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Abstract

This dissertation is concerned with the efficient supervised learning of least-squares
linear regression model parameters, specifically where the input training dataset
is the result of a natural join query over a relational database. This is typical
for a range of scenarios where the data resides in the database and where the
aim is to perform analytics, such as regression learning, over such data in situ.
How the input data is provided to the analytics is crucial: recent work has shown
that, using efficient factorised representations, learning over query joins can be
performed much faster than the materialisation of a flat or listing representation
of the join itself. But the presence of discrete or categorical data quantities, and
the way in which these are typically one-hot encoded in the input data, can result
in a non-trivial increase in computational complexity.

We present a new algorithm F#, which advances the state of the art in this
area of work, to reduce further the computational complexity of learning linear
regression models over factorised database joins. This is achieved in two ways: first,
the F# algorithm supports the efficient processing of categorical data quantities
without requiring them to be one-hot encoded. Second, it employs more powerful
computation primitives: state of the art algorithms use semiring operations over
the real numbers, that is, addition and multiplication We show, however, that by
also employing subtraction and division, the resulting ring computation can achieve
asymptotically lower complexity when computing the same database aggregates,
especially in the presence of categorical data quantities.

Extending an existing C++ codebase, we implement the F# algorithm as part of
an end-to-end batch gradient descent process, to solve the least squares regression
problem for a training dataset comprising an arbitrary natural join query over a
relational database. The performance of this implementation is compared against
the industry state of the art (specifically an implementation of the F algorithm of
Schleich, Olteanu and Ciucanu), and against two open-source commercial database
systems, MADlib and R. The implementation of F also uses a batch gradient de-
scent approach to solve the least-squares regression problem, but one that decouples
the computation of database aggregates from the convergence steps of the batch
gradient descent process; crucially, this means that the database aggregates need
be calculated only once in the learning process. The ring computation of F# pre-
cludes this decoupling, however, meaning that a fresh set of database aggregates
must be computed for each convergence step of the batch gradient descent process.
MADlib and R do not use batch gradient descent, instead emplyoing analytical
solutions to the least-squares regression problem.

F# was tested using four large-scale real-world retailer datasets of increasing
size and numbers of categorical data quantities. Out of the four systems compared,
only F# was able to compute model parameters for the larger datasets with greater
numbers of categorical variables; on the smaller datasets F# was also 5x faster than
the implementation of F, in terms of computing a single set of database aggregates.
In order to benefit fully from the the theoretical complexity improvements offered
by the F# algorithm, however, and to match the performance benefits that F gains
by calculating database aggregates only once in the end-to-end learning process,
further refinements of the practical implementation of F# will be required; we make
suggestions for such refinements.
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Chapter 1

Introduction

1.1 The problem

This project is set in the context of supervised learning : the task of inferring a functional
relationship within a set of data. For the purposes of this project, the input to the task is a
training dataset, in this case given as a join query Q over a database D, in the form of a set
of tuples:

Q(D) = {(x(1)1 , x
(1)
2 , x

(1)
3 , . . . , x(1)n , y

(1)
1 )

(x
(2)
1 , x

(2)
2 , x

(2)
3 , . . . , x(2)n , y

(2)
1 )

...

(x
(m)
1 , x

(m)
2 , x

(m)
3 , . . . , x(m)

n , y
(m)
1 )}

Each tuple (x, y) ∈ Q(D) contains a scalar response (regressand) y and a tuple x of encoding
features (regressors).

The output from the task is a linear regression model, for the purposes of this dissertation
a linear relationship that estimates the value of the label variable y for any given set of feature
variables (x1, x2, x3, . . . , xn), taking the form:

y = h(x1, x2, . . . , xn) ≡ w0 + w1x1 + w2x2 + w3x3 + · · ·+ wnxn = wTx (1.1)

(where a constant x0 ≡ 1 is assumed). The task itself is thus to determine (learn) from
the training dataset the values of the model parameters, that is, the values of the constants
w0, w1, . . . wn.

