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Abstract

We investigate the problem of building least squares regression models over train-

ing datasets defined by arbitrary join queries on database tables. Our key observation

is that joins entail a high degree of redundancy in both computation and data repre-

sentation, which is not required for the end-to-end solution to learning over joins.

We propose a variant of batch gradient descent called F that can learn the pa-

rameters of a linear regression function in two passes over factorised representations

of the datasets, even though they can be exponentially smaller than the flat rela-

tional datasets. We consider factorisations of asymptotically optimal sizes, which are

governed by well-understood properties of the hypergraph of the join query Q.

Our system F exploits the factorisation structure, an algebraic rewriting of the

regression’s objective function f that decouples the computation of cofactors of model

parameters in f from their convergence, and the commutativity of cofactor computa-

tion with relational union and projection.

Our approach enjoys both theoretical and practical properties. Given a database

D and a join query Q, learning can be done in O(|D|fhtw(Q)) time, which is optimal

for factorised join computation; in contrast, any relational engine can achieve at best

O(|D|ρ∗(Q)), while there are classes of natural queries such as path, star, or hierarchical

queries with the fractional edge cover number ρ∗(Q) as large as the number of rela-

tions in the query and the fractional hypertree width fhtw(Q) one. We experimented

with real-world (MovieLens, LastFM, a large US retailer) and synthetic (house price

market) datasets. We show that F outperforms R, which uses QR decomposition,

and Python StatsModels, which uses Moore-Penrose pseudoinverse, by a factor that

follows the compression ratio brought by the factorisation, which in our experiments

is up to three orders of magnitude.

We further present an optimised version of F, called F*, which is a stand-alone,

end-to-end regression learner that takes any number of relations as input and outputs

a fully learned regression model. F* pushes some of the computations performed by

F into the factorised join algorithm. This leads to further performance improvements.

F* can even take time less than computing the factorised join, which F requires as

input.
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Chapter 1

Introduction

The study of machine learning has received a lot of attention in academia as well as
industry in recent years. This is largely due to the increasing reliance of major web-
companies on machine learning techniques for their operations and projects. Notable
examples are Google Brain, Facebook’s DeepFace, or Amazon’s recommender system.
Machine learning is also prominently used is in retail and commercial analytics, for
which there are three major approaches: descriptive, or backward-looking analytics,
predictive, or forward-looking analytics such as classification and regression, and pre-
scriptive analytics, which are also forward-looking and usually take the output of a
predictive model as input. These commercial analytics models are built on typical
retail data sources, such as weekly sales data, promotions, and product descriptions.

In this dissertation, the focus is on predictive analytics. In a retail setting, a typical
prediction would estimate how much additional demand can be generated for a given
product by a promotion. The goal is to create accurate predictions at a more granular
level, so that it can be possible to do customer-specific promotions and separate out
the impact of actions taken by the retailer (e.g., changing discounts and prices) from
weather and environment [30].

In order to create these kind of models, it is necessary to include a wide range of
data sources in the analytics to ensure that the model does not miss unknown patterns
in the data. These data sources could be for instance: customer reviews, basket data
transactions, competitive promotions and prices, flu trends, loyalty program history,
customer transaction history, social media text related to the retailer products sold,
store attributes such as demographics, weather, or nearby competition. However,
adding more data sources implies that the load of data used for analytics significantly
increases. Since machine learning techniques are computationally expensive to learn,
this quickly leads to scalability issues.

In light of these limitations, it is common to manually partition the dataset into
segments that current state-of-the-art commercial analytics systems can process inde-
pendently [30]. The partitioning of data requires domain-expertise and since there is
no unified approach it can be subjective. In a retail setting, a common approach is to
split the data by markets or product categories. This approach, however, can lower
the accuracy of the model, since it is possible that patterns that are present in the
entire dataset are not accurately represented in the partitions. For example, segment-
ing by product categories means that unusual correlations between products will not
be recognised (such as the well-know example of diapers and beer) and segmenting
by markets implies that patterns in demand behaviour across different geographies
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cannot be leveraged. For this reason, the scalability issues for current state-of-the-art
commercial analytics systems cause severe limitations to the preditive powers of the
machine learning techniques applied.

1.1 Motivation and Challenges

In the commercial setting outlined above, the input data to these systems is usually
relational, which implies that the data sources are stored in different tables. Machine
learning algorithms, however, typically require a single design matrix that contains all
the features that the algorithms learn on. For this reason, it is common practice to first
join the input relations together and then to run analytics on the join output [30]. This
approach is computationally expensive and a major limitation for real-time analytics.

The join also introduces redundant information in the input data for the analytics
system. This additional information is not required for the machine learning algorithm
to make accurate predictions and presents another limitation to the scalability of the
analytics system.

An inspection of a comprehensive list of publicly-available commercial analytics
systems has shown that for learning over joins they all have the inherent limitation of
scanning the large flat join. Following this exploration and discussions with industry
experts [30], three major shortcomings of the current state-of-the-art systems have
been identified: (1) poor integration of analytics and databases, which are tradition-
ally confined to distinct specialised systems in the ever-growing technology stack [3];
(2) poor efficiency already for few data sources; and (3) insufficient accuracy due to
omission of further relevant data sources.

In order to overcome these limitations, there is increasing interest in academia and
industry in building systems that integrate databases and machine learning [40, 2, 23].
The objective is to create a scalable system which at least allows for efficient joining
of many relations and integrating analytics so that it can be run on large join results
from inside the database.

1.2 Contributions

The contribution of this dissertation is a system, called F, that can build linear re-
gression models on training datasets defined by arbitrary join queries on database
relations. F exploits factorised representations of data to avoid redundancy in the
input data. This means that the analytics system can effectively learn over the entire
dataset instead of several partitions.

We extend the benefits of data factorisation to learning regression models,
and show that the system presented in this dissertation only needs at most
two passes over the factorised join to compute the model parameters.

The key observation underlying the proposed system is that the intermediate join
step represents the main bottleneck and it is unnecessarily expensive. It entails a high
degree of redundancy in both computation and data representation, yet this is not
required for the end-to-end solution, whose result is a constant number of real-valued
parameters of the learned model. By computing a factorised join [6] instead of the
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standard flat join, it is possible to reduce data redundancy and improve performance
for both the join and the learning steps.

The factorised joins exploit properties of relational algebra, e.g., the distributivity
of Cartesian product over union, to reduce data and computation redundancy. Intu-
itively, a join of several relations is a union of products of smaller relations and its
factorisation avoids the materialisation of these products whenever possible.

The theoretical and practical gains in both required memory space and time per-
formance for factorised joins are well-understood and can be asymptotically exponen-
tial in the size of the join [36]. Given a database D and a join query Q, F needs
O(|D|fhtw(Q)) time, which is worst-case optimal for computing the factorised join; in
contrast, any relational engine can achieve at best O(|D|ρ∗(Q)) [4, 34, 50]. There are
classes of queries naturally occurring in learning-over-joins scenarios, e.g., path, star,
hierarchical queries, where the fractional edge cover number ρ∗(Q) can be as large as
the number of relations in the query while the fractional hypertree width fhtw(Q) is
one. These theoretical guarantees for factorised joins translates to orders of magnitude
for various datasets reported in experiments [6, 5].

Besides factorisation, F uses an algebraic rewriting of the regression model’s objec-
tive function f that decouples the computation of the parameter cofactors, for which
the dataset needs to be traversed, from the actual optimisation of the parameters.
This separation of cofactor computation and optimisation implies that the process of
optimising the parameters does not need to traverse the data anymore, so that we are
able to learn regression models in only two passes over the factorised data. Cofactor
computation commutes with relational union and projection, which enables further
applications of F. The commutativity with union allows us to compute the parame-
ter cofactors for the entire dataset as the sum of corresponding cofactors for disjoint
partitions, whose union make up the input dataset; this property is desirable for con-
current learning, where we can compute cofactors of partitions on different cores or
machines. The commutativity with projection allows us to compute all cofactors once
and then explore the space of learning functions by only running convergence for a
subset of them; this property is desirable for model selection, whose goal is to find a
subset of features that best predict a test dataset.

Experiments show that for a range of (public and synthetic) datasets, our ap-
proach can scale way beyond two popular open-source statistical software packages:
R [39], which uses QR decomposition [20], dubbed as one of the ten most impor-
tant algorithms of the 20th century[18], and Python StatsModels [49], which uses
Moore-Penrose pseudoinverse to compute closed-form solutions [37]. F needs orders-
of-magnitude less memory and time to compute the parameters of the regression
model with the same accuracy as its competitors. This experimental evidence is in
tune with the theoretical guarantees mentioned above.

F and its worst-case bound is extended to learning linear regression functions
over non-linear basis functions, which enables us to model arbitrarily complex, non-
linear functions. This also includes feature interactions, which are used to understand
relationships amongst features in the regression model.

We propose an optimisation of F, which we call F*. Instead of computing the
factorised join for input relations before learning, F* pushes some of the computations
for learning over the join. This provides a performance speed-up but also restricts the
flexibility of the analytics system.
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Part of the research and experiments that were conducted for this dissertation,
such as the explanation and analysis of F, has been submitted to the 2016 SIGMOD
conference in [15].

1.3 Outline

This chapter has introduced the problem of limited scalability for current state-of-
the-art commercial analytics systems. This problem prohibits the analytics systems
to exploit the potential insight from available data and decreases the accuracy of
the prediction. The remainder of the dissertation presents how we propose to tackle
this scalability problem by exploiting factorised representations of data as well as the
experimental evidence that shows that our approach can outperform current analytics
systems significantly.

Chapter 2 provides an introduction to factorised data representations as well as
linear regression. Section 2.2 also presents different ways to solve linear regression
problems.

Chapter 3 will outline how linear regression models described in Chapter 2 can
be learned in only two passes over factorised joins. The algebraic rewriting of the
regression’s objective function that is used to factor out the parameter cofactors is
described in Section 3.1. Section 3.2 outlines the algorithm to compute the cofactors
and explains how they are used to learn the regression model in two passes over the
factorised data. Section 3.3 presents how the model can be extended to model non-
linear functions. Section 3.4 explains how the regression learner can be optimised
and provides the underlying algorithm for F*. We also outline the strengths and
limitations of F*.

Chapter 4 provides more details on the actual implementation of our proposed
system. This includes details on the implementation of F and F*, the convergence
algorithm used to optimise the proposed system, and more details on how interaction
terms can be implemented.

Chapter 5 describes the datasets that we use for our experiments as well as the
results of the experiments conducted to benchmark the proposed system.

Chapter 6 outlines the related work that addresses the scalability issues of com-
mercial analytics systems as well as similar works in the area of scalable machine
learning.

Chapter 7 concludes this dissertation and provides some areas for future work
that extends the approach presented in this dissertation.

The Appendix contains proofs for prepositions that are stated in Chapter 3, as
well as additional information on the datasets that are presented in Chapter 5.
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Chapter 2

Preliminaries

This chapter describes the basic information about factorised databases and linear
regression that is required to understand the remainder of the dissertation.

Factorised databases are the underlying framework for the join results that are ex-
ploited by the proposed system as input to learning regression models. The databases
will be introduced by example; for a rigorous treatment, please refer to the litera-
ture [6, 5, 36].

Similarly for the introduction of linear regression, we focus on the parts that are
required to understand this dissertation. More information on linear regression models
can be found in [8] or [31].

2.1 Factorised Databases: A Primer

Factorised databases form a representation system for relational databases that ex-
ploits algebraic properties of relations, in particular the distributivity of the Cartesian
product over union, to reduce data and computation redundancy.

To start with a simple example, consider a relation R over schema (A,B) that
consists of a tuple for each combination of values a1, . . . , an and b1, . . . , bn. Assuming
the notation 〈A : a〉 for a singleton relation over schema A and with one tuple with
value a, the relation R can be expressed in relational algebra as

⋃
1≤i,j≤n 〈A : ai〉 ×

〈B : bj〉. A possible factorisation of R is a product of two smaller relations: R =
RA × RB, where RA =

⋃
1≤i≤n 〈A : ai〉 and RB =

⋃
1≤j≤n 〈B : bj〉. This factorisation

can naturally benefit aggregates. To count the tuples in R, we take the product of
the counts of tuples in RA and RB. To sum over all A-values in R, we take the sum
of all A-values in RA and multiply with the count of tuples in RB.

A particular application of this idea is represented by factorised joins [6]: Given
a database D and an equi-join query Q, the result Q(D) exhibits lots of (data and
computation) redundancy that can be reduced by factorisation. Intuitively, a join of
two relations is by definition a union of products of smaller relations: For every join
value, several tuples from one relation can be paired with several tuples from the other
relation. The factorised join avoids the materialisation of these products whenever
possible.

Example 2.1 Figure 2.1(a) depicts a database consisting of three relations along
with their natural join: The relation House records house prices and living areas (in
squared meters) within locations given by zipcodes; TaxBand relates city/state tax
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TaxBand
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s1 t1
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Shops on House on TaxBand

Z H S P T

z1 h1 s1 p1 t1
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z1 h1 s1 p2 t3
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z1 h1 s2 p3 t5

· · · · · · · · ·
the above for h2 and h3

· · · · · · · · ·
z2 h4 s2 p4 t4
z2 h4 s2 p4 t5

(a) Relations of database D and natural join Q(D).

Z

H S

T P

S
h
op

s H
ou

se

TaxBand

(b) F-tree F .

∪

z1 z2

× ×

∪ ∪ ∪ ∪

h1 h2 h3 s1 s2 s2 h4

× × ×

∪ ∪ ∪ ∪ ∪

p1 p2 t1 t2 t3 p3 t4 t5 p4

(c) Factorisation F (D).

Figure 2.1: (a) Database D with relations House(Zipcode, Sqm, Price),
TaxBand(Sqm, Tax), Shops(Zipcode, Hours), where the attribute names are abbrevi-
ated and the values are not necessarily distinct; (b) Nesting structure (f-tree) for the
natural join of the relations; (c) Factorisation F (D) of the natural join over F .

bands with house living areas; Shops list shops with zipcode and opening hours (for
reasons of brevity, we omit further relevant attributes; in our experiments, we consider
a real dataset from a large US retailer that is an extension of this scenario).

The join result exhibits a high degree of redundancy. For instance, the value z1

occurs in 24 tuples, each value h1 to h3 occurs in eight tuples and they are paired with
the same combinations of values for the other attributes. Since z1 is paired in relation
House with p1 to p3 and in relation Shops with h1 to h3, all combinations (indeed,
the Cartesian product) of the former and the latter values occur in the join result.
We can represent this local product symbolically instead of eagerly materialising it.
If we systematically apply this observation, we obtain an equivalent factorised repre-
sentation of the entire join result that is much more compact than the flat, tabular
representation of the join result.

For instance, consider the first three tuples from the join result in Figure 2.1(a)
expressed as a relational algebra expression:

φ = 〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t1〉
∪ 〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t2〉
∪ 〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 × 〈T : t3〉.

By exploiting the distributivity of the Cartesian product over union, the factorisation
of the same three tuples in the join result would be:

φ =〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉 ×
(
〈T : t1〉 ∪ 〈T : t2〉 ∪ 〈T : t3〉

)
.

