces a result union that

contains, in general, more than one f-representation.

Example 4.7. Consider f-tree T17 shown in Figure 4.8a, an f-representation E12 over T17
and the following value modification statement:

U7 = Update E12 set B = B+1 where B ≤ E and E ≤ F

60

A

B

C D

E

F

(a) F-tree T17

E

A

B

C D

F

(b) F-tree T18

E

F

A

B

C D

(c) F-tree T19

Figure 4.8: F-trees T17, T18 and T19

F-tree T17 does not support statement U7 without restructuring. We will assume that

the nodes of T17 labelled by attributes A and F are independent. Under this assumption, by

applying the swap operator for nodes A and E on T17, we obtain f-tree T18 shown in Figure

4.8b that defines f-representations that support statement U7 using the splittingValueMod-

ification procedure. The procedure generates a union of two result representations. Notice

that this f-tree does not support procedure valueModification for statement U7 because the

condition attributes of the statement (B, E and F) are spread over two paths of f-tree T18.
If we apply the swap operator for nodes E and F on f-tree T18, we obtain f-tree T19

shown in Figure 4.8c which supports both value modification procedures for statement U7.

Notice that T19 has a lower branching factor than T18. For this reason, the f-representation

of a relation over T18 is, in general, more succinct than the f-representation of the same

relation over T19, assuming that the relation is representable over both f-trees. �

4.3 Experimental Evaluation

We implemented the first value modification technique in FDB and evaluated its perfor-

mance against SQLite updates. We performed two experiments. The first experiment

considers value modification statements supported by the f-representation given without

restructuring. The second experiment considers value modifications statements that cannot

be performed directly on the representation given and require an additional restructuring

step. Our main finding is that FDB value modifications outperform SQLite updates in both

cases.

Experimental Design For both experiments, we use the same dataset used in Section

3.2.5. SQLite performs the updates on relation R representing the natural join of rela-

tions Orders, Packages and Items, while our value modification algorithm is performed on

an f-representation E of R over f-tree T10 shown in Figure 3.11a. All value modification

61

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database scale

FDB and SQLite performance for value modifications (without restructuring)

FDB SQLite

(a) FDB and SQLite performance for value modification statements that do not require
restructuring

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database scale

FDB and SQLite performance for value modifications (with restructuring)

FDB SQLite

(b) FDB and SQLite performance for value modification statements that require restruc-
turing

Figure 4.9: FDB and SQLite performance for value modifications

62

statements considered update the price attribute. For the first experiment, we used four

different value modification statements:

- The first statement has two conditions: one on price and the other on package.

- The second statement has also two conditions: one on package and the other on item.

- The third statement has two conditions: one on item and the other on price.

- The last statement has only one condition on price.

For the second experiment, we also used four different value modification statements:

- The first statement has two conditions: one on price and the other on customer.

- The second statement has also two conditions: one on customer and the other on

package.

- The third statement has two conditions: one on item and the other on customer.

- The last statement has three conditions: on customer, on item and on package.

In order to be able to perform the value modification statements designed for the second

experiment, we need to apply the swap operator two times on the f-representation E to be

updated: first we swap customer and date, then we swap customer and package. The

structure of the f-representation obtained after applying the swap operators is defined by

f-tree T12 shown in Figure 3.11c.

For both experiments, we run our value modification algorithm and the SQLite update

three times for each value modification statement and report the average wall-clock time of

all 12 runs. The times reported do not include the time to load the relation from plain-text

files on disk. Our value modification algorithm was implemented in FDB for execution in

main memory. To have an accurate comparison, the lightweight statement engine SQLite

was also tuned for main memory operation by turning off the journal mode and synchroni-

sations and by instructing it to use in-memory temporary store.

Experiment 1: Value modifications without restructuring

Figure 4.9a compares the performance of FDB and SQLite for value modification state-

ments that do not require the restructuring of the f-representation updated by FDB. This

f-representation is more compact than the relation considered by SQLite, which explains

the gap between the times to perform the value modifications. The gap widens as we in-

crease the scale factor and raises from two orders of magnitude for scale 1 to four orders

of magnitude for scale 32. The reason we have an increasing gap is that the gap between

the size of the f-representation considered by FDB and the size of the relation updated by

SQlite increases also as we increase the scale of the database.

63

Experiment 2: Value modifications with prior restructuring

Figure 4.9b shows that FDB outperforms SQLite for value modification statements that

require the restructuring of the representation updated by FDB. The times reported for

FDB include the restructuring time. We notice, however, that the gap between FDB and

SQLite is smaller than the gap observed in the previous experiment. There are two reasons

for this:

- Before performing the value modification statement, FDB has to restructure the f-

representation.

- The size of the f-representation obtained after restructuring is larger than the size of

the original f-representation.