Linear regression models such as this are of interest because there are many practical
contexts where a ‘response’ variable Y may depend in a linear way on a set of ‘controlled’
inputs X1, X2, . . . , Xn, in that Y = h(X1, X2, . . . Xn) + ε for a deterministic linear (or close to
linear) function h(x1, x2, . . . , xn) and a random residual error quantity ε (typically assumed to
have a normal/Gaussian distribution ε ∼ N (µ, σ2)). Examples of this might include sales of an
item given the amounts spent on advertising that product over different media (print, radio,
tv), or the blood pressure of a patient given the quantities of their medication and the amount
of exercise they take. Alternatively, there may be a correlation between random variables
X1, X2, . . . Xn, and Y , in that h(x1, x2, . . . , xn) = E(Y |X1 = x1, X2 = x2, . . . Xn = xn) is
linear (or close to linear). Examples of this might include the price of a house, given factors
such as local crime statistics, its proximity to local amenities, or the sales of an item given
non-controllable factors such as weather. Even if h(x1, x2, . . . , xn) is itself non-linear, there
may be a transformation of variables/data (for example, logarithmic in the case of exponential
functions) that reduces h to a linear function, allowing the use of linear regression techniques.
More broadly, the term ‘linear’ regression is a restriction only that h is linear in w, thus
ensuring desirable analytical properties with respect to w, but this dissertation considers only
the case shown in (1.1).

2



There is a large body of work on learning regression models (e.g. [6] [14]). Whereas these
earlier works assume the input given by a design matrix or relation in general, the work in this
dissertation considers that the input is given by the relation representing the result of a join
query over a relational database. This is typical for a range of scenarios where the data resides
in the database and the aim is to perform analytics, such as regression learning, over such data
in situ [16][22]. How the input data is provided to the analytics is crucial: recent work has
shown that learning over joins can be performed much faster than the materialisation of the
join itself![22]. In this dissertation, we push the state of the art in this line of work, by further
reducing the computational complexity of learning linear regression models over database joins.
This is achieved by employing more powerful computation primitives: the state of the art uses
semiring operations over the real numbers, that is addition and multiplication (corresponding
naturally to the semiring relational operations of union and Cartesian product). We show,
however, that by also employing subtraction and division, the resulting ring computation can
achieve asymptotically lower computational complexity. Similar improvements have been seen
previously for matrix chain multiplication, for example, Strassen’s algorithm, which uses ring
computation to decrease the number of operations necessary for matrix multiplication [7].

1.2 Motivation

Here the parameters of the linear regression model are learned by using a standard batch
gradient descent technique to minimise a least-squares objective function, specifically

J(w) =
1

2m

m∑
i=1

(
y(i) − (w0 +

n∑
k=1

wkx
(i)
k )

)2

This requires computation of the gradients of this function with respect to each of the model
parameters wi (one for each query variable Xi and one, w0 corresponding to the intercept of
the function h; in practice, the label y and features xk are drawn from the columns of the
same dataset and, by assuming a fixed value of −1 for its label parameter, the label y can be
treated symmetrically with the xk). Each of these gradient computations can be expressed
as an aggregate computation over the input dataset. Moreover, since in this case the input
dataset is given as a join query over a database, and assuming that each of the variables xi
are continuous (thus able to be aggregated), the gradients can be expressed as aggregates over
joins in relational databases, specifically

∂

∂w0
J(w) = w0 +

1

m

m∑
i=1

n∑
k=1

wkx
(i)
k

∂

∂wj
J(w) =

w0

m

m∑
i=1

x
(i)
j +

1

m

m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k j ∈ [n] (1.2)

This dissertation proposes a novel, most efficient to date, approach to perform these aggregate
computations, in particular for the aggregates

Gradj ,
m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k j ∈ [n] (1.3)

Computation of this set of aggregates poses several practical challenges: one is the efficient
computation of the training dataset from the underlying database tables, in terms of the join
algorithms used. Another is the size of – and potential redundancy in – the resulting joined
data: this can have significant efficiency implications for the computations required over these
data.

Example 1.1. As a preliminary motivating example, consider a training dataset comprising
the natural join query

Q1 = R1(X1), R2(X2), · · · , Rn(Xn)

3



where the schema of each relation Ri is a single independent continuous-valued variable Xi,
and the size (that is, the number of tuples) of each relation |Ri| = m. This query is the special
join case of a Cartesian product of n unary relations. In this case, each continuous variable
Xi contributes a single parameter wi to the linear regression model, the size of which is thus
n.

