
Learning Decision Trees over
Factorized Joins

Lukas Kobis

University College

University of Oxford

Supervisor: Prof. Dan Olteanu

Final Honour School of Mathematics and Computer Science - Part C

Trinity 2017

Abstract

This thesis investigates the problem of learning decision trees over training datasets

defined as the answers of arbitrary join queries over relational databases.

Existing systems do not integrate the learning and the querying components. We

follow a new trend in research that does combine both. This comes with clear benefits:

The flat join result, that is commonly used by state-of-the-art approaches, can

have a high degree of redundancy. We instead employ a factorization of the join

answer, which avoids redundancy in the representation and, most importantly, in its

computation.

Our approach can learn a decision tree over training data described by a query

Q over a database D in O(|D|fhtw(Q)) whereas any relational approach that relies on

listing the full representation of the join answer takes time O(|D|ρ∗(Q)). Note that

fhtw(Q) ≤ ρ∗(Q) and the gap between the two quantities can be as large as the

number of relations in the query Q. Thus, the speed-up can be exponential.

We show our implementation can be up to 2 orders of magnitude faster than a

state-of-the-art implementation (MADlib) in learning regression trees for the consid-

ered dataset.

Acknowledgements

I would like to thank my supervisor Prof. Dan Olteanu. The weekly consultations

brought the project forward and the discussions were very productive. I also want to

thank Prof. Olteanu’s DPhil student Maximilian-Joel Schleich who attended many

of the meetings and helped me with many implementation specific questions.

I also wish to express my gratitude to Lewis Ruks, for proof-reading my thesis.

Last but not least, I want to thank my family and my girlfriend for their continuous

support and encouragement.

3

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Preliminaries 4
2.1 Decision trees . 4

2.1.1 Example: learning a classification tree 7
2.1.2 Advantages and disadvantages . 9

2.2 Factorized databases . 11
2.2.1 Factorized data representations . 11
2.2.2 Aggregations over factorized representations 14

3 Learning decision trees over factorized joins 18
3.1 Conditioned aggregates . 18
3.2 Caching aggregation results . 18
3.3 Learning regression trees over factorized representations 19
3.4 Learning classification trees over factorized representations 20
3.5 Time complexity . 21

4 Implementation 22
4.1 Reference implementation (MADlib) . 22
4.2 Implementation based on factorized joins 24

4.2.1 Memory allocation and Caching issues 25
4.2.2 Reusing aggregates . 26
4.2.3 Order of iterations . 26
4.2.4 Materializing the factorization vs. recomputing the join 27
4.2.5 An aside: sampling over a stream . 27

5 Experiments 28
5.1 Benchmark Setup . 29
5.2 Implementations . 30
5.3 Dataset . 30
5.4 Accuracy . 31
5.5 Results . 32

5.5.1 Size of the join result vs. size of the factorization 32
5.5.2 Total wall-clock time: MADlib vs. our implementations 32
5.5.3 Total wall-clock time: comparison of our implementations 36

i

5.5.4 Wall-clock time per regression tree level 37
5.5.5 Wall-clock time per node . 38
5.5.6 Exporting the data from PostgreSQL and loading it into R 39

6 Conclusions and future work 41
6.1 Conclusions . 41
6.2 Future work . 42

6.2.1 Improve memory efficiency . 42
6.2.2 Avoid more recomputations . 42
6.2.3 Parallelization and distribution . 42
6.2.4 Adapting f-trees . 43
6.2.5 Verify results using more datasets 43

Bibliography 44

ii

Chapter 1

Introduction

Machine learning has led to advances in many applications over the years: smart-

phones can be controlled using speech-recognition systems [9], computers have reached

nearly human-level accuracy in translation tasks in many languages [30], and self-

driving cars utilising this technology can be spotted on various roads [7]. This is

mainly due to advances in machine learning, brought about by the increased atten-

tion it has received recently, in both academia and industry [26]. However, large

data sets are particularly common, with their size growing day by day. Working with

such data sets is computationally expensive and more efficient methods of extracting

knowledge from data will likely be essential in the near future. [14]

Many machine learning algorithms have been developed; one such method will

be the focus of this thesis, that of decision tree learning. In a comparison between

seven widely-used machine learning methods (using different performance metrics) a

calibrated boosted decision tree algorithm led to the most accurate predictions for

the models overall [3], and hence we chose this as our focus of study here.

The current machine learning algorithms have deficiencies in their handling of the

data presented to them; in the commercial setting data is mainly stored in relational

databases that consist of multiple tables. However, machine learning algorithms

usually require the data to be represented as one large matrix. Thus, the relational

tables are joined before the result gets passed to a conventional algorithm [16], and this

operation is very expensive. Moreover, the join result may contain a large amount of

redundant information that all commonly-used algorithms do not handle specifically.

The benefits of fixing this flaw would be considerable, and thus there is an increasing

interest in both academia and industry to integrate machine learning into database

systems [8, 21, 11].

1

In the following we contribute to the intersection of machine learning and databases.

The classical machine learning problem - decision tree learning - is treated from a

database perspective.

1.1 Related Work

In 2015, a SIGMOD 1 panel was held on the crossover of the disciplines of machine

learning an databases [21], and this is just one example of the increased attention

that this ’intersection’ has gained recently. In particular a number of papers have

been written on the topic [8, 10, 15].

An approach, similar to what we propose in this thesis, detects patterns in the

data matrix that come from the underlying relational structure of the data, with the

aim of speeding up a linear regression learning task [22]. However, this approach does

not fully capture join dependencies, and we aim to fully exploit the dependencies that

result from join queries. We will follow the approach taken by Olteanu et al. that

avoids the computation of the flat join completely and identifies patterns directly

from the join query and the relational tables. Olteanu et al. use factorized databases

to speed up learning regression models. By calculating various aggregates for each

table and combining them appropriately, they are able to avoid materializing the join

[19]. We will apply similar ideas to the task of decision tree learning.

To our knowledge there is no decision tree learning implementation available that

leverages in-database knowledge to improve computation times. Thus, this thesis is

the first in analyzing this problem setting. MADLib [8] is the end-to-end decision

tree learning solution that is the closest to our approach, since it is an in-database

framework that implements this algorithm. All other implementations require the

data to be first exported from a relational database management systems (RDBMS).

This adds additional time and increases the complexity of an end-to-end system.

1.2 Contributions

To sum up, the contributions of this thesis are as follows:

• We survey existing work on learning of decision trees and identify shortcomings;

1”The annual ACM SIGMOD/PODS conference is a leading international forum for database
researchers, practitioners, developers, and users to explore cutting-edge ideas and results, and to
exchange techniques, tools, and experiences.” - http://sigmod2017.org/

2

http://sigmod2017.org/

• we propose a novel approach that fully exploits dependencies in the join result

of relational tables when training decision trees;

• we show experimentally how this approach improves the running time of decision

tree training significantly.

• Finally, we suggest ideas for possible future work and summarize possible ex-

tensions.

1.3 Outline

The thesis is organized as follows:

• In Chapter 2, we introduce the theoretical foundations of decision trees and

factorized databases.

• In Chapter 3, we show how one can use factorized data representations to

speed up the decision tree learning task.

• In Chapter 4, we give a detailed overview of the implementation and various

problems we faced while implementing the previously described algorithms.

• In Chapter 5, we compare our implementation with an existing decision tree

learning algorithm - namely, MADlib 2 [8] - a big data machine learning frame-

work that works directly on an SQL database and is well-known for its efficiency.

Furthermore, we compare it to a regression tree implementation in R 3 [28] - a

programming language that is very popular amongst scientists and is used for

many statistical computing tasks.

2http://madlib.incubator.apache.org/
3https://www.r-project.org/

3

http://madlib.incubator.apache.org/
https://www.r-project.org/

Chapter 2

Preliminaries

2.1 Decision trees

This section gives an introduction to decision trees and how they can be used to solve

machine learning tasks. Decision trees have been applied to many different fields:

filtering noise from Hubble Space Telescope images [24], semiconductor manufacturing

[13], three-dimensional object recognition [27], and drug analysis [5], to name a few.

This section is based on [17, chapter 16.2]. A more detailed survey was published

by Safavian and Landgrebe [23].

Decision trees are a common model for various machine learning tasks, and before

we introduce this, we familiarise the reader with the concept of Machine learning.