64

Chapter 5

Deletions

This chapter presents two techniques to delete values from an f-representation. Behind these

two techniques lies the same idea that led to the development of the two value modification

techniques described in the previous chapter: the first technique produces a result that

consists of a single f-representation, while the second technique generates a result consist-

ing of a union of f-representations over the same f-tree. For both techniques, we precisely

characterise all f-trees that allow a given deletion statement without restructuring on any

f-representation following their structure and discuss the algorithms that build the result

of the deletion from the f-representation to be updated. The first technique was also imple-

mented on top of an existing implementation of a factorised database and experimentally

evaluated against SQLite.

We consider delete statements of the following form:

D = Delete from E where
∧

1≤i≤mAi θi fi(Ai1 , . . . Aisi
, ci1 , . . . citi)

where

- E is an f-representation of a relation R over schema S
- Ai, Aik , 1 ≤ k ≤ si, 1 ≤ i ≤ m are attributes of schema S of the same type

- cik , 1 ≤ k ≤ ti are constant values of the same type as attribute Ai, 1 ≤ i ≤ m

- fi, 1 ≤ i ≤ m are functions that take as arguments either values of attributes of S, or
constants

- θi, 1 ≤ i ≤ m are comparison operators

The where clause of the deletion statements considered has the same form as the where

clause of the value modification statements discussed in the previous chapter. This is the

reason why the techniques developed for value modifications on factorised representations

can be applied for deletions also, with only minor changes that relate to the fact that we

remove singletons instead of changing their values. However, unlike a value modification

65

statement, a deletion statement does not have a set clause. For this reason, the constraints

that the f-tree needs to satisfy in order to support a deletion statement are less tight than the

constraints imposed on the same f-tree in order to support a value modification statement

with the same where clause.

Several concepts introduced in the previous chapter to describe value modifications

techniques on factorised representations, such as the head/non-head attribute of a condition,

a metacondition, a minimal metacondition partition, the fragment f-representation of a given

f-representation and the f-set of a representation and a set of metaconditions, will be used

throughout this chapter also.

5.1 Nesting Structures Supporting Efficient Deletions

This section studies the case of deletion statements that can be performed directly on

the f-representation given. Since they do not require any restructuring step, they can be

performed very efficiently.

5.1.1 The Case of a Result Consisting of One Factorised Representation

The following proposition characterises f-trees that support without restructuring a given

deletion statement whose result consists of a single representation.

Proposition 5.1. Consider an f-tree T and a deletion statement D on an f-representation

over f-tree T . Statement D is supported by T without restructuring and produces a re-

sult consisting of a single f-representation if the nodes labelled by attributes involved in all

conditions of D are found on the same-root-to-leaf path of T .

The attributes of a certain condition of the delete statement D need to be on the same

root-to-leaf path in order to be able to check the condition. Consider the case where two

attributes A and B involved in the same condition are found on different paths of T . If A

and B are siblings, then an f-representation over T may contain a product between a union

of A-singletons and a union of B-singletons. If they are not siblings, then these unions will

be part of larger partial f-representations found in a product. The condition on A and B

cannot be checked in either of these cases because we may have a union with more than

one A-singleton in a product with a union containing more than one B-singleton.

If the conditions are spread over several paths of the f-tree, then they can be checked

only independently of each other. In order to perform a deletion statement whose where

clause is a conjunction of several conditions, we need to be able to check all these conditions

before deciding to remove singletons or partial representations. This can be done only if

their attributes are on a single path of the f-tree.

66

procedure delete(f-tree T , f-representation E, statement D)
if statement D has an empty where clause then

E = ∅
else

if T is empty then return

if T is a forest T1, . . . , Tk then
Let E = E1 × . . .× Ek

Let Ti be the f-tree containing the attributes of conditions of D
deletion(Ti, Ei, D)

if T is a single rooted tree A(U) then
Let E =

⋃

a〈A : a〉 × Ea

for each singleton 〈A : a〉 in E do
if A is not head attribute of any condition of statement D then

delete(U , Ea, D)

if A is head attr. of a condition CA of D and value a sat. CA then
if node A is the lowest node in T labelled by a head attribute then

remove 〈A : a〉 × Ea from E
else

delete(U , Ea, D)

Figure 5.1: Deletion procedure that generates a result consisting of a single f-representation

Figure 5.1 shows procedure delete which performs a deletion statement D on an f-

representation E that generates a single result representation. It updates E in-place and

can be performed only if statement D and the f-tree T defining the structure of E satisfy

the condition stated in Proposition 5.1. The procedure scans only unions of A-singletons,

where A is either a head attribute of a condition of D, or an ancestor of a head attribute.

Whenever the procedure reaches a union of A-singletons, where A is a head attribute, it

checks condition CA for each singleton 〈A : a〉. If the condition is not satisfied, we do not

need to take any further steps. If the condition is satisfied, we have two cases:

• Node A is not the lowest node in T labelled by a head attribute. In this case, we

recursively call the delete procedure for the f-representation found in a product with

singleton 〈A : a〉. This f-representation contains unions of singletons for other head

attributes. Before removing any singletons or partial f-representations, the conditions

on these attributes must be checked.