Figure 2.1(c) shows a factorisation of the entire join result (we dropped the at-
tribute names from singletons as they are clear from context). Each tuple in the join
result is represented once in the factorisation and can be constructed by following
one branch of every union and all branches of a product. To count the number of
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represented tuples, we take the sum (product) of the counts of children for each union
(respectively, product) and count each singleton as one. �

The factorised join in Figure 2.1(c) has the nesting structure depicted in Fig-
ure 2.1(b): It is a union of Z-singletons occurring in both Shops and House relations,
i.e., in their join on Z. For each Z-singleton z, we represent separately the union of
H-singletons paired with z in relation Shops and the union of S-singletons paired with
z in relation House and with T -singletons in TaxBand. In other words, given z, the
H-singletons are independent of the S-singletons and can be stored separately; this is
where the factorisation saves computation and space as it avoids an explicit enumera-
tion of all combinations of H-singletons with S-singletons for a given z. Furthermore,
under each S-singleton, there is a union of T -singletons and a union of P -singletons.

Such nesting structures are called factorisation trees, or f-trees for short. They are
depicted as trees, where the nodes are attributes, cf. Figure 2.1(b). The f-trees satisfy
the path constraint that all attributes of a relation lie along the same root-to-leaf path,
since they are not independent in general [36]. Attributes from different relations are
independent and may lie on different branches, e.g., H is independent of all attributes
but Z. The f-trees represent partial orders of the equi-join conditions in the query
and as such can be derived from the query. In practice, their construction is guided
by cardinality and join selectivity estimates.

The factorisation can be further compacted by caching common subexpressions [36].
Similarly to f-trees, caching can be statically inferred from the join query (or the in-
stance). In our example, a given S-singleton s2 occurs with its union of T -singletons
t4 ∪ t5, regardless of which Z-singletons s2 is paired with. We can therefore represent
this union once and reuse it for every occurrence of s2.

F-trees can lead to factorisations of greatly varying sizes, where the size of a
representation (flat or factorised) is defined as the number of its singletons. Within
the class of factorisations over f-trees, we can find the worst-case optimal ones and
also compute them in worst-case optimal time:

Proposition 2.2 Given a join query Q, for any database D, the join result Q(D)
admits

• a flat representation of size Θ(|D|ρ∗(Q)) [4];

• a factorisation without caching of size Θ(|D|s(Q)) [36];

• a factorisation with caching of size Θ(|D|fhtw(Q)) [36].

There are worst-case optimal join algorithms to compute the join result in each of
the three representations [34, 36].

The measures used in Proposition 2.2 are: the fractional edge cover number ρ∗(Q),
the factorisation number s(Q), and the fractional hypertree width fhtw(Q). We know
that 1 ≤ fhtw(Q) ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|, where |Q| is the size (number of relations)
in query Q [36]. For large classes of join queries, e.g., for hierarchical (including
star) queries, s(Q) = 1 while ρ∗(Q) = |Q|. Moreover, the gap between fhtw(Q)
and s(Q) can be as much as log |Q|; it is log |Q| for path queries where fhtw(Q) = 1.
Clique queries (e.g., triangles) are the pathological cases for which factorisations bring
no asymptotic saving. The fractional hypertree width is fundamental to problem
tractability with applications spanning constraint satisfaction, databases, matrix op-
erations, probabilistic graphical models, and logic [26].
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Example 2.3 We first consider the flat representation of the natural join Q in our
example. A trivial upper bound is the product of the sizes of the input relations, so
O(|D|3) assuming all input relations have size |D|. We can construct a lower bound
that matches the upper bound for a class of databases where the Z and S values
are the same across all tuples and the attributes H, T , and P have as many distinct
values as |D|; in this case, the join is essentially a product of the three sets of values
for H, T , and P . This means that the fractional edge cover number governing the
size of the flat join is three in our example: ρ∗(Q) = 3.

We next consider the factorised join without caching. The above argument for the
lower bound for the flat join would yield a size quadratic in |D|. The factorisation
for the branch Z − H in the f-tree has size at most linear in |D|, since for a given
Z-singleton we list the union of its H-singletons and their overall number is bounded
by the number of singletons in relation Shops. The size of the factorisation for this
branch is independent of the size of the branch Z − S, since the singletons for H
and S are represented independently of each other. The number of singletons for S
and P is bounded by the number of of singletons in relation House. The number of
T -singletons can however be quadratic in |D|: This is the case when we have one
S-singleton paired with |D| T -singletons in TaxBand and with |D| Z-singletons in
House. This means that the factorisation number in our example is two: s(Q) = 2.

We finally consider the factorised join with caching. In contrast to the previous
case, the construction used to attain the quadratic lower bound does not work any-
more: We cache the union of T -singletons for the S-singleton and reuse it under every
Z-singleton. This means that the fractional hypertree width in our example is one:
fhtw(Q) = 1. �

2.2 Linear Regression: A Primer

Linear Regression is one of the central algorithms in the realm of supervised learning.
In a typical linear regression problem, one is given a training dataset of size m that
consists of input-output pairs.

{(y(1), x
(1)
1 , . . . , x(1)

n ), . . . , (y(m), x
(m)
1 , . . . , x(m)

n )}.

Inputs (x
(i)
j ) are commonly referred to as predictors or features; while outputs (y(1))

are known as targets or labels. We also define the features and labels in matrix
notation as follows:

y =


y(1)

y(2)

...
y(m)

 , X =


x

(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

. . .
...

x
(m)
1 x

(m)
2 · · · x

(m)
n


Additionally, we define x(i) to be one feature vector x(i) = (x

(i)
1 , . . . , x

(i)
n ).

In machine learning, the training dataset is also often referred to as the design
matrix for the learning algorithm. If the input data is relational, then the dataset
is computed by taking the join of all input relations. For simplicity, it is assumed
in this dissertation that all features and labels are real numbers. The goal of linear
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Figure 2.2: Example of a simple one-dimensional least squares regression problem.
The goal is to minimise the sum of squared errors (visualised by the blue lines) so
that the model (indicated by the red line) best describes the data provided (red
points). Figure taken from [31].

regression is to learn a set of parameters θ = (θ0, . . . , θn)T so that the linear function

hθ(x) = θ0 + θ1x1 + . . .+ θnxn

accurately predicts the labels for new, unknown features. It is common to include
x0 = 1 in the data so that hθ(x) =

∑n
k=0 θkxk. This is equivalent to adding a column

of ones to the feature matrix X.
For the training dataset provided in Figure 2.1(a), it is natural to use the available

features to predict the price of the house, which implies that the label would be P .
In order to determine how well the model predicts the label, it is common to use

the so-called least squares regression objective function

J(θ) =
1

2

m∑
i=1

(hθ(x
(i))− y(i))2

=
1

2
(Xθ − y)T (Xθ − y) (2.1)

This function measures the error of the model, which is measured by how far the
predictions (hθ(x)) are away from the actual values (y). The goal of the optimisation
procedure is to find the set of parameters that minimises the objective function.

Example 2.4 Figure 2.2 provides a visual representation of the problem that a least
squares regression model aims to solve. The red points in the figure indicate the
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(a) Identity Basis Function
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(b) Polynomial Basis Function

Figure 2.3: Comparison of linear regression problem with two-dimensional inputs
where the features are defined by the identity basis function in (a) and polynomial
basis function with degree d = 2 in (b). Figure taken from [31].

location of the samples or input-output data pairs. The x-axis indicates the one-
dimensional feature x = (1, x1) and the y-axis gives the actual label y for the given
feature x. The red line indicates the model that we are aiming to optimise: hθ(x) =
θ0(1) + θ1(x1). The blue crosses along the red line indicate the prediction of the
model for the given input features. The blue line between the prediction hθ(x) and
the true label y indicate the residual, or error, of the model. The goal of least squares
regression is to minimise the sum of squared errors, which is visualised by finding the
line that minimises the total length of the blue residual lines. �

It can be shown that least squares regression is equivalent to a model that uses
gaussian probability distributions to estimate the noise. This would then be optimised
by finding the parameters that maximise the likelihood of fitting this model to the
given training data.

Although, linear regression is inherently linear with respect to the parameters,
it is possible to model complex, non-linear functions by replacing the input feature
x = (x1, . . . , xn) by a non-linear basis function φ(x) = (φ1(x1), . . . , φn(xn)). Simple
basis functions are the polynomial basis functions, which, for a single feature x, add
the polynomial terms up to a degree d to the feature space. This means that the
polynomial basis function for x has the form: φ(x) = (x, x2, x3, . . . , xd). Increasing d
will make the function, which is predicted by the model, increasingly complex.

Example 2.5 Figure 2.3 gives an example of two-dimensional input data with two
different basis functions: (a) the identity basis function and (b) the polynomial basis
function with degree d = 2. The use of different basis functions results in two different
models, which are visualised by the surface plots in the two images. For the identity
basis function, the model is given by a plane of the form: hθ(x) = θ0 +θ1x1 +θ2x2. For
the polynomial basis function, on the other hand, the model is defined by a quadratic
function of the form: hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x

2
1 + θ4x

2
2. �
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Other common basis functions are the Gaussian Radial or the Sigmoidal Basis
Functions [8]. The former has the form:

φj(x) = exp

{
−(x− µj)2

2s2

}
,

where µ and s are parameters that determine the location and scale of the basis
function. They follow the shape of a Gaussian probability distribution but they do
not necessarily have a probabilistic interpretation.

The Sigmoidal Basis Function is defined as:

φj(x) = σ

(
(x− µj)

s

)
,

where σ(a) = 1
1+e−a

is the sigmoid function. All of these functions add non-linearity
to the model so that arbitrarily complex functions can be approximated.

Although basis functions can be used to model increasingly complex functions,
they have to be applied with caution. If the model is too complex it leads to overfit-
ting, where the model perfectly fits the training data but does not resemble the true
underlying function. As a result the model would have poor performance when it is
tested on new data after training.

In addition to adding more complexity to the model, basis functions can also be
used to understand more about the features in a model. In vanilla linear regression,
a feature is used to predict the value of the label. If several features are provided,
then we predict the label based on the weighted sum of these features. This assumes
that the features are mutually independent, which is a strong assumption to make. It
could be possible that the prediction is not affect by the addition of the features but
rather by the interaction of the features. In order to capture this information, it is
common to include interaction terms whenever two features are not independent [24].

Interaction terms are constructed from the original feature space. If a model
contains two features x1 and x2 then the linear model would be of the following form:
hθ(x) = θ0 + θ1x1 + θ2x2. When the features are not independent, however, the
interaction between features x1 and x2 is modelled by the product of the features:

φ(xi, xj) = xi · xj.

This would result in the following model:

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x1x2

Interaction terms change the interpretation of the parameter. In standard linear
regression, the parameter of a feature shows how much the prediction would change
if the value of one feature would increase by one unit, we call this the effect of the
feature. The inclusion of the interaction term implies that the the effect of one feature
is conditionally dependent on the other feature. This can be shown by rewriting the
model from above as follows:

hθ(x) = θ0 + θ1x1 + (θ2 + θ3x1)x2.

11



The parameter of x2 is given by θ2 + θ3x1, which implies that a unit increase in the
value of x1 changes the effect that x2 has on the prediction by θ3.

If several features in the model are not mutually independent, then pairwise inter-
action terms are added for each interaction effect. In order to ensure that the model
can be interpreted it is necessary that the features that go into an interaction term
are also individually included in the model.

2.2.1 Solving Least Squares Regression Problems

By differentiating the objective function, it is possible to find the closed form solution
to the least squares regression problem. This is also known as the ordinary least
squares solution.

θ = (XT X)−1 XT y

This approach has the advantage that the parameters of the model are calculated ex-
actly. On the other hand, it is computationally expensive because it requires the com-
putation of the inverse of the design matrix which takes O(m3) time. For this reason,
it is now common practice to use optimisations that reduce the computational cost
of this closed-form solution. One such approach is using the QR-decomposition [20]
to avoid calculating the inverse of the complete design matrix. We will give a short
introduction to QR decomposition, for a more in-depth analysis please refer to the
literature [47, 31, 48].

The QR decomposition can be used to express a m × n matrix A as a product
of one m ×m orthogonal matrix Q and one n × n upper triangular matrix R. For
simplicity we will assume that A is full rank, if this is not the case the algorithm
requires a slight modification, for details please refer to [47].

The decomposition into Q and R is beneficial because orthogonal matrices have
the property that QTQ = Im. This property also implies that the inverse Q−1 is
identical to the transpose QT .

The underlying procedure to find the QR decomposition relies on an orthogonalisa-
tion algorithm, called Gram-Schmidt procedure [48], which orthogonalises a sequence
of vectors by subtracting the projection of the previously orthogonalised vectors from
each vector. The orthogonalised vectors are then normalised to have normal one. This
procedure creates the orthnormal vectors qi, which form the columns of the Q ma-
trix from the QR decomposition. The additional matrix R connects the orthonormal
columns in Q to the original matrix A.

For least squares regression problems, the QR decomposition is applied to decom-
pose the design matrix X and to exploit the properties of orthogonal matrices to
compute the closed form solution in a more cost efficient way. We now show how the
decomposition helps to compute the solution to the least squares problem:

Using the QR decomposition, let X = QR, where Q is orthonormal and R is
upper triangular. Given that for an orthonormal matrix QTQ = Im, we can rewrite
(XTX)−1 as follows:

(XTX)−1 = (RTQTQR)−1 = (RTR)−1 = R−1R−T

12



Therefore, we can reformulate the ordinary least squares solution as follows:

θ = (XT X)−1 XT y

= R−1R−TRTQy

= R−1Qy

This reformulation is advantageous, because it replaces the expensive computation of
(XTX)−1 by computing the inverse of R, which is computationally inexpensive since
R is an upper triangular matrix.

The QR-decomposition of an m × n matrix can be computed in O(mn2) time.
The QR decomposition is typically the method of choice for solving least squares
regression problems [31].

As an alternative to the closed-form solution, it is possible to approximate the
parameters with iterative optimisation methods. The underlying method that is used
for the proposed system of this dissertation is batch gradient descent [8], which re-
peatedly updates the parameters of hθ in the direction of the gradient to decrease the
error given by J(θ).

∀0 ≤ j ≤ n : θj := θj − α
δ

δθj
J(θ)

:= θj − α
m∑
i=1

(
n∑
k=0

θkx
(i)
k − y

(i))x
(i)
j .

In the above expression, α is called the learning rate, which regulates the size of
the step by which the parameters are updated in the direction of the gradient. The
learning rate has to be chosen with care, because if it is too small, the optimisation
procedure takes too long to converge; if is too large, the algorithm will start to oscillate
around the solution but not converge towards it. For this reason, it is common to
let the learning rate adapt with the number of conversion steps. A popular method
for adaptive learning rates is called AdaGrad [19], which is described in detail in
Section 4.3.

A näıve implementation of the batch gradient descent algorithm would start with
some initial values of parameters θk and perform one pass over the dataset to compute
the value of the gradient, followed by one approximation step for the parameters, and
repeating this process until convergence. Example 2.6 provides a visual representation
of the iterative optimisation process and the effect of the learning rate.

Example 2.6 Figure 2.4 shows the contour plot for an exemplary optimisation prob-
lem with a global minimum at point (1, 1). Assuming the batch gradient descent al-
gorithm starts at point (0, 0), then the red lines show the first 20 optimisations steps
for learning rates α = 0.1 and α = 0.6, in (a) and (b) respectively.