Machine learning can be described in the following way: Suppose we have a relation

R = {(x(i)1 , ..., x
(i)
n , y(i)) : 1 ≤ i ≤ m}. Our goal is to define a model that predicts y

given a new unknown sample (x1, ..., xn). Say the schema of R is (X1, ..., Xn, Y). We

call the X1, ..., Xn features and Y is called the target attribute. We write (x(i), y(i))

for (x
(i)
1 , ..., x

(i)
n , y(i)) to denote all features as a vector.

Decision trees partition the input space recursively, and handle every partition

by a different local model, usually a constant function. Every internal node of the

decision tree corresponds to one condition that partitions the input space and every

leaf corresponds to one final partition, to which a local model is applied.

If the domain of the target attribute dom(Y) is finite we call the elements of

dom(Y) labels and the corresponding decision tree is often referred to as a classifi-

cation tree. If dom(Y) is infinite (usually Z or R) we talk about regression trees.

The literature often refers to these as CART models: classification and regression

trees.

4

apartment
size < 50sqm

distance city
centre < 2km

£500

balcony
available

£600 £800

distance city
centre < 3km

£350

parking
available

£400 £500

no

no yes

no yes

yes

no yes

no yes

Figure 2.1: An example regression tree that models apartment rent prices.

A sample regression tree is illustrated in Figure 2.1. It models rent prices in £

of apartments based on various attributes. For example, the apartment size is a

real-valued feature whereas the availability of a balcony is a discrete / binary feature.

For various definitions of optimally it is NP hard to find the optimal partitioning

of the input space [12], but computing a decision tree greedily leads to very good

results in practice.

Decision tree learning algorithms usually differentiate between continuous and

categorical features. In our case continuous features have the domain R and the

domain of a categorical feature is some finite set.

The greedy decision tree learning algorithm chooses, at each step, a feature j∗

that splits the current data in an optimal way, i.e. for the categorical features we

want to find:

(j∗, t∗) = arg min
j,t∈dom(j)

cost({(x, y) ∈ R : xj = t}) + cost({(x, y) : xj 6= t}) (2.1)

and for real-valued features we want to find:

(j∗, t∗) = arg min
j,t∈dom(j)

cost({(x, y) ∈ R : xj ≤ t}) + cost({(x, y) : xj > t}). (2.2)

This split partitions the relation R into a disjoint union of two sub-relations.

This split is represented by a decision tree node. Each node can then be split again

recursively using the same method to build a decision tree.

5

For categorical features we could also start a new branch for each categorical

value. These non-binary trees can be prone to overfitting or data fragmentation (the

problem being that too little data falls in each subtree).

For continuous features it is impossible to compute the arg max over all values

in the domain since dom(j) = R. It is sufficient to let t range over all values that

appear in R, but even so, this can still be too many values to feasibly compute the

arg max. Thus, the arg max is approximated in the continuous case by choosing an

evenly distributed set of possible split points that t ranges over.

There are various termination conditions for this recursive procedure. One can

limit the depth of the tree, the number of leaves, stop when the distribution of a node

is homogeneous enough (for some appropriate measure), or stop when the number of

samples for a node is too small. In practice a selection of these are usually employed.

Finally, we need to choose a cost function. Let us first consider the case of decision

trees, i.e. dom(Y) is finite.

For every node with data R and every possible output y ∈ dom(Y) define

πy =
1

|R|
∑

(,y′)∈R

1(y = y′).

Now we can define the cost function for a node by its misclassification rate, i.e. for

every data point in the leaf we predict y∗ = argmaxyπy. Then the error is given by

M(π) =
1

|R|
∑

(,y)∈R

1(y 6= y∗) = 1− πy∗ .

One can also define the cost function given by the entropy of the distribution π.

H(π) = −
∑
y

πy log(πy).

Another commonly used cost function is the expected error rate, also known as

the Gini index.

GI(π) =
∑
y

πy(1− πy).

πy is the probability that a random sample belongs to category y and 1 − πy is the

probability that it will be misclassified.

There are various other cost functions, but the ones described above are the most

prominent.

If we do not want to predict classes but predict real values we can use regression

trees, i.e. dom(Y) = R. We predict the mean of the label variable in the data for

6

a given node, i.e. y∗ = 1
|R|
∑

(,y)∈R y. Then the cost function is given by the mean

squared error

cost(R) =
1

|R|
∑

(,y)∈R

(y − y∗)2.

A pseudocode description of the decision tree learning algorithm is given in Algo-

rithm 1. Learning regression trees requires some trivial modifications. Note that the

split() function finds an optimal split with respect to one of the cost measures given

above.

Algorithm 1: Learning a decision tree over training data given in relation R.

1 function learn(R)
2 node = new Node

3 node.prediction =

{
arg max(,y)∈R πy for classification trees
1
|R|
∑

(,y)∈R y for regression trees

4 (j∗, t∗, RL, RR) = split(node,R)
5 if not should split(RL, RR) then return node

6 node.condition =

{
λx : xj∗ = t∗ for classification trees

λx : xj∗ < t∗ for regression trees

7 node.left = learn(RL)
8 node.right = learn(RR)
9 return node

This algorithm runs in O(K ·Tsplit) if we compute K nodes and the function split()

takes time Tsplit. Let Fdisc and Fcont be the sets of discrete and continuous features

and suppose we use S split points for continuous features. Then,

Tsplit = O

(
N ·

(∑
f∈Fdisc

| dom(f)|+ S · |Fcont|

))
.

Recall that N is the number of samples in the training dataset.

2.1.1 Example: learning a classification tree

As an example consider the following input relation R:

7

X1 X2 X3 Y
1 1 0 1
1 1 0 1
0 1 1 0
0 1 1 0
1 0 0 0
1 1 1 0
0 0 1 1
1 0 1 0

Table 2.1: Sample input relation R with schema (X1, X2, X3, Y).

Calling learn(R) would create a root node with prediction value 0, since most

tuples have Y -value 0. Next, the algorithm finds the best split condition. In this

example we will use the misclassification rate as the cost function: cost(·) = M(·).
The costs for the first three possible splits are given in Table 2.2. Note that RL

contains all tuples that satisfy the split condition and RR contains all tuples that do

not.

split condition cost(RL) cost(RR) cost(RL) + cost(RR)
X1 = 1 2 / 5 1 / 3 11 / 15
X2 = 1 2 / 5 1 / 3 11 / 15
X3 = 1 1 / 5 1 / 3 8 / 15

Table 2.2: Costs associated to the three possible split conditions.

Thus, we choose X3 = 1 as the split condition of the root node of the decision

tree. We proceed recursively on RL and RR (see Table 2.3).

X1 X2 X3 Y
0 1 1 0
0 1 1 0
1 1 1 0
0 0 1 1
1 0 1 0

X1 X2 X3 Y
1 1 0 1
1 1 0 1
1 0 0 0

Table 2.3: RL and RR after the first split on X3 = 1.

The resulting tree is shown in Figure 2.1.1, and has an error of 0 on the sample

data given in R.

8

X3

X1

0

X2

0 1

X2

1 0

1

1 0

1 0

0

1 0

Figure 2.2: An example classification tree over the features X1, X2, and X3, with
domains {0, 1}. It fits the data given in relation R.

2.1.2 Advantages and disadvantages

Decision trees are very popular models because they can be easily interpreted by look-

ing at the node conditions. Moreover, they can handle both discrete and continuous

features naturally which makes them very attractive for real-world applications.

Deep trees usually over-fit the training data. To avoid this one can prune the tree

accordingly. A complete tree can be pruned after learning, by removing the nodes

that decrease the training error the least. One may use cross-validation to determine

how many nodes one should prune. Other regularization methods have already been

discussed above (limiting the tree height, not splitting nodes with too few examples,

etc).

Moreover, decision trees are very unstable. Small changes in the input data po-

tentially lead to completely different tree structures, as errors at the top of the tree

effect all deeper levels. Thus, decision trees are called high-variance estimators.

The most obvious solution to this problem is to train multiple trees on randomly

chosen subsets of the training data and combine their results. This technique is

called bootstrap aggregating, or bagging. However, this approach can lead to highly-

correlated trees, so that averaging them does not reduce the variance enough. This

may be remedied by selecting both a random subset of the training data and a random

subset of feature variables for each tree. This methos is called random forest learning.

Random forest models work very well on a wide range of tasks [3] and are used in

9

many applications, for example in tracking human bodies in Microsoft’s Kinect for

XBox 360 [4].

Another approach to reduce the model’s variance is called boosting. Boosting

uses a learning algorithm - in our case a CART algorithm - and applies it multiple

times to weighted training data. In the first training round all weights are equal. In

subsequent rounds wrongly classified training samples are assigned higher weights.