• Node A is the lowest node in T labelled by a head attribute. In this case, we can

remove all A-singletons (together with the f-representations they are found in a prod-

uct with) whose values satisfy CA because all other conditions of statement D have

already been checked.

67

There are cases when all items of a union are removed. Empty unions should always be

removed from the result f-representation. In order to do this, we can replace each empty

union with the symbol ∅ and then propagate all occurrences of this symbol in a bottom-up

fashion using the following two rules:

• Any product containing ∅ as a factor is entirely replaced by ∅.

• If ∅ is placed inside a union that contains other non-empty items, then the empty

item is simply removed. If the union consists only of empty items, then we replace

the union entirely with ∅.

By applying these two rules, the removal of subexpressions can be propagated up to

the top-most union of the original f-representation. In this case, all tuples represented

by the factorisation to be updated satisfy the conditions of the statement and the new

f-representation will be empty.

The time complexity of the delete procedure is in the worst case O(|E|). In most of the

cases it is sublinear since the procedure scans only unions of A-singletons, where A is either

a head attribute of a condition of the deletion statement, or an ancestor of a head attribute.

5.1.2 The Case of a Result Consisting of a Union of Factorised Repre-

sentations over the Same Factorisation Tree

The main idea of the second approach we propose for the deletion task is similar to the idea

behind the technique described in section 4.1.2: split the f-representation to be updated

into several smaller f-representations such that one of them represents only the tuples of

the relation considered that satisfy all conditions of the given deletion statement. All

other f-representations should represent only tuples that violate at least one such condition.

The deletion statement can be performed by removing entirely the first f-representation

mentioned and keeping in the resulting union only factorisations representing tuples that

violate at least one condition of the deletion statement. The class of f-trees supporting

a deletion statement without restructuring using this technique is larger than the class

of f-trees that support the same statement using the previous technique described, but

this comes at the cost of a result that consists of a union of possibly more than one f-

representation over the f-tree of the f-representation to be updated.

Example 5.1. Consider f-tree T20 and f-representation E13, both shown in Figure 5.3.

Consider also the deletion statement

D2 = Delete from E13 where B < C and D < 5

68

A

B

C

D

(a) F-tree T20

E13 = 〈A : 1〉×(〈B : 4〉 × (〈C : 2〉 ∪ 〈C : 3〉 ∪ 〈C : 5〉)∪
〈B : 7〉 × (〈C : 1〉 ∪ 〈C : 8〉 ∪ 〈C : 9〉))

×(〈D : 3〉 ∪ 〈D : 4〉 ∪ 〈D : 5〉 ∪ 〈D : 6〉)

(b) F-representation E13 over f-tree T20

Figure 5.3: F-tree T20 and f-representation E13

The result of D2 is a union of two fragment f-representations of E13, F1 and F2, where

F1 =F (E13, {{CD2,C}+, {CD2,D}−})
=〈A : 1〉 × (〈B : 4〉 × 〈C : 5〉 ∪ 〈B : 7〉 × (〈C : 8〉 ∪ 〈C : 9〉))× (〈D : 5〉 ∪ 〈D : 6〉)

F2 =F (E13, {{CD2,C}−}) = 〈A : 1〉 × (〈B : 4〉 × (〈C : 2〉 ∪ 〈C : 3〉) ∪ 〈B : 7〉 × 〈C : 1〉)
× (〈D : 3〉 ∪ 〈D : 4〉 ∪ 〈D : 5〉 ∪ 〈D : 6〉)

The fragment f-representation F1 represents all tuples that satisfy condition B < C and

do not satisfy condition D < 5, while F2 represents all tuples that do not satisfy condition

B < C. These are all the tuples that do not satisfy both conditions at the same time. �

The following proposition characterises f-trees that support without restructuring a

given deletion statement whose result consists of a union of f-representations over the same

f-tree.

Proposition 5.2. Consider an f-tree T and a deletion statement D on an f-representation

over f-tree T . Statement D is supported by T without restructuring and produces a re-

sult consisting of a union of f-representations over the same f-tree if the nodes labelled by

attributes involved in each condition of D are found on the same-root-to-leaf path of T .

The attributes of a condition C of D still need to be on the same root-to-leaf path of T
in order be able to check condition C for any f-representation over T . However, we no longer

need to have the attributes of all conditions of D on the same path of the f-tree. The result

union of a deletion statement can be computed by checking the conditions independently

of each other, so they can be spread over several paths of T .

Figure 5.4 shows procedure splittingDelete which performs a deletion statement D on

an f-representation E and produces a union of result representations. This procedure can

be performed only if statement D and the f-tree T defining the structure of E satisfy the

condition stated in Proposition 5.2. For a deletion statement with a non-empty where clause,

the procedure builds a minimal metacondition partition P = {M1, . . . ,Mn} of D and T .