The two plots show the tradeoff that needs to be considered when choosing the
learning rate for optimisation. When the learning rate is too small, the algorithm will
take a long time to converge (as shown in (a)) but if it is too big the algorithm will
take large steps at the beginning and then begin to oscillate around the optimum.
This is shown in (b). �

Batch gradient descent optimisation is not used in practice since it is inefficient
to go over the entire dataset for each iteration. In this dissertation, however, it is
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Figure 2.4: Batch gradient descent steps in an optimisation problem with learning
rate (a) α = 0.1 and (b) α = 0.6. Figure taken from [31].

shown that batch gradient descent can be very competitive when adapted to work on
succinct factorised relations.
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Chapter 3

Regression on Factorised Joins

This chapter presents how the proposed system F benefits from an algebraic rewrit-
ing of the objective function to compute linear regression models in just two passes
over any given factorised join. In Section 3.4, we then introduce an optimised ver-
sion, called F*, which pushes some of the computations performed by F into the
computation of the factorised join.

The bulk of the computation for learning with batch gradient descent is done
during the optimisation of the parameters, which is based on the gradient of the
objective function. Therefore, we consider the following function for our algebraic
rewriting:

∀ 0 ≤ j ≤ n : θj := θj − α
m∑
i=1

(
n∑
k=0

θkx
(i)
k − y

(i))x
(i)
j . (3.1)

In an näıve approach, the gradient is computed at every single iteration, which implies
that the entire dataset is traversed at each convergence step.

The key insights of the proposed system rely on the observation that the batch
gradient descent algorithm has two logically independent computation tasks that are
intertwined in the above expression: the computation of the gradient and the conver-
gence of the parameters.

The gradient expression can be considered a simple sum aggregate over the data.
Let Sj be the sum aggregate for parameter j, which is equivalent to the gradient
for j. The sum aggregate can be simplified without loss of generality by assigning
a predefined parameter θy = −1 to the label y. This means that the label can be
considered as part of the input features:

∀ 0 ≤ j ≤ n : Sj =
m∑
i=1

(
n+1∑
k=0

θkx
(i)
k )x

(i)
j (3.2)

This approach is guided by two main insights, which are treated in more depth in
the next sections.

Our first insight is that for a given parameter θk the sum aggregate Sj reduces to

θk×
∑m

i=1(x
(i)
k x

(i)
j ). We define this rewritten expression as the multiplication between

the parameter θk and the corresponding cofactor for parameter θk and sum aggre-
gate Sj: Cofactor[k, j]. This allows for the following rewriting of the sum aggregate
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from Equation (3.2):

∀0 ≤ j ≤ n : Sj =
n+1∑
k=0

θk × Cofactor[k, j] (3.3)

Since the cofactors remain the same for each convergence iteration, it is possible
to separate the computation of the cofactors from parameter optimisation. This is
crucial for performance as it mitigates the problem of scanning the entire dataset
at each convergence step. The proposed system F computes the cofactors once and
performs parameter convergence directly on the matrix of cofactors, whose size is
independent of the data size m.

Furthermore, the cofactor matrix has desirable properties, which are presented in
Proposition 3.1. The proofs are provided in the Appendix.

Proposition 3.1 Let (Q,D) be a pair of join query Q and database D defining
the training dataset Q(D) with schema/features σ = (A0, . . . , An). Let Cofactor be
the cofactor matrix for learning the parameters θA0 , . . . , θAn of the function fθ =∑n

k=0(θAkxAk) using batch gradient descent.
The cofactor matrix has the following properties:

1. Cofactor is symmetric:

∀ 0 ≤ k, j ≤ n : Cofactor[Ak, Aj] = Cofactor[Aj, Ak].

2. Cofactor computation commutes with union: Assume Q(D1), . . . , Q(Dp) are
training datasets with cofactor matrices Cofactor1, . . . , Cofactorp where D =⋃p
l=1 Dl, then

∀ 0 ≤ k, j ≤ n : Cofactor[Ak, Aj] =

p∑
l=1

Cofactorl[Ak, Aj].

3. Cofactor computation commutes with projection: Given a feature set L ⊆ σ and
the cofactor matrix CofactorL for the training dataset πL(Q(D)), then

∀ 0 ≤ k, j ≤ n such that Ak, Aj ∈ L :

CofactorL[Ak, Aj] = Cofactor[Ak, Aj].

The symmetry property implies that it suffices to only compute the upper half of
the cofactor matrix.

Cofactor computation commutes with union in the sense that the cofactor matrix
for the union of several training datasets is the entry-wise sum of the cofactor matrices
of these training datasets. This commutativity property is key to the efficiency of
our approach, since we can compute partial cofactors locally and add up cofactors
over different partitions of the training dataset. It is also desirable for concurrent
computation, because it implies that cofactors of different partitions can be computed
on different cores or machines.

The commutativity with projection means that the cofactor matrix can be used
to compute any subset of the parameters: All it takes is to ignore from the matrix
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the columns and rows for the parameters that are not considered for the learning
problem. This is beneficial because there can be attributes in the dataset that are
irrelevant for learning but relevant for constructing the join output. Prime examples
are identifiers such as the relation keys supporting the join, e.g., zipcode in the training
dataset in Figure 2.1(a). It is also beneficial for model selection, a key challenge in
machine learning centred around finding the subset of features that best predict a test
dataset. Model selection is a laborious and time-intensive process, since it requires
to learn independently parameters corresponding to subsets of the available features.
By decoupling the cofactor computation from parameter optimisation, it is possible
to first compute the cofactor matrix for all features and then perform convergence on
top of the cofactor matrix for the entire lattice of parameters independently of the
data. Besides choosing the features after cofactor computation, it is also possible to
use different attributes as labels by fixing its model parameters to -1. This implies
that the proposed system allows for learning multiple predictions efficiently.

The two commutativity properties in Proposition 3.1 hold under bag (SQL) se-
mantics in the sense that the relational projection and union operators do not remove
duplicates. This is important, since learning is sensitive to duplicates.

The second insight is that cofactors can be computed in two passes over any
factorised join representing the training dataset, which has the flat join as a special
case:

Proposition 3.2 Let (Q,D, F ) be a triple of a join query Q, database D, and any
f-tree F of Q. Let the training dataset be the factorised join F (D) over the f-tree F
with attributes σ = (A0, . . . , An), and let Cofactor be the cofactor matrix for learning
the parameters θA0 , . . . , θAn of the function fθ =

∑n
k=0(θAkxAk) using batch gradient

descent.
Then, Cofactor can be computed in two passes over the factorised join F (D).

Section 3.2 gives algorithms to compute the cofactor matrix. An immediate im-
plication is that the redundancy in the flat join result is not necessary for learning:

Theorem 3.3 The parameters of any linear function over features from a train-
ing dataset defined by a database D and a join query Q can be learned in time
O(|D|fhtw(Q)).

Theorem 3.3 is a direct corollary of Propositions 2.2 and 3.2. We recall our dis-
cussion in Section 2.1 that within the class of factorised representations with caching
whose nesting structures are defined by joins, this time complexity is essentially worst-
case optimal in the sense that there is no join algorithm that can achieve a lower
worst-case time complexity. To put this result into a broader context, any worst-case
optimal join algorithm that would produce flat relational results, such as NPRR [34]
or LogicBlox’s LeapFrog TrieJoin [50], would need time at least O(|D|ρ∗(Q)) to create
the training dataset, yet the gap between ρ∗(Q) and fhtw(Q) can be as large as the
number of relations in the join query.

The two insights discussed above complement each other; in particular Proposi-
tion 3.1 still holds in the presence of factorised joins. The commutativity with projec-
tion is especially useful in conjunction with factorisation since it does not restrict our
choice of possible f-tree for the factorised join depending on the input features used
for learning. In order to find the best factorisation it may be beneficial to include
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attributes (e.g. join attributes) which are not relevant for learning and can be skipped
over at learning time. Explicitly removing attributes from the factorised join may in
fact lead to larger representations (this contrasts with the flat case). For instance,
if one would eliminate from the factorised join in Figure 2.1(c) all singletons for at-
tributes Z and S, then the remaining attributes H, T , and P would become dependent
on each other (they were independent conditioned on values for Z and S). The only
permissible f-trees would be paths, and the factorised join may be asymptotically as
large as the flat join.

The discussed approach can be extended with any of the non-linear basis functions
that were discussed in Section 2.2. We will provide a detailed description of how basis
functions can be incorporated in F in Section 3.3.

In the next sections, we discuss the properties of the cofactor matrix and then
show how to compute it. The arithmetic expressions defining the cofactors in Equa-
tion (3.3) can be written much more compactly to avoid a great deal of redundancy.
Remarkably, these rewritings are already performed in the factorised join, and, as
shown in Section 3.2, the rewritten cofactors can be calculated with two passes over
the factorised join.

There exist two possible rewritings for calculating the cofactors, which depend on
whether the two features X, Y for Cofactor[X, Y ] come from the same input relation.
The arithmetic rewritings will be explained by means of two examples which outline
the differences between the two cases.

Example 3.4 First, inspect the sum aggregates in Equation (3.2) for the training
dataset TD from Figure 2.1(a). There is one sum aggregate per attribute or feature
column in the dataset. For attribute Z, we obtain:

SZ =(θZz1 + θHh1 + θSs1 + θPp1 + θT t1)z1+

(θZz1 + θHh1 + θSs1 + θPp1 + θT t2)z1+

(θZz1 + θHh1 + θSs1 + θPp1 + θT t3)z1+

. . . (the above block repeated for p2)

(θZz1 + θHh1 + θSs2 + θPp3 + θT t4)z1+

(θZz1 + θHh1 + θSs2 + θPp3 + θT t5)z1+

. . . (all above repeated for h2 and h3)

(θZz2 + θHh4 + θSs2 + θPp4 + θT t4)z2+

(θZz2 + θHh4 + θSs2 + θPp4 + θT t5)z2.

The aggregate SZ can be reformulated using the rewritings
∑n

i=1 x → x · n and∑n
i=1 x · ai → x ·

∑n
i=1 ai:
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SZ = θZ [z1(z1 + · · ·+ z1︸ ︷︷ ︸
|σZ=z1

(TD)|

) + z2(z2 + · · ·+ z2︸ ︷︷ ︸
|σZ=z2

(TD)|

)]+

θH [z1(
3∑
i=1

hi + · · ·+ hi︸ ︷︷ ︸
|σZ=z1,H=hi

(TD)|

) + z2( h4 + · · ·+ h4︸ ︷︷ ︸
|σZ=z2,H=h4

(TD)|

)]+

θS[z1(
2∑
i=1

si + · · ·+ si︸ ︷︷ ︸
|σZ=z1,S=si

(TD)|

) + z2( s2 + · · ·+ s2︸ ︷︷ ︸
|σZ=z2,S=s2

(TD)|

)]+

θP [z1(
3∑
i=1

pi + · · ·+ pi︸ ︷︷ ︸
|σZ=z1,P=pi

(TD)|

) + z2( p4 + · · ·+ p4︸ ︷︷ ︸
|σZ=z2,P=p4

(TD)|

)]+

θT [z1(
5∑
i=1

ti + · · ·+ ti︸ ︷︷ ︸
|σZ=z1,T=ti

(TD)|

) + z2(
5∑
i=4

ti + · · ·+ ti︸ ︷︷ ︸
|σZ=z2,T=ti

(TD)|

)].

We then obtain the following cofactors in the sum SZ :

Cofactor[Z,Z] = z1 · 24z1 + z2 · 2z2

Cofactor[H,Z] = z1 · 8(h1 + h2 + h3) + z2 · 2h4.

Cofactor[S,Z] = z1 · 3(s1 + s2) + z2 · s2.

Cofactor[P,Z] = z1 · 3[3(p1 + p2) + 2p3] + z2 · 2p4.

Cofactor[T, Z] = z1 · 3[2(t1 + t2 + t3) + t4 + t5] + z2 · (t4 + t5). �

This arithmetic factorisation is not arbitrary. It considers the arithmetic expressions
grouped by the join Z-values, as done by the f-tree in Figure 2.1(b) for Z-singletons.
Each cofactor in SZ is expressed as a sum of terms with one term per each join Z-
value z1 and z2. The numerical values occurring in the cofactors represent occurrence
counts, e.g., 24 in ψz = 24z1 states that z1 occurs in 24 tuples in the training dataset,
while 8 in ψh = 8(h1+h2+h3) states that each of h1, h2, and h3 occurs in 8 tuples with
z1. The expressions ψz and ψh represent sums of Z-values and respectively H-values
that occur in the same tuples with z1 and are weighted by their occurrence counts.

The above rewritings are sufficient for cofactors of features θX in SumY , where
X and Y are from the same input relation. They do not, however, capture the full
spectrum of possible computational saving. Moreover, they do not bring asymptotic
savings. In case X and Y are from different input relations, then we can potentially
save more computation.

Example 3.5 Consider now a rewriting of the cofactor of parameter θP in sum ST :

Cofactor[P, T ] = 3[(p1 + p2) · (t1 + t2 + t3)] + 3[p3 · (t4 + t5)]+

p4 · (t4 + t5).

The three terms in the outermost sum correspond to different pairs of join values
for Z and S, namely (z1, s1), (z1, s2), and (z2, s2). This rewriting thus follows the
same join order as the f-tree in Figure 2.1(b). These terms read as follows: Each of
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the P -values p1 and p2 occurs in three tuples with each of the T -values t1 to t3; the
P -value p3 occurs in three tuples with each of the T -values t4 and t5; the P -value p4

occurs in one tuple with each of the T -values t4 and t5. �

The rewritten expression for Cofactor[P, T ] factors out sums, e.g., p1 + p2, using a
rewriting more powerful than those for the sum SZ given in Example 3.4:

r∑
i=1

s∑
j=1

(xi · yj)→ (
r∑
i=1

xi) · (
s∑
j=1

yj)

This rewriting can transform expressions to exponentially smaller equivalent ones.
The above rewritings are already implemented by the factorised join from Fig-

ure 2.1(c). For instance, the sums of values in the cofactors mentioned in Exam-
ples 3.4 and 3.5 can be recovered via unions of their corresponding singletons in the
factorisation. Since Z-singletons are above the singletons for the other attributes,
they are in one-to-many relationships with singletons for the other attributes. This
explains the rewritings in Example 3.4 for the cofactors in sum SZ : Each of z1 and z2

are paired with the weighted sums of all H-values underneath, namely 8(h1 +h2 +h3)
and respectively 2h4. Similar pairings are with the weighted sums of values for each
of the other attribute. Since the singletons for P and T are on different branches in
the f-tree, a Cartesian product of a union of P -singletons and a union of T -singletons
becomes a product of the sums of the corresponding P -values and T -values.

To compute the cofactors, we need to compute the occurrence counts and, based
on them, the weighted sums used in expressing the cofactors. As we discuss in the
next section, this can be done in one pass over the factorisation.

3.1 Rewriting the Parameter Cofactors

3.2 Cofactor Computation over any Factorisation

We compute the cofactors in two passes over the factorised join. Figure 3.1 gives
an algorithm for each of the two computation passes. They recursively traverse the
factorisation and collect counts, schemas, weighted sums, and partial cofactors for
each node in the factorisation. In the sequel, for a factorisation E, we denote by JEK
the relation it represents.