A naive approach to calculating the set of n Grad aggregates over Q1 is first to materialise
a listing representation (or “flat” representation) of the Cartesian product of the n relations,
with size mn, and then to compute the n2 quantities

mn∑
i=1

x
(i)
j x

(i)
k j, k ∈ [n] (1.4)

in a single scan over the join result. Each of these n2 quantities need be calculated only once
over the Cartesian product, taking time O(mn); thus the n2 quantities can be calculated in
time O(n2 ·mn). Each of the n elements of Grad from equation (1.3) then uses n of the n2

precomputed quantities, thus taking additional time O(n) to compute. The resulting overall
time complexity to compute the full set of n Grad aggregates is thus

O(n2 ·mn) +O(n2)

=O(n2 · (mn + 1)

=O(n2 ·mn)

quadratic in the size n of the linear model (that is, the number of parameters to be learned)
and linear in the data size of the join query (the number of its tuples).

State-of-the-art solutions, notably the F algorithm of Schleich et al. ([22]), employ a
range of techniques to address the size and efficiency challenges noted above. These include:
the use of worst-case optimal join algorithms for conjunctive queries, such as the Leapfrog
Triejoin ([23]) and the use of succinct factorised – rather than listing – representations of
the join results, to minimise redundancy in the joined data ([18]). For the training dataset
Q1 = R1(X1), R2(X2), · · · , Rn(Xn) of Example 1.1, the use of these techniques reduces the
overall time complexity to compute the set of n Gradj aggregates from linear (modulo log
factors) in the data size of the join query to linear in the size of the input database, both
defined as the number of their tuples, that is, from O(n2 ·mn) to O(n2 ·nm) = O(n3m). This
is clearly an asymptotic improvement over the naive case, but the complexity remains cubic
overall in the size of the linear model.

Moreover, the size of the linear model can actually far exceed the number of query vari-
ables Xi. Continuous query variables Xi (such as weight, distance, etc) each contribute a
single parameter to the model. As will be seen, however, query variables that represent dis-
crete quantities (that is, categorical or ‘classification’ variables such as, say, colour, shape,
or location) are typically one-hot encoded within a database in such a way as to require a
separate parameter to be learned for each distinct value taken by that variable in the query.
In the worst case, where all query variables are categorical, the number of model parameters
to be learned for the training dataset Q1 = R1(X1), R2(X2), · · · , Rn(Xn) could be as large
as the number of values in the datatase, that is m · n. In this case, the state of the art F
computations of Schleich et al. would have complexity O((nm)2 · (nm)) resulting in an overall
complexity that is now cubic in the size of the database, O(n3m3). This can blow up and
become unmanageable for large-scale datasets.

A structural reason for the complexity being quadratic in the size of the model is that the
quantities in (1.3) and (1.4) are both expressed purely in terms of the semiring operations of
multiplication and addition (mirroring the underlying join operations in the query of Cartesian
product and union respectively). But the real numbers form a ring : they have an additive
inverse, that is, subtraction: rewriting calculations to use the power of ring computation can
yield asymptotic reductions in complexity. As a very simple example, consider the following

4



rewriting of an expression using ring computation:

100∑
j=1

100∑
k=1,j 6=k

(j · k) ≡
100∑
j=1

(
j

( 100∑
k=1

k − j
))

(1.5)

As written, the left-hand expression in this identity, using only semiring operations, involves
the sum of 9,900 individual products. But the rewritten right-hand expression involves a sum
of 100 k values, which can be computed only once requiring 100 additions. For each of the 100
j values, a single subtraction, mutliplication and addition is then required, thus 400 individual
operations in total.

Using a similar technique, it is possible to rewrite the Gradj quantity of equation (1.3) as

Gradj ≡
m∑
i=1

(
wjx

(i)
j x

(i)
j + x

(i)
j

(
(
n∑
k=1

wkx
(i)
k )− wjx(i)j

))
an expression that is now linear, rather than quadratic, in the size of the linear regression
model.

Building on the state of the art, this project proposes that – with appropriate rewriting of the
aggregate calculations to use ring computation – it is possible to achieve further asymptotic
complexity improvements on the state-of-the-art, when learning linear model parameters over
arbitrary database join queries with both continuous and/or discrete variables.

In the case of query Q1 = R1(X1), R2(X2), · · · , Rn(Xn) of Example 1.1 where all query
variables are continuous, using a factorised representation of the query, and rewriting the
semiring aggregate calculations to employ ring computation, thus reduces the asymptotic time
complexity (modulo log factors) to linear in both the size of the database and the number of
parameters to be learned, that is, from O(n2m2) to O(nm). Moreover, in the case where all
query variables Xi are categorical, the complexity is now reduced to O(nm · nm) = O(n2m2)
compared with O(n3m3) for the state of the art F algorithm.