69

procedure splittingDelete(f-tree T , f-representation E, statement D)
if statement D has an empty where clause then

E = ∅
return E

else
Build a minimal metacondition partition P = {M1, . . . ,Mn} of T and D
R = ∅
for 1 ≤ i ≤ n do

R = R∪ F (E, {M1
+,M2

+, . . . ,Mi−1
+,Mi

−})
return R

Figure 5.4: Deletion procedure that generates a result consisting of a union of f-representations
over the same f-tree

Then, it constructs the resulting union of fragment f-representations of E, R = F1∪ . . .∪Fn,

where

F1 =F (E, {M1
+,M2

+, . . . ,Mn−1
+,Mn

−})
F2 =F (E, {M1

+,M2
+, . . . ,Mn−1

−})
. . .

Fn−1 =F (E, {M1
+,M2

−})
Fn =F (E, {M1

−})

The set F = {F1, . . . , Fn} together with the fragment f-representation

F (E, {M1
+,M2

+, . . . ,Mn−1
+,Mn

+}) forms the f-set of representation E and partition P.

Theorem 4.7 showed that the f-set of a representation and a set of metaconditions repre-

sents all the tuples that the original factorisation represents. Notice that F contains all

representations in the f-set of E and P, except for the factorisation that represents tuples

satisfying all metaconditions in P. For this reason, it represents all tuples of the relation

represented by E that violate at least one metacondition.

The time complexity of the procedure is O(n · |E|), where n is the size of a minimal

metacondition partition of statement D and f-tree T . The time complexity is dominated

by the computation of n fragment f-representations of E and the construction of each such

representation takes O(|E|) time.

The following proposition characterises the number of f-representations in the union

representing the result of procedure splittingDelete.

70

Proposition 5.3. Consider an f-tree T , an f-representation E over T and a deletion state-

ment D on E. Let P be a minimal metacondition partition of T and D, |P| = n. Suppose

statement D is supported by f-tree T without restructuring and generates a result consisting

of a union of f-representations over the same f-tree.

• If statement D has an empty set of conditions, then the result union contains a single

empty f-representation.

• If statement D has a non-empty set of conditions, then the result union contains n

fragment representations of E.

Notice that if statement D and f-tree T satisfy the condition stated in Proposition 5.1,

all conditions of the statement form a single metacondition and procedure splittingDelete

produces a union that contains a single result f-representation. Procedure delete could

also be used to perform such a deletion statement and would produce the same result

representation.

The union of result f-representations computed by procedure splittingDelete supports

new deletions. New statements can be performed using either procedure delete, or procedure

splittingDelete on each f-representation in the result union separately. Notice that if we

apply procedure splittingDelete to perform a new deletion, each f-representation in the result

union may be split into several other smaller f-representations such that after a sequence

of m deletion statements (all performed using procedure splittingDelete), the number of

f-representations that the result union contains will be exponential in m.

5.2 Supporting Deletions by Restructuring

In the previous section, we proposed two approaches to the task of deletions on factorised

representations. The first procedure is supported by a rather narrow class of f-trees, but

has the advantage that its result consists of a single f-representation. The second procedure

is supported by a larger class of f-trees (for the same given delete statement), but its result

is a union of one of more f-representations over the same f-tree. If the f-tree defining the

structure of the f-representation to be updated does not support the deletion with any of

these techniques, then the f-tree (together with the f-representation to be updated) must

first be restructured using the swap operator such that the new f-tree supports the statement

using one of these two techniques. Section 4.2 discusses two restructuring approaches in case

a value modification statement is not supported by a given f-tree. These two approaches

can be applied for deletion statements also and the reasoning behind them is the same.

71

5.3 Experimental Evaluation

We implemented in FDB the deletion technique that generates a result consisting of a single

representation and evaluated it against SQLite updates. We performed two experiments.

The first experiment considers a class of four different deletion statements that do not

require the restructuring of the f-representation to be updated. The second experiment

considers a class of four different deletion statements that cannot be performed directly on

the f-representation to be updated and require a prior restructuring step. In both cases,

FDB outperformed SQLite.

Experimental Design Both experiments use the synthetic dataset used also in Sections

3.2.5 and 4.3. Similarly to value modification experiments, SQLite performs the deletions

on a relation R representing the natural join of relations Orders, Packages and Items, while

our deletion algorithm is performed on an f-representation E of R over f-tree T10 shown in

Figure 3.11a. The deletion statements considered for both experiments have the same where

clause as the value modification statements considered in the two experiments performed

in Section 4.3. The restructuring step performed before applying the deletions designed for

the second experiment consists of two swap operations: we first swap customer and date,

then we swap customer and package.

Experiment 1: Deletions without restructuring

Figure 5.5a shows that for deletion statements that do not require the restructuring of

the f-representation, FDB outperforms SQLite by up to four orders of magnitude for large

database scales. FDB considers a more compact representation of the relation updated than

SQLite, which explains the performance gap. The gap is increasing with the database scale

because the gap between the sizes of two relation representations considered by FDB and

SQLite is also increasing.