In the first pass, we build the F-layer on top of the factorisation. It records for
each node, or equivalently for the factorisation E rooted at that node: (1) the number
of tuples (Count) in the relation JEK; (2) the schema (Schema) of the relation JEK; and
(3) for each attribute A ∈ Schema(E), the sum (WSum) of all A-values in E weighted
by their occurrence counts in E. The structural patterns matching the node are given
on the leftmost column in Figure 3.1. There are two subtle points. All children of a
union have the same schema, which is also the schema of the union. The Count values
are used to compute occurrence counts as follows. If E is the child of a product E×,
its occurrence count in E× (i.e., the occurrence count of each tuple in JEK) is the
product of the Count values of its siblings. This is correct, since each of the tuples
represented by E is extended in the relation JE×K by each tuple represented by each
of E’s siblings.
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Pattern Algorithm

build-Flayer(Factorization E) compute-cofactor(Factorization E, int multiplicity)
switch E:

〈A : a〉
Count[E] = 1
Schema[E] = {A}
WSum[E,A] = a

Cofactor[A,A] += multiplicity · a2

〈A : a〉
×
E1

build-Flayer(E1)

Count[E] = Count[E1]
Schema[E] = {A} ∪ Schema[E1]
WSum[E,A] = a · Count[E1]
for B ∈ Schema[E1] do
WSum[E,B] = WSum[E1, B]

compute-cofactor(E1,multiplicity)

Cofactor[A,A] += multiplicity · a2 · Count[E1]

for B ∈ Schema[E1] do
Cofactor[A,B] += multiplicity · a ·WSum[E1, B]

∪

E1. . .En

for 1 ≤ i ≤ n do build-Flayer(Ei)

Count[E] =
∑n

i=1 Count[Ei]
Schema[E] = Schema[E1]

for 1 ≤ i ≤ n do
for B ∈ Schema[E] do
WSum[E,B] += WSum[Ei, B]

for 1 ≤ i ≤ n do
compute-cofactor(Ei,multiplicity)

×

E1. . .En

for 1 ≤ i ≤ n do build-Flayer(Ei)

Count[E] = Πn
i=1Count[Ei]

Schema[E] =
⋃n
i=1 Schema[Ei]

for 1 ≤ i ≤ n do
C-i = Count[E]/Count[Ei]
for B ∈ Schema[Ei] do

WSum[E,B] = C-i ·WSum[Ei, B]

C = multiplicity · Count[E]
for 1 ≤ i ≤ n do
C-i = C/Count[Ei]
compute-cofactor(Ei, C-i)

for i < j ≤ n do
C-ij = C-i/Count[Ej ]
for A ∈ Schema[Ei], B ∈ Schema[Ej ] do

Cofactor[A,B] += C-ij ·WSum[Ei, A]·WSum[Ej , B]

Figure 3.1: F-layer and cofactor computation for a factorisation E. Multiplicity
represents the number of possible extensions of tuples in JEK to tuples in the entire
training dataset. Both algorithms use top-down pattern matching on E: the patterns
are in the left column and the corresponding actions are in the other two columns.
The algorithms return after executing the action associated with a matched pattern.

Example 3.6 Figure 3.2 shows the F-layer for the factorisation in Figure 2.1(c). The
numbers in circles are the counts and the expressions in rectangles are the weighted
sums for each attribute at a factorisation node. The counts and weighted sums are
computed bottom-up. �

In the second pass, we incrementally compute the cofactors for all parameters in all
sums. Since the cofactor matrix is commutative (cf. Proposition 3.1), it is sufficient to
only compute the cofactors for A and B, where A occurs before B in the depth-first
left-to-right preorder traversal of the f-tree (and factorisation). Since it commutes
with union, we compute partial cofactors for each descendant node of a union and
then add them up. Initially, all cofactors are 0.

The occurrence count of a factorisation node consists of a component that depends
on the factorisation fragments within the factorisation, as well as an component for
factorisation fragments outside of it. As we descend down the factorisation, we main-
tain at each node ν the multiplicity of its represented tuples, which accounts for the
component of the occurrence count due to factorisation fragments that are outside the
current node ν. The second component of the occurrence count is due to factorisation
fragments within ν and is already captured by the value of Count and the weighted
sums at ν.
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H1 =
∑3
i=1 hi

P1 = p1 + p2 T1 =
∑3
i=1 ti

T2 = 2T1
P2 = 3P1

T4 = T3
P4 = 2P3

P3 = p3

T3 = t4 + t5

T5 = T2 + T4
P5 = P2 + P4

S5 = 6s1 + 2s2

T6 = 3T5
P6 = 3P5

S6 = 3S5

H6= 8H1

P7 = p4

T8 = T3
P8 = 2P7

H2 = h4

T9= T8
P9= P8

S9= 2s2

T10 = T9
P10 = P9

S10 = S9

H10= 2H2

Z11 = 24z1 + 2z2
T11 = T6 + T10
P11 = P6 + P10

S11 = S6 + S10

H11= H6 +H10

Figure 3.2: The F-layer for the factorised relation in Figure 2.1(c) as computed by
the build-Flayer algorithm.

θZ θS θP θT θH θ0

ΣZ 24z2
1 + 2z2

2 z1S6 + z2S10 z1P6 + z2P10 z1T6 + z2T10 z1H6 + z2H10 24z1 + 2z2

ΣS ΣZ/θS 18s2
1 + 6s2

2 + 2s2
2 3s1P2 + 3s2P4 + s2P8 3s1T2 + 3s2T4 + s2T8 S5H1 + S9H2 6s1 + 2s2 + 2s2

ΣP ΣZ/θP ΣS/θP 9p2
1 + 9p2

2 + 6p2
3 + 3p2

4 3P1T1 + 3P3T3 + P7T3 P5H1 + P9H2 p1 + p2 + p3 + p4

ΣT ΣZ/θT ΣS/θT ΣP/θT 6t21 + 6t22 + 6t23 + 4(t24 + t25) T5H1 + T9H2 t1 + t2 + t3 + 2(t4 + t5)
ΣH ΣZ/θH ΣS/θH ΣP/θH ΣT/θH 8h2

1 + 8h2
2 + 8h2

3 + 2h2
4 h1 + h2 + h3 + h4

Σ0 ΣZ/θ0 ΣS/θ0 ΣP/θ0 ΣT/θ0 ΣH/θ0 26

Figure 3.3: Cofactor matrix based on the F-layer from our running example. Once
computed, we may choose the set of features and the label to predict. The parameter
for the label is then fixed to -1.

The update of cofactors at a product node ν is most challenging. For two attributes
A and B from different branches Ei and respectively Ej (i.e., A and B are independent
in the f-tree), we add to Cofactor[A,B] the product of the weighted sums of A at node
Ei and of B at node Ej, and their joint multiplicity, which is the product of the counts
of the remaining siblings. The product of the weighted sums stands for all possible
combinations c of A-values and B-values in the relation represented by ν, whereas
their joint multiplicity stands for the number of possible combinations of c in the
relation represented by the overall factorisation.

Example 3.7 We continue our example and use the F-layer in Figure 3.2 to compute
the matrix of cofactors in Figure 3.3. We traverse the factorisation depth-first left-to-
right. When we encounter the H-singleton leaves, we update Cofactor[H,H]; similarly
for all leaves of an attribute. The product node under s1 has the schema {P, T} and
updates Cofactor[T, P ] with the product of the weighted sums T1 and P1 for T and
respectively P at that node, and of the joint multiplicity 3 of T1 and P1, which is
the count of the other branch of the closest ancestor that is a product node. Further
additions to this cofactor happen when we reach the product nodes under the two s2

nodes. Cofactor[T, Z] is updated twice: when reaching z1 and z2 since Z is above T
in the factorisation, when we add the product of z1 (z2) and of the weighted sum of
T under z1 (respectively z2). The multiplicities are one in both cases. �

If the regression problems also learns an intercept, then it can be represented by
a virtual singleton 〈I : 1〉 on top of the factorisation and by a virtual node I as root
in the f-tree. This would be equivalent to adding a column of ones to the design
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(a) F-tree F with path constraint.
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z1 z2
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∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

h1 h2 h3 p1 p2 t1 t2 t3 h1 h2 h3 p3 t4 t5 p4 h4

sh1 sh2 sh3 sh4 sh5 sh6 sh7

(b) Factorisation F (D) of Qσ(D) over F .

Figure 3.4: Factorised database D from Figure 2.1(a) which enforces the path con-
straint to include the interaction term φk(si, hj) = si·hj, which are shown by singletons
shi in the factorisation.

matrix, which is typically done to learn the intercept. Both the F-layer and cofactor
computation would then work for the intercept as well. Figure 3.3 shows the cofactors
for the intercept (denoted by θ0 in the matrix). In particular, Cofactor[0, 0] is the
number of tuples in the relation represented by the entire factorisation.

At each node ν, both algorithms recurse once for each child of ν and we need
time linear in its schema to build the F-layer and at most quadratic in its schema to
compute cofactors. For the latter, the amortised cost per pair (A,B) of attributes
for which we compute the cofactor is however linear, since the more combinations of
attributes we consider at a product node, the less remains to be considered at other
nodes along the root-to-leaf path in the factorisation.

3.3 Extending F with non-linear basis functions

It is possible to extend the regression learner F with any of the non-linear basis
functions that were discussed in Section 2.2. This implies that F does not only learn
linear models, but can also arbitrary complex functions. The basis functions we have
considered can be grouped in two categories: basis functions over a single feature,
and basis functions over multiple features.

Basis functions over a single feature xk can be supported trivially in any factorisa-
tion, because they are local modifications at the value level which are not dependent
on other attributes. Polynomial terms with degree d, for example, can be included
in the regression model by adding singletons 〈φk : xdk〉 under each singleton xk in the
factorisation.

Basis functions over multiple features, such as feature interactions, on the other
hand, are challenging as they may restrict the factorisation structure. For instance,
the basis function φk(xi, xj) = xi ·xj can only be supported efficiently by f-trees where
the attributes xi and xj are along the same root-to-leaf path as if they were attributes
of a same relation, since we require to compute all possible combinations of values for
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T4 = 3T3
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H7 = 2H6

SH7 = 2SH6

T7 = T3
P7 = 2P7

S5 = 18s1 + 6s2
H5 = H2 +H4

SH5 = SH2 + SH4

T5 = T2 + T4
P5 = P2 + P4

S8 = 2s2
H8 = H7

SH8 = SH7

T8 = T7
P8 = P7

Z9 = 18z1 + 6z2
S9 = S5 + S8

H9 = H5 +H8

SH9 = SH5 + SH8

T9 = T5 + T8
P9 = P5 + P8

Figure 3.5: F-layer for Factorisation F (D) from Figure 3.4(b).

θZ θS θP θT θH θSH θ0

ΣZ 24z21 + 2z22 z1S5 + z2S8 z1P5 + z2P8 z1T5 + z2T8 z1H5 + z2H8 z1SH5 + z2SH8 24z1 + 2z2

ΣS ΣZ/θS 18s21 + 6s22 + 2s22 s1P2 + s2P4+ s1T2 + s2T4+ s1H2 + s2h4 + s2h7 s1SH2 + s2SH4 + s2SH7 18s1 + 6s2 + 6s2
s2P7 s2T7

ΣP ΣZ/θP ΣS/θP 9p21 + 9p22+ 3P1T1 + 3P3T3+ 3P1H1 + 2P3H3 + P6H6 3P1SH1 + 2P3SH3 + P6SH6 9p1 + 9p2 + 6p3 + 2p4
6p23 + 2p24 P6T3

ΣT ΣZ/θT ΣS/θT ΣP /θT 6(t21 + t22 + t23)+ 2T1H1 + T3H3 + T3H6 2T1SH1 + T3SH3 + T3SH6 3(t1 + t2 + t3)
4(t24 + t25) +4(t4 + t5)

ΣH ΣZ/θH ΣS/θH ΣP /θH ΣT /θH 6(h21 + h22 + h23)+ 6(h1sh1 + h2sh2 + h3sh3)+ 6(h1 + h2 + h3)+
2(h21 + h22 + h23) + 2h24 2(h1sh4 + h2sh5 + h3sh6) + 2h4sh7 2(h1 + h2 + h3) + 2h4

ΣSH ΣZ/θSH ΣS/θSH ΣP /θSH ΣT /θSH ΣH/θSH 6(sh21 + sh22 + sh23)+ 6(sh1 + sh2 + sh3)+
2(sh24 + sh25 + sh26) + 2sh27 2(sh4 + sh5 + sh6) + 2sh7

Σ0 ΣZ/θ0 ΣS/θ0 ΣP /θ0 ΣT /θ0 ΣH/θ0 ΣSH/θ0 26

Figure 3.6: Cofactor matrix based on the F-layer from Figure 3.51.

xi and xj. We can enforce this path constraint by enriching the database with one
(not materialised) relation over the schema Rk(xi, xj) and the query Q with a natural
join with Rk. The f-trees for the enriched query will necessarily satisfy the new path
constraint and the factorisation will have singletons for every combination of values
for xi and xj along a same path. We can thus add to the factorisation a singleton
〈φk : φk(xi, xj)〉 under each pair of singletons for xi and xj.

Theorem 3.3 can be rephrased for linear functions with basis functions as follows.
We say that the basis functions φ0, . . . , φb over the sets of features S0, . . . , Sb induce
a relational schema σ = (R0(S0), . . . , Rb(Sb)). Given a join query Q and the above
schema σ, an extension of Q with respect to σ is a join query Qσ = Q on R0 on · · · on Rb.

Theorem 3.8 Let Q be a join query and D a database that define the training dataset
Q(D), and fθ a linear function with basis functions that induce a relational schema
σ. Let Qσ be the extension of Q with respect to σ. Then, the parameters of fθ can be
learned in time O(|D|fhtw(Qσ)).

The proof of Theorem 3.8 is provided in Appendix. By means of an example, we
illustrate how feature interactions can restrict the factorisation and how models with
non-linear basis functions are learned in F.

1For better readability this figure has also been added to the Appendix.
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Example 3.9 In Section 3.2, we use the training dataset presented in Figure 2.1(a)
to show how factorised joins and an algebraic rewriting of the objective function can
be exploited to learn a linear least squares regression model with only two passes over
the factorisation. We will now show how this example can be extended to learn the
parameters for interaction terms as well.

Assuming that we would like to understand the relationship between attributes S
and H, then we would add the interaction term φk(si, hj) = si ·hj to our feature space.
Since S and H are on different paths in the f-tree, it is necessary to add the virtual
relation Rk(s, h) to enforce a path constraint between the two attributes. This will
ensure that attributes S and H are along the same path in the f-tree as well as the
factorisation. Figure 3.4 shows the modified f-tree, and the resulting factorised join,
that accounts for this restriction. The factorisation also includes the singletons shi,
which are the result of adding the interaction term to the feature space. Figure 3.5
and Figure 3.6 show the computation of the F-layer and the cofactor matrix for this
new factorisation. �

3.4 F*: Pushing the F-layer into Factorised Join

Computation

In previous sections, it has been shown that it is possible to learn least squares regres-
sion models for any factorisation by traversing the factorisation twice (once to create
the F-layer and once to compute the cofactor matrix). If the input data, however,
is not given as a factorisation but rather as relational tables, then it is possible to
merge the computation of the factorised join and the F-layer. Consequently, instead
of creating the F-layer over the factorised join, the factorisation itself becomes the
F-layer. This is the underlying framework of F*, an optimised version of F. F* is a
stand-alone, fully integrated end-to-end system that takes any number of relations as
input and outputs a learned parameterised regression model.

Since the computation of the F-layer can be pushed into the computation of the
join, the regression learner only requires one more pass over the resulting factorisation
to compute the cofactor matrix. As the computation for the cofactor matrix remains
the same as described in Section 3.2, we only show how the computation of the F-layer
can be pushed into the factorised join algorithm.

3.4.1 Computing the F-layer in F*

The algorithm that creates the factorisation for this optimised approach is based on
a worst-case optimal multiway sort merge join, similar to the one used in the query
engine FDB [6]. This join algorithm is then modified to incorporate the computations
for the F-layer, which have been outlined in Figure 3.1. The algorithm used to com-
pute the F-layer in F has four components, which are symbolised as the four cases in
the algorithm that match the switch statement. In this section we show how each of
these four cases can be incorporated in the factorised join algorithm.

