
Distributed and Multi-Threaded
Learning of Regression Models

Pierre-Yves Bigourdan

St Hugh’s College

University of Oxford

Supervised by Professor Dan Olteanu

Department of Computer Science, University of Oxford

Master of Science in Computer Science

Trinity Term 2016



Acknowledgements

First of all, I would like to express my most sincere gratitude to my project supervi-
sor, Professor Dan Olteanu. I really appreciated our countless meetings and discussions
related to many different aspects of the project, and am thankful for the feedback,
advice and help he gave me during the last five months.

I also wish to thank Maximilian Schleich, one of Professor Olteanu’s doctoral stu-
dents who initiated the F project we will be building upon in this thesis. He provided
valuable guidance throughout the duration of the project and our brainstorming ses-
sions on implementation and experimental considerations were very enriching.

Finally, I would like to manifest my recognition to the University of Oxford as a
whole for granting me the opportunity to study in such a stimulating place, and in
particular St. Hugh’s College which offered a very peaceful and friendly environment I
was able to work and thrive in.

1



Abstract

Machine learning and databases are two closely related fields that have played an
increasingly central role in the recent years, both in terms of theoretical work and
practical applications in our daily lives. Unfortunately, most machine learning systems
rely on their own dedicated way of representing and handling data, which makes in-
tegration with existing database systems more challenging and also slows down their
development.

Some of the research conducted at the University of Oxford has been focused on
better integrating these two fields, most recently with the development of F, a system
capable of learning regression models over factorised joins. F introduces novel ideas on
how to perform some common machine learning tasks on databases, and is capable of
outperforming popular commercial systems by several orders of magnitude. Neverthe-
less, F is by design single-threaded and can only run on a single machine, limitations
that undermine its scalability.

In addition to some extensive re-engineering work on F, the thesis focuses on these
threading and distribution aspects, and shows how a state-of-the-art system can still be
improved by orders of magnitude and guarantee a high degree of scalability. An end-
to-end system is presented, capable of loading and parsing database tables, distributing
the data around a cluster of machines, sorting it efficiently, launching an optimised and
multi-threaded version of F on each machine, and merging the partial results together
in order to produce the final result.
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1 Introduction

1.1 Motivation

The development of the so-called ”big data” in the recent years has considerably
increased the quantity of data that is produced, stored and processed on a daily basis.
New applications have emerged and are playing a more and more central role in our daily
lives. Nowadays, our extensive usage of social media, online gaming, cloud platforms or
more generally our interactions with the Internet, have driven the ongoing innovations
in data management. Although the price of both primary storage (essentially RAM)
and secondary storage (essentially hard disk drives) has progressively fallen, storing and
using data in an efficient way has become an even more central challenge.

Therefore, one of the aims is to avoid storage of duplicate information, in order to
minimise the quantity of memory used, and avoid redundant computations, in order to
boost the performance of algorithms. The FDB1 project at the University of Oxford
focuses on how to factor out information in databases and how to build lighter memory
representations of the same information [2]. Many database operations and algorithms
can take advantage of the factorised form to lower the computational cost of a given task
by avoiding redundancies in the computations, and can therefore outperform standard
systems which represent data and do calculations eagerly.

Nevertheless, the evolutions regarding the way data is dealt with have exponentially
increased the complexity of calculations, and relying on more efficient algorithms and
more succinct representations is no longer enough. In the past decade, the clock speed
and the computational power of single CPU cores have progressively stagnated, but on
the other hand there has been an increased focus on parallelism, with a growing number
of cores built in a single CPU chip. New algorithms must adapt to this trend by taking
advantage of multi-threaded processing in order to achieve optimal performance.

Furthermore, if a closer look is taken at the current systems that are in use nowa-
days, it can be noticed that many applications can no longer rely on a single database
instance running on a single machine. By distributing operations over several machines,
processing power can be considerably increased and more reliable and efficient services
can be built. When considering a single machine, the main challenge was to design
a robust data representation and fast algorithms; when considering a distributed sys-
tem, new challenges arise, such as limiting the communication overhead inherent to
any distributed system and reduce discrepancies in the amount of work performed by
each node. The way communication is done and also what information needs to be
communicated are problems that must be considered seriously.

1www.cs.ox.ac.uk/projects/FDB
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Overall, it can be argued that distributed and factorised database systems are of
interest in terms of storage capacity, processing power and scalability, and represent a
current field of research with many applications in the industry. These advancements
are not only confined to databases, but are also closely linked to machine learning.
This field has been increasingly popular in the recent years, with evolutions driven
by tier-1 web-based companies such as Facebook, Twitter or Google, but also by other
sectors such as the pharmaceutical or retailer industries [8, 9]. Nevertheless, it has been
more and more difficult for them to cope with the ever growing flow of information and
complexity of calculations. One of the main issues comes from the fact that the database
is generally seen as a separate and specialised item in the technology stack, and non-
trivial time is often spent to export the data and convert it to a format that can be
used by the machine learning software.

Better integrating machine learning and databases constitutes a topical area of re-
search [10, 11, 12] and in particular, the F project conducted at the University of
Oxford aims at dealing with some of the concerns previously highlighted. F was intro-
duced through a recent publication [1] and presented at the ACM SIGMOD/PODS San
Francisco conference in June 2016. It proposes a novel approach to learning regression
models over factorised joins, and avoids redundant calculations and representations of
information that are not needed for the final solution. Benchmarked against MADlib
[26], Python StatsModels [27] and R [28], it manages to outperform these systems by up
to three orders of magnitude. F is at the time of writing the state-of-the-art in terms of
learning regression models, but even though its novel ideas bring new insights on how
to perform machine learning tasks on databases, there is still room for improvement,
in particular in terms of scalability. Currently F is single-threaded and can only run on
one machine at a time, which makes it unsuited for very large datasets. This project
addresses these concerns by introducing novel approaches on scalability and turns F
into an even more competitive, well engineered and powerful system.

1.2 Contributions

The contributions to the F research project focus on three main areas:

• Re-engineering of F. By redesigning some parts of F, the time taken by an end-
to-end run is improved by almost an order of magnitude. The following aspects
are explored and implemented:

– Compiler tuning, by selectively enabling several optimisations relevant to
the project.

– Redesigning the way data is loaded and parsed.

– Redesigning the way data is sorted.

– Tweaks to the core computation functions of F, among which data struc-
ture optimisation, function inlining and extended guidance provided to the
compiler.
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– Profile-Guided Optimisations.

– Loop unrolling.

– Implementation of an enhanced build system.

• Multi-threading of F. By multi-threading the core calculations of F, it is pos-
sible to take advantage of all the available thread contexts of a given machine,
and reduce the time taken to do the computations by a factor proportional to the
number of launched threads. The thesis demonstrates how to ensure that multi-
threading does not break the correctness of F’s results, and investigates some
of the challenges that arise when partitioning the tasks between several threads.
Merging parallelism and factorisations is a yet unexplored field, and novel insights
are introduced on how to handle this.

• Distribution of F. By creating a distribution framework, F is made highly scal-
able and can be run on a cluster of machines. The project provides an implemen-
tation of the state-of-the-art Hypercube algorithm [5], which ensures correctness
of F’s computations when shuffling the database tables and which limits skew in
the data partitioning. This distributed environment enables to use F in parallel
on an arbitrary number of machines, and takes care of gathering and producing
a final centralised result. Adapting the Hypercube algorithm to a factorised ma-
chine learning setting is an unprecedented accomplishment and provides F with
a tremendous scalability.

The overall contribution is an end-to-end piece of software implementing several
novel approaches, and capable of parsing command line options in a user-friendly man-
ner, loading and parsing database tables contained in CSV files stored on disk, syn-
chronising and shuffling data around an arbitrary number of nodes, sorting the data
efficiently, launching an improved version of F to calculate regression aggregates in a
multi-threaded fashion, and finally gathering all the partial calculations in order to pro-
duce the final result. We are currently in the process of wrapping up the whole work,
and preparing a publication aimed at presenting the theoretical and experimental as-
pects of our work.

The whole project is written in the C++ language, and is compatible with any
modern versions of the GCC or Clang compilers, as well as with different Unix dis-
tributions, including Mac OS X. Even though the thesis is mainly focused on F, the
implementation is designed to be as modular as possible, in such a way that integrating
a different machine learning task in the future while still keeping a similar wrapping
would require little recoding work. The implementation follows some rigorously de-
fined coding conventions, and is available in a private repository on github.com, with
instructions to set it up and run it in a new development environment, as well as files
to generate a comprehensive Doxygen [29] documentation of the code. Throughout
the thesis, a mixture of new theoretical insights, experiments and code excerpts are
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provided, but giving a complete coverage of the almost 7000 lines of code contained in
the system is obviously beyond the scope of this document. Nevertheless, in addition
to the USB key handed in with the printed version of this report, a full access to the
GitHub repository of the project can simply be requested by contacting Dan Olteanu
(dan.olteanu@cs.ox.ac.uk).

1.3 Overview

Sections 2 gives a brief presentation of the initial F system, in order to understand
the main challenges of this project.

Sections 3 goes through the different engineering aspects previously mentioned,
and provides some compiler and language oriented insights as well as experiments to
quantitatively measure the performance improvements.

Section 4 and 5 detail the multi-threading and distribution aspects of F. In these
two parts, theoretical background and novel insights are presented; the work that was
accomplished is then detailed, and finally a series of experiments to show the impact of
the new implementations is given.

Section 6 is aimed at bringing all the contributions to F together, and running it
in the best possible setting at our disposal, with both multi-threading and distribution
enabled.

Section 7 is focused on giving a conclusive overview of the project, and suggesting
some new paths to explore in order to further build upon the F research project in the
future.

Appendix A contains references to the different publications and tools that were
used in this project, as well as references to some relevant C++ documentation to
better grasp the implementation choices of the project.

Appendix B gives information about the datasets used in the experiments.

Appendix C provides details about the hardware used and other experimental
considerations.
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2 F: Learning regression models over factorised joins

The F project was started at the University of Oxford in 2015 and enables to build
least square regression models over arbitrary join queries on database tables. This sys-
tem computes batch gradient descent by taking advantage of a factorised computation,
by decoupling the calculation of the model’s cofactors from their convergence and by
exploiting the commutativity of cofactor computation with relational union and pro-
jection. A brief overview of how F works is given; the recent publication [1] in the
SIGMOD journal details the research that was conducted and should be referred to for
a more complete understanding of the underlying theoretical aspects.

This section first introduces the context in which F is used, then goes deeper into
factorisations; a higher level component view of the program is provided and finally
performance figures about the system as it was at the start of this project are given.

2.1 What is F used for?

In the following section, the example presented in the SIGMOD publication [1] is
reproduced to show how F works.

F considers the join of several database tables as an input, and applies machine
learning regression models to analyse the data and make predictions. For instance, F can
be used to predict the price of houses based on database tables containing information
about geographical locations, population, market trends, local facilities, amount of
taxes, or any other data source that could be relevant.

As stated in Database Systems - The Complete Book [14], ”the natural join of two
relations R and S, denoted R 1 S, [...] pairs tuples from R and S that agree in whatever
attributes are common to the schemas of R and S”. Consider a database containing
three relations, Shops, House and TaxBand, as displayed below on the left part of the
figure. To join the three tables, the common values for attributes Z and S must be
paired, leading to the result displayed on the right:
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Shops

Z H

z1 h1
z1 h2
z1 h3
z2 h4

House

Z S P

z1 s1 p1
z1 s1 p2
z1 s2 p3
z2 s2 p4

TaxBand

S T

s1 t1
s1 t2
s1 t3
s2 t4
s2 t5

Shops 1 House 1 TaxBand

Z H S P T

z1 h1 s1 p1 t1
z1 h1 s1 p1 t2
z1 h1 s1 p1 t3
z1 h1 s1 p2 t1
z1 h1 s1 p2 t2
z1 h1 s1 p2 t3
z1 h1 s2 p3 t4
z1 h1 s2 p3 t5

· · · · · · · · ·
the above for h2 and h3

· · · · · · · · ·
z2 h4 s2 p4 t4
z2 h4 s2 p4 t5

Figure 1: Shops, House and TaxBand tables with their corresponding join result

F uses a similar join result as an input to train its regression models. To do this, the
result of the join is interpreted under the following form, where each group of values
corresponds to a database tuple, or in other words a line in the join result:

{(y1, x11, x1n), ..., (ym, xm1 , ..., x
m
n )}

The objective is to define a function hθ(x) = θ0 + θ1x1 + .. + θnxn such that given
a new set of features x̃ = (x1, ..., xn), it is possible to predict the value of the unknown
label y such that y = hθ(x̃). The θ variables used in the hθ function are called the
parameters of the model. For instance, in the previous example, one possible task
would consist in predicting a new value P given a value for Z, one for H, one for S and
one for T .