Experiment 2: Deletions with prior restructuring

Figure 5.5b shows that FDB outperforms SQLite for deletion statements that require the

restructuring of the f-representation considered by FDB, but the performance gap for these

types of deletions is smaller than the gap observed in the previous experiment (only two

orders of magnitude for the largest database scale considered). The reason we have a smaller

gap is that FDB has to restructure the f-representation before performing the deletion and

the restructuring leads to an f-representation less succinct that the original f-representation.

72

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database scale

FDB and SQLite performance for deletions (without restructuring)

FDB SQLite

(a) FDB and SQLite performance for delete statements that do not require restructuring

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]

Database scale

FDB and SQLite performance for deletions (with restructuring)

FDB SQLite

(b) FDB and SQLite performance for delete statements that require restructuring

Figure 5.5: FDB and SQLite performance for deletions

73

Chapter 6

Implementation

This chapter provides details about the implementation of the algorithms discussed in pre-

vious chapters. We implemented all three bulk insertion algorithms presented and the

technique that generates a result consisting of a single f-representation for both value modi-

fications and deletions. These algorithms were implemented on top of an existed framework

for factorised databases implemented in the C++ programming language. The implemen-

tation of our algorithms uses intensely two main components of the existing framework: the

component implementing a factorisation tree as a standard rooted tree and the component

implementing a factorised representation as a parse tree.

6.1 Bulk Insertions

The main classes implementing the bulk insertion algorithms discussed have the same base

class called FRepFTreeBuilder. This class implements two methods used by all three al-

gorithms: a method that loads the relation to be factorised in main memory and another

method used to sort the tuples of the relation.

Class FRepOverFTreeAndFlatDataBuilder implements the TF algorithm which takes as

input a relation and an f-tree. After loading the relation in main memory, we perform a

depth-first search on the f-tree and store the order of the attributes labelling the nodes of

the f-tree as we scan them. The sequence of attributes computed during the depth-first

search is used as a priority array to sort the relation. By performing this sorting prior to

the factorisation step, we avoid the computation of all projections that the TF algorithms

requires. We build the f-representation during a complete scan of the f-tree and a possibly

partial scanning of the relation. At each recursive call corresponding to a rooted f-tree,

we need to find all distinct values of the attribute labelling the root of the f-tree. This

operation that can be done very efficiently as the tuples are sorted. Whenever we reach a

forest with more than one f-tree, the sorted list of values for an attribute labelling a root of

74

one of these f-trees may occur several times in the relation, but the procedure implemented

stops immediately after the first occurrence of such a list. For this reason, the procedure

implemented scans only partially the relation during the factorisation step.

The implementation of the PF and RCF algorithms required the implementation of a

class called Factor that behaves as a wrapper around an f-representation. This class stores

a pointer to the root of the parse tree of an f-representation and the hash value of this parse

tree. The hash value of the parse tree is computed as follows:

• For a parse tree T consisting of a single node labelled by a singleton 〈A : a〉, we use

the following formula:

hash(T) = (B · idA + C · h(a))%R

where B, C and R are integer values, idA is an integer value associated to attribute

A and h(a) represents the hash value of the value stored in singleton 〈A : a〉.

• For a rooted parse tree T with children parse trees T1, T2, . . . , Tk, we use the following

formula:

hash(T) = (M ·(. . .·(M ·(M ·hr+N ·hash(T1))+N ·hash(T2))+. . .)+N ·hash(Tk))%R

where M , N and R are integer values and hr represents the hash value associated to

the operation labelling the root of parse tree T .

This hash function allows the computation of the hash value of a parse tree incremen-

tally: we can start with a single node which is later added as a child to a small parse tree,

which, in turn, is added to a larger parse tree and so on. Whenever we add a child to a

larger parse tree, we do not need to recompute the hash value of the entire resulting parse

tree, we only need to update it based on its current value and the hash value of the child

added.

The PF algorithm is implemented by three classes: GeneralFRepTreeBuilder, Factor-

Processor and LeapFrogIntersector. They work similarly to a pipeline, but information is

passed between them in both directions: a GeneralFRepTreeBuilder object sends infor-

mation to a FactorProcessor object, which will send information to a LeapFrogIntersector

object. The LeapFrogIntersector object sends back the result of its computation to the

FactorProcessor object, which, after further computation, will send new information back

to the GeneralFRepTreeBuilder object. The main responsibilities of each of these classes

are described below:

75

• The GeneralFRepTreeBuilder class reads the relation from the input file and sorts its

tuples using the input path as a priority array. The factorisation procedure recursively

divides the relation into smaller fragments and builds the list of factors for such

fragments of data. At each recursive level, it interacts with the FactorProcessor class

by giving it the list of distinct singletons at the current level and the lists of factors

of all fragments computed at a lower recursion level and expecting in return a single

list of factors of the entire relation processed at the current level.