Training multiple trees has many advantages; for example the training process

can be parallelized easily. On the other hand, it makes the resulting model less

interpretable. To get an idea of what the model does, one can calculate the relative

importance of each feature by counting the number of times the feature occurs in any

of the tree nodes.

10

2.2 Factorized databases

This section introduces factorized databases and gives an overview of previous work

on the subject. Factorized databases are relational databases that use factorized data

representations to reduce redundancy.

2.2.1 Factorized data representations

A factorized representation of a relation is an algebraic expression consisting of sin-

gletons, unions, and Cartesian products. Formally:

Definition 1. A factorized representation (f-representation) E over a set S of at-

tributes (schema) and domain D is a relational algebra expression of the form

• ∅, the empty relation over schema S

• 〈〉, the relation consisting of the empty tuple, if S = ∅

• 〈A : a〉, the unary relation with a single tuple with value a, if S = {A} and

a ∈ D

• (E), where E is a factorized representation over S

• E1 ∪ ... ∪ En, where each Ei is a factorized representation over S

• E1 × ...×En, where each Ei is a factorized representation over Si and S is the

disjoint union of all Si.

Define the size of E to be the number of singletons (〈A : a〉 or 〈〉) in E.

Factorized representations are used to avoid redundancy in the data representa-

tion.

Example 1. For example, consider the relation R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} It can be represented by a flat representation as

R =(〈A : 0〉 × 〈B : 0〉 × 〈C : 0〉)∪

(〈A : 0〉 × 〈B : 0〉 × 〈C : 1〉)∪

(〈A : 0〉 × 〈B : 1〉 × 〈C : 0〉)∪

(〈A : 0〉 × 〈B : 1〉 × 〈C : 1〉)∪

(〈A : 1〉 × 〈B : 0〉 × 〈C : 0〉)∪

11

(〈A : 1〉 × 〈B : 0〉 × 〈C : 1〉)∪

(〈A : 1〉 × 〈B : 1〉 × 〈C : 0〉)∪

(〈A : 1〉 × 〈B : 1〉 × 〈C : 1〉).

Using the distributivity law of the Cartesian product over unions, the relation can

be represented more succinctly:

R = (〈A : 0〉 ∪ 〈A : 1〉)× (〈B : 0〉 ∪ 〈B : 1〉)× (〈C : 0〉 ∪ 〈C : 1〉).

The introduced relational representation scheme is complete. Every tuple can be

written as a product of singletons and the relation is the union of all tuples. Thus,

there always exists a flat factorization.

The example shows that factorizations are not unique. Ideally, we want to find

the smallest representation of a relation.

If we generalize the example to tuples of length n, we can see that the flat rep-

resentation has size n · 2n, whereas the factorized representation has size 2n. Thus,

factorized representations can be exponentially smaller than the equivalent flat rep-

resentation.

Furthermore, tuples can be enumerated with constant delay from both a factor-

ized and a flat representation [20], which makes them very useful in many database

applications.

Example 2. Taken from [25].

In Figure 2.3(a) one can see a database with three relations (Shops, House, TaxBand)

and their natural equijoin. The relation Shops lists zip codes and opening hours; the

relation House lists zip codes, living areas, and prices; and the relation TaxBand lists

living areas corresponding to their city tax bands.

The join result contains a lot of redundancies. For example, the value z1 occurs

in 24 tuples paired 8 times with each h1, h2, and h3. Each H value is paired with the

same combination of S and P values.

The first three tuples from the join result in Figure 2.3(a) can be expressed by the

following flat relational algebra expression:

〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t1〉

∪ 〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t2〉

∪ 〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t3〉.

12

Shops

Z H

z1 h1
z1 h2
z1 h3
z2 h4

House

Z S P

z1 s1 p1
z1 s1 p2
z1 s2 p3
z2 s2 p4

TaxBand

S T

s1 t1
s1 t2
s1 t3
s2 t4
s2 t5

Shops on House on TaxBand

Z H S P T

z1 h1 s1 p1 t1
z1 h1 s1 p1 t2
z1 h1 s1 p1 t3
z1 h1 s1 p2 t1
z1 h1 s1 p2 t2
z1 h1 s1 p2 t3
z1 h1 s2 p3 t4
z1 h1 s2 p3 t5

· · · · · · · · ·
the above for h2 and h3

· · · · · · · · ·
z2 h4 s2 p4 t4
z2 h4 s2 p4 t5

(a) Relations of database D and natural join Q(D).

Z

H S

T P

S
h
op

s H
ou

se

TaxBand

(b) F-tree F .

∪

z1 z2

× ×

∪ ∪ ∪ ∪

h1 h2 h3 s1 s2 s2 h4

× × ×

∪ ∪ ∪ ∪ ∪

p1 p2 t1 t2 t3 p3 t4 t5 p4

(c) Factorisation F (D).

Figure 2.3: Taken from [25]. (a) Database D with relations House(Zipcode, Sqm,
Price), TaxBand(Sqm, Tax), Shops(Zipcode, Hours), where the attribute names are
abbreviated and the values are not necessarily distinct; (b) Nesting structure (f-tree)
for the natural join of the relations; (c) Factorisation F (D) of the natural join over
F .

By applying the distributivity law of the Cartesian product over union, we get:

〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 ×
(
〈T : t1〉 ∪ 〈T : t2〉 ∪ 〈T : t3〉

)
.

By applying this observation systematically on the whole join result we get the

factorized representation depicted in Figure 2.3(c).

Figure 2.3(b) shows the nesting structure of the factorization tree given in Figure

2.3(c). This tree makes the conditional independence relationships clear. For exam-

ple, given a Z value, the H values are independent of the S values and, given an S

value, the T values are independent of the P values. Such trees are called f-trees,

short for factorization trees [20]. Its nodes are attributes of the schema that satisfy

the path constraint. That is, all attributes of a relation lie on the same root-leaf

path. Also, every attribute is represented by exactly one node. Note that f-trees

are not unique. The linked list of all attributes is always a valid f-tree and leads to

the flat join representation. Thus, the f-tree determines the size of the factorization

significantly.

We can reduce the size of the factorization further by reusing nodes: In Example

2 we can see that every s2 value gets paired with both t4 and t5. Thus, we can cache

the t4 ∪ t5 node and reuse it. This is shown in Figure 2.3(c) by a dashed line. When

using caching the corresponding factorization structures are called d-trees [20]. They

13

can capture conditional independence relations between attributes. Since we do not

focus on caching in this thesis we will mainly consider f-trees.

Good f-trees can be found by looking at cardinality estimates of relations and

their join selectivities [25]. The following theorem bounds the size of the different

representations:

Theorem 1. Given a join query Q, for any database D, the join result Q(D) admits

• a flat representation of size O(|D|ρ∗(Q)) [1]

• a factorization over f-trees O(|D|s(Q)) [20]

• a factorization over d-trees O(|D|fhtw(Q)) [20]

where ρ∗(Q) is the fractional edge cover number, s(Q) is the factorization number,

and fhtw(Q) is the fractional hypertree width of the query Q.

There are classes of databases D for which the obove size bounds are tight and

worst-case optimal join algorithms to compute the join result in these representa-

tions [18, 20].

We know that

1 ≤ fhtw(Q) ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|

holds where |Q| is the number of relations in the query Q [25]. For example, for star

queries we have s(Q) = 1 while ρ∗(Q) = |Q|. We have seen this exponential gap in

the representation size already in Example 1. The gap between fhtw(Q) and s(Q)

can be as large as log(|Q|) [20].

Next we will look at how to perform various aggregation tasks directly on the

factorized representation without materializing the flat join result.

2.2.2 Aggregations over factorized representations

In the later sections we are interested in computing various aggregates, given an f-

representation E over a schema S and some variable T ∈ S (the target). For example,

we want to find the number of elements in the relation represented by E and the sum

of all T -values.

If we consider 〈〉 as an empty union, ∅ as an empty product, and 〈A : a〉 as

〈A : a〉 × 〈〉, then we only have the following two cases to consider when describing

our recursive algorithms on the factorization tree structure:

14

〈A : a〉

×

E1
. . . Ek

∪

E1
. . . Ek

In the follwing we will call these two cases α and β. The count(E) procedure is

given in Algorithm 2.

Algorithm 2: Count aggregation procedure for an f-representation E over an
f-tree.
1 count(E) {
2 switch E {
3 case α {
4 if k = 0 then return 1
5 else return

∏
i count(Ei)

6 }
7 case β {
8 return

∑
i count(Ei)

9 }
10 }
11 }

The procedure sum(E, T) returns the sum of all T values in E. The pseudocode

is given in Algorithm 3.