To correctly learn the parameters of the model, the most natural approach would
be to minimise the prediction error of the hθ function on the training dataset, in other
words on the join table for which we already know the y labels. If the function closely
matches the data currently available, it is possible to predict the value of a new label y
for data that is not yet available, by assuming that the new data follows similar patterns
or trends, and that there are correlations between the values of different table columns
in the database.

A common approach to minimising such a prediction error consists in considering
what is called the least squares objective function, and apply batch gradient descent
to learn the parameters of the model. The full mathematical analysis is not provided
here as it is not required in order to understand the work done in this thesis, but can
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be found in the SIGMOD publication [1]. Nevertheless, it is important to state the fact
that this approach leads to calculating multiple cofactors, which are combinations of
database values, also called aggregates, of the following form:

Cofactor[j, k] =
∑m

i=1 x
i
kx

i
j

The method used by F decouples the calculation of these cofactors from the compu-
tation of the parameters, so it is possible to first obtain all the cofactors, and use them
during a convergence step in order to compute the final θ parameters of the considered
model.

2.2 Factorisations in F

In order to calculate and represent the join results which are used to learn linear
regression models during the cofactor computation phase, F relies on a factorised form.
By taking advantage of relational algebra laws such as distributivity of the Cartesian
product over union, factorised databases reduce data usage and redundant calculations
[2].

By observing the join result shown in the above example, it can be noticed that it
features a high degree of redundancy, with each value appearing numerous times in re-
peating combinations. By not eagerly materialising the join result and by representing
the Cartesian products and the unions symbolically, the following factorised represen-
tation can be obtained, which contains only 18 values instead of the 130 ones in the
eager join:

∪
z1 z2

× ×
∪ ∪ ∪ ∪

h1h2h3 s1 s2 s2 h4

× × ×
∪ ∪ ∪ ∪ ∪
p1 p2 t1 t2 t3 p3 t4 t5 p4

Figure 2: Factorisation of the join result example

For instance, for a given value of attribute Z, enumerating all the combinations
with values of attributes H and S is avoided by instead using union and Cartesian
products. This saves both space and computation and is one of the key elements to F’s
performance.
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The previous factorised representation of the join result follows a nesting structure,
which corresponds to what is called a d-tree [3]:

Z

H S

T P

Shops

HouseTaxBand

Figure 3: Database d-tree example

When working on a specific dataset, F is given a similar d-tree contained in a
configuration file, which enables it to know how to build the factorisation depicted in
Figure 2. Indeed, for a given database query, the d-tree is in general not unique. In
the previous example, the join between tables TaxBand and House could have been
moved at the root of the d-tree, and the join between tables Shops and House would
have therefore been situated at a lower level in the d-tree. The resulting factorisation
would have been different, yet perfectly correct.

As can be noticed at the bottom right of the factorised join result in Figure 2, the
factorisation form goes even further by caching common sub-expressions. Each value s2
is paired with the values t4 ∪ t5, which can be stored a single time and reused for every
occurrence of s2. By doing so, recomputing redundant regression aggregates during the
cofactor computation phase is avoided. F relies heavily on this caching approach to
boost its performance, and preserving caching is a key challenge when multi-threading
F in Section 4.

In order to learn regression models, regression aggregates must be computed over
the join result. Joining can be expensive both in terms of computational cost and
memory usage, and to avoid materialising the factorised join explicitly, F intertwines
join and cofactor calculation, and iterates over paths of values in the tables that follow
paths of attributes given by the d-tree. To make this iteration over values possible,
the relations are sorted following a partial order given by a depth-first traversal of the
d-tree. Indeed, F internally uses an implementation of the LeapFrog TrieJoin algorithm
to iterate through these paths [7], and this specific sorting order is necessary for the
process.
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2.3 Main components of F

The main components of the F system can be represented as shown in the figure
below. These four components are the ones on which the benchmarking experiments
are focused, with two additional ones when distributing the system (communication
over the network and synchronisation).

Loading and
parsing of data

Sorting of data

Cofactor computation

Parameter
convergence

Figure 4: Main Components of F

• F relies on datasets contained in CSV files with a structure similar to the following:

0.84795042898|0.226739223218|0.000167282398206|
0.84795042898|0.262857447717|0.000144600039127|
0.84795042898|0.341389244558|0.000419623642957|

The objective of the first component is to load these files initially stored on disk,
parse them, and arrange the values into arrays, each array corresponding to a
distinct tuple.

• The sorting of the data is done in the second component in order to follow a
partial order given by a depth-first traversal of the d-tree, as required by the
cofactor processing.

• In the third component, the system intertwines cofactor and factorised join com-
putation.

• Finally, by using the cofactors computed during the previous step, F calculates
the parameters corresponding to a given model by performing batched gradient
descent. This component is referred to as ”convergence”.
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2.4 Reported performance

As demonstrated in the SIGMOD publication [1], F can outperform commercial
systems such as MADlib, Python StatsModel and R by up to three orders of magnitude,
which makes it an extremely competitive system. The thesis focuses on the US retailer,
LastFM and MovieLens datasets; they are described in more details in Appendix B,
and the following table reproduces an excerpt of the timings reported in the original
paper.

US retailer LastFM MovieLens

F 16290 250 2120
Time MADlib 680600 196600 7080
(ms) R 2249190 804620 19120

Python StatsModel 2613310 539140 23550

F vs. MADlib 41.78× 786.40× 3.34×
Speedup F vs. R 138.07× 3218.48× 9.02×

F vs. Python StatsModel 160.42× 2156.56× 11.11×

Table 1: Performance of F vs. state-of-the-art

The timings only account for cofactor and convergence calculation. The times rel-
ative to the two first components of F, namely data loading and parsing as well as
sorting of the tables, were not reported in the paper, but are monitored in the upcom-
ing experiments to give a more complete end-to-end overview of the system.
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3 Re-engineering of F

As stated in Section 2.4, F significantly outperforms its competitors in terms of
cofactor and convergence computation. The aim of this section is to show how it
is still manageable to greatly improve these performance timings and build a robust
system that also becomes competitive when loading the data, parsing it, storing it in
memory and sorting it. From now on, the version of the F program that is presented in
the SIGMOD paper [1] is specifically referred to as OldF ; this constitutes the starting
point of the project, and F is used to refer to the system as it evolves over time through
the contributions that are exposed.

This section first introduces investigation about how to tune the compiler to improve
OldF’s performance. Implementation work on the data loading and sorting components
is then presented, as well as enhancements on the cofactor and convergence components.
Two other families of optimisations are explored, namely loop unrolling and profile-
guided optimisations. Finally, the build modes created to compile and modify F are
introduced.

3.1 Compiler flags tuning

Unfortunately, the times reported in the SIGMOD publication [1] were run on a
version of OldF that did not make use of any compiler flags. This thesis explores the
area of compiler optimisations in order to generate enhanced assembly code. Letting
the compiler optimise the C++ code is not only beneficial in terms of performance, but
also allows for a fairer comparison with commercial systems which make use of powerful
compilers to speed up their code. The following flags were selected when building with
the GCC compiler:

• -Ofast - This is the highest global optimisation flag available in GCC. Similarly
to the widely used -O3 flag, it enables numerous standard compiler optimisations
such as loop vectorisations, constants merging, loop nests optimisations, common
sub-expression eliminations, optimised instruction scheduling, better stack han-
dling, and many more; an exhaustive list is available in GCC’s documentation
relative to optimisation flags [15]. In addition, this flag also enables some opti-
misations that are aimed at increasing the speed of floating point computations,
which are widely used in F.

• -fassociative-math - This flag allows the compiler to re-associate operands in float-
ing point calculations.

• -freciprocal-math - This flag allows the compiler to use the reciprocal of a value in
a division. For instance x

y
can be changed to x. 1

y
, which may allow the compiler

to simplify some floating point expressions.
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• -fno-signed-zeros - The C++ standard specifies two zeros for float numbers, +0.0
and -0.0; this flag allows the compiler to ignore the signedness of a zero and to
treat them similarly.

• -frename-registers - This flag allows the compiler to improve register allocation
and is most beneficial for processors with many registers. This is generally the
case with recent CPUs, and in particular with the machines used to benchmark
F.

• -mtune=native - This flag tunes the compiled code for the specific CPU of the
machine and favours instruction sequences that run faster on that CPU. This is
relevant for the current benchmarking environment; nevertheless, if F is compiled
on a machine with a given CPU architecture but deployed on a machine that
uses a different CPU architecture, this may affect performance negatively. More
information is available in GCC’s documentation relative to options [18].

Some of the optimisations enabled by -Ofast as well as the -fassociative-math, -
freciprocal-math and -fno-signed-zeros flags disregard strict compliance with the C++
standard. They allow operations that are not permitted by the IEEE representation of
float point numbers [41], but can increase the performance of floating point calculations
for programs that do not rely of the exact implementation of the standard [15]. F
heavily uses floating point calculations in the cofactor and convergence phases, and
after running some extensive tests and verifying the accuracy of the results obtained
with these flags enabled, it was concluded that non strict compliance didn’t alter the
computations negatively and that OldF could be safely compiled with these flags.

Research and benchmarking was conducted to examine other flags that appeared
as candidates to improve OldF’s performance. Nevertheless they did not bring any
noticeable improvements and even affected performance negatively in some cases; con-
sequently the six flags listed above were selected in the end. They will be used from
now on throughout the different experimental sections of the project, when reporting
timings for F, MF or DF (respectively the multi-threaded and distributed versions of
F). These six flags are referred to as F-Flags from now on.

In the following figure, it can be measured to what extent a compiler can improve
a given piece of software, OldF in this specific case. The speedups observed by using
F-Flags over OldF alone are indicated below each plot. The three datasets described
in Appendix B are used as a point of comparison.
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(a) US retailer: 1.02× load, 5.63× sort, 3.10× co-
factor, 3.66× converge

(b) LastFM: 1.03× load, 8.33× sort, 2.51× cofac-
tor, 4.00× converge

(c) MovieLens: 1.03× load, 5.12× sort, 3.47× cofac-
tor, 3.25× converge

Figure 5: Performance with or without F-Flags
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Based on the plots, the components of F can here be divided in two separate groups:

• Load: for this component the speedup is relatively marginal, accounting for a
few seconds for US retailer and a few milliseconds for the two other datasets.
This component essentially relies on I/O handling and the choice of the parsing
function, which the compiler has little effect on.

• Sort, cofactor and convergence: for these components the speedups are much
more significant. The code basis involved is more extensive, with a lot of loops,
functions related to algorithms, mathematical expressions and operations on data
structures. The compiler has a lot more freedom when optimising such elements
and can more easily perform optimisations at the level of a whole compilation
unit, in other words by considering the code of an entire class for instance.

Therefore, by understanding how the code behaves, what the target system is and by
making efficient use of a compiler’s manual, it is showed that it is possible to significantly
improve performance of a piece of software without modifying a single line of code.

3.2 Redesigning data loading and parsing

As can be noticed on the above figure, the loading and parsing of the CSV data in
OldF is extremely slow, accounting for more than 90% of an end-to-end run with F-
Flags activated. This not only limits OldF’s scalability compared to database systems
such as PostgreSQL which can load huge amounts of data in memory within seconds,
but also makes extensive testing or benchmarking difficult, as a single execution takes
several minutes as soon as the sizes of the files reach a few gigabytes. Improvements
on this component of OldF cover three main areas:

• Recycling C++ objects: by extracting variable instantiations out of loops,
such as the string receiving the lines from the CSV data files or the counters used
for the column index in a tuple, the same objects can be reused throughout the
parsing of datafiles. For tables containing millions of tuples, this prevents from
instantiating millions of single usage new objects, which saves a considerable
amount of computational power.

• Using more adapted C++ file handlers: OldF used the FILE type with the
fopen function [30], which are old constructs from the C language. By switching
to the std::ifstream class [31], which is a more modern construct exclusive to the
C++ language, it is possible to achieve better I/O handling of the different data
files.