• The FactorProcessor class receives a list A of distinct A-singletons (where A is an

attribute of the relation processed) and a list of lists of factors. It builds the list

of distinct factors D in all these lists of factors and assigns identifiers (using integer

values) to all distinct factors. It also builds the A-factor matrix for A and D. Since

this matrix can be very sparse, we store it internally as a list L of lists of integers. Each

list in L represents a row of the factor matrix and contains the ids of all factors for

which the row has a non-zero element. It interacts with the LeapFrogIntersector class

by sending list L and expecting in return a list containing the ids of factors present

in all lists of L. It removes all these factors from the lists of L and sends back to

the GeneralFRepTreeBuilder instance a list containing pointers to all common factors

and one additional factor built from the factors remaining in the lists of L.

• The LeapFrogIntersector class receives a list of lists containing integer values and

computes their intersection using the LeapFrog Join algorithm described in [21].

The PF and RCF algorithms share many steps such that, in order to avoid code dupli-

cation, the implementation of the RCF algorithm reuses the three classes implementing the

PF algorithm. A special argument is passed to the GeneralFRepTreeBuilder instance to

specify the type of factorisation we want to build. The main difference arises in class Factor-

Processor, when we compute the list of factors of the currently processed relation fragment.

In both cases, this list contains pointers to factors that are present in all the lists of list L
storing the A-factor matrix and one additional factor representing the rest of the data. In

the case of the RCF algorithm, this factor is built using rectangle coverings of the factor

matrix. The main procedure of class RectangleExtractor computes a set of rectangles that

covers completely a subset of rows of the A-factor matrix. To speed up the computation of

this set, we represent it internally as a list R of lists. At each round of expansion, instead

of creating new rectangles, we simply add a new list to R, representing ids of all common

factors of the factor matrix row added in this round of expansion and the factor matrix row

added in the previous round of expansion. By repeatedly calling the main procedure of class

76

RectangleExtractor, the FactorProcessor instance computes incrementally the factorisation

representing all the factors remaining in the lists of L.
To check the correctness of the f-representations produced by the RCF algorithm, we

implemented the class FactorIterator which enumerates tuples represented by a Factor

object. The framework already implemented tuple enumeration for an f-representation,

but the structure of the f-representations produced by the RCF algorithm is more general

than the f-representations that the framework used before and required a tuple enumeration

procedure that can capture more general cases.

6.2 Value Modifications and Deletions

For both value modifications and deletions, we implemented the technique that produces

a result consisting of a single f-representation. The two algorithms have many similarities,

such that a large part of the code implementing value modifications was used for the im-

plementation of deletions also. The classes implementing their common parts are described

below:

• Class QueryParser reads a value modification/deletion statement from a text file.

The value modification statements parsed must have the following form:

Statement ::= UPDATE Rel SET AssignmentStatement WHERE WhereStatement

AssignmentStatement ::= Attr = RHS

RHS ::= Value | Value Op Value

Value ::= Attr | Const

Op ::= ’+’ | ’-’ | ’*’ | ’/’

WhereStatement ::= Value CompOp Value (AND Value CompOp Value)∗ | ∅
CompOp ::= ’<’ | ’<=’ | ’==’ | ’>=’ | ’>’

A deletion statements parsed by this class has a where statement of the same exact

form. The shape of such a deletion statement is

Statement ::= DELETE FROM Rel WHERE WhereStatement

• Class UpdateItem is the base class of classes Target (which encapsulates the struc-

tures storing the information needed to process the set clause) and Condition (which

encapsulates the structures storing the information needed to check a condition of the

where clause). The UpdateItem class provides storage for two Value instances. Each

such instance can be either an attribute, or a constant. In addition to this, the Target

class also stores the attribute that the statement updates and an operator, while class

77

Condition stores only a comparison operator. In both cases, the operator is stored as

a pointer to a function.

• Class UpdateFRep is the base class of the classes that actually perform the value

modification/deletion statement on the input f-representation. It contains only a few

methods that process the objects storing the conditions of the statement performed

and deallocate memory.

Class ValueModification implements a simplified version of the value modification state-

ments discussed. There are two main simplifications:

• The set clause of the statements supported by the current implementation contains

exactly one target attribute.

• The additional step that follows the update of the f-representation and merges single-

tons occurring several times in a union was not implemented.

A ValueModification instance receives the parse tree of the f-representation to be up-

dated and a text file specifying the value modification statement. It builds a QueryParser

object which reads the statement from the file and builds a Target object and the Condi-

tion objects. The main procedure of the ValueModification instance then scans the parse

tree received and updates the value stored by any node labelled by a target attribute if all

conditions of the statement are satisfied on the path from the root to the updated node of

the parse tree.

Finally, classDelete performs a deletion statement on the parse tree of an f-representation.

Its implementation is similar to the ValueModification class, except that the QueryParser

object constructed will read and build only Condition objects and the main procedure of a

Delete instance removes subtrees of the parse tree we update instead of updating the values

stored by its nodes.