Algorithm 3: Sum aggregation procedure for an f-representation E over an
f-tree with target T .

1 sum(E, T) {
2 switch E {
3 case α {
4 if k = 0 and A = T then return a
5 else if Ej contains T then return sum(Ej, T)

∏
i 6=j count(Ei)

6 else return 0
7 }
8 case β {
9 return

∑
i sum(Ei, T)

10 }
11 }
12 }

In case α at most one subtree can contain the target variable T , since in the f-tree

every attribute is represented by exactly one node.

15

For the regression tree learning algorithm, we also need to calculate the sum of

the squares for some target attribute T . This can be done similarly, see Algorithm 4.

The only difference to Algorithm 3 is the a2 value in line 4.

Algorithm 4: Sum of squares aggregation procedure for an f-representation E
over an f-tree with target T .

1 sum squares(E, T) {
2 switch E {
3 case α {
4 if k = 0 and A = T then return a2

5 else if Ej contains T then return sum squares(Ej, T)
∏

i 6=j count(Ei)

6 else return 0
7 }
8 case β {
9 return

∑
i sum squares(Ei, T)

10 }
11 }
12 }

For the classification tree learning procedure we need to calculate histograms.

That means given some target attribute T we want to calculate the distribution over

dom(T). The pseudocode is given in Algorithm 5. Addition of two histograms and

multiplication of a histogram and a scalar are defined point-wise. {a→ c} denotes a

histogram that contains c times the value a, and ∅ denotes an empty histogram.

Algorithm 5: Histogram aggregation procedure for an f-representation E over
an f-tree with target T .

1 histogram(E, T) {
2 switch E {
3 case α {
4 if k = 0 and A = T then return {a→ count(E)}
5 else if Ej contains T then
6 return

∏
i 6=j count(Ei) · histogram(Ej, T)

7 else return ∅
8 }
9 case β {

10 return
∑

i histogram(Ei, T)
11 }
12 }
13 }

It is easy to add caching to these algorithms. We can keep a hash map from nodes

to aggregates and return the cached value in case we have computed it already. Due

16

to memory constraints it usually only makes sense to cache values of attributes that

appear very often in the factorized representation.

Furthermore, all the aggregation algorithms run in times scaling linear in the size

of the factorized representation.

17

Chapter 3

Learning decision trees over
factorized joins

We can obviously apply the standard learning algorithms after enumerating all tuples

from the factorized data representation. In this section we show how to avoid this

and learn decision trees over the factorized representation instead, which can be a lot

more efficient.

3.1 Conditioned aggregates

The decision tree learning algorithm requires us to calculate counts restricted to the

tuples of the join result that satisfy a certain condition.

Thus, we have to extend the aggregation functions by an argument for a condition

C. A value 〈A : a〉 satisfies condition C if A is not restricted by C or if a satisfies

all restrictions of A in C. Algorithm 6 shows the updated count(E,C) pseudo code.

The sum(·), sum squares(·), and histogram(·) aggregations work analogously.

In this modification we return 0 immediately if the value 〈A : a〉 does not satisfy

the conditions C. Otherwise, count(·) performs exactly the same operations. Note

that if conditions restrict variables of low depth in the f-tree, then this can prune

large parts of the factorized representation and thus can increase efficiency.

3.2 Caching aggregation results

We are interested in many aggregates over similar conditions. Then, a large part of

their computations will be similar or equal. For example, a count aggregation with

the two conditions C1 = (H = h1) and C2 = (H = h2) will need to calculate the same

counts over the S value subtree (this refers to Example 2).

18

Algorithm 6: Count procedure for an f-representation E over an f-tree re-
stricted by condition C.

1 count(E,C) {
2 switch E {
3 case α {
4 if 〈A : a〉 does not satisfy C then return 0
5 else if k = 0 then return 1
6 else return

∏
i count(Ei)

7 }
8 case β {
9 return

∑
i count(Ei)

10 }
11 }
12 }

To do this, we can keep a hash map that maps the node in the factorization

tree, and a condition restricted to those attributes that appear in the subtree to an

aggregation value. These cached values can then be reused by later aggregations, if

their condition restricted to the attributes in the subtree match one of the conditions

in the hash map.

3.3 Learning regression trees over factorized rep-

resentations

For learning regression trees we use the following cost function (see section 2.1):

cost(R) =
1

|R|
∑

(,y)∈R

(y − y∗)2

where y∗ = 1
|R|
∑

(,y)∈R y is the predicted value for the samples in relation R.

The cost function can be written as

cost(R) =
1

|R|
∑

(,y)∈R

y2 − 2yy∗ + y∗2

=
1

|R|
∑

(,y)∈R

y2 − 2y∗

|R|
∑

(,y)∈R

y + y∗2

=
1

|R|
∑

(,y)∈R

y2 − 2

|R|2

 ∑
(,y)∈R

y

2

+

 1

|R|
∑

(,y)∈R

y

2

19

=

 1

|R|
∑

(,y)∈R

y2

−
 1

|R|
∑

(,y)∈R

y

2

.

We can see that the cost function of a relation R only depends on |R|,
∑

(,y)∈R y,

and
∑

(,y)∈R y
2. These are exactly the aggregates that we looked at in section 2.2.2.

We can compute them efficiently over the factorized representation using the three

algorithms described previously by setting the target attribute T to be the label

attribute Y .

We use Algorithm 1 as the learning procedure. At every step we create a list of

candidate conditions: For every discrete feature j, all conditions are of the form xj = t

for t ∈ dom(j); for every continuous feature j, all conditions are of the form xj < t

for t in the set of possible split points. The split points are computed before running

the learning procedure by sampling data from the continuous features. Next, we

take the conjunction of the condition of the current node, and one possible candidate

condition, and run the aggregation algorithm on the factorized representation. We

do this for all candidate conditions and find the one that minimizes the cost measure

(see equations (2.1) and (2.2)).

3.4 Learning classification trees over factorized rep-

resentations

There are various cost functions that can be used to learn classification trees (see

section 2.1). All of them depend on the quantities

πy =
1

|R|
∑

(,y′)∈R

1(y = y′)

for y ∈ dom(Y). The values
∑

(,y′)∈R 1(y = y′) are the ones that the histogram

aggregation algorithm calculates and |R| =
∑

y

∑
(,y′)∈R 1(y = y′). Thus, we can use

the exact same methods described in the previous section.

Most applications have very few classes that we need to differentiate. Thus, keep-

ing track of the full histogram is not an issue. For problems with many classes we

might want to approximate histograms to decrease the memory usage of the algo-

rithm. This can be done by using ideas from stream processing algorithms [2].

20

3.5 Time complexity

Recall the time complexity of learning decision trees from section 2.1:

O

(
K ·N ·

(∑
f∈Fdisc

| dom(f)|+ S · |Fcont|

))
.

K is the number of nodes we want to compute, N is the number of samples in the

training dataset, Fdisc and Fcont are the sets of discrete and continuous features, and

S is the number of split points for continuous features.

However, in our problem setting the data is given as the result of a query Q over

a relational database D. The factorization with caching has size Θ(|D|fhtw(Q)) (see

Theorem 1, section 2.2.1). Since we can calculate all necessary aggregates in one pass

over the factorized representation our algorithm has the following time complexity:

O

(
K · |D|fhtw(Q) ·

(∑
f∈Fdisc

| dom(f)|+ S · |Fcont|

))
.

The flat join has size Θ(|D|ρ∗(Q)) (see Theorem 1, section 2.2.1). Recall that ρ∗(Q)

is the fractional edge cover number and fhtw(Q) is the fractional hypertree width of

the query Q. Furthermore, fhtw(Q) ≤ ρ∗(Q) and the gap between the two quantaties

can be as large as the number of relations in the query Q. Thus, our algorithm

can be exponentially faster than a conventional decision tree learning algorithm that

operates on the flat join.

21

Chapter 4

Implementation

This section covers the details of the implementation and challenges faced in trans-

forming the theoretical ideas described earlier into functional C++ code.

4.1 Reference implementation (MADlib)

One big issue facing us is that the decision tree learning algorithms are not very

specific; there are many different implementations that can be found online. To make

our results comparable to a state-of-the-art decision tree learning implementation, we

will choose one framework and implement the exact same algorithm.