1.3 Contributions

The contributions of this dissertation are:

• An algorithm, F#, to perform the rewritten computations over factorised representations
of arbitrary natural join queries over relational databases. This algorithm builds on the
state of the art [22] in two ways: (i) it supports both continuous and categorical query
variables, and allows query variables to be excluded completely as model features; and
(ii) its computation is expressed in terms of a ring rather than a semiring. This can
decrease the algorithmic complexity of the algorithm, especially in the case of one-hot
encoded categorical variables (which can lead to a non-trivial increase in complexity).

• Complexity analysis of F#, demonstrating that there are classes of natural joins for
which it is most efficient to date and, indeed, asymptotically better than state of the art
algorithms, such as F.

• Implementation of the F# algorithm, building on and extending an existing C++ code
base for the construction of factorised database representations and linear regression
models;

• Experiments to compare the performance of F# against industry state of the art (an
implementation of the F algorithm of Schleich et al.) and against two open-source
commercially available relational database systems. Across the systems and datasets
tested, only F# was able to compute model parameters for the larger datasets with
larger numbers of categorical variables. F# was also 5x faster than the implementation
of F in terms of computing the set of aggregates in (1.2) above.
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• Suggestions for further work on the practical implementation of F#, in order to benefit
fully from the theoretical complexity improvements offered by the algorithm, and to
enable it to match its competitors more closely in terms of the end-to-end learning
process on smaller datasets (given, for example, the performance benefits that F gains
by calculating database aggregates only once in the learning process).

1.4 Organisation

This chapter has set out the landscape within which this dissertation is set, that is, the
in-database learning of parameters for linear regression models, where the training dataset
is the result of a join query over a relational database. By way of a simple example, it
has demonstrated that the computational complexity of state of the art solutions is still (at
least) quadratic in the size of the linear regression model, and that the presence of discrete-
valued data attributes can lead to a further non-trivial increase in complexity, thus motivating
the search for a more efficient computational solution. The remainder of this dissertation
presents an improved algorithm F#, including its implementation in C++ and experiments to
test its performance against the state of the art and against open-source commercially available
relational database systems. The structure of the remaining chapters is as follows:

Chapter 2 outlines the key areas of supervised learning and database theory that underpin
the technical contribution of this dissertation, and defines the terminology and notation used
in subsequent chapters. This includes the specific linear regression model for which a set of
parameters needs to be learned, and the typical structure and computational complexity of an
algorithm for computing quantities over a factorised representation of a database query

Chapter 3 describes the state of the art F algorithm of Schleich et al. ([22]) for computing
the query aggregates necessary to learn model parameters, including an intuitive analysis of
its computational complexity. It then demonstrates that rewriting these aggregate quantities
using more powerful computation primitives (specifically ring computation over the real num-
bers) offers asymptotic complexity improvements over the state of the art, and presents a new
algorithm, F#, which employs ring computation.

Chapter 4 describes the practical implementation in C++ of an end-to-end batch gradient
descent process involving (i) materialisation of the factorised join query; (ii) implementation
of the F# algorithm to compute the required query aggregates; and (iii) embedding the F#

computations within a simple batch gradient descent iterative process.

Chapter 5 describes the experiments carried out to compare the performance of the F#

implementation against industry state of the art (a development of the F system of Schleich et
al, namely DC [16], and against two open-source commercially available relational database
systems, MADlib [12] 1.8 (M) and R [20] 3.0.2.

Chapter 6 describes some current related academic work in the area of machine learning
and databases.
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Chapter 7 summarises the outcomes of the current project on which this dissertation is
based; in light of the experimental outcomes from Chapter 5, it also suggests directions for
further work in order to benefit more fully from the theoretical complexity improvements
offered by the F# algorithm.

Appendix A comprises the code listing for the new central class of the C++ implementation
of F#, namely CategoricalRegressionOverJoin.cpp.