78

Chapter 7

Related Work

Factorised representations were originally introduced in [18]. Equivalent to factorised rep-

resentations over factorisation trees are generalised hierarchical decompositions (GHDs)

and compacted relations over compaction formats. Existing work establishes the corre-

spondences of GHDs to functional and multi-valued dependencies [9], and characterises

selection conditions with disjunctions that can be performed on the compacted relations

in one sequential pass [6], but questions of succinctness have not been addressed. Nested

and non-first normal form relations [16, 14, 1] are also structurally equivalent to factorised

representations over factorisation trees, but are proposed as an alternative data model and

not as a representation system for standard relation.

Subsumed by factorised representations are various representation systems equivalent

to unions of products of unions of singletons, such as world-set decompositions in incom-

plete databases [17], GDNFs (generalised disjunctive normal forms) studied as succinct

presentations of inputs to CSPs [8], formal concepts in data mining, and others.

In relational databases, eliminating redundancy caused by join dependencies and multi-

valued dependencies is traditionally addressed by normalising the relational schema [15].

Representation systems for relations based on join decompositions include minimal con-

straint networks [12], but for these data retrieval (tuple enumeration) is NP-hard. Tuple

enumeration is constant time for acyclic queries [2], in which case the input database to-

gether with the query already serve as a compact representation of the result. Decompo-

sitions of the query hypergraph, measuring the degree of acyclicity of the query, are tradi-

tionally used for classifying the tractability of Boolean queries and constraint satisfaction

problems [13, 11].

Representations utilising algebraic factorisation are not restricted to relational data. In

the context of relational databases, factorisation can also be applied to provenance poly-

nomials [10] that describe how individual tuples of a query result depend on tuples of the

79

input relations [18]. Algebraic and Boolean factorisations were considered in succinct rep-

resentations of Boolean functions [7] and are closely related to binary decision diagrams,

Boolean circuits and other representations of Boolean functions.

80

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have investigated updates on factorised databases, a problem previously

unexplored in the context of such databases.

The insertion task was studied from two points of view: the insertion of one tuple in

a given factorisation and bulk insertion. For the first type of insertion, we showed when

and how a given tuple can be inserted in an f-representation without prior restructuring.

We defined the task of bulk insertion on factorised databases as the construction of a

factorisation of the relation representing the tuples to be inserted. We implemented and

experimentally compared three algorithms to perform this task. Their behaviour reflects

a trade-off between the amount of information we have about the hidden structure of the

relation, the size of the result representation and the execution time. The first algorithm

produces good quality factorisations with low computation time, but requires complete

information about the structure of the f-representation it builds. The second algorithm is

less efficient, but requires only partial information about the structure of the f-representation

since it is able to infer some structures on its own. Finally, the last algorithm is the most

computationally expensive, but experiments have shown that it can compute factorisations

that are up to one order of magnitude more succinct than f-representations computed by

the other two bulk insertion algorithms.

Value modifications and deletions on factorised databases were approached in a similar

fashion. For both types of updates, we discussed two techniques. The first technique is

supported without restructuring for a given update statement by a rather restricted class

of f-trees, but generates as a result a single representation. The second technique described

is supported without restructuring by a wider class of f-trees, which includes the class of

f-trees supported by the first technique, but generates as a result a union that contains

several f-representations over the same f-tree. For both types of updates, the first technique

81

was implemented and benchmarked against the open-source relational engine SQLite. In

both cases, our algorithms outperformed SQLite updates by orders of magnitude.

8.2 Future Work

This work lies at the foundation of transaction processing, a very important part of any

database, but which could not be tackled without support for updates. Besides this, several

improvements discussed below could be brought to the bulk insertion algorithms proposed:

• We have seen that the path used by the PF and RCF algorithms for representation con-

struction has en enormous impact on the structure and the size of the f-representation

computed. The algorithms produce succinct f-representations if the path considered

follows the topological sorting of the f-tree defining the hidden structure of the relation

to be factorised, but often this structure is not known. Developing techniques that

explore the data to be factorised and try to discover such paths could vastly improve

the quality of the representations produced by both algorithms in cases where the

structure of the relation is not known.

• The quality of the representations produced by the PF and RCF algorithms could

be even further improved by considering different local paths for the factorisation of

different fragments of the data, instead of a single global path that is applied to all

these fragments. The idea is to generate these local paths as we advance at lower

recursion levels of the algorithms using techniques similar to those developed to dis-

cover global paths (previously discussed). Notice that even though the representations

computed using this approach can be much more compact, they will also have a more

heterogeneous structure.

• The current version of all three bulk insertion algorithms makes the assumption that

the data we want to factorise fits into main memory, but this is not always the case

in real applications. Extensions of these algorithms that work with larger relations

could be developed. The main idea of such extensions is to repeatedly read from the

disk small fragments of the data, build their factorised representations and write back

to disk the factorisations computed. In order to find factors that occur several times

in a relation and build larger factorisations, the PF and RCF algorithms can store in

main memory only the hash values of the factorised representations stored on disk.

We first compare the hash values and only if they are equal, we load from the disk

and compare the f-representations.

82

Improvements could also be brought to the value modification and deletion technique

that generates a result consisting of a union of f-representations over the same f-tree. One

possible extension of this technique uses the recently introduced d-representations [20].