We will use MADlib 1 [8] for this task - a big data machine learning framework that

works directly on an SQL database and is well-known for its efficiency. Its website

describes it as ”an open-source library for scalable in-database analytics. It provides

data-parallel implementations of mathematical, statistical, graph and machine learn-

ing methods for structured and unstructured data.” Its low-level abstraction layer is

written in C++, and the higher level functions are implemented in Python. It can

run on multiple relational database management systems (RDBMSs), but for this

thesis all experiments have been performed on PostgreSQL.

The framework provides a function for CART learning:

tree_train(

training_table_name,

output_table_name,

id_col_name,

dependent_variable,

list_of_features,

1http://madlib.incubator.apache.org/

22

http://madlib.incubator.apache.org/

list_of_features_to_exclude,

split_criterion,

grouping_cols,

weights,

max_depth,

min_split,

min_bucket,

num_splits,

pruning_params,

surrogate_params,

verbosity

).

The training data needs to be in the table training_table_name and we

need to pass the name of the dependent variable (the target) and a list of features

to the function. Depending on the column type of the target variable the function

chooses whether to train a regression tree or a classification tree. There are many

more options we can pass to the function. The most important ones are:

• max_depth (5): The maximum depth of the tree.

• min_split (2): The minimum number of elements that relation R needs to

have such that we try to split the node further.

• min_bucket (1): The minimum size of relation R for terminal nodes.

• num_splits (100): The number of split points the algorithm uses for contin-

uous features.

The values in parenthesis are the values that have been used for the experiments.

Apart from the explanation of the parameters, there is no further documentation of

how the algorithm works in detail. The detailed implementation has been taken from

MADlib’s GitHub page github.com/apache/incubator-madlib and refers to

version 1.9.1.

To make the results of our implementation comparable to MADlib, we have stayed

as close to the MADlib implementation as possible. Rather simple tasks can have a

complex implementation: As an example Algorithm 7 shows how MADlib calculates

the split points for continuous features.

23

github.com/apache/incubator-madlib

Algorithm 7: Calculating split points for continuous features (MADlib imple-
mentation).

1 n bins = 100
2 sample size = n bins · n bins
3 if sample size < 10000 then sample size = 10000
4 actual sample size = sample size+ 14 +

√
196 + 28 · sample size

5 percentage = actual sample size/n rows
6 run query
SELECT * from training_table_name where random() < percentage

7 sort values by a continuous attribute
8 choose num splits evenly spaced values for this attribute

4.2 Implementation based on factorized joins

The algorithms described earlier have been implemented in C++ to be as performant

as possible. Due to time limitations we have only implemented regression tree learning

for continuous features. In any case, the implementation should be easily adaptable

for classification trees and discrete features also.

The implementation was based on the DFDB system that implements linear re-

gression learning over factorized joins [19].

From a high-level perspective the program does the following: The tables are

read from CSV files from disc, sorted, and then the factorized representation is built

directly by the join algorithm. We use the worst-case optimal (up to log factors) join

algorithm Leapfrog triejoin [29]. The factorized representation then gets passed to

the regression tree learner.

The main issue for learning decision trees is that we need multiples passes over the

data. Linear regression can be solved by computing the aggregates once on the whole

dataset and then running a numerical optimization task on the result [19]. Decision

tree learning requires many aggregations over the same data that are restricted by

different conditions. We can still run multiple aggregations with one pass over the

data, and it turns out that the order in which we run the aggregations (and the way

we batch them together) significantly influences the running time. Furthermore, the

factorized join result can be a very large tree structure, which makes iterating over

it cache unfriendly. One has to find a compromise between keeping the factorization

tree in memory and recomputing the join on the fly.

In the following we describe a few challenges faced when designing such a system.

24

4.2.1 Memory allocation and Caching issues

In our first implementation we allocated many dynamic objects in the aggregation

functions (for example, the recursive algorithms returned triples of numbers). After

profiling the code, it can be seen that the program spends a majority of the running

time allocating memory. Fixing these issues by using global variables for return values

and other necessary data structures improves the performance of the code by up to

10x. Further improvements are possible by using plain C arrays instead of bloated

STL containers.

Since we need to pass multiple times over the factorized representation of the join,

we want to keep this expression in memory. For larger relational databases this can be

a very large tree structure. Because of this it is essential to represent it as compactly

as possible. The nodes of the tree are represented by the following struct:

struct Union {

double* values;

Union** children;

unsigned int numberOfValues;

unsigned short cacheIndex;

}.

Note that one node stores a union node with all its values and for each value the

corresponding product nodes:

∪

v1 . . . vk

× ×

.

That means that children[i][j] points to the union node that is the j-th

child of the product node corresponding to value i. Since the number of product

nodes is determined by the f-tree, we do not need to store this information inside the

node, and a count of the values numberOfValues is sufficient. The additional field

cacheIndex keeps track of the position in the cache where we store aggregates (if

caching for this node is enabled).

Not storing product nodes explicitly improves the memory footprint of the pro-

gram significantly.

25

4.2.2 Reusing aggregates

Another problem facing us is deciding which aggregates we should store for later use.

Reusing aggregates can improve the running time significantly, but it also increases the

memory usage of the program. Finding a good compromise is essential. After various

experiments on large datasets we have decided only to precompute the aggregates

of union nodes without any restrictions by split conditions. When storing multiple

aggregates for different split conditions, the memory limit is reached very quickly for

every node. The operating system then swaps memory, i.e. it uses hard disc space as

memory which slows down the computations more than the time improvements we

may gain.

4.2.3 Order of iterations

When iterating the factorized representation, we can calculate multiple aggregates at

once. Minimizing the number of iterations decreases the running time but calculating

too many aggregates with one pass will make it impossible to keep all aggregates in

the CPU cache. Thus, we have to find a compromise between the two.

At every step we have to calculate, for every leaf of the current regression tree

l1, ..., ln, and for every attribute a1, ..., am, every possible split condition. Say attribute

ai has splits si1, ..., s
i
l. So the list of conditions that we need to calculate aggregates

for is

c(l1) ∧ a1 < s11,..., c(l1) ∧ a1 < s11

...

c(l1) ∧ am < sm1 ,..., c(l1) ∧ am < sm1

(4.1)

for node 1, where c(l1) is the conjunction of conditions from the root node to leaf l1.

The other nodes l2, ..., ln are treated similarly.

We implemented the folowing options:

• One aggregation (one condition) per iteration.

• One aggregation for each node and for each attribute per iteration, i.e. the

aggregates for the conditions in every line in (4.1) are calculated in a single

pass.

• One aggregation for all conditions for each node per iteration, i.e. the aggregates

for all conditions in (4.1) are calculated in a single pass.

26

• All aggregates for a whole new regression tree level are calculates in a single

pass, i.e. the conditions in (4.1) for all leaves l1, ..., ln.

The first and the last option lead to very bad results due to the reasons explained

above. The second option performed depending on the data either better or worse

than option three (see Chapter 5).

4.2.4 Materializing the factorization vs. recomputing the
join

Since iterating over the in-memory representation of the factorized join takes a rather

long time, due to the non-ideal locality of reference, it might make sense not to store

the factorization at all and to compute the aggregates directly while joining the tables.

This would also avoid keeping the factorized representation in memory at all which

is impossible for very large join results.

Both variants are analyzed further in Chapter 5.

4.2.5 An aside: sampling over a stream

Ideally, we want to calculate the splitting points for continuous features while calcu-

lating the join. This boils down to calculating a uniform sample from a stream of

values, i.e. the length is unknown. One could keep all values in memory and then

sample uniformly, but we want to avoid this since the stream can be very long. The

idea is the following: Whenever we get a value v we pair it with a random number

x ∼ U [0, 1] and store (x, v) in a max-heap of size k where k is the size of the sample

we want to generate. When the heap is full and we want to add a new value (x′, v′),

we discard it if x′ is greater than the current maximum in the heap; otherwise we

remove the value with the maximum x-value from the heap and insert (x′, v′). This

way, the heap always contains the k values with lowest x-value. Since the x values

are uniformly distributed, the heap contains a uniform sample of the stream at any

point in time. Processing a heap of length n takes O(n log n) time.

27

Chapter 5

Experiments

We compare our implementation against MADlib, a state-of-the-art in-databse ma-

chine learning framework. MADlib extends PostgreSQL with user defined aggregate

functions (UDAFs) to perform analytics inside the database. Thereby, it avoids the

cost of exporting data outside the database and importing it into a statistical package

like R1 [28]. This means that, like our approach, MADlib is an in-database solution

to data analytics.

In addition, we look at the time it takes to export the data from a PostgreSQL

database and import it into another machine learning framework. This is the usual

machine learning workflow. In our case we load the data into the statistical framework

R.