• Modifying the parsing function: OldF used the fscanf C function [30], which
featured poor performance when parsing a CSV line extracted from a data file.
A first attempt consisted in inputing the file lines in an std::stringstream ob-
ject [32], and then extracting the values from the stream by searching for CSV
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separators and casting them to doubles by using the std::stod C++ method
[33]. This already gave significant performance improvements over the approach
used in OldF. However, after some extra research and testing, it was decided
to switch to the Boost Spirit library [21], which further divided the loading
and parsing time by a factor 2. Spirit is a powerful header-only library, which
can support complex parsing grammars and achieve excellent performance. Its
syntax is slightly unusual, but allows for greater freedom when writing expres-
sions. Here is for instance a code except used to parse a CSV line (similar to
0.84795042898|0.226739223218|0.000167282398206|), contained in the line string
variable:

Code Excerpt 1: Parsing of a CSV line

1 /* Create a new tuple. */
2 Tuple tuple = new DataType[ attrIDs[table].size()];
3

4 column = −1;
5

6 /* Parse each double one by one; skip VALUE SEPARATOR CHAR. */
7 parsingSuccess = qi::phrase parse(line.begin(), line.end(),
8

9 /* Begin Boost Spirit grammar; qi:: 1 contains the parsed
double value. */

10 (repeat( attrIDs[table].size())
11 [qi::double [phoenix::ref(tuple)[++phoenix::ref(column)]
12 = qi:: 1]]),
13 /* End grammar. */
14

15 VALUE SEPARATOR CHAR);
16

17 assert(parsingSuccess && "The parsing of a tuple has failed.");

A new tuple to insert in the database is created on line 2. The qi:: 1 on line 12
represents the binary fragment to be parsed. Inside a Spirit grammar, a phoenix::ref
must be used to pass standard C++ object references to the parser. A reference to the
column variable and to the tuple are provided to the parser, which interprets the qi:: 1
fragment as a double (qi::double on line 11) and writes the value in the tuple at the
specified column index. This parsing is repeated for each column in the tuple (line 10);
the column index is incremented inside the parsing grammar on line 11. On line 15, a
separator is specified (| in the current setting) for the parser to know when to move on
to the next value to parse.

The following table gives more insight on the performance improvements that were
achieved:
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US retailer LastFM MovieLens

Load and parse OldF 279864 1762 3045
time (ms) OldF + F-Flags 274387 1703 2965

F 32393 218 383

Speedup F vs. OldF 8.64× 8.08× 7.95×
F vs. OldF + F-Flags 8.47× 7.81× 7.74×

Table 2: Performance after redesigning the load and parsing component

These three areas of research and improvements enabled to speed up the loading
and parsing of data files by almost an order of magnitude on the three datasets. Runs
that would previously take several minutes due to OldF’s poor loading can now be
completed within seconds. On the machine used for benchmarking in this section
(detailed characteristics can be found in Appendix C), the 5.3 gigabytes of the US
retailer dataset are loaded, parsed and stored into in-memory data structures in about
32 seconds, which accounts for a processing speed of 170 MB/s for CSV data.

3.3 Redesigning data sorting

Using compiler optimisations already increased the speed of the data sorting by 4 to
8 times depending on the dataset considered. Nevertheless, this component would still
account for a considerable proportion of an end-to-end run of F, and therefore effort
was put into redesigning it. Improvements on this component of OldF cover two main
areas:

• Rewriting the comparison funtion: to sort the tuples, which are represented
as arrays in memory, it is necessary to define a custom comparison function which
is used by the C++ standard library sort algorithms [35]. The data must be sorted
following a partial order given by a depth-first traversal of the d-tree, which does
not necessarily match the order of the attributes in the tuples. Therefore, a data
structure that links between the order required for sorting and the order of the
attributes in the tuples is needed; this data structure is passed as an input of the
comparison function. OldF used a variable length std::vector [34] for this; the
new implementation uses a slightly lighter heap-allocated array instead (obtained
by a construct such as new double[5]). Arrays and vectors have almost equiva-
lent performance, and many C++ developers will advocate using vectors because
of their safer and easier to use implementation. Nevertheless, the comparison
function is a performance-critical hotspot of the program and is called hundreds
of millions of times while dealing with datasets such as US retailer. Bringing
micro-optimisations by using simpler data structures in this function does impact
the overall performance significantly. Furthermore, the loop used in the compar-
ison function was rewritten, to improve branch prediction and get some extra
performance enhancements.
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• Sorting in parallel: the std::sort algorithm [35] is used to sort the tuples in
OldF. This function benefits from a powerful and highly optimised implemen-
tation, and is used as is in many commercial systems. Nevertheless, the main
drawback is that it only takes advantage of a single CPU core, which is inefficient
on machines with many cores. GCC features a Parallel Mode [16], which pro-
vides parallel implementations of many of the algorithms in the C++ Standard
Library. These implementations are based on the OpenMP API [20], and require
relatively few changes in the code to be enabled. They are built into GCC and
do not require any external libraries; they can be enabled by adding the -fopenmp
compiler flag, and switching to a different header inclusion and a different names-
pace in the relevant files. Nevertheless, care has to be taken to automatically
handle the case where another compiler is used, which is achieved by introducing
pre-processor macros and a small wrapper around the sorting function. Instead
of sorting by using a single core like in OldF, F is now able to take advantage of
all the cores available thanks to this powerful parallel implementation of the sort
algorithm.

The following table gives more insight on the performance improvements that were
achieved:

US retailer LastFM MovieLens

Sort time OldF 97237 418 1085
(ms) OldF + F-Flags 17258 49 212

F 4106 12 51

Speedup F vs. OldF 23.68× 34.83× 21.27×
F vs. OldF + F-Flags 4.20× 4.08× 4.16×

Table 3: Performance after redesigning the sorting component

If OldF is compiled with F-Flags to exclusively measure the improvements brought
by sorting in parallel and rewriting the comparison function, the speedup is over 4 times
on all datasets.

3.4 Improvements on the core parts of F

The thesis now discusses some of the work that was achieved on the core parts of
OldF, namely the cofactor and convergence calculations.

Simplification of the caching data structure

As previously mentioned, F features a cache system to avoid computing redundant
aggregates repeatedly. The data structure to manage the cache in OldF initally featured
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the following design:
std :: map < int, std :: map < std :: vector < double >,RegressionAggregate∗ >>

The integer key in the outermost map corresponds to the ID of the node in the
d-tree. Each of these IDs in the map is paired with a value which is another map.
This innermost map has keys formed by a vector of doubles; these doubles correspond
to values in the database tables that follow a given path in the d-tree. Each time a
regression aggregate needs to be calculated for a given ID in the d-tree and a path of
values, the cache must first be probed; if found, the previously computed aggregate can
be directly used, or computed and inserted into the cache otherwise.

Therefore the cache is repeatedly used throughout the cofactor calculations, and
boosting its efficiency can significantly improve performance. Two observations can be
made regarding the initial implementation just described:

• Having a nested map inside a map is heavy in terms of memory usage and compu-
tational cost when probing for a value. Work was done to simplify this structure
and turn it into the following form:

std :: map < std :: vector < double >,RegressionAggregate∗ >

In other words, the node ID information is directly merged into the values path
vector, by adding an extra node ID value at the end; conceptually this is equiv-
alent to merging the keys used in each map into a single key containing all the
information. This enhanced cache implementation required changes to the way
the cache is dealt with, basically meaning the code fragments used to access and
populate the cache were rewritten in OldF’s core functions.

• Maps in C++ are data structures that internally rely on binary search trees [36].
Inserting and searching in such a structure has logarithmic time complexity. In-
stead, an std :: undordered map [37] is now used, which is another C++ data
structure that relies on hashes instead of trees. Inserting and searching has con-
stant time complexity, and the C++ implementation of the unordered map fea-
tures better performance than that of the map. Some additional work was needed
when switching the data structures, as there is no built-in hash function available
for vectors of doubles, and keys can’t be inserted in the std :: undordered map
without a hash. With the map type, keys are inserted in the internal tree follow-
ing an ordering function, which is available for vectors of doubles in C++, so a
similar problem did not occur. Therefore, a custom hash function for the keys of
the std :: undordered map had to be implemented. The function needs to have
good properties to avoid different keys from hashing to the same value, and to
achieve this the source of the Boost library’s hash combine function [42] was used
as an inspiration. For each double value in the vector, a hash is generated by
using the standard C++ hash function for individual doubles; it is combined by
XOR-ing it with the hash computed so far on the previous elements in the vector
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and two bit shifting operations are performed. This approach leads to a robust
yet fast hash function which is currently in use in F’s cache system.

To sum up, after these two implementation changes, the cache used by F now has
the following form:

std :: unordered map < std :: vector < double >,RegressionAggregate∗ >.

Extended guidance provided to the compiler

A variety of optimisations can be performed by analysing the program’s execution
flow and by determining the functions that are most critical to its performance. Many
compilers such as GCC feature special function attributes to help make decisions based
on such information [17]. In particular, the hot function attribute was used in critical
parts of the code. This attribute indicates that a given function is a hotspot of the
program and therefore the compiler tries to optimise it more aggressively. The function
is also placed in a special subsection of the text section (ie. the memory section where
the instructions of the program are stored at runtime), alongside other hot functions,
for better locality. For instance the function seekValue, which is repeatedly used dur-
ing F’s cofactor calculation to find values in the database following a d-tree ordering
and specified value bounds, is given the hot attribute. To declare a function as hot,

attribute ((hot)) can simply be added in front of the function; the project provides
a slightly more complex implementation based on the pre-processor to ensure compati-
bility with compilers that do not support these additional attributes. Other attributes
such as cold, pure or leaf are also available [17], but not used in the current code basis.

Following a similar idea, several functions were inlined. The objective of inlining is
to get rid of the overhead brought by a call to a repetitive and small function, by directly
including its body at the point of call. This is for instance the case of the functions used
in the convergence component of OldF. The general C++ pattern consists in declaring
a function in a header file (with its name, parameters and return type), and defining
it with its body in a separate implementation file. In order to inline a function, it is in
general required that it be fully defined in the header file, to make it directly available
in the translation unit where it is accessed. The keyword inline, which behaves like a
hint to suggest that the compiler ought to inline the function, should also be added.
After performing these changes on OldF’s relevant functions, it was possible to verify
that they had been successfully inlined by generating the corresponding assembly code
and by seeing that the bodies of the functions had been inserted at their point of call.

Further improvements and partial conclusions

Various other improvements were performed in OldF’s core functions, such as more
efficient vector filling, numerous operations rewriting or redundant code elimination.
Their exhaustive listing would be tedious and rather uninteresting. Nevertheless, the
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work that was done on memory management can be highlighted. Indeed, the way OldF
handled memory was initially flawed, and huge memory leaks would occur; for instance
with the MovieLens dataset, as many as 44058582 bytes of memory were leaked during
each execution, and several memory locations were used without having been previously
initialised, which could lead to undefined behaviour. Research was first done with the
Valgrind tool [25], in order to understand why such memory issues would arise; it was
then possible to correct these problems. The F system now runs cleanly, and no longer
suffers from any leaks or operations on uninitialised memory.

Performance figures are now given, in order to measure the impact of the enhance-
ments that are discussed in this section, namely the simplification of the caching data
structure, the extended guidance provided to the compiler and the other improvements
just mentioned. Here are the timings for the cofactor and convergence components:

US retailer LastFM MovieLens

Cofactor time OldF 15728 211 2122
(ms) OldF + F-Flags 5072 84 611

F 4720 78 459

Speedup F vs. OldF 3.33× 2.71× 4.62×
F vs. OldF + F-Flags 1.07× 1.08× 1.33×

Table 4: Performance after improvements on the core parts of F (cofactor)

US retailer LastFM MovieLens

Convergence time OldF 317 44 13
(ms) OldF + F-Flags 87 11 4

F 75 10 3

Speedup F vs. OldF 4.23× 4.40× 4.33×
F vs. OldF + F-Flags 1.16× 1.10× 1.33×

Table 5: Performance after improvements on the core parts of F (convergence)

The changes on the cofactor and convergence components of OldF were essentially
improvements based on the existing code and not a complete redesign like the loading
and sorting components. Therefore, the performance gains are less pronounced than
previously demonstrated, yet still substantial. Several hundreds of milliseconds are still
saved on cofactor calculation with datasets such as US retailer, and this showcases how
important engineering considerations are.

All the contributions discussed so far are put together, and the performance of the
system is compared to the one reported in the SIGMOD paper [1]. As can be noticed in
the below plots, depending on the dataset considered, the performance of an end-to-end
run of F has been improved by up to an order of magnitude compared to OldF.
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(a) US retailer: 9.53× end-to-end run speedup over
OldF

(b) LastFM: 7.59× end-to-end run speedup over
OldF

(c) MovieLens: 6.98× end-to-end run speedup over
OldF

Figure 6: Performance by summing up contributions discussed so far
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3.5 Loop unrolling

Loops bring overhead to the execution of a program, due to conditions checking,
branching, and reduced optimisation possibilities for the compiler. Nevertheless, if the
number of iterations of a loop is known at compile time, it is possible for the compiler
to get rid of the loop entirely, therefore eliminating the overhead it brings and possibly
increasing performance if the loop is called repeatedly.