The key insight for our approach is that the multiway sort merge join algorithm
implemented in FDB recursively creates the nodes in the factorisation. This means
that the creation of the factorisation resembles the recursive structure that was used
to construct the F-layer for F.
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Input: Database D with relations R, FTree T , Query Q
Sort all R according to join order
lowPtr[ ], upP tr[ ]← pointers to first, last tuple of each relation
Call buildExpression(F→root, lowPtr, upPtr)

function: buildExpression(FTreeNode node, lowerBound, upperBound)

A← attribute of node
for Relations R with Attribute A do

lower[R] ← lowerBound[R]
upper[R] ← highest tuple in R with same value for A as lower[R]

EU ← empty summation expression
while @R ∈ D lower[R] = upperBound[R] do
a← value for A in lower[R] in relation R ∈ D : @R′ ∈ D : lower[R′] < lower[R]
if ∀ R ∈ D, lower[R] = a
S ← singleton 〈A : a〉
if node has children {c1 . . . cn}
for 1 ≤ i ≤ n do Ei = buildExpression(ci, lower, upper)
if ∃ 1 ≤ i ≤ n s.t. Ei = ∅ : delete(E1, . . . , En) and continue with join
EX ← E1 × E2 × · · · × En
Count[EX ] = Πn

i=1Count[Ei]
Schema[EX ] =

⋃n
i=1 Schema[Ei]

for 1 ≤ i ≤ n do
C-i = Count[EX ]/Count[Ei]
for B ∈ Schema[Ei] do
WSum[EX , B] = C-i ·WSum[Ei, B]

S ← 〈A : a〉 × EX
Count[S] = Count[EX ]
Schema[S] = {A} ∪ Schema[EX ]
WSum[S,A] = a · Count[EX ]
for B ∈ Schema[EX ] do WSum[S,B] = WSum[EX , B]

else
Count[S] = 1
Schema[S] = {A}
WSum[S,A] = a

EU := EU × S
Count[EU ] += Count[S]
Schema[EU ] = Schema[S]
for B ∈ Schema[S]
WSum[EU , B] += WSum[S,B]

for Relations R with Attribute A and lower[R] = a
lower[R] ← tuple in R after upper[R]
upper[R] ← highest tuple in R with same value for A as lower[R]

if EU has no child : delete(EU ) and return ∅
else return EU

Figure 3.7: Compute F-layer as part of Factorised Join Computation

We give a high level overview of the algorithm that merges the F-layer and join
construction; the complete algorithm is presented in Figure 3.7. The multiway sort
merge join component of the algorithm relies on the f-tree to define the nesting struc-
ture for the join. Each node in the f-tree defines an attribute A and we define 〈A : ai〉
to be all singleton values that satisfy the join condition for all relations with attribute
A.

The f-tree is traversed top down and at each node we create a union factorisation
of the form EU = E1 ∪ . . . ∪ En, where n is the number of singletons that satisfy the
join condition. The structure of E1, . . . , En depends on the whether the given f-tree
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node is a leaf or not. If it is a leaf, then there are no further factorisations to be
added, which means that each Ei = 〈A : ai〉. Otherwise, each Ei has the following
structure: Ei = 〈A : ai〉 × EX , where EX = E ′1 × . . .× E ′m is a product factorisation
for which m is the number of children of the f-tree node and each E ′i is created by a
recursive call for the next attribute in the f-tree.

This join algorithm lends itself well for the F-layer construction, because it allows
for a seamless introduction of the four components of the algorithms from Figure 3.1
that is used for the F-layer construction. We present the connections between the
components of the original F-layer algorithm and the optimised algorithm in the
order in which the factorisation nodes are created in the join algorithm.

The union factorisation EU is originally empty and then it is extended one-by-one
by a factorisation Ei for each singleton 〈A : ai〉. This means that the Count and
WSum of EU are updated each time a factorisation Ei is added to EU by adding the
values for Count and WSum of Ei to the corresponding attributes in EU . The Schema
is the same for all Ei, so that we can set the Schema for EU equal to the schema
of E1. Once all the singletons are created, the algorithm has the same result as the
algorithm shown in case three of the F-layer construction algorithm in Figure 3.1.

The update of the F-layer attributes for the singleton nodes 〈A : ai〉 depends on
the structure of the factorisation Ei. If Ei is of form Ei = 〈A : ai〉, then we update
the attributes as shown in case one of the F-layer algorithm; setting Schema = {A},
Count = 1 and WSum = a. If Ei = 〈A : ai〉 × EX , then the attributes are updated
as specified in case two of the algorithm. This copies the value for Count and WSum
from EX and adds A to Schema and WSum.

The F-layer attributes of the product factorisation EX are updated as shown in
case four in the F-layer construction algorithm. The Count and Schema are set to
the product, respective union, of the Count and Schema for all E ′i. Furthermore, the
WSum is set to the corresponding WSum in E ′i for each attribute in the schema of
EX .

This high level description of the algorithm that computes the F-layer as part
of the factorised join computation shows that the computations are identical to the
F-layer computations outlined in Figure 3.1. For this reason, F* follows the same
procedure as F and, therefore, also achieves the same result.

3.4.2 Strengths and Weaknesses of F*

F* is able to push the computation of the F-layer into the factorised join computa-
tion. This leads to a performance improvement in comparison to F because once the
factorisation is computed the learning process only requires one more pass over the
factorisation to compute the cofactor matrix. The creation of the F-layer on top of
the factorisation, which requires a lot of object creations, has been mitigated.

Furthermore, F* has the advantage that the factorisation is solely used for learning
least squares regression models, which means that the structure of the factorisation
can be optimised to suit this one task. F, on the other hand, is integrated in the
query engine FDB [6], which means that the factorisation that is used by F is used
for a variety of query processing tasks. By scaling down the factorisation and en-
suring that it is optimised for learning, the performance gain of F* can be improved
further. In fact, it can be possible that the entire end-to-end solution is faster than
the computation for the factorised join that is the input to F.
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Although F* can be more performance efficient in comparison to F, it also restricts
the flexibility of the end-to-end regression learner. Whereas F can work on top of any
factorised database regardless how it is computed, F* only works for the specific
setting where learning happens on top of a join of relational data. This lack of
generality for F* is the price to pay for its improved performance over F.

Another limitation is that F* does not allow for an modification of the join output.
For learning regression models, however, it can be beneficial to perform aggregates or
other computations on the join to attain better features. This is explained by means
of an example.

Example 3.10 In retail, it is often desirable to predict the next month’s sales for
a particular region or a collection of stores. Possible features for this model could
be the sales data from previous months, to account for temporal trends, or also the
number of promotions that stores offer in this region during the specified timeframe.

If the data is stored in a relational setting, however, then the raw data is not nec-
essarily suitable to act as a feature for a model. For instance, sales data is commonly
collected each day and for each store individually. In order to attain the monthly
sales data for a region, it is necessary to perform aggregates over this data to sum
over all data entries in the specific timeframe and location.

This is further complicated if aggregates need to be performed over attributes that
are in different relations. Consider the second feature we mentioned: the number of
promotions that the stores in the region offer during the specific timeframe under
consideration. It is likely that the data is stored in a relation where each promotion
is listed for a given store, which is identified by a unique ID. Therefore, in order to
attain the data that is needed for this feature, it is necessary to perform an aggregate
over the data to sum up all the promotions that fit the requirements. It is unlikely,
however, that the store ID gives sufficient information about the location of the store.
Therefore, the promotion relation would first need to be joined with another relation
that would provide the information on where the store is located, so that further
aggregates can be applied.

This exemplary scenario can be supported in FDB and consequently F, but it can
not be done in F*, which presents the inherent limitations of this proposed end-to-end
system. �
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Chapter 4

Implementation

Chapter 3 outlines the general framework of our regression learner F and its opti-
mised version F*. This chapter presents the details of the implementation of the
algorithms, including some optimisations were used to lower the computational cost.
In section 4.3, we present the details for the optimisation algorithm and our implemen-
tation of AdaGrad. The code is provided on the attached CD along with instructions
on how to run it and a sample dataset for an exemplary learning problem. We also
have a private GitHub repository for the team members. If you would like to access
the repository, please contact one of the team members.

4.1 Implementation details for F

Our system F is a factorisation-aware regression learner that is implemented in C++
and fully integrated in the query engine FDB [6]. The input to the system is a
factorised representation of the design matrix, which can be created by joining input
relations with the worst-case optimal multiway sort merge join algorithm that comes
with FDB.

The code for F is in provided in the F folder. The relevant classes can be found
under the directory src/ml. The base class that implements the functionalities of F
is the LinearRegression class. This class encapsulates the Flayer and FlayerNode

classes, which implement the F-layer on top of the input factorisation.
One difference between the training example in Figure 2.1(c) and the concrete

implementation is that there are no explicit singleton nodes in the implementation.
The values for each attribute are stored inside the children nodes of a union. As a
result, the factorisation only consists of unit and product nodes, as well as simple leaf
nodes that store the singleton values when there are no further nodes to be added.
As a result, The cases two and three from the algorithms that compute the F-layer
and cofactor matrix in Figure 3.1 are merged into one single case. This merged case
would be called whenever the root of the factorisation E is a union node.

The F-layer is implemented as an additional layer on top of the factorisation, which
implies that the F-layer has the same structure as the factorisation. Each F-layer node,
which is defined in the FlayerNode class, has a pointer to the corresponding node
in the factorisation and extends the factorisation node with the F-layer attributes:
Count, WSum, and Schema. We store the Count as an integer, Schema as an integer
vector and WSum as an array of doubles.
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The F-layer itself is constructed in the Flayer class, which implements two recur-
rent algorithms: one to create the F-layer nodes and the other to fill the attribute of
the nodes. Contrary to the algorithm presented in Figure 3.1, we decided to sepa-
rate the construction and the populating of the nodes, because the addition of basis
functions can lead to modifications in the F-layer after it has been constructed. In
order to decrease the memory usage as much as possible, the F-layer does not create
nodes that correspond to leaf nodes in the factorisation, because they are not required
for learning. All the necessary information for the algorithms can be stored in the
directly preceding union node or retrieved through the pointer to the corresponding
factorisation node.

The LinearRegression class encapsulates all the functionalities required to learn
the parameters. The constructer is given an input factorisation and a text file that
defines the features and label, including basis functions and interaction terms, that
the model is based on. The constructor has four main components. First, it calls
the Flayer class to create the F-layer based on the factorisation. Then it adds any
additional nodes to the flayer, if there are interaction nodes in the model. Then it will
call the Flayer class again to populate the attributes of the F-layer. Finally, cofactors
are computed and stored in the cofactor matrix. We are able to populate the cofactors
for the intercept on the fly so that no further modifications of the F-layer are required.
Once the cofactor matrix is filled, the optimisation procedure (Section 4.3) proceeds
to learn the parameters of the model.

4.1.1 Implementation of interaction terms in F

In order to add interaction nodes for features X1 and X2 to the model, it is important
to ensure that the features are along the same path in the factorisation. This can
be done by defining the f-tree manually in FDB so that it incorporates the required
path constraint. The factorisation will then be created based on the nesting structure
defined by the f-tree, including the path constraint required for the interaction term.
Without loss of generality, we can assume that X1 is above X2 in the path where the
interaction singletons should be added.

When the path constraints are provided, we add the interaction singletons X1 ·X2

locally below the singletons of feature X2. This can be done by using the nesting
structure of the f-tree to find the union factorisations for X1. Then for every singleton
node 〈X1 : x1〉, we again use the f-tree to find the union factorisations for feature X2

and directly underneath each singleton 〈X2 : x2〉, we add the singletons x1 · x2 to
account for the interaction term.

This means that we do not have to traverse the entire factorisation but rather
add the interaction terms locally. Once the interaction terms have been added in the
factorisation, we can proceed to populate the F-layer attributes Count, Schema, and
WSum.

4.2 Implementation details for F*

F* modifies the join algorithm from FDB, which implies that the system is not di-
rectly integrated in the query engine. Instead, it can be considered as a stand alone
regression learner.
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The code for F* is provided in the f-star folder on the CD. The base class
for this implementation is the LinearRegression class in the src/ml folder. This
class is built on the FtreeBuilder and the FRepOverFtreeBuilder classes, which
respectively create the the f-tree and factorisation that also contains the F-layer.

The underlying algorithm that merges the construction of the F-layer and the
join is presented in Figure 3.7. We outline a few subtle differences in the concrete
implementation of F* to show where it differentiates from the implementations of
FDB and F.

Similar to the F-layer in F it is not necessary to create a node for each leaf singleton
value. Therefore, the join algorithm has been modified to create only one node at
the leaf level to store all the information required for learning. This shows that
factorisation used for learning can be scaled down to better suit the functionalities
for the regression learner and to provide performance improvements.

Another difference in comparison to F is that F* directly populates the attributes
of the F-layer during the construction of the factorisation. It is not clear, however,
how additional nodes, such as the ones computed for interaction terms, can be pushed
into the factorised join algorithm. Therefore, we add these additional nodes after
the F-layer has been constructed and to modify the F-layer attributes (in particular
Schema and WSum) of the preceding nodes in the factorisation accordingly. The Count
attribute will not be affected, because there is only one additional node for this new
feature added to each branch. This means that the addition of the extra node does
not increase the number of tuples in the given factorisation.

The present implementation should be considered as a proof of concept. The
implementation shows that it is in fact possible to push the F-layer into the join
algorithm. Due to time constraints, however, the current system does not optimise the
factorisation specifically for learning tasks. The general structure of the factorisation
is still designed to suit a variety of query processing tasks, which is not necessarily
optimal for learning regression models. For instance, children in a union node are
currently implemented as linked lists, which is beneficial for query processing, but for
learning it may be better to store the children in an array to allow for direct accessing.
Future work will investigate how the structure of this factorisation can be modified
to achieve the best possible performance for regression learning.

4.3 Implementation of learning and convergence

Our regression learner F, and its optimised version F*, use the modified batch gra-
dient descent algorithm from Chapter 3 to optimise the parameters of the model.
Contrary to the standard batch gradient descent algorithm, our implementation does
not traverse the input data during the optimisation procedure, but instead learns
solely based on the cofactor matrix. Each row in the cofactor matrix gives the co-
factors for the sum aggregate of one parameter, which means that the gradient of
the objective function is given by the sum of the product of the parameters and the
corresponding cofactors.

As mentioned in Section 2.2, the learning rate α in gradient descent optimisation
can heavily influence the performance of the algorithm. The learning rate determines
the rate of convergence and, if set correctly, ensures that the algorithm converges
to the solution. If the learning rate is too large, however, it is possible that the
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algorithm will oscillate around the solution, but never reach it. We decided to use
an adaptive learning rate, which dynamically updates the step size for each iteration,
because this reduces the risk of setting a bad learning rate. The procedure we chose is
AdaGrad [19], which is well-known and commonly used for a variety of applications.

AdaGrad dynamically updates the learning rate based on all previous iterations.
This is done by dividing the initial learning rate by the sum of squared gradients of
all previous iterations:

αj,t =
α√∑t
t′=1 g

2
j,t′

where gt′,j is the gradient for parameter j at iteration t′.
The advantage of AdaGrad is that it allocates a different learning to each param-

eter, which makes the convergence procedure much more flexible. It also implies that
the optimisation procedure can pay particular attention on infrequent, but highly pre-
dictive, features, without putting too much weight on frequent but less informative
features. These properties make AdaGrad a well rounded procedure for choosing the
learning rate. It mitigates the problem of predefining a fixed rate each time the algo-
rithm is run on a different learning problem, and makes the optimisation procedure
a lot more robust.