Our findings can be summarized by the following points:

• Our implementations yield almost identical qualitative results with respect to

the training error.

• The running time of our algorithm is linear in the size of the factorized join

representation.

• We verify this using a dataset that can be scaled according to some scale factor

s such that the factorized representation grows linearly in s, whereas the flat

join result has size O(s3 log s).

• For a moderate scale factor (s = 7) our implementation is 5 times as fast as

MADlib. MADlib times out for larger scale factors, i.e. it takes more than 25

minutes.

1https://www.r-project.org/

28

https://www.r-project.org/

• Deeper levels of regression trees have more nodes, thus our implementation

takes more time. This is not true for MADlib. Thus, MADlib performs better

for very deep trees.

• The time it takes to compute a new node has a very high variance, i.e. some

nodes can be computed very quickly due to pre-aggregated values, whereas

others can take very long. This could be an issue when parallelizing the com-

putations.

• Our implementation offers even more advantages compared to systems that do

not interact with a database directly. We compare our approach with the R

framework. The data needs to be exported from PostgreSQL and then imported

into the R system. For moderate scale factors (s = 7) our implementation has

already learned a full regression tree before the data is ready to be processed

by the R system.

In the following we describe the experiments in more detail and evaluate them

appropriately.

5.1 Benchmark Setup

All experiments have been performed on an Intel(R) Core(TM) i7 2.2GHz/64bit with

16GB 1600MHz DDR3 RAM (MacBook Pro 15-inch, Mid 2015) running macOS

10.12.4. The C++ code has been compiled using Apple LLVM version 8.1.0 with the

following optimization flags:

-Ofast

-mtune=native

-fassociative-math

-freciprocal-math

-fno-signed-zeros

-frename-registers

-fopenmp

We report wall-clock times by running each system five times and then reporting the

minimum. 2

2Minimum vs. average: Suppose the best case running time of the program is T . Any interference
with other programs, process descheduling, etc. adds a positive random error to the measured time:
T + εi. The average time of n runs is then T + 1

n

∑
i εi, whereas the minimum is T +miniεi. Since

29

We run the benchmarks for MADlib with PostgreSQL 9.5.5 and MADLib 1.9.1.

We tuned PostgreSQL for in-memory processing by setting its working memory to

14GB and shared buffers to 128MB, and by turning off parameters that affect perfor-

mance (fsync, synchronous commit, full page writes, bgwriter LRU maxpages). We

verify that it runs in memory by monitoring IO.

We set the following default parameters for MADlib: max depth = 5, min split =

2, min bucket = 1, and num splits = 100.

We use R version 3.3.3.

All of our systems are single threaded.

5.2 Implementations

We compare four implementations:

• Mat-1: Materializing the factorized representation and then calculating aggre-

gates by running one aggregation for each node, and for each attribute, per

iteration.

• Mat-2: Materializing the factorized representation and then calculating aggre-

gates by running one aggregation, for all conditions, and for each node, per

iteration.

• Non-Mat: Not materializing the factorized representation and recomputing

the join for each level of the regression tree.

• MADlib.

We also analyze the time to export the data from PostgreSQL and import it into

another machine learning framework. We use the programming language R for this

purpose. Note that the regression tree learning implementation is different to ours.

However, we can look at the export and import times.

5.3 Dataset

The experiments are run on a artificially generated housing dataset. In the following

the tables and attributes are listed:

miniεi ≤ 1
n

∑
i εi, the minimum yields a better estimate for T . A more elaborate discussion on this

topic can be found at https://mail.python.org/pipermail/python-dev/2016-June/
145011.html.

30

https://mail.python.org/pipermail/python-dev/2016-June/145011.html
https://mail.python.org/pipermail/python-dev/2016-June/145011.html

• House: postcode, livingarea, price, nbbedrooms, nbbathrooms, kitchensize, house,

flat, unknown, garden, parking.

• Shop: postcode, openinghoursshop, pricerangeshop, sainsburys, tesco, ms.

• Institution: postcode, typeeducation, sizeinstitution.

• Restaurant: postcode, openinghoursrest, pricerangerest.

• Demographics: postcode, averagesalary, crimesperyear, unemployment, nbhos-

pitals.

• Transport: postcode, nbbuslines, nbtrainstations, distancecitycentre.

All values are positive numbers and the natural join is a star join on the attribute

postcode. There are 25000 postcodes and a scale factor s determines the number

of records per postcode in each relation: There are s houses and shops per postcode,

log s institutions per postcode, s/2 restaurants per postcode, and one record in Demo-

graphics and Transport per postcode. Thus, the size of the join result is O(s3 log s).

The datasets have been generated for s ∈ {1, ..., 20}.
This set of datasets has been designed to analyze how data redundancy in the

join result is exploited by various algorithms. The larger the scale factor s, the more

redundant data is contained in the join result.

For the implementations that work on the factorizations, we use the most obvious

f-tree that has the attribute postcode as a root and the other attributes of the 6

relations on disjoint root-leaf paths. Caching of factorized representations is disabled.

The task is to compute a depth 5 regression tree using the house price as a target

and all other attributes as features.

5.4 Accuracy

We implemented the very same CART algorithm as MADlib (see section 4.1), but

over factorized joins instead of flat ones.

Thus, all four implementations yield qualitatively very similar results, i.e. the

resulting regression tree has a similar training error. The training error for Mat-1,

Mat-2, and Non-Mat is exactly the same and difference of the training errors between

our implementations and MADlib is not larger than 5%. Since the accuracies of

the implementations are very similar, we only compare the wall-clock times that the

implementations need to compute the regression trees.

31

5.5 Results

5.5.1 Size of the join result vs. size of the factorization

The graph depicted in Figure 5.1 compares the size of the flat join result (number

of tuples times columns) and the size of the factorized representation (in number of

value nodes in the factorization tree). Note that the scale is logarithmic. For s = 18,

the factorized representation is ca. three orders of magnitude smaller than the flat

join.

Even larger is the difference of the time to compute the flat join and the time

taken in computing the factorized representation. For s = 18, it takes almost 17

minutes to write the flat join result to disk (it does not fit in memory) whereas the

factorized representation can be computed ca. 1.3 seconds.

0 5 10 15 20

106

107

108

109

1010

scale factor s

#

number of rows
number of nodes

Figure 5.1: Size of the flat join result (number of tuples times columns) and the size
of the factorized representation (in number of value nodes in the factorization tree)
for s ∈ {1, ..., 20}. The scale is logarithmic. Calculating the flat join timed out for
s = 19 and s = 20.

5.5.2 Total wall-clock time: MADlib vs. our implementa-
tions

Figure 5.2 shows the wall-clock time taken by the four implementations for s ∈
{1, ..., 20}. We can see that for s = 7, MADlib takes almost 20 minutes to complete

the training task. We did not run MADlib on datasets generated by larger s values

for obvious reasons. The s = 20 join result contains 400 million tuples, whereas for

32

s = 7 it only contains about 15 million. Still, the factorized implementations are

faster at processing the s = 20 case than MATlib is at processing the s = 7 case.

The fact that MADlib is faster than our implementations for s ≤ 3 is due to mem-

ory locality issues. MADlib needs to iterate over a list of values once, which is a very

cache-friendly operation, whereas our implementations are building complicated tree

structures that are iterated using pointers. For smaller s values, the data reduncancy

that is exploited by our implementations is not enough to make up for the memory

locality issues.

0 5 10 15 20

0

200

400

600

800

1,000

1,200

scale factor s

w
al

l-
cl

o
ck

ti
m

e
(s

ec
)

Mat-1
Mat-2

Non-Mat
MADlib

Figure 5.2: Wall-clock time plot of the four implementations for s ∈ {1, ..., 20}.

This comes from the fact that the time complexity of the algorithm is linear in

the size of the factorization (up to a log-factor). For the specific f-tree chosen, the

size of the factorization grows linearly in s; in particular there are

25000 · (s · CH + s · CS + log s · CI + s/2 · CR + CD + CT)

value nodes, where Ci are constants. CH is the number of attributes in relation

House, similarly for the other Ci. The factorization is depicted schematically in Figure

5.3.

An example regression tree computed by our software is depicted in Figure 5.4.

The data has been generated randomly, so the result is not sensible in any practical

sense.

33

⋃
postcode

1

×

House (s) Shop (s) Institution (log s) Restaurant (s/2) Demographics (1) Transport (1)

...

Figure 5.3: Schematic diagram of the factorization of the Housing dataset. The
number in parentheses represents the number of values in the next union node.