To enable loop unrolling, new compiler flags were implemented into OldF. The vari-
ables covered by these flags are the number of tables in the database (flag -DTABLES ),
the number of workers in the network (flag -DWORKERS ), the number of attributes in
the database (flag -DATTRIBUTES ) and the number of features (flag -DFEATURES )
and interactions (flag -DINTERACTIONS ) used for F’s regression learning. For in-
stance, -DTABLES=3 can be added to the compiler flags when compiling F to run on
the US retailer dataset.

When specified at compile time, the compiler replaces the variables previously men-
tioned as constants in the code, and eliminates the loops it can. These flags are optional,
and if not specified, the values of the different variables will automatically be deter-
mined at runtime, based on information extracted from the configuration files. The
project contains a header file GlobalParams.hpp where each variable is given a type;
note that the name of the flag and the name of the variable do not need to be the same.
If a variable has a corresponding flag specified at compile time, a pre-processor macro
defines it as a C++ const ; its value can be used by the compiler directly throughout
the code. If a variable has no flag, a pre-processor macro declares it as a C++ extern
variable, and the variable must then be defined and given a value in an implementation
file at runtime. The compiler will not be able to make any assumptions about the value
of the variable in this latter case.

To be a bit more specific about the effects of unrolling, consider the following code
which is used in the distributed setting to determine whether a given tuple must be
sent to a node or not (more details in Section 5):

Code Excerpt 2: Loop based on number of workers

1 /*
2 * Check hash value inequality for each node.
3 * If compiler flag available, enables loop unrolling and other

compiler optimisations.
4 */
5 for (size t nodeID = 0; nodeID < NUM OF WORKERS; ++nodeID)
6 {
7 if ( nodesHashAddresses[nodeID
8 + NUM OF WORKERS * attributes[attr]] != hash)
9 {

10 ignoredWorkers[nodeID] = true;
11 }
12 }
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When compiling without additional compiler flags, the following assembly instruc-
tions are generated for this C++ code fragment:

Code Excerpt 3: Assembly without loop unrolling

1 mov 0x262b4f(%rip),%r8
2 test %r8,%r8
3 je .42a604
4 lea 0x0(,%r8,8),%rdi
5 xor %r11d,%r11d
6 imul %r10,%rdi
7 add 0xe8(%r13),%rdi
8 nopl 0x0(%rax)
9 .42a5f0:

10 cmp (%rdi,%r11,8),%rdx
11 je .42a5fc
12 movb $0x1,0x0(%rbp,%r11,1)
13 .42a5fc:
14 inc %r11
15 cmp %r8,%r11
16 jne .42a5f0
17 .42a604:
18 mov 0x8(%r14),%r10

In this case, the value of the NUM OF WORKERS variable is loaded by instruc-
tion 1. Instruction 2 tests whether the variable is equal to 0 and instruction 3 ignores
completely the loop if it is. Instructions 4 to 8 prepare the registers for the comparison
in the if clause inside the loop (lines 7 and 8 of the C++ code). Instructions 10, 11 and
12 respectively correspond to the if condition checking, branching when the condition
is false, and writing true to the ignoredWorkers array otherwise. Other instructions
relative to the loop can be observed, namely instructions 14, 15 and 16 situated under
label .42a5fc, which respectively correspond to loop index incrementation, loop condi-
tion checking and branching backwards if the upper limit is not yet reached. If the loop
has not yet ended, the processor jumps to label .42a5f0, and execute instructions 10,
11 and 12 again.

When compiling with the -DWORKERS=4 compiler flag setting the value of NUM-
OF WORKERS to 4, the following assembly instructions are generated for this C++

code fragment:
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Code Excerpt 4: Assembly with loop unrolling

1 mov 0xe8(%r12),%rdi
2 shl $0x2,%r9
3 cmp (%rdi,%r9,8),%rdx
4 je .42a3a3
5 movb $0x1,0x0(%r13)
6 .42a3a3:
7 lea 0x8(,%r9,8),%r10
8 cmp (%rdi,%r10,1),%rdx
9 je .42a3b6

10 movb $0x1,0x1(%r13)
11 .42a3b6:
12 cmp 0x8(%rdi,%r10,1),%rdx
13 je .42a3c2
14 movb $0x1,0x2(%r13)
15 .42a3c2:
16 cmp 0x10(%rdi,%r10,1),%rdx
17 je .42a3ce
18 movb $0x1,0x3(%r13)
19 .42a3ce:
20 mov 0x8(%r14),%r11

In this second case, the loop has disappeared, and the NUM OF WORKERS vari-
able is now a constant that is directly used by the compiler. Four groups of three
equivalent instructions (instructions 3 to 5, 8 to 10, 12 to 14 and 16 to 18) follow one
another; the three instructions respectively correspond to the if condition checking,
branching when the condition is false, and writing true to the ignoredWorkers array
otherwise. There are no longer any instructions relative to loop counters, loop upper
bound checking, or branching if the limit is not yet reached. As the compiler knows that
the loop will contain exactly four iterations no matter what, it can simply duplicate
the body of the loop four times and get rid of any extra overhead.

Loop unrolling does seem like an interesting way to improve the performance of
a loop, but from a different perspective, the examples above can lead to a different
conclusion. Except for loops with a small body and a low number of iterations, loop
unrolling tends to increase the size of the binary by duplicating instructions. Even
though the overhead brought by the loop is removed, as the number of assembly in-
structions grows for a same C++ code fragment, the CPU’s instruction cache is filled
up faster, negatively affecting performance. Therefore loop unrolling has both benefits
and drawbacks, and may or may not increase performance in different cases.

The following effects were observed when using loop unrolling across the different
components of F:

• Load: loop unrolling negatively affects this component. The functions used to
load are parse the CSV data yield an underlying very lengthy assembly code, and
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therefore loop unrolling significantly increases the size of the binary and decreases
the performance of this component.

• Sort: there is no noticeable change in performance brought to this component.

• Cofactor: loop unrolling improves the performance of this component. The
functions related to cofactor computation contain numerous loops with relatively
constrained bodies. For instance, on the US retailer dataset, this performance
boost accounts for about 60ms comparatively to the 4720ms reported in Table 5.

• Convergence: loop unrolling has a slight negative effect on this component.
Most of the functions used for this component are inlined, and as stated previ-
ously inlining is mostly beneficial for small functions. Therefore by increasing the
number of instructions contained in the functions, the effects of inlining are also
hit by loop unrolling.

In the upcoming experiments throughout the thesis, loop unrolling is only used
when explicitly stated.

3.6 PGO

All the previous work done of OldF was focused on enhancements brought by im-
proving the code or by tuning the compiler in a specific way. A new area will now be
explored, namely Profile-Guided Optimisation (PGO). Contrarily to the previous work,
PGO is a dynamic form of optimisation that requires running the program in order to
operate.

PGO makes the program generate extra profiling information at runtime, such as
various probabilities and frequencies of function executions or branching paths. This
information is then used by the compiler to improve the generated code on aspects
such as branch prediction, function reordering, loop behaviour or function inlining.
The unusual requirement for this approach is to have datasets that are representative
of a program’s execution, and unfortunately these are not always available or easy to
obtain. In F’s case, the representativeness of the datasets was checked by generating
the profiling information with a given dataset, and using this information to execute
an optimised program on a different dataset; these tests all gave similar performance
speedups when switching datasets, which indicates that the three datasets in use in this
project are representative of what could be defined as a standard execution flow of the
F program.

The GCC compiler has built-in functionality to use PGO. The official documentation
is very scarce on this topic, nevertheless some extra insight can be gained by referring
to Drepper’s publication about memory and processors [13]. The following steps must
be observed when using PGO:
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• Compile the program a first time by adding the -fprofile-generate flag to the usual
compiler options.

• Let the program run several times on data that is considered as sufficiently rep-
resentative of a program’s execution flow. The execution time in this step is
significantly slower as the code is also generating profile information and saving
it into .gcda binary files.

• Recompile the program with -fprofile-use. The compiler reads the information
contained in the .gcda files, and uses it to improve the code it generates on vari-
ous aspects previously mentioned. If the application is multi-threaded, as it is the
case for MF (multi-threaded version of F), the -fprofile-correction flag must also
be added. Indeed, the profile information generated by multiple threads may be-
come inconsistent due to missed concurrent updates, and has to be automatically
corrected by the compiler.

It is important to highlight the fact that a given batch of profiling information can-
not be reused if the code has been changed in the meantime. Indeed, if new functions or
branches are added, there are inconsistencies between the code and the corresponding
profiling data, and the compiler fails to compile the program with -fprofile-use. There-
fore it is best to only use PGO when having a stable code, and not when testing on a
daily basis.

After compiling F for PGO, generating profile information by running the different
datasets, and recompiling the program with corrections enabled, the following improve-
ments are achieved:
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(a) US retailer: 0.98× load, 0.97× sort, 1.45× co-
factor, 0.86× converge

(b) LastFM: 0.99× load, 0.71× sort, 1.29× cofac-
tor, 1.00× converge

(c) MovieLens: 0.99× load, 1.19× sort, 1.25× cofac-
tor, 1.50× converge

Figure 7: Performance with or without PGO
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The following facts can be observed for each component of F:

• Loading: this component seems marginally slower with PGO. This is mainly due
to the fact that this component handles I/O operations, which is difficult for the
compiler to profile in an efficient way.

• Sorting: the results are mixed for this component. The performance for the
US retailer dataset is roughly the same, is improved for the MovieLens dataset,
but is negatively affected for the LastFM dataset. The function used for sorting
is based on a highly optimised algorithm and multi-threaded implementation,
efficient profiling may be more difficult depending on the dataset.

• Cofactor: PGO gives an impressive performance boost for this component. Up
to one and a half seconds of computation are saved when running the US retailer
dataset. A lot of branching, functions calls and loops are used in the corresponding
code basis, which enables to generate extensive profiling information.

• Convergence: as for sorting, results are mixed and depend on the dataset. The
code basis is rather small for this component, and the execution is fast, limiting
the effect of profiling.

Overall, the times for an end-to-end run of F are significantly improved as shown
in the plots. As a more general conclusion, PGO is a simple to use yet powerful tool,
that challenges the programmer into building executions that are as much as possible
representative of his program’s flow.

In the upcoming experiments throughout the thesis, PGO is only used when ex-
plicitely stated.

3.7 Three modes of building F

Finally the different build modes that are implemented around this project are
presented. This section is not directly related to performance, but is more aimed at
introducing an easier and more professional developing experience compared to what
was in use in OldF.

Three build modes were implemented:

• The Debug build mode. All optimisation flags are disabled for faster compiling
and better debugging experience. Symbol information is kept when compiling the
code, meaning that the names of the variables and functions are preserved and
can easily be linked to the program’s source code. Extra messages are logged
when running the program.
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• The Release build mode. The F-Flags presented in Section 3.1 are activated.
Logging is kept to a minimum to provide the most relevant information to the
user.

• The Benchmark build mode. The F-Flags presented in Section 3.1 are activated.
All standard logging messages are disabled, but instead performance timings are
reported.

These modes can be simply selected by editing the CMAKE BUILD TYPE variable
in the CMakeLists.txt file of the project. With this simple switch, it is possible to quickly
enable extra logging information or run benchmark tests without modifying any of the
C++ code. Furthermore, the functions used in one build mode do not affect the other
modes. For instance, the initialisation of timers and the benchmark logging function
calls are not even compiled when using Release mode. This is handled by pre-processor
macros which automatically select code fragments relevant to the current build mode at
compile time. Therefore there is no overhead in adding extensive debugging information
or benchmarking checkpoints in the code when using Release mode. To avoid having to
systematically write the pre-processor macros when adding new logging information, the
C++ standard logging functions are packaged into simple wrappers, which are either
eliminated or kept by the pre-processor. For instance, simply writing DINFO(”Hello
World!”) in the code logs the corresponding text in the console in Debug build, and is
ignored at compile time when using the two other build modes.