The only hyper-parameter for AdaGrad is α, which defines the step size at the
very first iteration. This parameter has less significance than when the learning rate
is fixed for all iterations, and, therefore, we can safely choose a large step size for the
first iteration. In our implementation, α is set to 1.
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Chapter 5

Experiments

In this section we report on the performance of an end-to-end solution for learning
regression models over joins, which includes: (a) constructing the dataset via joins;
(b) importing the dataset in the learning module; and (c) learning the parameters
of regression functions. We show experimentally that the intermediate step of join
computation is unnecessarily expensive. It entails a high degree of redundancy in
both computation and data representation, yet this is not required for the end-to-end
solution, whose result is a constant number of real-valued parameters. By factorising
the join we reduce data redundancy while improving performance for both the join
and the learning steps. Furthermore, a tight integration of the learning and the join
processing modules eliminates the need for the data import step.

We present an empirical comparison of the proposed regression learner F and two
two open-source state-of-the-art statistical systems: P (Python StatsModels [49]) and
R [39]. These systems are comparable because they all require the materialisation of
the join before running analytics. Contrary to F, R and P do not use an iterative
approach to solve linear regression tasks, which shows that calculating the closed-form
solution is commonly the optimisation method of choice. For R we used the lm (linear
model) function which calculates the solution based on the QR-decomposition [20] (cf.
Section 2.2). For P we used the ols (ordinary least squares) function, which calculates
the ordinary least squares solution using the Moore-Penrose pseudoinverse [37].

We show that for a variety of datasets and learning tasks, F outperforms R and
P by up to three orders of magnitude, while maintaining the accuracy of the other
systems; we verified that the results (i.e., the learned parameters) of the three systems
coincide with high precision. This performance boost is due to the three orthogonal
optimisations used by F: (i) its adaptation to factorised data; (ii) decoupling of the
convergence of function parameters from the computation of their cofactors; and (iii)
shared computation of all cofactors in two passes over the factorised data. We also
provide insights into the relative performance of F’s components: building the F-
layer, cofactor computation, and convergence, with the first component taking the
lion’s share of the time due to object creation.

F* mitigates the object creation and, therefore, presents opportunities to improve
the performance at learning time. An empirical comparison between F and F* shows
the potential performance improvement by pushing the F-layer over the join.

We report wall-clock times representing the average of five runs for each of the
three steps of the end-to-end learning solution, i.e., dataset construction by join mate-
rialisation, dataset import, and learning. For dataset construction, F uses the query
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engine FDB [6] to compute factorised joins. The input for both R and P is a flat re-
lation computed by RDB, which is a lightweight main-memory multi-way sort-merge
join algorithm that has been previously reported [6, 5] to outperform SQLite and
PostgreSQL for the main-memory setting considered here. RDB comes in the same
package with FDB. F has no import requirement as it is tightly integrated with FDB
and works directly on the factorised join computed by FDB. P and R need to load
the flat join result into their memory space, which requires one pass over the data
and construction of an internal representation for the dataset.

In addition to the performance for learning, we report the performance for joins for
reference only and to support the claim that the end-to-end performance of learning
over joins is superior when considering succinct factorised joins. It is not the goal of
this dissertation to propose novel join algorithms.

5.1 Experimental Setup

All experiments were performed on an Intel(R) Core(TM) i7-4770 8core/40GHz/64bit/
32GB with Linux 3.13.0/g++4.8.4 (no compiler optimisation flags were used). All
engines were run on one core and ulimit was set to unlimited.

5.1.1 Datasets and Learning Tasks

We experimented with a real-world dataset, which is used by a large US retailer
for forecasting user demands and sales, and with two public datasets LastFM [12]
and MovieLens [22], cf. Table 5.1. We also used a synthetic dataset modelling the
textbook example on house price market [33]. We also considered learning over the
Delicious [12] and Financial [7] public datasets, though we do not report them here
since they bring no new insights.

The learning task requires to prepare the datasets. Firstly, we only kept features
that represent quantities or Boolean flags over which we can learn and discarded string
features (except if necessary for joins). Secondly, we normalised all number values of
a feature A by mapping them to the [0, 1] range of reals as follows. Let minA and
maxA be the minimum and respectively maximum value in the active domain of A.
Then, a value v for A is normalised to (v −minA)/maxA. Normalisation is essential
so that all features have the same relative weight, e.g., avoiding that large date values
represented in seconds since Jan 1, 1970 are more important than, say, small integer
values representing the number of house bedrooms. It also preserves the cardinality
of the join results from the original datasets.

To build the training dataset for the learning task, we considered in most cases
the natural join of the normalised input tables since this brings together all relevant
features. Since our primary goal is to benchmark the performance of the three systems,
we instruct them to learn over all the present features. Experiment 8 discusses the
performance for learning over a subset of the features.

We next briefly introduce the schemas and the learning tasks for all our datasets;
they are detailed in the Appendix.
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US Retailer

The US retailer dataset consists of three relations: Inventory (storing information
about the inventory units for products in a location, at a given date; 84M tuples),
Census (storing demographics information per zipcode such as population, median
age, repartition per ethnicities, house units and how many are occupied, number of
children per household, number of males, females, and families; 1293 tuples), and
Location (storing for each zipcode distances to several other stores; 1317 tuples).
The training dataset is the natural join of the three relations and has 31 features. We
considered three linear regression tasks that predict the amount of inventory units
based on all other features. The first one (L) considers the plain features, whereas
the other two (N1 and N2) also consider interactions between features. N1 considers
two interactions of features from the same relation and for which no restructuring is
necessary: (i) between median age and number of families (both from Census), and (ii)
between different distances to other stores (both from Location). N2 considers two
interactions: (i) between population and number of house units (both from Census),
and (ii) between median age and distance to another store (features of Census and
Location, respectively). Thus, the f-tree used for N2 needs to additionally satisfy the
constraint that the features from its second interaction (population and house units)
are on the same root-to-leaf path. For both N1 and N2, each new interaction term can
be seen as a newly-derived feature for learning in addition to the initial 31 features,
hence for each task we have 31 + 2 = 33 features (cf. Table 5.1).

LastFM

LastFM [12] has three relations: Userfriends (pairing friends in the social network
from the LastFM online music system; 25K tuples), Userartists (how often a user
listens to a certain artist; 92K tuples), and Usertaggedartiststimestamps (the user
classification of artists and the time when a user rated artists; 186K tuples). Our
regression task is to predict how often a user would listen to an artist based on similar
information for its friends. We consider two training datasets: L1 joins two copies of
Userartists with Userfriends to relate how often friends listen to the same artists;
L2 is L1 where we also join in the Usertaggedartiststimestamps copies of both
friends.

MovieLens

MovieLens [22] has three relations: Users (age, gender, occupation, zipcode of users;
6040 tuples), Movies (movie year and its type, e.g., action, adventure, animation,
children, and so on; 3880 tuples), and Ratings (1M tuples) that users gave to movies
on certain dates. The training dataset is the natural join of these tables and has 27
features. The regression task is to predict the rating given by a user to a movie.

Housing

Housing is a synthetic dataset emulating the textbook example for the house price
market [33]. It consists of six tables: House (postcode, size of living room/kitchen
area, price, number of bedrooms, bathrooms, garages and parking lots, etc.), Shop
(postcode, opening hours, price range, brand, e.g., Costco, Tesco, Saynsbury’s),
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Institution (postcode, type of educational institution, e.g., university or school,
and number of students), Restaurant (postcode, opening hours, and price range),
Demographics (postcode, average salary, rate of unemployment, criminality, and num-
ber of hospitals), and Transport (postcode, the number of bus lines, train stations,
and distance to the city center for the postcode). The training dataset is the natural
join of all relations (on postcode) and has 27 features. There are 25K postcodes,
which appear in all relations. The scale factor s determines the number of generated
distinct tuples per postcode in each relation: We generate s tuples in House and Shop,
log2 s tuples in Institution, s/2 in Restaurant, and one in each of Demographics
and Transport. We considered three linear regression tasks that predict the price of
a house based on all other features. The first one (L) considers the plain features,
whereas the other two (N1 and N2) also consider interactions between features. N1

considers two interactions: (i) between the type of house and the number of bedrooms
(both from House), and (ii) between the number of train stations and the distance to
city center (both from Transport). N2 also considers two interactions: (i) between
the number of bus lines and the shop opening hours (features of Transport and Shop,
respectively), and (ii) between the size of educational institutions and the number of
crimes per year (features of Institutions and Demographics, respectively). Thus,
the f-tree used for N2 needs to additionally satisfy an additional constraint per inter-
action.

5.2 Experimental Results

5.2.1 Flat vs. Factorised Joins: Compression Ratio

As shown in Table 5.1 and Figure 5.4(c), the compression factor brought by factorising
the joins varies from 4.43 for MovieLens to 26.84 for the US retailer dataset, to over 102

for LastFM and over 103 for the synthetic dataset. For a scale factor s in the synthetic
dataset, the natural join of all relations on postcode has 25K×s3/2×log2 s tuples, each
of 27 singletons. In contrast to the flat join, the factorised join does not materialise
the combinations (indeed, the Cartesian product) of houses, restaurants, institutions,
and shops for each postcode, but instead keeps the data from each relation separately
from the other relations. This makes the number of singletons of the factorised join
bounded by the sum of the number of singletons in the input relations. The gap
between the sizes of flat and factorised joins thus follows a quadratic function in
the scale factor s, as confirmed by Figure 5.4(a) and Figure 5.4(c). To compute the
number of singletons in the flat join beyond scale factor 16, we counted the number of
tuples represented by the factorised join and multiplied it by the number of attributes,
since RDB ran out of memory.

Feature interactions add additional constraints on the structure of the f-tree, which
could lead to worse compression ratios. In our experiments, however, the effect of
feature interactions on compression ratio was marginal. For US retailer, there is no
change: for any location, the dataset records one distance to other shops and one
median age, so a change in their order in the f-tree for task N2 does not effect the
number of singletons in the representation. For task N2 on Housing, the interactions
require a less optimal f-tree, which comes with a slight impact on the compression
ratio: e.g., for scale factor 20 it degrades from 1.9K to 1.6K. Figure 5.3(b) shows that
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US retailer L US retailer N1 US retailer N2 LastFM L1 LastFM L2 MovieLens L

# parameters 31 33 33 6 10 27
Join F (via FDB) 96,328,820 96,328,820 96,328,820 2,577,556 2,332,036 6,092,286
Size R&P (via RDB) 2,585,046,352 2,585,046,352 2,585,046,352 369,986,292 590,793,800 27,005,643

Compression 26.84× 26.84× 26.84× 143.54× 253.34× 4.43×
Join F (via FDB) 485.26 485.26 485.26 5.66 17.37 20.71
Time R&P (via RDB) 3112.02* 3112.02* 3112.02* 313.65 611.80 43.17

Speedup R/F 6.32× 6.32 × 6.32× 55.41× 35.22× 2.08×
Import F 0 0 0 0 0 0
Time P 1164.40* 1164.40* 1164.40* 179.16 328.97 11.33

R 1189.12* 1189.12* 1189.12* 155.91 276.77 10.86
F 9.69 9.82 9.79 0.53 0.89 3.87

Learn P 1199.50* 1277.10* 1275.08* 35.74 148.84 10.92
Time R 810.66* 873.14* 884.47* 268.04 466.52 6.96

Speedup P/F 123.80× 130.06× 130.26× 67.18× 166.35× 2.82×
Speedup R/F 83.67× 88.92× 90.36× 503.81× 521.41× 1.80×
F 494.95 495.08 495.05 6.19 18.26 24.58

Total P 5475.92* 5553.52* 5551.50* 528.55 1089.61 65.42
Time R 5111.80* 5174.28* 5185.61* 737.60 1355.09 60.99

Speedup P/F 11.06× 11.22× 11.21× 85.36× 59.66× 2.66×
Speedup R/F 10.32× 10.45× 10.47× 119.12× 74.19× 2.48×
F* 461.16 461.24 461.21 6.07 13.20 20.24

F* Times Speedup P/F* 11.87× 12.11× 12.03× 87.11× 82.56× 3.23×
Speedup R/F* 11.08× 11.28× 11.31× 121.57× 102.68× 3.01×

Table 5.1: Real datasets: Performance comparison for end-to-end learning solution
(join, import, and building linear regression models) using F, P, and R (size in
number of singletons, time in seconds). P and R crashed for US retailer due to
memory limitation, the starred numbers are for running them on roughly equal-sized
disjoint partitions of the location values for the join (four for P and ten for R) and
adding up the times.

for scale factor 20 the interactions in N2 can degrade the learning performance from
about three to five seconds.

The compression ratio is a direct indicator of how well F fares against approaches
that rely on flat representation of the training dataset, such as P and R, cf. Fig-
ure 5.4(b) for the synthetic dataset and Table 5.1 for the real-world datasets.

5.2.2 Flat vs. Factorised Joins: Performance

We verified that the speedup of the factorised join over the flat join follows the com-
pression ratio, as reported in the literature [6]. For the synthetic dataset, this is
depicted in Figures 5.4(a) and 5.4(c). After scale factor 16, we cannot compute any-
more the flat join due to memory limitation (the subsequent learning with R and P
already fails for scale 11). As shown in Figure 5.2, for scale 10 the factorised join is
computed in six seconds vs. 800 seconds for the flat join.

Table 5.1 reports the join time for the real-world datasets. The flat join of the
US retailer dataset cannot be handled by our server; the relational engine got killed
when trying to materialise the flat join to disk after the first 21GB tuples. In practice,
users of such large datasets partition them and learn independently for each partition.
This entails a loss of accuracy and misses correlations across features. Factorisation
can effectively push the barrier of what is possible for large datasets orthogonally to
approaches based on distribution. We partitioned the largest relation Inventory (84M
tuples) into four (ten) disjoint partitions for R (respectively, P) of roughly equal sizes
by hashing on the join values for location (this is reminiscent of HyperCube[14] and
Shares [1] algorithms for join-aware data partitioning across servers). By joining each
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(a) Size and join time.

����

���

���

���

���

� � � � �� �� �� �� �� ��

�
�
�
��
��
�
��
��
�
��
�
�
�
�
�
�
�
��
��
�
�
�
�
��
�

����������������

�
�
�

(b) Learning time.
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(c) Compression ratio and speedup.

Figure 5.1: Housing dataset: Size and join time for factorised vs. flat joins, and
learning time for the three systems (absolute and relative). The learning speedup is
w.r.t. R, which is faster than P in these experiments. P and R run out of memory
already at s = 17 for join and s = 11 for learning.

partition with the other tables we obtain a partitioning of the entire join result. The
(starred) time to compute the join for all four partitions is reported in Table 5.1.

5.2.3 Importing Datasets

F is tightly integrated with the FDB query engine, so there is no time cost associated
with the import of the training dataset. P and R, however, need one pass over the
join result to load it into their internal data structures. This is typical for the exist-
ing solutions based on software enterprise stacks consisting of dozens of specialised
systems (e.g., for analytics, OLAP, and OLTP, and BI), where non-trivial integration
effort is usually spent at the interface between these systems. Table 5.1 and Figure 5.2
report the times for importing the training dataset constructed from the real-world
datasets and respectively the synthetic dataset. For the Housing dataset, P and R
failed to import the data starting with s = 10 and respectively s = 11. In contrast,
F can finish even for s = 100.