34

cr
im

es
pe

ry
ea

r <
=

97

av
er

ag
es

al
ar

y
<=

 4
0

ye
s

si
ze

in
st

itu
tio

n
<=

 8
7

no

av
er

ag
es

al
ar

y
<=

 3
5

ye
s

liv
in

ga
re

a
<=

 6
5

no

nb
be

dr
oo

m
s <

=
4

ye
s

liv
in

ga
re

a
<=

 8
3

no

ki
tc

he
ns

iz
e

<=
 3

3

ye
s di

st
an

ce
ci

ty
ce

nt
re

 <
=

93

no

un
em

pl
oy

m
en

t <
=

19ye
s

op
en

in
gh

ou
rs

re
st

 <
=

13

no

nb
ba

th
ro

om
s <

=
8ye

s

liv
in

ga
re

a
<=

 5
6

no

nb
ho

sp
ita

ls
 <

=
13

ye
s

ty
pe

ed
uc

at
io

n
<=

 5

no

50
.9

53
1ye

s

48
.3

04
4

no

45
.9

97
3ye

s

54
.5

66
3

no

52
.4

78
1ye

s

48
.1

63
3

no

49
.4

54
7ye

s

51
.0

19
8

no

49
.2

56

ye
s 37

.8
46

2

no

46
.4

4

ye
s 57

.4
24

1

no

58
.3

33
3

ye
s 80

.9
04

8

no

76
.7

85
7

ye
s

47
.2

5

no

Figure 5.4: An example regression tree computed by Mat-1. This tree was trained
with a maximum depth of 4 to make it fit on one page. All experiments were trained
with maximum depth of 5.

35

5.5.3 Total wall-clock time: comparison of our implementa-
tions

Figure 5.5 shows the same graph without the MADlib times to present the differences

between our implementations in more detail. We can see how the order and the

bundling of the aggregations matters.

For every new node in the regression tree the algorithm needs to calculate three

aggregates for each attribute (26), and for each possible split point (100). Thus,

3 · 26 · 100 = 7800 aggregates are necessary per node.

Mat-1 can benefit a lot from the pre-aggregations; all conditions for one iteration

over the factorized representation only restrict a few attributes. Thus, if a subtree

of the factorization does not contain any of these attributes we can use the pre-

aggregated values. However, Mat-1 needs the most passes over the factorization (26

per regression tree node).

Mat-2 needs to calculate aggregates for conditions dependent on every attribute

in each pass, and so pre-aggregation does not help in this case. Since it aggregates for

the 26 attributes at once, we only need one pass over the factorization per regression

tree node.

Non-Mat computes a whole level of regression tree nodes per pass over the data.

Note that level k has 2k regression tree nodes, counting from k = 0. Thus, it calcu-

lates 7800 · 2k aggregates per pass. Recall that this algorithm does not materialize

the factorized representation. This creates additional overhead for computing the

join whilst calculating the aggregates, but it decreases the memory footprint of the

application significantly. For very large datasets this is the only algorithm that can

be feasibly executed without running out of memory.

Depending on the data and the resulting regression tree, Mat-1 can be faster than

Mat-2 or Mat-2 can be faster than Mat-1 (see Figure 5.5). Non-Mat is never the

fastest solution. However, its running time is very similar to Mat-1 and Mat-2 and it

has the advantage that it uses a lot less memory. Thus, it is the only feasible choice

for large datasets.

36

0 2 4 6 8 10 12 14 16 18 20

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

scale factor s

w
al

l-
cl

o
ck

ti
m

e
(s

ec
)

Mat-1
Mat-2

Non-Mat

Figure 5.5: Running time plot of the three implementations based on factorization
for s ∈ {1, ..., 20}.

5.5.4 Wall-clock time per regression tree level

Figure 5.6 shows the wall-clock time taken to compute each level of the regression

tree for s = 7 (other s-values give the same qualitative results). Again, we compare

37

the four implementations: Mat-1, Mat-2, Non-Mat, and MADlib. One can see that,

even though level 4 contains 16 nodes and level 0 just one node, the time MADlib

takes for each level is approximately constant.

This happend because the flat join result does not fit in memory and has to be

read from disk multiple times. Thus, the iteration over the flat join takes up the

majority of the time and outweighs the aggregation operations.

On the other hand, the time our implementations takes increases for each level.

This means our implementations can be slower than MADlib for very deep trees. In

practice, however, one usually trains shallower trees and builds a model based on

an ensemble of independently trained trees (see section 2.1.2). For boosting based

algorithms one sometimes even uses decision stumps, i.e. decision trees of depth one

[6].

0 1 2 3 4

0

50

100

150

200

250

level

w
al

l-
cl

o
ck

ti
m

e
(s

ec
)

Mat-1
Mat-2

Non-Mat
MADlib

Figure 5.6: Running time of the four implementations for the five levels of the regres-
sion tree for s = 7.

5.5.5 Wall-clock time per node

Another interesting graph is shown in Figure 5.7. It depicts the wall-clock time per

node for different levels of the regression tree, again for s = 7 (other s-values give

qualitatively the same results). This specific graph is the result from the Mat-1

implementation, but the Mat-2 and Non-Mat graphs look very similar. Since every

level of the regression tree contains multiple nodes, we plotted the mean of the wall-

clock times, and the error bars show one standard deviation.

We can see that the times for nodes on the same level can differ significantly. For

example, the computations for a level 4 node can take 1 second or almost 16 seconds.

38

This time depends on the f-tree positions of the attributes that are restricted by the

conditions leading to the node. If all these attributes have a low depth in the f-tree,

the pre-aggreation values can be used to prune a lot of the computation. We only need

to explore a subtree of the factorization if it contains an attribute that is restricted by

any of the conditions. Thus, if we know which attributes might be important for the

regression tree then we can place them at low-depth positions in the f-tree. On the

other hand, if the important attributes are very deep in the f-tree, the performance

of the implementations based on factorization will perform poorly.

1 2 3 4 5

5

10

15

level

w
al

l-
cl

o
ck

ti
m

e
p

er
n
o
d
e

(s
ec

)

Figure 5.7: Running time per node for the five levels of the regression tree. The times
plotted are from the Mat-1 implementation with s = 7. The graph plots the mean of
the times of all nodes for each level, and the error bars show one standard deviation.

5.5.6 Exporting the data from PostgreSQL and loading it
into R

R [28] is a programming language that is very popular amongst scientists and is used

for many statistical computing tasks. It does not work directly on a database. Thus,

we first have to compute the flat join in our relational database, then export the data

to a file, then import the data into R, and finally we can learn the regression tree. For

the learning task we use the package rpart 3. We cannot compare MADlib and our

implementation directly since the learning procedure implemented in R is different

form the other approaches. This section aims to give an overview of the time needed

to export the data from the database and import it into another system.

3https://cran.r-project.org/web/packages/rpart/index.html

39

https://cran.r-project.org/web/packages/rpart/index.html

Figure 5.8 shows the wall-clock time for exporting the data from PostgreSQL,

importing it into R, and learning a regression tree using the rpart package. In com-

parison we plot the total time for learning a decision tree with Mat-1. We can see

that for s = 7 the time to export and import the data already exceeds the time that

Mat-1 needs to learn the full regression tree.

Even though we cannot compare directly the regression tree learning with rpart

and our implementation it is clear that our approach is superior. Before the data is

ready to be processed by the R system, our implementation has already learned a full

regression tree.

2 4 6 8

0

200

400

scale factor s

w
al

l-
cl

o
ck

ti
m

e
(s

ec
)

export
import

learning with R
Mat-1 total

Figure 5.8: Wall-clock time for exporting the data from PostgreSQL, importing it
into R, and learning a regression tree using the rpart package. In comparison we
plot the total time for learning a decision tree with Mat-1. The times are shown for
s ∈ {1, ..., 9}; the rpart package timed out for larger s values.

40

Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis we proposed a new method of learning decision trees over arbitrary joins

of input relations. It outperformed a current state-of-the-art decision tree learning

library (MADlib) that works directly on relational databases, on join results with a

large degree of redundancy. Furthermore, we showed that even exporting the data

from a database and loading it to another system can take more time than learning

a full regression tree using our implementation. The superiority of our approach was

shown theoretically by comparing the complexities of the algorithms and empirically

on an artifically generated dataset for regression trees.

By rewriting the objective function of regression trees, we saw that it is only

necessary to calculate three aggregates for various split conditions. These aggregates

can be computed efficiently over joins by exploiting how these aggregates propagate

over a factorized representation of the join. Similarly, for classification trees.