In the upcoming experiments throughout the thesis, the performance figures are
always related to code compiled in Benchmark mode.
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4 MF: Multi-threading F

When learning regression models over factorised joins, OldF only exploited one CPU
core due to its single-threaded design. This limits its scalability and results in a lot of
unused computational power on a machine with many CPU cores. In Section 3 it was
demonstrated how to multi-thread the sorting component of F; the thesis now focuses
on a more complex task, introducing multi-core processing to the cofactor calculation
component. Novel insights about how to implement efficient parallel processing in
factorised settings are introduced. From now on, the multi-threaded version of F is
specifically referred to as MF.

This section first discusses how to implement multi-threading to guarantee the cor-
rectness of the final result. Efficiency concerns are then discussed, focusing on which
table to partition and how to deal with the caching system. Implementation details are
provided and an experimental analysis is finally given.

4.1 Correctness

To be able to multi-thread the cofactor computation, a disjoint way of partitioning
the total workload must be found. The simplest and most natural approach to do
this is to run F in parallel on different partitions of the data, and merge the results
obtained on each one of these partitions. Nevertheless, even though data partitioning
is a general approach to multi-threading tasks, it cannot be done arbitrarily, and care
must be taken to ensure it does not lead F to compute incorrect results.

This approach is based on a simple observation regarding joins. Consider tables A
and B, as well as A1 and A2 two partitions of A such that A = A1 ∪ A2. Due to the
distributivity of the join operator, the following equality is verified:

A 1 B = (A1 1 B) ∪ (A2 1 B).

All the aggregates computed by F are based on the join of a table column and
another one. As mentioned previously, cofactor computation commutes with relational
union and projection, and cofactors can therefore be computed on each partition inde-
pendently. Based on the above observation about joins, if one of the database tables
is selected and expressed as a union of disjoint table partitions, it is possible to learn
the linear regression model over each sub-join in the union, and merge all the partial
results.

Due to the distributivity property, the final cofactors are obtained by summing the
different cofactors for each disjoint partition of the entire dataset. The convergence
step can then be performed as usual, independently of the cofactor step.
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This horizontal partitioning scheme, which assigns equivalent amounts of tuples of a
table to each thread, gives an efficient way to divide the workload of F’s cofactor com-
ponent between several threads, while ensuring correctness of the overall computation.

4.2 Table to partition

After some preliminary testing, it was noticed that there are great performance gaps
depending on the table selected for the partitioning. The following section demonstrates
why this happens, as well as refinements of the horizontal partitioning to deal with this
new issue. Going back to the example presented in Section 2, its d-tree and join
factorisation are recalled:

Z

H S

T P

Shops

HouseTaxBand

(a) D-tree

∪
z1 z2

× ×
∪ ∪ ∪ ∪

h1h2h3 s1 s2 s2 h4

× × ×
∪ ∪ ∪ ∪ ∪
p1 p2 t1 t2 t3 p3 t4 t5 p4

(b) Factorisation

Figure 8: D-tree example and factorisation of the join result

As previously mentioned, F’s caching system in this example relies on the fact
that each value s2 is paired with the values t4 ∪ t5, which can be stored a single time
and reused for every occurrence of s2. The corresponding aggregate only needs to be
computed once, and can be reused each time the factorisation fragment is encountered
again. Consider the following scenarios:

• If the partitioning were to be done on table TaxBand which contains attribute T
and if values t4 and t5 ended up in two separate partitions, this would have the
side-effect of ”breaking up” the aggregate; an aggregate corresponding to t4 ∪ t5
would no longer be cached and reused in the calculations. If such a table is
partitioned, smaller and more numerous aggregates are cached, which reduces the
efficiency of the system.

• On the contrary, if partitioning is done on a table that joins at the root of the
tree, namely table Shops or table House, the cached aggregate corresponding to
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t4 ∪ t5 is preserved. By selecting one of these two tables instead of TaxBand, the
issue no longer occurs in this example.

By analysing this simple illustration, a new issue that arises when dealing with fac-
torisations is highlighted and choosing the wrong table can thus negatively affect the
performance of the multi-threaded system. More precisely, partitioning a table that
joins at a lower level in the d-tree breaks up aggregates at lower levels in the join fac-
torisation, and therefore negatively affects more branches throughout the factorisation.
One of the tables joining at the root of the d-tree must therefore be partitioned in order
to limit the effects of aggregate fragmentation.

The issue of choosing to partition between table Shops or table House remains,
in other words selecting the table between all the ones joining at the top of the d-
tree. Without having any extensive profile information about the data itself, it is
hard to predict which table is most negatively affected by partitioning based only on
theoretical considerations. This second selection step is therefore built on experimental
observations.

Choosing a table joining at a lower level in the tree would hit performance badly as
stated previously. Nevertheless, small performance differences still occur when choosing
different tables joining at the root of the d-tree. The following facts were noticed when
running benchmark tests:

• Partitioning the largest table joining at the root of the d-tree yields better per-
formance.

• The performance gap between two root tables is more pronounced if the size gap
between them is larger.

This behaviour was observed for the US retailer, LastFM and MovieLens datasets,
plus an additional Housing dataset not used for benchmarking in this thesis.

The following interpretation can be proposed for this behaviour. For simplicity we
consider a scenario where the database contains only two tables that join at the root of
the d-tree. If the larger table is partitioned, the threads operate on their own partition
of this table, but on the full range of the other table. Therefore all the tuples in the
smaller table are used by all threads. If the table is small enough, the CPU may be
able to cache it completely or at least in part in its L3 level cache, which is shared by
all CPU cores. This benefits all threads, as they are able to get data from the L3 CPU
cache instead of receiving it from main memory. On the contrary, if the smaller table
is partitioned and the larger one is used entirely by all threads, it may only be possible
for the CPU to cache small chunks of the large table. In the case where the threads are
operating on different sections of this table concurrently, they are not able to benefit
from the fact that they all need the same memory chunks for their processing. Therefore
the performance is superior when partitioning the larger table. More insight about CPU
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caches and prefetching effects can be gained by referring to Drepper’s publication about
memory [13].

To sum up, MF assigns the table to partition following a selection procedure based
both on theoretical and practical considerations, and proposes a novel approach to
multi-threading in factorised settings. MF divides the workload between several threads
by partitioning one of the database tables horizontally, and initially considers all the
tables joining at the root of the d-tree as potential candidates for partitioning. Among
all these candidates, the largest one is selected and threads are launched to compute
cofactors on disjoint partitions of this table. This heuristic turned out to be optimal for
all the datasets presented in this thesis plus an additional Housing dataset, but may be
refined when exploring more complex d-trees and analysing their implications on the
caching system used by MF.

4.3 Minimising redundancies across threads

In the initial implementation of multi-threading, independent threads were launched
to compute the cofactors when partitioning a table; these threads would not cooperate
in any way and would have their own local instance of the caching data structure.
This approach had the side effect of increasing the overall workload needed for cofactor
computation. Indeed, this meant that an aggregate computed by a given thread had to
be computed again by other threads who encountered the same factorisation fragment,
which caused redundancies in the overall computation and reduced the efficiency of the
caching system.

In a second approach, it was decided to implement a unique cache that would be
shared between the different threads. Although this required to add some fine-grained
synchronisation points on the cache data structure to avoid any race conditions, this
enabled to reduce the overall workload by avoiding many redundant computations. If a
thread computes a specific aggregate and if another thread later on needs to compute
the same aggregate, it is able to benefit from the work of the first thread by simply
probing the shared cache and retrieving the aggregate that was inserted earlier.

There is nevertheless a caveat with this approach. Indeed, if two threads encounter
the same new aggregate at the same time, they compute it in parallel, and the first
thread that finishes successfully inserts its aggregate in the cache. The insert by the
second thread fails as an aggregate with the same key already exists in the cache, and
when detecting this insertion failure, the second thread simply discards its redundant
aggregate and moves on with its processing. Therefore there still can be redundancies
in the computation. With the current multi-threading scheme based on horizontal
table partitioning, this cannot be avoided without increasing the amount of locking
around the cache data structure or significantly modifying the way F deals with cofactor
computation.
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The extent to which this scenario occurs in a real setting is measured quantitatively.
Each dataset is tested ten times with eight threads operating in parallel, and the number
of redundant aggregate computations as previously described are averaged on these
executions. Indeed, depending on the relative speed of the threads during a given
execution, different amounts of redundancies are likely to happen. For the US retailer
dataset, 0 redundant aggregates are computed, for a total of 1276 aggregates in the
cache. Relatively to the huge size of this dataset, the number of aggregates is small,
making it unlikely for two threads to compute the same aggregate in parallel. For
the LastFM dataset, on average 6.8 redundant aggregates are computed, for a total of
1892 aggregates in the cache. For the MovieLens dataset, on average 4.2 redundant
aggregates are computed, for a total of 6040 aggregates in the cache.

Overall, it can be argued that the amount of redundant calculations is very low
with the approach suggested by this thesis, especially regarding the fact that a given
aggregate may be reused a vast amount of times throughout the cofactor calculation
and that a redundant computation on that aggregate can only occur once after initial
insertion in the cache.

4.4 Implementation

Additional implementation details are now discussed, in order to better understand
how multi-threading is done in practice and to show its impact on the cofactor compu-
tation’s performance.

It is important to underline the fact that the partitioning of the tables is done
logically and not physically. Therefore no new structures are created when partitioning,
only lower and upper bounds are passed to MF’s cofactor function in order for it to
know on which range of the partitioned table it must operate. This is possible due to
the fact that F does not modify the tables it works on, except for the sorting that is done
beforehand; thus several threads can safely access the same table structures concurrently
without any synchronisation. Operating with logical partitions also ensures better
memory locality of the database table, which leads to better performance.

The table to partition is selected programatically following the previously presented
algorithm, but the user can use command line options to chose the number of threads
and the number of partitions to work on; if no command line options are specified, this
is also determined programatically based on the processor’s architecture. As far as the
number of partitions is concerned, two aspects must be considered:

• A given partition may take more time to process than another, and even if the
workloads of all the partitions are similar, a thread may take longer to complete
its task if the OS for instance decides to deschedule it during the calculation in
favour of a system or another user process. This leads to discrepancies in the
time taken to process each partition. By increasing the number of partitions,
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these differences tend to be erased, as a given thread can start work on a new
partition if another one is slower and is still processing a previous partition. If the
partitions are small enough, this prevents some threads from being idle because
no more partitions are available but some other threads haven’t yet finished their
work. In other words, by increasing the number of partitions, all the threads can
be kept busy during the entire processing, which leads to a uniform distribution
of the processing time among all the available threads.

• On the other hand, by increasing the number of partitions, the caching may
become less efficient depending on the structure of the d-tree due to aggregate
fragmentation; therefore datasets that heavily rely on caching may be negatively
affected by a higher number of partitions. There also is a very small initialisation
overhead when launching work on a new partition, and the data structures that
are used to store the subresults of each partition also grow in size as the number of
partitions grows. These effects are negligible when dealing with a few partitions,
but may become visible when increasing their number significantly.

These two competing effects can be observed in the upcoming experimental section,
where performance is plotted for a range of different numbers of partitions for each
dataset.

Finally, focus is put on how the partition allocating scheme is implemented in prac-
tice. Allocation must be done dynamically, as predefining a set of partitions for each
thread to work on would be inefficient. Indeed, if one of the threads turns out to be
faster than others, it must be able to work on additional partitions as was discussed
previously. The solution adopted is to create a shared counter keeping track of the
index of the next partition to work on. This index is used to determine the partitioned
table bounds that MF must observe to compute the cofactors of this partition. The
partitioned table is divided into chunks of equal size; for instance, when using two par-
titions on a table containing one thousand tuples, partition with index 0 corresponds
to tuples 0 to 499 and partition with index 1 corresponds to tuples 500 to 999. In
the case where the number of tuples is not divisible by the number of partitions, the
remainder tuples are allocated to the last partition. To avoid synchronisation overhead
required to access the shared counter, a C++ atomic integer is used (more precisely the
atomic uint fast32 t type [38], which guarantees an unsigned integer of at least 32 bits
long), called nextPartition. For instance, to retrieve and increment such a variable,
the following construct can be used:

Code Excerpt 5: Incrementing partition index

1 /* Retrieve and increase value of next partition to work on. */
2 currentPartition = nextPartition.fetch add(1, memory order relaxed);

The atomic classes ensure that concurrent operations on the integer variable are
well defined; for instance, if a thread increments the counter, this is translated by a
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single instruction at the CPU level, and all other threads immediately see the effect of
this operation, even if they previously had an outdated version of the counter in their
respective L1 or L2 CPU caches. The memory order relaxed used in the above code
snippet is a constant from the std::memory order enum [39], and is used to indicate how
the compiler is allowed to rearrange other instructions around an atomic operation; the
details of why this specific memory order is chosen are not considered in this thesis as
this would be a fairly long and complex discussion. This way, partitions are allocated
to each thread smoothly without any locking, and each thread knows what its next task
is by simply referring to this shared counter and by using it to determine the bounds of
its partition. Once the counter has reached the total number of partitions specified by
the user when launching MF, processing can stop. All the cofactors computed on each
partition are then summed up and the convergence component is called in the main
thread of execution.