5.2.4 Learning without Feature Interactions

Table 5.1 and Figure 5.4(b) show the performance of learning tasks with the three
systems. For all datasets, the speedup of learning with F vs. the competitors closely
follows the compression ratio (up to three orders of magnitude), as expected. For
LastFM, it can even exceed it when compared to R. We noticed in this experiment
only that R, does much more IO reads than P, so it spends significantly more time to
load parts of the training dataset than the other two systems. F and P show a similar
IO behaviour in our experiments. For the synthetic dataset, Figure 5.4(b) reports the
performance of learning for up to scale 20 for F and up to 10 for P and R. The largest
scale factor reported in this figure is 20 (compression ratio 1.9K, F takes 3.2 seconds
for learning) and the largest one for which R works is 10 (compression ratio 240, F
takes 2.1 seconds for learning).

For R and P on US retailer, we partitioned the dataset as explained in sec-
tion 5.2.2. Table 5.1 reports the sum of learning times for all partitions. However, the
learned parameters for each partition are arbitrarily far from true ones (although not
supported by P and R, they could have been made correct if the output parameters
for a partition would serve as the initial parameter values for the next partition).
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Figure 5.2: Housing dataset: Total time for the end-to-end solution (join, import,
learn) for F, P, and R. P and R run out of memory starting with s = 10 and s = 11,
respectively.

Nevertheless, even under these simplifying assumptions for P and R, F learns the
correct parameters almost two orders of magnitude faster than its competitors.

5.2.5 Learning with Feature Interactions

We report the times for tasks N1 and N2 with feature interactions on US retailer in
Table 5.1. While the join remains the same, the time to perform the regression task
slightly increases, as expected. Moreover, Figure 5.3(b) confirms a similar behaviour
for the tasks N1 and N2 on Housing. We further observed that the influence on
performance of basis functions defined on a single feature is very marginal.

5.2.6 Breakdown of Learning Time for F

Figure 5.3(a) confirms the expected linear-time behaviour of all F components. The
first component, which is the F-layer construction, takes the lion’s share of compu-
tation time since it creates one node in the F-layer for each product and union node
in the factorisation. We decoupled the times for computing counts, weighted sums,
and cofactors, and found that their cost is about the same. The convergence of the
parameters takes the least time and regardless of the scale factor, since it does not
depend on the size of the data. It needs up to 2K steps to converge the values of
parameters using the AdaGrad [19] continuous adaptation of the learn rate. In case
of feature interactions, we observe that the time slightly increases for each component,
cf. Figure 5.3(b).

5.2.7 End-to-End Solution

We also report the performance of end-to-end solutions using F based on the FDB
query engine and using P and R based on RDB. Table 5.1 shows this as total time
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(b) F with interactions.

Figure 5.3: Housing dataset: Breakdown of F’s timing without interactions (a) and
with interactions (b).

for real datasets, while Figure 5.2 shows it for the synthetic dataset. The speedup is
in most cases higher than for join processing and lower than for learning. We stress-
tested F for scale factors beyond 20 for the synthetic dataset: for s = 50 (compression
ratio 14K), the total time is of 6.3 seconds, while for s = 100 (compression ratio 69K),
it takes 11.4 seconds.

5.2.8 Model selection

In the previous experiments, we learned over all features of the training dataset. We
further considered settings with fewer features, as used for model selection. The
experiments validated that F only computes the parameter cofactors once and that
the convergence time is consistently the smallest amongst all components of F. This
contrasts with P and R that need to independently learn over the entire dataset for
each set of features.

5.2.9 Comparing F and F*

We present an empirical comparison between F and F* for three real world datasets
(US Retailer, LastFM L2, and MovieLens) in Figure 5.4. The actual data and the
gain in comparison to R and P is provided in Figure 5.1. The plots show that the
end-to-end solution of F* can outperform the combination of F and FDB, if the
input is given in relation form and no modification of the factorised join is required.
In particular, the end-to-end solution provided by F*, which builds the factorisation
and then learns the model, outperforms the factorised join computation of FDB alone.
The total performance gain can be attributed to two things: (a) by merging the F-
layer and factorised join computations, we do no longer have to create the F-layer on
top of the factorisation and, therefore, avoid object creations; (b) the factorisation
used for F* has been scaled down by only creating one node for all siblings at the leaf
level, which saves time and memory space.
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(c) MovieLens.

Figure 5.4: Performance comparison between the end-to-end solution for F (including
the factorised join computation) and F* for three real datasets.

For the other datasets, we can also see performance improvements, but in a much
smaller proportion. For LastFM L1, the small gap in the performance (from 6.19
seconds to 6.06 seconds) can be attributed to its size. The dataset is comparatively
small and, therefore, no big performance differences can be expected when comparing
F and F*.

The housing dataset, we realise the following performance gaps for selected scaling
factors:

SF F* F

5 4.5 5.2
10 6.8 7.8
20 13.6 15.5
50 31.0 32.2
100 59.5 61.6

Table 5.2: Comparison of F* and end-to-end solution for F (which includes the
factorised join computation) for Housing dataset with selected scaling factors.

The reason for this rather limited performance improvement for the housing dataset
is the way that this synthetic dataset has been created. The factorised join does have
almost no possible factorisations past the join attributes, which means that at the leaf
level there will only be one node for each branch. Consequently, the algorithm cannot
benefit from the optimisation that all sibling nodes at the leaf level are combined
into one node. The regression model does not benefit from the potential performance
improvements; future work will investigate how the join computation for F* can be
scaled down further to provide performance improvements for all kinds of datasets,
including the housing dataset.
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5.2.10 Further findings

For the sake of comparing the performance of F with another iterative learning algo-
rithm, we have used the R glmnet [21] package, which implements linear regression
with coordinate descent optimisation. Contrary to F, glmnet approximates the model
with regularisers, which is why we refrained from using this package for full bench-
marking. Nevertheless, our experiments show that F is 11 times faster for the housing
dataset with scaling factor 10 and 6 times faster for US retailer with 4 partitions. This
is significant because glmnet is one of the fastest packages for learning generalised lin-
ear models.

We evaluated the three systems on two further real-world datasets: (1) the De-
licious dataset that is provided together with LastFM [12] and (2) the Financial
dataset [7], traditionally used for regression tasks. The Delicious dataset behaved
very similarly to LastFM for the same types of joins. The Financial dataset is very
small relative to the others and all systems’ learned time was under one second.
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Chapter 6

Related work

Our contribution lies at the interface between databases and machine learning,
as we look at regression learning, which is a fundamental machine learning prob-
lem, through database glasses. The crossover between these two communities gained
increasing interest during the past years, as also acknowledged in a SIGMOD 2015
panel [40]. We position our contribution in the realm of learning tasks backed up by
database techniques and then highlight related, yet orthogonal to ours, work from the
machine learning community on optimising the performance of the gradient descent.

6.1 Machine learning in databases

Our work follows a very recent line of research on marrying databases and machine
learning, e.g., [40, 16, 43, 27, 2, 32, 23, 11, 45, 9].

Two of these works are closest in spirit to ours since they investigate the impact
of data factorisation for the purpose of boosting learning tasks. Rendle [43] considers
a limited form of factorisation of the design matrix for regression. His approach
performs ad-hoc discovery of repeating patterns on the flat join to save up time for
the subsequent regression task, though with two important limitations: This discovery
cannot capture join dependencies, i.e., recover the knowledge that the data has been
produced via joins, since this is NP-hard; it does not save time for computing the
join, but it instead needs additional time to perform the discovery. Our approach is
different since (i) we avoid the computation of the flat join as it is too expensive and
entails redundancy; (ii) we exploit the join structure from the query to identify the
repeating patterns due to join dependencies. Kumar et al. [27] propose algorithms
for learning over one key-foreign key join and consider factorised computation over
the non-materialised join. In contrast, our approach works for arbitrary join queries
and factorisations with caching, linear regression with feature interactions, and has
theoretical guarantees.

Most efforts in the database community are on designing systems to support large-
scale scalable machine learning on top of distributed architectures such as Spark [51],
e.g., MLLib [2], DeepDist [32], SystemML [23, 9], system benchmarking [11] and
sample generator for cross-validate learning [45]. Our approach focuses on linear
regression and pushes the performance barrier in the one-machine scenario. It achieves
this by factorised data and computation, which enables more data to be kept in the
main memory of one machine and to be processed very fast without the need for
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distribution. As pointed out recently [29], when benchmarked against one-machine
systems, distributed systems can have a non-trivial upfront cost that can be offset
by more expensive hardware or large problem settings. An interesting direction of
research is to integrate our system F into one of the existing distributed architectures
such as Spark.

The tight integration of the FDB query engine for factorised databases [6] with
our regression learner F has been inspired by LogicBlox [3], which provides a unified
runtime for the enterprise technology stack.

6.2 Gradient descent optimisation

The gradient descent family of optimisation algorithms is fundamental to machine
learning and very popular, cf. a ICML 2015 tutorial [44]. One of the applications of
gradient descent is regression, which is the focus of this paper. A popular variant is
the stochastic gradient descent [10], which takes a gradient descent step based on one
training example instead of the entire training dataset. Although individual conver-
gence steps can be inaccurate, the algorithm is used in practice because it scales well
for large amounts of data. For this reason, stochastic gradient descent has attracted a
lot of interest in the academic community and consequently a series of improvements
have been proposed: (i) improvements on the convergence rate via adaptive learning
rate [19] (which is also used by our systems F and F*); and (ii) parallel or distributed
versions [52, 38, 41, 17, 35]. Some of these optimisations have made their way in sys-
tems such as DeepDive [46, 28] and DeepDist [32, 17]. Our contribution is orthogonal
since it focuses on avoiding data and computation redundancy in the special case of
learning over joins.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we put forward F, a fast learner of least squares regression mod-
els over arbitrary joins of input relations. Current state-of-the-art analytics systems,
such as R and Python StatsModels, require a flat relation input and are not inte-
grated in a database management system. This leads to unnecessary redundancy for
both computation and data representation that is not required for learning regression
models.

By exploiting the theoretical and practical guarantees of factorised join represen-
tations, we are able to reduce redundancy in the input data and achieve a better join
performance. Furthermore, we use an algebraic rewriting of the least squares objec-
tive function, which allows us to decouple the computation of the parameter cofactors
and the optimisation procedure. This property enables us to learn a parameterised
least squares regression model with only two passes over the factorisation. F outper-
forms R and Python StatsModels by up to three orders of magnitude on a variety of
real-world and synthetic datasets.

Comparable state-of-the-art analytics systems, which include R and Python Stats
Models, are separate from the database management system that computes the join,
which means that additional time is spent on loading the information from the
database to the analytics system. Our system F is integrated in the query engine
FDB, which eliminates the loading time of the data and enables the immediate pro-
cessing of the join.

In line with this observation, we propose an optimised version, called F*, which
is a stand-alone, end-to-end system that merges the computation for learning with
the computations required for the factorised join. This system provides additional
performance improvements over F, because the factorisation can be structured to be
optimal for learning regression models. The performance improvements come with
the limitation that F* can only take the data directly for the input relations and
cannot perform any modifications at the join output level.

This is the first work that exploits factorised joins for machine learning algorithms
and, therefore, there is a lot of potential for future research, some of which we outline
in the final section.
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7.2 Future Work

The future research that follows from the work that has been conducted in preparation
for this dissertation is two-fold. On the one hand, we are aiming to extend and improve
the proposed system. On the other hand, we investigate how other machine learning
algorithms can benefit from factorised data, similar to the system proposed in this
dissertation. We will briefly outline some of the findings we have already come across,
but were not able to pursue yet.

7.2.1 Extending F and F*

Distribution

One main objective is to distribute the computations performed by F and F* on
multiple cores and ultimately multiple machines. In Proposition 3.1 we showed that
cofactor computation commutes over unions, which implies that the cofactors for
the entire factorisation can be computed concurrently on multiple fragments of the
factorisation. It remains to be investigated how the factorisation can be distributed
so that it provides the most performance improvements for the learning process.

Optimising F-layer construction for F*

As mentioned in Section 4.2, it is possible for F* to scale down the factorisation
that is computed in combination with the F-layer. This optimisation will require
a modification of the inherent structure of the factorisation, but it will also ensure
that the maximum performance gain can be achieved by the proposed end-to-end
regression learner.

Regularisation

Besides improving the current system from an implementation standpoint, we also
investigate how the regression learner can be extended with state-of-the-art machine
learning techniques. This includes the regulariser, which is commonly used to avoid
the problem of overfitting. The regulariser limits the size of the parameters of the
model by creating penalty for too large parameters. Ultimately, the parameters are
forced to stay close to zero, which implies that the model cannot become too complex
and overfit on the training data.

Learning over Aggregates

In Example 3.10, we show that it can be necessary to perform aggregates over the
input data to attain the desired features for a model. In future research, we would like
to investigate this problem further to understand how aggregates can be supported
most effectively for the context of learning. We will also investigate how aggregates
can be integrated in F which is in line with the general idea of integrating machine
learning in databases.
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Push F over join

The major impediment for immediate adoption of F in existing commercial systems
is that it works with factorisations instead of relations. Based on the findings in our
research, it may be possible to compute the count and weighted sums that consti-
tute the cofactor matrix, the major component of F, directly on the input relations.
This would eliminate the construction of the F-layer and would provide additional
performance improvements.

More succinct factorisations

F is robust in the sense that it would work even for more compact factorisations.
While we show it for factorisations with caching, it even works for factorisations with
caching, where different branches have different nesting structures. Such adaptive
factorisations can bring more succinctness. In future research, we plan to look into how
to create such adaptive factorisations for join results and how they can be exploited
for learning.

7.2.2 Extending the class of algorithms that benefit from fac-
torisations

Besides improving the proposed regression learner, we aim to extend our approach to a
family of machine learning techniques. The goal is to provide a class of learning models
that exploit factorised data so that they can be solved in constant number of passes
over the data. The additional techniques will be applied to a range of applications
outside of the realm of regression tasks, such as clustering or classification problems.
Some of the algorithms that we will consider in the near future are:

Factorisation Machines

The Factorisation Machine [42] is a general predictor for both regression and classifi-
cation tasks. Therefore, it is similar to the Support Vector Machines but it provides
the advantage that it can also be applied to data with high sparsity. The underlying
framework of factorisation machines relies on a linear prediction model in combina-
tion with variable interaction terms for all features. Therefore, the main framework
depends on the components for which we have shown that they can benefit from
factorised data representation. For this reason, we are positive that factorisation
machines in general can also benefit from factorised data representation.

k-Nearest-Neighbour

The k-Nearest-Neighbour (k-NN) algorithm [8] is an instance-based machine learning
algorithm that can be applied for both regression and classification tasks. This means
that the algorithm does not learn a parameterised model, but instead bases the pre-
diction solely on a given training dataset. For a new input feature vector, k-NN finds
the k training samples that are closest to the this new feature. The output is then the
average of the labels of the k training samples (for regression) or the majority vote
over the categories of the k training samples (for classification).
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Since the factorised data representations can be exponentially smaller in size than
the equivalent flat representation of a dataset, a modified k-NN algorithm that exploits
the factorisation can provide significant performance improvements in comparison to
the vanilla approach. We have implemented an algorithm that performs k-NN in one
bottom-up pass over the factorisation, but due to time constraints we have not been
able to benchmark our approach and, therefore, cannot present the results in this
dissertation. Future research will investigate this problem and add k-NN to suit of
algorithms that benefit from factorised data.