We then demonstrated three different implementations for learning regression

trees; two of them materialized the factorized representation and kept it in memory

for the multiple aggregations over this structure. They differ in the way aggregates are

batched. These implementations are infeasible for very large datasets due to memory

constraints. The third implementation does not materialize the join result. Instead it

recomputes the join once for every level of the regression tree. This implementation

is slighly slower than the others but it can be applied to arbitrarily large datasets.

The effectiveness of our implementations depends heavily on redundancies in the

join result, and it should be investigated how well this approach works on real-world

datasets. Furthermore, the work only focuses on regression trees. In theory, the

results shown empirically should be observed in classification trees as well. This has

to be analyzed by implementing the algorithms and performing benchmarks.

41

After learning least-squares regression models [19], this is the second machine

learning model that was analyzed to exploit factorized joins. Applying this idea to

other machine learning algorithms appears to be very promising. Moreover, there are

various ways in which one may extend this work, and we shall discuss such methods

briefly in the final section.

6.2 Future work

6.2.1 Improve memory efficiency

There are various ways to decrease the memory footprint of the implementation.

For example, the sum and sum squares aggregates are non-zero only on the paths

from the target attribute to the root in the f-tree. Thus, we only need to store

and propagate count aggregates for all the other nodes. By making sure that the

target attribute has low depth in the f-tree, we can decrease the memory used for

aggregations by factor of almost 3.

Furthermore, we can eliminate certain conditions completely upon calculating

their count to be 0. For example, the condition A < a can restrict the sample such

that all B-values are in the range [0, 10]. Hence, we can eliminate all conditions of

the form B < b for b ≥ 10 in this regression tree branch.

6.2.2 Avoid more recomputations

The current implementation only pre-computes non-restricted aggregates for all union

nodes of the factorization tree. If enough memory is available, one can cache many

more aggregates, especially the ones corresponding to conditions of the first nodes of

the regression tree. Ideally, the implementation would get a maximum memory size

as an input and reuse as many aggregates as possible within the memory constraint.

6.2.3 Parallelization and distribution

One could also extend the implementation to work on multiple CPU cores, and ulti-

mately multiple machines, as the aggregation problem is inherently concurrent; every

subtree of the factorizaed representation can be treated independently. Moreover, in

practice one usually trains an ensemble of trees (see section 2.1.2). Thus, one could

train each in parallel.

Random forests use a different set of attributes for each tree. Hence, using different

f-trees for each regression tree might be sensible.

42

6.2.4 Adapting f-trees

As mentioned previously, the order of the attributes in the f-tree can influence the

running time significantly. In the non-materializing algorithm (Non-Mat) one could

reorder the f-tree before each join computation, depending on the current split con-

ditions of the regression tree. This improvement will have a significant impact on the

execution time, especially if the f-tree has long paths that can easily be reordered

(like the Housing dataset analyzed previously).

6.2.5 Verify results using more datasets

So far we have only looked at the performance of Mat-1, Mat-2, and Non-Mat for

different scale factors of the artificially generated Housing dataset. This experiment

was carried out to highlight a dependence between the running time of our imple-

mentations and the redundancy in the join result.

For more practical results, one should use the algorithm on various real-world

datasets to see what redundancies are appear in their joins.

43

Bibliography

[1] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans

for relational joins. In FOCS, pages 739–748, 2008.

[2] Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm.

Journal of Machine Learning Research, 11(Feb):849–872, 2010.

[3] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of su-

pervised learning algorithms. In Proceedings of the 23rd international conference

on Machine learning, pages 161–168. ACM, 2006.

[4] Antonio Criminisi, Jamie Shotton, Ender Konukoglu, et al. Decision forests:

A unified framework for classification, regression, density estimation, manifold

learning and semi-supervised learning. Foundations and Trends R© in Computer

Graphics and Vision, 7(2–3):81–227, 2012.

[5] Koudou Toussaint Dago, Rémy Luthringer, Régis Lengellé, Gérard Rinaudo, and

Jean-Paul Macher. Statistical decision tree: A tool for studying pharmaco-eeg

effects of cns-active drugs. Neuropsychobiology, 29(2):91–96, 1994.

[6] Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[7] Erico Guizzo. How googles self-driving car works. IEEE Spectrum Online, Oc-

tober, 18, 2011.

[8] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,

Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,

Kun Li, et al. The madlib analytics library: or mad skills, the sql. Proceedings

of the VLDB Endowment, 5(12):1700–1711, 2012.

[9] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

44

Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal Processing Magazine,

29(6):82–97, 2012.

[10] Xiaohua Hu and Nick Cercone. Learning in relational databases: a rough set

approach. Computational intelligence, 11(2):323–338, 1995.

[11] Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish

Tatikonda, and Frederick R Reiss. Resource elasticity for large-scale machine

learning. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, pages 137–152. ACM, 2015.

[12] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees

is np-complete. Information processing letters, 5(1):15–17, 1976.

[13] Keki B Irani, Jie Cheng, Usama M Fayyad, and Zhaogang Qian. Applying

machine learning to semiconductor manufacturing. iEEE Expert, 8(1):41–47,

1993.

[14] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Do-

minic Barton. Big data. The management revolution. Harvard Bus Rev,

90(10):61–67, 2012.

[15] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean

Owen, et al. Mllib: Machine learning in apache spark. Journal of Machine

Learning Research, 17(34):1–7, 2016.

[16] R Menich and N Vasiloglou. The future of logicblox machine learning. LogicBlox

User Days, 2013.

[17] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[18] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal

join algorithms. In PODS, pages 37–48, 2012.

[19] Dan Olteanu and Maximilian Schleich. F: Regression models over factorized

views. Proceedings of the VLDB Endowment, 9(13):1573–1576, 2016.

[20] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of

query results. ACM Transactions on Database Systems (TODS), 40(1):2, 2015.

45

[21] Christopher Ré, Divy Agrawal, Magdalena Balazinska, Michael Cafarella,

Michael Jordan, Tim Kraska, and Raghu Ramakrishnan. Machine learning and

databases: The sound of things to come or a cacophony of hype? In Proceedings

of the 2015 ACM SIGMOD International Conference on Management of Data,

pages 283–284. ACM, 2015.

[22] Steffen Rendle. Scaling factorization machines to relational data. In Proceedings

of the VLDB Endowment, volume 6, pages 337–348. VLDB Endowment, 2013.

[23] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3):660–

674, 1991.

[24] Steven Salzberg, Rupali Chandar, Holland Ford, Sreerama K Murthy, and

Richard White. Decision trees for automated identification of cosmic-ray hits

in hubble space telescope images. Publications of the Astronomical Society of the

Pacific, 107(709):279, 1995.

[25] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression

models over factorized joins. In Proceedings of the 2016 International Conference

on Management of Data, pages 3–18. ACM, 2016.

[26] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[27] Lilly Spirkovska. Three-dimensional object recognition using similar triangles

and decision trees. Pattern Recognition, 26(5):727–732, 1993.

[28] R Core Team. R: A language and environment for statistical computing. r foun-

dation for statistical computing, vienna, austria. 2013, 2014.

[29] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algo-

rithm. arXiv preprint arXiv:1210.0481, 2012.

[30] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.

46

Google’s neural machine translation system: Bridging the gap between human

and machine translation. CoRR, abs/1609.08144, 2016.

47

	Introduction
	Related Work
	Contributions
	Outline

	Preliminaries
	Decision trees
	Example: learning a classification tree
	Advantages and disadvantages

	Factorized databases
	Factorized data representations
	Aggregations over factorized representations

	Learning decision trees over factorized joins
	Conditioned aggregates
	Caching aggregation results
	Learning regression trees over factorized representations
	Learning classification trees over factorized representations
	Time complexity

	Implementation
	Reference implementation (MADlib)
	Implementation based on factorized joins
	Memory allocation and Caching issues
	Reusing aggregates
	Order of iterations
	Materializing the factorization vs. recomputing the join
	An aside: sampling over a stream

	Experiments
	Benchmark Setup
	Implementations
	Dataset
	Accuracy
	Results
	Size of the join result vs. size of the factorization
	Total wall-clock time: MADlib vs. our implementations
	Total wall-clock time: comparison of our implementations
	Wall-clock time per regression tree level
	Wall-clock time per node
	Exporting the data from PostgreSQL and loading it into R

	Conclusions and future work
	Conclusions
	Future work
	Improve memory efficiency
	Avoid more recomputations
	Parallelization and distribution
	Adapting f-trees
	Verify results using more datasets

	Bibliography