4.5 Experiments

A series of experiments is conducted to measure the impact of multi-threading and
to illustrate some of the ideas previously discussed.

In parallel of this project, Maximilian Schleich continued on developing F. A more
efficient and more general version of cofactor computation was introduced, and it is the
one on top of which MF and DF are implemented. F is now able to perform additional
machine learning tasks such as factorisation machines or polynomial regression, and
the way cofactors were computed until now was improved. These developments are
orthogonal to this thesis and mostly concern the performance of regression models of
higher degrees, but explain why the performance figures for single-threaded MF cofactor
computation are superior by about 10% to the ones reported in Section 3 for the current
setting.

The first group of plots shows the evolution of the cofactor computation performance
depending on the number of threads, with one single partition per thread. The second
group shows the evolution of the cofactor computation performance depending on the
number of partitions used while keeping the number of threads constantly equal to
eight, which is the total number of cores available on the machine used for testing in
this section, as detailed in Appendix C. There is one plot for each of the three datasets
described in Appendix B.
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(a) US retailer (b) LastFM

(c) MovieLens

Figure 9: Performance of cofactor calculation depending on number of threads (machine with
8 cores)
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(a) US retailer (b) LastFM

(c) MovieLens

Figure 10: Performance of cofactor calculation depending on number of partitions
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• Influence of the number of threads:

Regarding the US retailer and LastFM datasets, best performance is reached when
all the cores of the machine are used, namely for eight threads. When using more
threads, the performance stagnates, as the processor’s cores have to share their
processing time between several of the program’s threads and all the threads can
therefore no longer be scheduled at the same time. When increasing significantly
further the number of threads, although not shown in the plots, performance starts
plummeting due to heavy context switching, in other words the CPU having to
repeatedly schedule and deschedule numerous different threads.

When using eight threads instead of one, cofactor computation is 4.07× faster
with the US retailer, and 3.33× faster with the LastFM dataset.

As far as the MovieLens dataset is concerned, performance reaches a peak for
four threads, and then decreases slowly up to eight threads where is stagnates.
It is unclear why this happens, as MovieLens is the ”middle” dataset in terms
of number of tuples, join size and factorisation size compared to LastFm and
US retailer. This unexpected behaviour is currently still under investigation in
order to understand the reasons why this dataset does not scale as well when
multi-threading.

• Influence of the number of partitions:

The amount of caching that occurs with the US retailer dataset is reduced with
regard to its size, and therefore increasing the number of partitions does not affect
the efficiency of the caching system, but instead tends to eliminate the discrep-
ancies encountered between the workloads of the different partitions, as discussed
previously. Therefore performance improves when increasing the number of par-
titions, up to a certain point where the overhead of creating more partitions takes
over. The minimum is reached for 214 partitions, where the performance boost is
of about 10% compared to the one partition per thread setting.

The MovieLens dataset relies more heavily on caching; increasing slightly the
number of partitions brings a peak in performance at 32 partitions, but beyond
this point the negative effect on the caching system prevails.

The LastFM dataset relies the most heavily on caching relatively to its size,
having one partition per thread is the best configuration in this case; performance
is badly hit when using a high number of partitions, with cofactor computation
taking almost an order of magnitude more when using 214 partitions.
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5 DF: Distributing F

Multi-threading F improved its scalability, and enabled to boost its efficiency on
machines with several cores. Nevertheless this is still not enough for very heavy cal-
culations or datasets that are too big to fit in the memory of a single machine. In
this section, distribution is explored and a novel approach to learning regression mod-
els on a cluster of machines is introduced. This project exploits the state of the art
Hypercube algorithm [5] and shows how the cofactor calculation can be dispatched on
several nodes, and the results merged back to perform the final convergence step in a
centralised setting. From now on, the distributed version of F is specifically referred to
as DF ; multi-threading is not enabled in any of the experiments of this section.

This section first introduces the Hypercube algorithm with a general approach and
then with an example. The entire distribution framework is then presented, explaining
the interactions and the roles of the different nodes in the network. Implementation
details are provided and an experimental analysis is finally given.

5.1 Hypercube algorithm

Building on some work by Afrati and Ullman [4], Beame et al. have recently de-
signed the Hypercube algorithm [5] [6], which is a state-of-the-art data distribution
policy that ensures correctness of join computation, where the join result is the disjoint
union of local results computed at each node in the network. Its objectives are to aim
at minimising the amount of data that is distributed across the network in a single
communication round setting whilst being resistant to data skew. A brief overview of
how it works is given in the upcoming paragraphs.

Consider a network composed of n distinct machines and a database query with k
join attributes. Emphasis is put on the fact that k is not the total number of attributes
in the database, as non join attributes are not accounted for. n is expressed as a product
of k factors:

n = d1 ∗ ... ∗ dk

Each factor di represents the size of the dimension for the ith join attribute. The n
servers are arranged in a k-dimensional space, and each one of them is given a unique
address (x1, ..., xk) where each coordinate xi is strictly inferior to the ith dimension’s
size di. In other words, xi must be in the integer interval J0; di − 1K.

Now consider k hash functions h1, ..., hk. To avoid skew, distinct hash functions are
used, or more precisely similar hash functions with different initial seeds. A given hash
function hi must hash database values and output integers in the interval J0; di − 1K.
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For a given tuple, each of its different values must be considered one by one. If
a value corresponds to an attribute i used in the join query, it is hashed with the
associated hash function hi. If a value does not match a join attribute, it is simply
ignored and will not influence the shuffling. By doing so for all values in the tuple,
a coordinate (h1(a), ∗, h3(b), ..., hk(z)) can be created by inserting the tuple’s hashed
values at the right indexes.

This coordinate is a mixing of hash values and stars *. The * notation indicates
that the tuple does not contain the corresponding join attribute, in other words the
current database table from which the tuple is extracted does not contain all the join
attributes used in the query. The * acts like a ”universal” hash value, taking any value
strictly inferior to the dimension for that join attribute. For a join attribute i, * covers
the whole J0; di−1K integer interval. By referring to this coordinate, or to these several
possible coordinates if the * notation is used, the tuple is dispatched to all the servers
which were given a matching coordinate in the Hypercube. The process is repeated
with all the tuples in the database to complete the Hypercube shuffling.

Intuitively, the * notation is used to ensure that all the nodes have all the tuples
needed to evaluate the join; even if a tuple is missing some of the join attributes, a
node may need the tuple to join on the other attributes it contains. The Hypercube
algorithm ensures the correctness of the overall parallel query processing. This result is
not detailed in this thesis, but the literature [5] can be referred to for a more rigorous
treatment. To obtain the full result of the join query, the union of all the sub-joins
computed on each machine in the cluster is performed.

A simple example based on the US retailer dataset is now presented. There are two
join attributes in the corresponding query, locn and zip. A two-dimensional Hypercube
is therefore considered, with the first dimension corresponding to locn and the second
dimension corresponding to zip. Suppose there are four servers (n = 4). A size of two
for each dimension is chosen:

n = d1 ∗ d2, where d1 = d2 = 2

The four servers are arranged in a virtual two-dimensional space as follows, where
each vertex represents a server, with an arbitrarily chosen number to identify it and a
coordinate as defined previously:
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Figure 11: Hypercube network example

Now consider two tuples, one from table Inventory with a value a for attribute locn
and the other from table Location with values b and c for attributes locn and zip. All
the other values contained in the two tuples are ignored, as they belong to non join
attributes.

The first tuple corresponds to coordinate (h1(a), *). The * is used as table Inventory
does not contain the join attribute zip. Suppose that h1(a) = 0. Due to the *, two
coordinates are possible, (0,0) and (0,1). According to the previous diagram, the tuple
must be dispatched to servers number 1 and 2.

The second tuple corresponds to coordinate (h1(b), h2(c)). Suppose that h1(b) = 1
and that h2(c) = 0. This leads to a single coordinate, (1,0). According to the previous
diagram, the tuple must be dispatched to server number 4.

Following a reasoning similar to the one discussed in Section 4, this shuffling policy
can be used for aggregates on top of joins and enables F to learn regression models in
a distributed environment.

5.2 Interactions within the network

Once the theoretical background of the Hypercube algorithm was understood, one
of the objectives of the project was to build an efficient and highly configurable imple-
mentation of the algorithm, as well as a more general framework for the nodes to be
able to communicate and synchronise with one another.

In order to to achieve this implementation, two external C++ libraries are needed:
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• The Boost Iostreams library [22]: this library is used to communicate between
several machines over a network by means of input and output streams.

• The MurmurHash library [24]: this library is used to provide efficient hashing
functions to shuffle the tuples across the network.

With the current implementation, the network can be formed of an arbitrary number
of nodes, as long as the requirements of the Hypercube algorithm are followed regarding
the dimensions of the join attributes. All the nodes that take care of cofactor calculation
are called worker nodes; they load their own local partition of the data, shuffle it, receive
the data from other worker nodes, sort the received data, learn the regression model
over the factorised join and send the cofactors to the master node. The master node
does not deal with any data and does not compute any cofactors; it takes care of
synchronising the different worker nodes and performs the final convergence calculation
once all the cofactors are gathered from the worker nodes. As discussed in Section 4 on
multi-threading, cofactor computation commutes with relational union and projection,
and the cofactors on each node can be computed in order to obtain the final cofactors
by summing all the different partial results that are received.

It is possible and recommended to place the master and a worker node on a same
physical machine by assigning them to a different communication port. Indeed, the
master node mainly sends short synchronisation messages to the workers throughout the
program’s execution, and its only CPU intensive task is the final convergence component
of F. Convergence computation is done once all the cofactors have been calculated and
therefore after the workers have shut down. Thus master and workers do not perform
any heavy processing concurrently, and placing the master on a different machine is a
loss of computational power during all but the convergence component.

In order to use the program in distributed mode, the user must modify two config-
uration files: network.conf where are specified the IP addresses of the different nodes
alongside their communication ports; and hypercube.conf where all the attributes are
listed with the size of their dimension; non join attributes must have size 0. These
configuration files feature a simple layout and also support comments. Once launched
on each node starting with the master node, the program takes care of the rest of the
processing and coordination automatically.

The distribution process follows four main steps:

• The handshake step: each node in the network sends a handshake message to
the master node. This allows each node to initialise and wait for all the other
nodes to be ready to run.

• The connection step: the DataWriter and DataReader components of each
worker are initialised and connect to their counterparts in all the other worker
nodes. They are respectively used to send tuples to other worker nodes and to
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receive data from other worker nodes. Each worker node then synchronises with
the master node.

• The query step: the tuples are shuffled across the network and the cofactors
are computed on each worker node. This is a single round computation, in the
sense that all the data is shuffled at the beginning and the whole learning process
is then done; there is no intertwining between shuffling and partial computations,
as it would be the case in a multi round communication scenario.

• The result step: each worker node sends the cofactors to the master node and
shuts down. The master node sums up all the cofactors received from the different
nodes and takes care of the final convergence computation.

The implementations of some of the main functions used in the distributed frame-
work are now closely considered.

5.3 Implementation

The code relative to distribution is quite extensive, and unfortunately giving an
exhaustive insight is beyond the scope of this report. Nevertheless, two functions that
are important in the distribution process and that are representative of several more
general ideas that are used in the project are presented.