Classification and Regression Trees with Boosting

A method that is often used in practice are ensembles of regression trees. These trees
consist of simple decision rules, similar to a decision tree, which predict a score at
each leaf of the tree. Each tree splits the feature space into segments and for each
segment it gives a prediction for the output. Although one tree only gives a crude
estimate of the output, it is possible to combine a series of multiple simple regression
trees in one consistent ensemble. This idea of using combining many simple functions
to create a complex model is the general framework of boosting.

Ensembles of regression trees are often used in industry because they scale well
with large amounts of data, are easy to learn, and provide an simple framework to
model interactions between features [13]. Furthermore, they have proven to be very
effective predictive models, which is shown by their success for in various data mining
competitions [25].

Since factorised representations of data are in essence parse trees, it is reasonable to
believe that they provide an effective framework to build regression trees. Intuitively,
the f-tree that defines the nesting for the natural join should provide a good structure
for decision trees. This, however, will have to be investigated in future research. It will
also be interesting to see how insights from regression tress will be applicable to F and
other machine learning algorithms that are built on factorised data representations.
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Appendix

Proofs

Proof of Proposition 3.1

1. (Symmetry). Assume that Q(D) has m tuples. We have:

Sk =
m∑
i=1

(θ0x
(i)
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n )x
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This implies that:

Cofactor[Aj, Ak] =
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i=1

x
(i)
j x

(i)
k =
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i=1
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(i)
k x

(i)
j = Cofactor[Ak, Aj].

2. (Commutativity with union). For 1 ≤ l ≤ p, assume that the training dataset
Q(Dl) has ml tuples, that we denote

Q(Dl) = {(x(1)
l,0 , . . . , x

(1)
l,n), . . . , (x

(ml)
l,0 , . . . , x

(ml)
l,n )}.

Then, Q(D) has totally
∑p

l=1ml tuples. Take 0 ≤ k, j ≤ n. It holds that:

p∑
l=1

Cofactorl[Ak, Aj] =

p∑
l=1

(

ml∑
il=1

x
(il)
l,k x

(il)
l,j )

=

∑p
l=1ml∑
i=1

x
(i)
k x

(i)
j = Cofactor[Ak, Aj].

3. (Commutativity with projection). Assume that Q(D) has m tuples. Since we are
under bag semantics, πL(Q(D)) also has m tuples. We assume that L has nL features
that we denote xL,0, . . . , xL,n. Take 1 ≤ k, j ≤ nL. Then, CofactorL[Ak, Aj] =∑m

i=1 x
(i)
j x

(i)
k , which moreover, is equal to Cofactor[Ak, Aj].
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Dataset & Task s(F ) s(Q) fhtw(Q) ρ∗(Q)

Housing L
1 *

1 1 4Housing N1

Housing N2 2
US retailer L

2 * 2 1 3US retailer N1

US retailer N2

LastFM L1 1 * 1 1
2

LastFM L2 4
MovieLens L 2 * 2 1 3

Table 1: Details about the considered f-trees. We add “*” to the cases of asymptoti-
cally optimal f-trees. Although Housing has 6 relations and each of them has at least
one attribute that does not occur in the others, we have ρ∗(Q) = 4 because postcode

is key for Transport and Demographics hence these two relations do not contribute
to ρ∗(Q).

Proof of Theorem 3.8.

Take the basis functions φ0, . . . , φb over the sets of features S0, . . . , Sb, the induced
relational schema σ = (R0(S0), . . . , Rb(Sb)), and Qσ = Q on R0 on · · · on Rb (the
extension of Q w.r.t. σ).

First, we show that the extension Dσ of D with relations over the induced rela-
tional schema σ leads to a factorisation of the join Qσ(Dσ) of size O(|D|fhtw(Qσ)).
The extension Dσ has a relation instance Ri (for 1 ≤ i ≤ b) for each schema
Ri(Si) that is the projection of Q(D) on Si i.e., πSi(Q(D)). It then holds that
Q(D) = Q(Dσ) = Qσ(Dσ). By Proposition 2.2, there exists a factorisation of Dσ

of size O(|Dσ|fhtw(Qσ)). Under data complexity, the schema σ has constant size and
thus O(|Dσ|fhtw(Qσ)) = O(|D|fhtw(Qσ)). Let us denote by E the factorisation of Qσ(Dσ)
and let F be an f-tree under which we obtain the size of O(|D|fhtw(Qσ)).

We next show that E can be augmented with singletons corresponding to the
interaction terms φk while keeping the same asymptotic bound on its size. Since
F satisfies the path constraints, the attributes of any relation, and in particular of
relations over schemas R0(S0), . . . , Rb(Sb), are along the same root-to-leaf path in F .
This means that E materialises all possible combinations of singletons for attributes
in each schema Sk. We can thus compute the result rk of the basis function φk on
the singletons for attributes in Sk in one pass over E. For each tuple of singletons
attributes in Sk, we add a product with the singleton 〈φk : rk〉 immediately under the
lowest singleton in the tuple in E. We also add a node φk to F immediately under
the lowest attribute in Sk. These additions do not modify the asymptotic size bounds
of E since we add one singleton for each Sk-tuple of singletons in E. Let us denote
by Eσ the factorisation E extended with singletons for interaction terms.

The factorisation Eσ has size O(|D|fhtw(Qσ)) and singletons for each basis function
φk. Learning over Eσ has thus reduced to learning with identity basis functions and,
by Proposition 3.2, it can be done in two passes over Eσ. The claim follows.
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• House (postcode, livingarea, price, nbbedrooms, nbbathrooms,

kitchensize, house, flat, bungalow, garden, parking)

• Shop (postcode, openinghoursshop, pricerangeshop, sainsburys, tesco, ms)

• Institution (postcode, typeeducation, sizeinstitution)

• Restaurant (postcode, openinghoursrest, pricerangerest)

• Demographics (postcode, averagesalary, crimesperyear, unemployment,

nbhospitals)

• Transport (postcode, nbbuslines, nbtrainstations, distancecitycentre)
(a) Schema for Housing.

• Inventory (locn, date, ksn, inventoryunits)

• Location (locn, zip, d1, ..., d10)

• Census (zip, population, white, asian, pacific, blackafrican, medianage,

occupiedhouseunits, houseunits, families, households, husbwife, males,

females, householdschildren, hispanic, state)
(b) Schema for US retailer.

• Userfriends (user, friend)

• Userartists (user, artist, weight)

• Usertaggedartiststimestamps (user, artist, tag, timestamp)
(c) Schema for LastFM.

• Ratings (user, movie, rating, timestamp)

• Users (user, age, gender, occupation, zipcode)

• Movies (movie, year, action, adventure, animation, children, comedy,

crime, documentary, drama, fantasy, filmnoir, horror, musical, mysery,

romance, scifi, thriller, war, western)
(d) Schema for MovieLens.

Figure 1: Schemas of the considered datasets.

More details about datasets

We present the schemas for all considered datasets in Figure 1. For all datasets, the
values are of type double. We depict the f-trees for all considered regression tasks in
Figure 2 and we provide some asymptotic details on them in Table 1. Next, we detail
each of the datasets.

• Housing. The schema of the Housing dataset consists of 6 relations House,

Shop, Institution, Restaurant, Demographics, Transport over a total of 27
attributes, that we detail in Figure 1(a). We consider the natural join (on postcode).
To construct instances of the Housing dataset, we randomly generated numerical val-
ues for each attribute. The domains are intervals simulating the real-world semantics
of attributes e.g., large intervals for attributes such as price, smaller intervals for
attributes such as nbtrainstations and Boolean values for attributes such as house,
flat, or bungalow indicating the type of housing.

Linear task L. Since all relations have a common attribute (postcode), the above
query is hierarchical, and consequently, s(Q) = 1. Then, the f-tree that we consider
is optimal i.e., has s(F ) = 1, which intuitively means that each relation corresponds
to a root-to-leaf path in the f-tree. We present a snapshot of it in Figure 2(a).
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Linear task with basis functions N1. We recall that N1 considers two interactions:
(i) between the type of house and the number of bedrooms (both features of House),
and (ii) between the number of train stations and the distance to city center (both
features of Transport)1. Since both features occurring in a same interaction belong
to the same relation, we can use precisely the same f-tree from the linear case, which
is asymptotically optimal.

Linear task with basis functions N2. We recall that N2 considers two interactions: (i)
between the number of bus lines (feature of Transport) and the shop opening hours
(feature of Shop), and (ii) between the size of educational institutions (feature of
Institution) and the number of crimes per year (feature of Demographics)2. Both
interactions from N2 consider pairs of features from different relations, which im-
plies that the f-tree that we use for this task must satisfy two additional constraints:
nbbuslines and openinghoursshop should be on the same root-to-leaf path, and
moreover, sizeinstitution and crimesperyear should be on the same root-to-leaf
path. Consequently, the obtained f-tree has s(F ) = 2 that is not asymptotically opti-
mal since s(Q) remains 1. We depict a snapshot of the considered f-tree in Figure 2(b).

•US retailer. The schema of the US retailer dataset consists of 3 relations Inventory,
Census, and Location over a total of 31 attributes, that we detail in Figure 1(b). By
d1 to d10 we denote the distances between the respective location and several stores.
The considered query is the natural join (on locn and zip).
Linear task L. The above query has s(Q) = 2 and we consider an asymptotically
optimal f-tree (i.e., s(F ) = 2). We present a snapshot of this f-tree in Figure 2(d). The
relation Inventory is encoded along the path locn/ksn/..., the relation Location

is encoded along the path locn/zip/d1/..., while Census is encoded along the path
zip/population/...

Linear task with basis functions N1. We recall that N1 considers two interactions:
(i) between the median age and the number of families, and (ii) between different
distances to other stores (take wlog d1 and d2)3. Since both features occurring in
a same interaction belong to the same relation, we can use precisely the same f-tree
from the linear case, which is asymptotically optimal.

Linear task with basis functions N2. We recall that N2 considers two interactions: (i)
between the population and the number of house units, and (ii) between the median
age and distance to another store4. While the features from the first interaction occur
in the same relation Census, it is not the case for the second one since the median age

1 The first interaction looks at the effect of having more bedrooms in a house as opposed to
other types of accommodation, while the second one looks at identifying whether a good public
transportation system could potentially impact the price if the housing is not close to the city
center.

2 The first interaction looks at the effect of the general availability of services on the housing
price (used to identify where it is more beneficial to have a better public transport system or longer
opening hours), while the second one considers another social aspect that could affect the price of the
housing (indeed, both education and safety are two strong indicators for the quality of the district).

3 The first interaction looks at the effect on inventory units while correlating the number of families
and the median age, since the two features are strongly related. The second interaction looks at
the effect of having competitors close to the store and how the interaction of the two competitors
changes the effect on the inventory units in the given store.

4 The first interaction uses the insight that if we have a large population but few houses, then
many people live in the same house. This can give an indication of what the general population is
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is a feature of Census and the distance to another store (take wlog d1) is a feature of
Location. Thus, the f-tree used forN2 needs to additionally satisfy the constraint that
the features from its second interaction are on the same root-to-leaf path. We present
a snapshot of it in Figure 2(e). However, notice that this f-tree is still asymptotically
optimal i.e., has s(F ) = s(Q) = 2. Indeed, the path locn/zip/d1/medianage/...

can be covered by two relations (Census and Location), while each of the other
paths can be covered by one relation (Location and Inventory, respectively). In
such a case, contrarily to what observed for Housing dataset, imposing additional
constraints due to interactions between features of different relations does not preclude
the asymptotic optimality of the f-tree considered for a linear task with basis functions.

• LastFM [12]. LastFM consists of 3 relations Userfriends (UF), Userartists

(UA), Usertaggedartiststimestamps (UTA), as detailed in Figure 1(c). We con-
sider two queries, in both of them our regression task being to predict the weight for
given user and artist, based on social networking information. In the first query L1

(over 6 attributes), we consider as input only the friendship relation together with the
weights for the users and friends, while in the second query L2 (over 10 attributes),
we additionally consider as input the tags and the timestamps for both users and
friends. The precise queries are:

L1 : UF onUF.user=UA1.user UA1 onUF.friend=UA2.user UA2

L2 : UF onUF.user=UA1.user UA1 onUF.friend=UA2.user UA2 on
onUF.user=UTA1.user UTA1 onUF.friend=UTA2.user UTA2

Both queries are hierarchical since the user is common to all joined relations. Hence,
we can consider for both of them asymptotically optimal trees with s(F ) = 1. We
illustrate their f-trees in Figure 2(f) and Figure 2(g), respectively.

• MovieLens [22]. MovieLens consists of 3 relations over 27 attributes, as detailed
in Figure 1(d). We consider the natural join (on user and movie) and we depict
a snapshot of the considered asymptotically optimal f-tree (with s(F ) = 2) in Fig-
ure 2(c). There are four versions of the MovieLens datasets and we only reported our
experimental findings for the largest available version (1M records) that has complete
information for all three tables; there are two larger versions (10M and 20M) having a
simplified schema without users. We also experimented with the other versions (100K
and the larger ones where we synthetically generated the Users relation) and found
that they exhibit the same compression ratio and relative performance gain.

like, and therefore, can have a meaningful impact on our prediction. The second interaction looks
at how the age of a person influences her tendency to look for satisfying stores at a further distance.
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(a) Housing L and N1.
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(f) LastFM L1.
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(g) LastFM L2.

Figure 2: Snapshots of the f-trees considered for our experiments.



θZ θS θP θT θH θSH θ0

ΣZ 24z2
1 + 2z2

2 z1S5 + z2S8 z1P5 + z2P8 z1T5 + z2T8 z1H5 + z2H8 z1SH5 + z2SH8 24z1 + 2z2

ΣS ΣZ/θS 18s2
1 + 6s2

2 + 2s2
2 s1P2 + s2P4 + s2P7 s1T2 + s2T4 + s2T7 s1H2 + s2h4 + s2h7 s1SH2 + s2SH4 + s2SH7 18s1 + 6s2 + 6s2

ΣP ΣZ/θP ΣS/θP 9p2
1 + 9p2

2 + 6p2
3 + 2p2

4 3P1T1 + 3P3T3 + P6T3 3P1H1 + 2P3H3 + P6H6 3P1SH1 + 2P3SH3 + P6SH6 9p1 + 9p2 + 6p3 + 2p4

ΣT ΣZ/θT ΣS/θT ΣP/θT 6(t21 + t22 + t23) + 4(t24 + t25) 2T1H1 + T3H3 + T3H6 2T1SH1 + T3SH3 + T3SH6 3(t1 + t2 + t3) + 4(t4 + t5)
ΣH ΣZ/θH ΣS/θH ΣP/θH ΣT/θH 6(h2

1 + h2
2 + h2

3) + 2(h2
1 + h2

2 + h2
3) + 2h2

4 6(h1sh1 + h2sh2 + h3sh3) + 2(h1sh4 + h2sh5 + h3sh6) + 2h4sh7 6(h1 + h2 + h3) + 2(h1 + h2 + h3) + 2h4

ΣSH ΣZ/θSH ΣS/θSH ΣP/θSH ΣT/θSH ΣH/θSH 6(sh2
1 + sh2

2 + sh2
3) + 2(sh2

4 + sh2
5 + sh2

6) + 2sh2
7 6(sh1 + sh2 + sh3) + 2(sh4 + sh5 + sh6) + 2sh7

Σ0 ΣZ/θ0 ΣS/θ0 ΣP/θ0 ΣT/θ0 ΣH/θ0 ΣSH/θ0 26

Figure 3: Cofactor matrix based on the F-layer from Figure 3.5. This is equivalent to Figure 3.6.
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