These are f-representations where further succinctness is brought by explicit sharing of

repeated subexpressions. The size of the result computed by our update technique can be

greatly reduced by sharing subexpressions between the f-representations contained by the

resulting union. Although we investigated this approach as part of the thesis, we decided

to leave it out of its final version. We found that the f-set of an f-representation and a set

of metaconditions (which lies at the basis of the result union of our update technique) has a

very well defined structure which allows a precise characterisation of all the subexpressions

that can be shared between any two distinct f-representations contained by it. The size of

such an f-set is O
(
∑

A∈S mA ·NA

)

, where NA is the number of A-singletons contained by

the f-representation to be updated and mA is the number of root-to-leaf paths of the tree

rooted in A that contain condition attributes of metaconditions in the partition generating

the f-set.

83

Bibliography

[1] Serge Abiteboul, Nicole Bidoit. Non first normal form relations: An algebra allowing

data restructuring. In Journal of Computer and System Sciences, Volume 33 Issue 3,

December 1986, pages 361-393.

[2] Guillaume Bagan, Arnaud Durand, Etienne Grandjean. On acyclic conjunctive queries

and constant delay enumeration. In CSL, 2007, pages 208-222.

[3] Nurzhan Bakibayev, Dan Olteanu, Jakub Závodný. FDB: A query engine for factorised

relational databases. In Very Large Data Bases (PVLDB), 5(12), 2012.

[4] Nurzhan Bakibayev, Dan Olteanu, Jakub Závodný. Demonstration of the FDB Query

Engine for Factorised Databases. In Very Large Data Bases (PVLDB), 5(12), 2012.

[5] Nurzhan Bakibayev, Tomáš Kočiský, Dan Olteanu, Jakub Závodný. Queries with

Order-by Clauses and Aggregates in Factorised Databases. In Very Large Data Bases

(PVLDB), 2013. (to appear)

[6] François Bancilhon, Philippe Richard, Michel Scholl. On line processing of compacted

relations. In Proceedings of the 8th International Conference on Very Large Data Bases,

VLDB ’82, pages 263-269.

[7] R. K. Brayton. Factoring logic functions. In IBM Journal of Research and Development

- Mathematics and computing, Volume 31 Issue 2, March 1987, pages 187-198.

[8] Hubie Chen, Martin Grohe. Constraint satisfaction with succinctly specified relations.

In Journal of Computer and System Sciences, Volume 76 Issue 8, December 2010, pages

847-860.

[9] Claude Delobel. Normalization and hierarchical dependencies in the relational data

model. In ACM Transactions on Database Systems (TODS), Volume 3 Issue 3, Septem-

ber 1978, pages 201-222.

84

[10] Todd J. Green, Grigoris Karvounarakis, Val Tannen. Provenance semirings. In Proceed-

ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, PODS ’07, pages 31-40.

[11] Martin Grohe, Dániel Marx. Constraint solving via fractional edge covers. In Proceed-

ings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA

’06, pages 289-298.

[12] Georg Gottlob. On minimal constraint networks. In Artificial Intelligence, Volume 191-

192, November 2012, pages 42-60.

[13] Georg Gottlob, Nicola Leone, Francesco Scarcello. A comparison of structural CSP

decomposition methods. In Artificial Intelligence, Volume 124 Issue 2, December 2000,

pages 243-282.

[14] G. Jaeschke, H. J. Schek. Remarks on the algebra of non first normal form relations.

In Proceedings of the 1st ACM SIGACT-SIGMOD symposium on Principles of database

systems, PODS ’82, pages 124-138.

[15] William Kent. A simple guide to five normal forms in relational database theory. In

Communications of the ACM, Volume 26 Issue 2, February 1983, pages 120-125.

[16] Akifumi Makinouchi. A consideration on normal form of not-necessarily-normalized

relation in the relational data model. In Proceedings of the third international conference

on Very Large Data Bases, VLDB ’77, Volume 3, pages 447-453.

[17] Dan Olteanu, Christoph Koch, Lyublena Antova. World-set decompositions: Expres-

siveness and efficient algorithms. In Theoretical Computer Science, Volume 403 Issue

2-3, August 2008, pages 265-284.

[18] Dan Olteanu, Jakub Závodný. Factorised Representations of Query Results: Size

Bounds and Readability. In Proceedings of the 15th International Conference on

Database Theory, ICDT ’12, pages 285-298.

[19] Dan Olteanu, Jakub Závodný. On Factorisation of Provenance Polynomials. In 3rd

USENIX Workshop on the Theory and Practice of Provenance, June 2011.

[20] Dan Olteanu, Jakub Závodný. Size Bounds for Factorised Representations of Query

Results. In ACM Transactions on Database Systems, Volume 1, No. 1, Article 1, July

2013.

85

[21] Todd L. Veldhuizen. Leapfrog Triejoin: a worst-case optimal join algorithm. LogicBlox

Technical Report, 2012.

86