The shouldDispatchToNode function

The shouldDispatchToNode function is used to determine whether a given tuple
should be sent to the different nodes in the network; part of its implementation was
already extracted during the discussion about loop unrolling, and the full function is
now provided:

Code Excerpt 6: Function shouldDispatchToNode

1 inline void shouldDispatchToNode(dfdb::types::Tuple tuple,
2 bool* ignoredWorkers, const std::vector<uint fast16 t>& attributes)
3 {
4 /*
5 * Initially, we consider that the tuple must be sent to all nodes

and set all values to 0 (= false);
6 * a node is dropped if one of the dimension values in its address

doesn't match the hash of a value in the tuple.
7 * We simply set to true when a node is no longer candidate.
8 * Use compiler flag if available.
9 */

10 std::memset(ignoredWorkers, false, NUM OF WORKERS);
11

12 /* Scan through all the attributes in the input tuple. */
13 for (size t attr = 0; attr < attributes.size(); ++attr)
14 {
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15 /* If the dimension for the current attribute is equal to 0 or 1,
ignore it. Else check hash values. */

16 if ( attributeDimensions[attributes[attr]] > 1)
17 {
18 /* Stores the result of the hash function. */
19 uint64 t result[2];
20

21 /* Invoke the hash function. */
22 MurmurHash3 x64 128(&tuple[attr], sizeof(dfdb::types::DataType),
23 attributeHashSeeds[attributes[attr]], &result);
24

25 /* Get a 16 bit hash, modulus the attribute dimension. */
26 uint fast16 t hash = ((uint fast16 t) result[0])
27 % attributeDimensions[attributes[attr]];
28

29 /*
30 * Check hash value inequality for each node.
31 * If compiler flag available, enables loop unrolling and other

compiler optimisations.
32 */
33 for (size t nodeID = 0; nodeID < NUM OF WORKERS; ++nodeID)
34 {
35 if ( nodesHashAddresses[nodeID
36 + NUM OF WORKERS * attributes[attr]] != hash)
37 {
38 ignoredWorkers[nodeID] = true;
39 }
40 }
41 }
42 }
43 }

The DataWriter, which is in charge of sending data to other workers, iterates
through the local database tables, and for each tuple calls shouldDispatchToNode, which
is the core Hypercube method deciding on tuple shuffling by following the algorithm
previously described in Section 5.1. The DataWriter then iterates through the ignored-
Workers array which was passed as an input of shouldDispatchToNode, and writes the
tuple to the output buffers corresponding to each node in the network. These out-
put buffers were implemented on top of the iostreams during the project, as eagerly
writing tuples is inefficient. Each node has a dedicated output buffer, which is flushed
to the network when full. Several interesting facts about the shouldDispatchToNode
implementation can be highlighted:

• The coordinate for a given tuple is not explicitly represented for efficiency reasons,
contrarily to what was shown in the previous example. Instead, it is initially
assumed that the tuple should be sent to all nodes in the network (line 10), and
as soon as a hash that does not match the dimension of a node is calculated (lines
35 and 36), the corresponding node is marked as ignored to prevent the tuple
from being sent to it.
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• The MurmurHash library produces a 128-bit hash, stored in an array of two 64-
bit integers (line 19). This gives best performance and hash properties on 64-bit
systems. To ensure that the value of the hash is strictly inferior to the size of
the attribute’s dimension, only one of the 64-bit integers is considered and the
modulus operator is applied to bring it in the J0; dimensionsize − 1K integer
interval (line 27). The structure attributeHashSeeds, which is used as one of the
inputs of MurmurHash (line 23), contains a different hash seed for each attribute.
The seeds are extracted from the article Good HashTable Primes [42], and have
proven to give good results when used in hashing contexts by preventing that too
many values end up colliding with the same hash.

• Join attributes with dimension size equal to 1 and non join attributes with size
0 are treated similarly (line 16). Indeed, attributes with dimension size 1 have
all their values hashing to 0; all the nodes in the network have their coordinate
for that dimension equal to 0, as the dimension must be strictly inferior to the
dimension size which is equal to 1. Join attributes with dimension size equal to 1
can therefore be ignored, and it is unnecessary to compute a hash for them. Only
attributes with a dimension greater or equal to 2 may prevent a tuple from being
sent to a given node.

• The usage of the NUM OF WORKERS variable can be highlighted; this will
enable loop unrolling on this variable if specified at compile time, as discussed in
Section 3.

The readFromStreams function

The readFromStreams function is used by DF to receive data from other nodes in
the network. An excerpt of the core part of its implementation is provided below:

Code Excerpt 7: Function readFromStreams

1 /* Launch threads to read from each other node from the network; skip
current node. */

2 for (int worker = ( nodeInfo−>getNodeID() + 1) % NUM OF WORKERS; worker
!= nodeInfo−>getNodeID(); worker = (worker + 1) % NUM OF WORKERS)

3 {
4 streamReaders[worker] = thread([this, worker]()
5 {
6 /* Iterate through all the tables in the database. */
7 for (size t table = 0; table < NUM OF TABLES; ++table)
8 {
9 /* Size of the current table's tuples, in bytes. */

10 const size t SIZE OF TUPLE =
11 dataHandler−>getTableAttributes()[table].size() *

sizeof(DataType);
12

13 /* Construct the delimiter tuple, to detect when a new table is
being transmitted. */
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14 char* delimiterTuple = new char[SIZE OF TUPLE];
15 /* The delimiter tuple has all its bytes equal to the DELIMITER

byte. */
16 memset(delimiterTuple, DELIMITER, SIZE OF TUPLE);
17

18 /* Keep on reading, unless the stream is closed. */
19 while( nodeConnections[worker]−>first)
20 {
21 /* Create a new tuple. */
22 Tuple tuple = new DataType[ dataHandler−>getTableAttributes()

[table].size()];
23

24 /* Assign all the values in the tuple by reading from the
iostream. */

25 nodeConnections[worker]−>first.read(reinterpret cast<char
*>(tuple), SIZE OF TUPLE);

26

27 /* Check that the received tuple is not equal to the
delimiterTuple. */

28 /* Expect tuple not to be delimiter; indication for compiler
optimisations for this performance critical section. */

29 if(likely(memcmp(tuple, delimiterTuple, SIZE OF TUPLE) != 0))
30 {
31 /* Add tuple to the receivedDataToProcess database. */
32 dataHandler−>getReceivedDataToProcess()[worker][table].

push back(tuple);
33 }
34 else
35 {
36 delete[] tuple;
37 /* Move on to the next table. */
38 break;
39 }
40 }
41 delete[] delimiterTuple;
42 }
43 });
44 }

This function is called a single time at the beginning of the query step of the
distribution, and enables to receive and parse all the tuples sent by other nodes. Several
interesting facts can be highlighted about the implementation:

• A new thread is launched for each other worker in the network (lines 2 to 4).
This enables to read in parallel from all the nodes and avoids any delays in the
operations, as the reader is able to process the received information as soon as it
becomes available.

• Each thread adds the tuples to its own database structure (line 32), which is later
on efficiently merged before the learning process. This avoids synchronisation
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such as having to lock a whole database structure each time a tuple is added,
which would bring overhead in the case of numerous workers and a large amount
of tuples.

• Raw bytes are sent and read from the network (line 25), and it is up to the reader
to determine what amount must be read at a time to fill in a tuple entirely. In
the project’s current setting, double data types of size 8 bytes are sent across the
network; when receiving tuples from the US retailer Census table containing a
total of 17 attributes, 17*8 = 136 bytes would have to be read from the network
to fill in the tuple; to be more precise the network is not directly read from, but
information is extracted from the reception buffer of the underlying iostreams.
The number of bytes to read at a time is defined at lines 10 and 11.

• All the tables are sent one after the other without any high level mechanism to
alert the reader that the writer is moving on to the next table. Therefore what
is called the delimiterTuple is used (line 14) to indicate to the reader that it is
now reading tuples belonging to the next database table, and must in consequence
update the table index variable defined at line 7. This delimiter tuple is initialised
in such way that all its bytes are set to a maximum value (the DELIMITER byte),
in other words the 8 bytes of all the doubles in a tuple are set to the DELIMITER
byte. This would correspond to a succession of NaN (Not-a-Number) doubles
in the case of DF, which are non-representable values as defined by the C++
standard. This guarantees that a regular tuple cannot be considered as a delimiter
tuple by mistake, and that the delimiter tuple is uniquely defined. After having
read a new tuple, the function checks that it is not equal to the delimiter tuple with
a low level memory comparison function for better efficiency (line 29). Otherwise,
the current thread moves on to the next table.

• The likely construct can be noticed (line 29); it corresponds to builtin expect((x),
1) behind the scenes [19]. This helps the compiler do better optimisations by
providing it with branch prediction information, and it can therefore rearrange
the generated assembly code for better efficiency. These constructs are used at
several occasions throughout the code, alongside the unlikely construct which has
the opposite meaning (equivalent to a builtin expect((x),0)). In this specific case
it is assumed that there are several tuples in each table and that the delimiter
tuple indicating that the function should move on to the next table is unlikely to
be received (in other words the memory comparison is likely to fail in the code).
It is important to underline the fact that these likely and unlikely constructs are
indications for better code optimisation, and that the unexpected outcome just
leads to a branch misprediction at the CPU level, but does not yield any incorrect
results.
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5.4 Experiments

A series of experiments is conducted to measure the impact of distribution. In this
thesis, focus is not put on finding the best possible Hypercube configuration, but rather
showing the impact of distribution in simple settings. Each dataset is tested in several
distribution settings, featuring from one to six nodes. The performance for a single
node setting is different from what was reported in the previous parts of the thesis;
indeed, as detailed in Appendix C, the machines available in the cluster of six nodes
are different from the one used in the SIGMOD publication [1], which is also the one
used in all the previous experiments. The experiments in this section are conducted
with single-threaded F running on each node, to be able to measure the impact of
distribution independently of multi-threading.

The following plots contain six groups of histograms in each one of them; they cor-
respond to configurations from one to six nodes in the network. Two additional time
components are reported compared to what has been done up to now. Communication
corresponds to the time taken to send and receive tuples from the network. Synchroni-
sation corresponds to the time taken to synchronise at the different steps described in
the distribution process. It is mainly due to the discrepancies resulting in the workload
of different nodes, as the overhead brought by sending the synchronisation messages
themselves is very small. For instance a node that has completed its cofactor compu-
tation faster than others will wait until everyone is finished before sending its results
to the master node.

Node 0 corresponds to both a master and a worker running on a same machine, as
described previously. It is therefore the only node to feature a convergence step and
produces the final result. Node 0 is consequently the one to be considered to get the
end-to-end runtime in a distributed setting. The other nodes correspond to workers in
the system.

Initially each node contains a distinct subset of the whole dataset. For instance,
when working with six nodes, each CSV file corresponding to a table in a given dataset
is divided linearly into six different CSV files containing an equivalent number of tuples.
These partitions of the database tables are uploaded to the different nodes in the
network before DF is launched, so that each worker loads and shuffles one sixth of
the whole dataset. Similarly, when working with two nodes, each node has a half of the
whole dataset.

As usual, the US retailer, LastFM and MovieLens datasets described in Appendix
B are considered separately with a distinct plot.
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Figure 12: Performance of DF on US retailer depending on the number of nodes in the
network; each group of bars corresponds to a setting with a different number of nodes

The US retailer dataset is from far the largest one used in the experiments, and
as could be expected it significantly benefits from distributing the overall workload on
a cluster of machines. When using six nodes instead of one, a 3.58× speedup can be
observed for an end-to-end run of the program.

The Hypercube configuration considered in this example is such that the dimension
size for the locn join attribute is equal to the number of nodes in the network, and the
dimension size for the zip join attribute is equal to 1 (n = d1 ∗ d2, where d1 = n and
d2 = 1). The impact of shuffling the Census and Location tables is ignored as their size
is negligible compared to that of the Inventory table. In the two nodes configuration,
it can be expected that each node sends about half of its Inventory table partition to
the other node, assuming that the hash function uniformly clusters the tuples. Each
node having an initial partition containing half of the total data, it sends a quarter of
the 84055817 tuples contained in the Inventory table. As there are two nodes in the
network, overall half of the database is being shuffled across the network. In the six
nodes configuration, each node sends 5

6
of its partition containing a sixth of the total

dataset, and keeps 1
6

locally, assuming uniform clustering with the hash function. This
means that it sends and receives about 5

36
of the total dataset. But as there are six

nodes in the network, overall 30
36

of the whole dataset is shuffled. When looking at the
real number of tuples shuffled, the assumption regarding the uniformity of the hash
function is generally verified, as there are only small discrepancies in the partitioning
of the data in most cases. One would therefore expect each node spending less time on
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communication as the number of nodes increases, since it receives and sends a smaller
proportion of the whole dataset. Nevertheless, this does not happen in practice in the
experimental setting, and the time spent on communication even increases with three
or four nodes compared to the case with two nodes. This is due to the fact that overall
more tuples are being shuffled. The cluster of nodes physically share the same network
components due to their location, and the network is simply saturated by the overall
communication process involving the sharing of the huge amount of data contained in
the US retailer dataset.

Figure 13: Performance of DF on LastFM depending on the number of nodes in the network;
each group of bars corresponds to a setting with a different number of nodes

The LastFM dataset is the smallest one used in the experiments, by more than
two orders of magnitude compared to US retailer, and does not benefit as much from
distribution. When using six nodes instead of one, a 1.99× speedup can be observed
for an end-to-end run of the program.

It can be noticed that due to the small size of the dataset, depending on how the
data is shuffled, the workload on a given node can be fairly different from the workload
of others. This is in particular the case with the sorting component. The sort function’s
performance is very dependant on the amount of data received by the node and the
way the data is initially disposed, especially regarding the fact that it is a parallel
implementation. The underlying algorithm featured in GCC’s parallel mode [16] is
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based on Quicksort, and worst case scenarios can therefore degenerate in squared time
complexity instead of the average n.log(n) complexity.

All these discrepancies in calculations infer huge synchronisation times on some
nodes, which are negligible with the two other larger datasets. As it is generally the
case with most software systems, it can therefore be concluded that using distribution
on small datasets is less beneficial in the case of DF.

Figure 14: Performance of DF on MovieLens depending on the number of nodes in the net-
work; each group of bars corresponds to a setting with a different number of nodes

This dataset is significantly larger than LastFM and benefits greatly from distribu-
tion. When using six nodes instead of one, a 3.78× speedup can be observed for an
end-to-end run of the program.

Contrarily to the US retailer and LastFM datasets, the cofactor computation out-
weighs the combination of the communication and loading components. Indeed, com-
pared to the two other datasets, the size of the factorised join with MovieLens is rela-
tively bigger compared to the number of tuples in the dataset. Therefore less time is
spent on loading and shuffling the data, but more time is spent on doing the in-memory
processing.

57



In all cases, but in particular with the US retailer and LastFM datasets, it can be
noticed that the cost of communication is relatively high, as a lot of tuples must be
shuffled around the network. However, this is not a major concern from a more general
point of view. Indeed, in real world scenarios, either this shuffling process would only
be done a unique time on the whole dataset and would then only happen for new
tuples being added to the database, either the data would be pre-partitioned in such
a way that only a small amount of tuples needs to be sent to other nodes. Without
the communication component, the speedup between a single-node environment and a
network composed of six nodes would be 5.37× for US retailer, 2.76× for LastFM and
4.34× for MovieLens. Nevertheless, even in the current experimental setting with a
very simple way of dividing the datasets and with shuffling fully happening at each run
of DF, the speedups are substantial. Dividing the data between several nodes means
that each node considered individually has a smaller amount of the overall data to
load, sort and operate on for calculations. This significantly outweighs the overhead
brought by communication and accounts for the important performance increases than
are observed when using DF.
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6 F++: Running F with the best configuration

In this section, F is used with what is considered to be the best found configuration
according to the observations of all the previous experiments. The following three
settings are benchmarked:

• OldF, in other words the original version of F used in the SIGMOD publication
[1].

• F with the latest code basis, including the enhancements discussed in sections 3.1
to 3.4 (F-Flags, loading and sorting rewriting, improvements on the core parts).

• F++, which denotes the current best found setting for each dataset. This version
uses both DF (on six nodes) and MF, with an optimised number of partitions and
threads (4 threads with 214 partitions for US retailer, 8 partitions for LastFM and
32 partitions for MovieLens). In addition some variable unrolling features and
profile-guided optimisations are used (Sections 3.5 and 3.6).

The overall time reported at the master node is first considered. This represents
the time taken to produce the final parameter coefficients of the calculation.

US retailer LastFM MovieLens

Overall OldF 742232 4614 11569
time F 64851 551 1462
(ms) F++ 17497 272 310

Speedup F++ vs. OldF 42.42× 16.96× 37.32×
F++ vs. F 3.71× 2.03× 4.72×

Table 6: Overall performance of F++ vs. F vs. OldF

Compared to what was obtained with the original version of OldF, this project has
brought massive speedups ranging from 16.96× to 46.42× for an end-to-end run of F,
depending on the dataset considered. Calculations that previously took several seconds
or minutes can now be respectively completed within milliseconds or seconds, which
makes F even more competitive compared to other state-of-the-art systems.

The time for the cofactor computation is now considered alone. Indeed, the multi-
threading implementation as discussed in Section 4 only improves this component, so
it is relevant to measure the impact on what can be considered as the core machine
learning component of F independently of the others. Cofactor computation occurs in
parallel on six nodes, and as discussed in Section 5, there can be discrepancies between
the workload of each node. Therefore, the timing reported by the slowest worker is
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selected, as the full cofactor matrix that would be computed in a single-threaded and
non distributed environment can easily be obtained at that point in time.

US retailer LastFM MovieLens

Cofactor OldF 25964 331 3598
time F 6487 87 771
(ms) F++ 660 20 77

Speedup F++ vs. OldF 39.34× 16.55× 46.73×
F++ vs. F 10.28× 4.35× 10.01×

Table 7: Cofactor performance of F++ vs. F vs. OldF

Compared to the timings obtained with the original version of OldF, this project has
brought speedups ranging from 16.55× to 46.73× for cofactor computation, depending
on the dataset considered. The speedup obtained by using limited multi-threading
with only four threads, limited distribution with six nodes and PGO is of an order
of magnitude for the US retailer and MovieLens datasets, compared to the standard
optimised F obtained at the end of Section 3.4. The speedup for the LastFM dataset
is slightly below expectations, and is due to the relatively small size of the dataset, as
demonstrated in Section 5.

It is interesting to notice that for cofactor computation, the project has the biggest
impact on the performance for the MovieLens dataset, then the US retailer dataset, and
finally the LastFM dataset for which the speedup is less pronounced. Nevertheless, as
highlighted in Section 2.4, OldF held the strongest advantage over its competitors for
the LastFM dataset, then the US retailer dataset, and finally the MovieLens dataset.
This thesis therefore enabled to give F a stronger performance boost for datasets it
did not deal as well with, therefore uniforming its competitive advantage over other
systems for different datasets.
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7 Conclusion and future work

The objective of this thesis was to turn F into a scalable system for learning regres-
sion models over factorised joins.

A first phase consisted in improving F from an engineering point of view, by re-
designing new data loading and sorting components, optimising data structures, ex-
ploring compiler flag optimisations specific to the project, fixing memory management
issues and introducing a multitude of other enhancements. These changes not only
improved F’s performance by almost an order of magnitude, but also integrated it in a
rigorously designed framework, with features such as multiple levels of logging, different
build modes, advanced command line interactions with the user, and files to generate
a comprehensive technical documentation of the C++ project.

A second phase consisted in finding new ways to scale F even further. Multi-
threading in a factorised setting was explored; novel issues such as partition selection
and cache sharing were highlighted and solutions to cope with them were implemented.
Distribution was also explored. The Hypercube algorithm was implemented for the
first time in a context of learning regression models, and a complete distribution frame-
work was provided, in order for several machines running F to be able to cooperate
with one another. Bringing parallelism to F, at the level of a single machine with
multi-threading and at the level of several machines with distribution, enabled to sig-
nificantly improve the scalability of the system. In the setting used in this thesis, com-
bining multi-threading and distribution brought further performance improvements of
up to an order of magnitude on some of F’s components.

In addition to all these contributions, there are still many areas to explore, and the
following ideas are suggested as a starting point for future research work or MSc Thesis
projects:

• Exploring new schemes to divide the work between threads and compare them
to the current partitioning scheme implemented by this thesis. For instance,
integrating multi-threading more deeply into F was discussed during this project,
by dispatching threads while recursively exploring paths of values and computing
regression aggregates in the factorisation tree.

• Implementing multi-threading in the convergence component. Currently F ex-
plores only one possible regression model during this step, and this could be ex-
tended by letting different threads work with different rules and calculate separate
parameters for each one of them.

• Focusing on Hypercube configurations. The algorithm was fully implemented in
this project, but used only in simple configurations throughout the experiments.
Studying the impact of different configurations on F’s performance would allow
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to design an algorithm that would automatically select the best possible setting
based on dataset and d-tree considerations.

• Investigating new ways to further reduce the overhead of communication. Fac-
torising tuples or using compression before sending data over the network could
for instance bring performance improvements if the in-memory pre and post-
processing is done efficiently enough.

This concludes the presentation of the work that was accomplished and of the con-
tributions that were brought by this thesis. The following appendices contain references
as well as details about the datasets and the experimental setup.
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B Datasets

Three datasets are used in this thesis, and are detailed in this section of the ap-
pendix. These datasets are also used in the SIGMOD publication [1].

B.1 US retailer

The aim of F with this dataset is to forecast customer demands and sales by pre-
dicting the inventory quantities based on other features. It features three database
tables:

• Inventory: this relation contains 84055817 tuples and stores information about
inventory items at a given location and date.

• Census: this relation contains 1293 tuples and stores information about popula-
tion for a given zipcode.

• Location: this relation contains 1317 tuples and stores information about store
locations for a given zipcode.

The natural join of these three database tables is considered, based on the following
d-tree:

locn

zip ksn

inventoryunits

date

medianage

families

. . .

d1

d2

. . .

Figure 15: D-tree for US retailer

The size of the factorised join is 97134867 values without caching and 97134675
values with caching. Caching therefore does not benefit this dataset much.
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B.2 LastFM

The aim of F with this dataset is to measure how often friends listen to the same
musical artists. It features three database tables:

• Userfriends: this relation contains 25434 tuples and stores information about
users and their friends.

• Userartists: this relation contains 186479 tuples and stores information about
the artists users listen to.

• Usertaggedartiststimestamps: this relation contains 92834 tuples and stores
information about the artists tagged by users.

Two copies of the Userartists and Usertaggedartiststimestamps tables are considered
and the join is done according to the following d-tree (the copies are labelled 1 and 2):

user

artist1

timestamp1weight1

tag1

friend

artist2

timestamp2 weight2

tag2

Figure 16: D-tree for LastFM

The size of the factorised join is 2379264 values without caching and 315818 values
with caching. This dataset therefore features a very high amount of caching.

B.3 MovieLens

The aim of F with this dataset is predict the rating a user will give to a movie. It
contains three database tables:

• Users: this relation contains 6040 tuples and stores information about users.

• Movies: this relation contains 3883 tuples and stores information about movies.

• Ratings: this relation contains 1000209 tuples and stores information about the
ratings users give to movies.

67



The natural join of these three tables is considered, with the following d-tree:

movie

rating year

action

. . .

user

timestamp age

. . .

Figure 17: D-tree for MovieLens

The size of the factorised join is 6092186 values without caching and 2115610 values
with caching. This dataset therefore features a high amount of caching, though not as
important as with LastFM.
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C Experimental setup

Two different types of machines are used in this project. This was necessary to be
able to compare with the previous times reported on F, but also to test and benchmark
the distribution implementation on a network of machines. Many thanks to the DIA-
DEM research group of the University of Oxford for granting a full access to all these
machines.

For Sections 3 and 4, corresponding to experiments in a single node environment,
the same machine as the one reported in the SIGMOD publication [1] is used. The
performance timings at the end of Section 2 (”Performance of F vs. state-of-the-art”)
are therefore also obtained with this same machine, allowing to directly compare the
times reported. It has the following characteristics:

• Intel(R) Core(TM) i7-4470 3.40GHz

• 64-bit architecture

• 8 cores

• 32GB DDR3 RAM

• Samsung SSD 840 PRO Series

• Linux Mint 17 Qiana (GNU/Linux 3.13.0-24-generic x86 64)

• GCC 4.8.4

• Boost 1.61.0

For Sections 5 and 6, six different machines with the specifications listed below are
used. All the experiments in these two sections, including the times reported with
OldF or single-threaded F, use one or several of these machines in order to establish
fair comparisons with regard to distribution. It is important to underline the fact that
these machines are slower than the one used in Sections 2, 3 and 4 as well as in the
SIGMOD publication [1], especially in terms of hard disk loading, but they enabled to
conveniently build a cluster of nodes for distribution.

• Intel(R) Xeon(R) E5-2407 v2 2.40GHz

• 64-bit architecture

• 4 cores

• 32GB DDR3 RAM
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• NearLine SAS 7.2K RPM Hard Drive

• Linux Ubuntuu 14.04 (GNU/Linux 3.16.0-76-generic x86 64)

• GCC 4.8.4

• Boost 1.58.0

• Gigabit Ethernet

All the timings reported in the different experiments discussed throughout this doc-
ument are averaged on ten consecutive executions of the program. All the timings
are in milliseconds rounded to the closest unit and represent the wall-clock time of
the program’s execution, in other words the ”real” time perceived by a user. They were
retrieved using system clock class objects from the C++ chrono header [40].
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