Appendix B gives the code of selected new methods that have been added to other classes
of the existing C++ codebase.
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Chapter 2

Preliminaries

This chapter outlines the key areas of supervised learning and database theory that under-
pin the technical contribution of this dissertation, and defines the terminology and notation
used. It sets out the specific linear regression model for which a novel approach to learning
parameters is presented in Chapter 3, and the additional challenges faced when that model
involves discrete-valued one-hot encoded quantities. It then describes, with examples, how a
database query can be presented in a factorised representation; the efficiency gains that this
brings in terms of computation over that query; and the typical structure of algorithms to
perform computations over factorised representations. It ends with a brief discussion of join
algorithms. Chapter 3 then considers specific examples of these algorithms, including the state
of the art, and introduces the novel algorithm proposed by this dissertation.

To note that space precludes an exhaustive discussion of the topics below; in each case,
further detail can be found in the works referenced within the text.

2.1 Notation and Definitions

[m,n] denotes the set of integers {m,m+ 1, ..., n− 1, n}. [n] denotes {1, 2, ..., n}.

2.1.1 Databases.

This project considers relational databases, where a database D is a collection of relations R,
each over a schema S, that is, a set of named variables A,B,C, ..., where there is a bijection
between data attributes and variable symbols. A tuple t of a relation R over schema S is a
mapping from S to a domain D which may comprise both discrete- and continuous-valued
quantities. The size of a relation R, denoted |R|, is the number of its tuples; the size of a
database D, denoted |D|, is the sum of the sizes of its relations. For a database D with n
relations, we thus have |D| ≤ n ·N where N is the size of the largest relation in D.

2.1.2 Queries.

The queries considered are a subset of conjunctive queries of the form

Q = πP(σψ(R1 ×R2 × · · · ×Rn)) (2.1)

specifically natural join queries, denoted

Q(S1 ∪ S2 ∪ · · · ∪ Sn) = R1(S1), R2(S2), . . . , Rn(Sn) (2.2)

where the selection condition ψ is that variables with the same name in different queries are
equal, and where the projection list P =

⋃
i Si over all relationsRi. In this dissertation the head

variables will be omitted, and the query notation Q = . . . used. Without loss of generality, it
can be assumed that each variable symbol appears at most once in each schema Si, and that
a join of two relations is expressed by having the same variable in the corresponding relation
symbols in the query. (In principle the same variable can be used multiple times in a relation
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D

R2

F
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(a) Hypergraph for Q2

A,B,C

A,B,D

A,E

E,F

B1 = {R1}

B2 = {R2}

B3 = {R3}

B4 = {R4}

(b) Tree decomposition for Q2

with fractional width = 1

Figure 2.1: (a) Hypergraph and (b) Tree Decomposition for query Q2 = R1(A,B,C),
R2(A,B,D), R3(A,E), R4(E,F )

symbol, corresponding to selection with an equality condition on corresponding columns of the
relation; however, we can assume this trivial operation to have been solved as a filter condition
before the join, so that no such selection need be considered afterwards.)

The size of a query |Q| is the number of relations n in Q. The projection size (or schema
size) of a query Q is |P| (in the case where Q is a natural join query, this is simply the number
of distinct query variables). The data size of a query Q over a database D, |Q(D)|, is the
number of tuples in Q(D).

Hypergraph of a Query.

Definition 2.1 ([10]). H = (V, E) denotes the hypergraph of the query Q, where V is the set of
variables occurring in Q, and E is the set of hyperedges with one hyperedge per set of variables
in a relation symbol R in the body of Q.

Example 2.2. Given the schema S = {A,B,C,D,E, F}, relations over S : R1(A,B,C),
R2(A,B,D), R3(A,E), and R4(E,F ), and the natural join

Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )

a hypergraph H(Q2) for Q2 is shown in Figure 2.1.

Fractional Hypertree Decomposition of a Query Hypergraph.

Definition 2.3 ([10]). Let H(V, E) be a hypergraph. A tree decomposition of H is a pair
(T, (Bt)t∈V(T )) where

• T is a tree (each node of which corresponds to some set of vertices of H), and

• (Bt)t∈V(T ) is a family of sets of vertices of H called bags, such that each hyperedge of H
is contained in some (Bt), and for each vertex v of H the set {t : Bt 3 v} is connected
in T .

A fractional hypertree decomposition of H is a triple (T, (Bt)t∈V(T ), (γt)t∈V(T )) where (T, (Bt))
is a tree decomposition and
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• (γt)t∈V(T ) is a family of weight functions E(H) 7→ [0,∞) such that for each t ∈ V(T ), γt
covers all vertices of Bt, i.e.

∑
e3v γt(e) ≥ 1 for all v ∈ Bt.

The weight of a weight function (γt) is weight (γt) =
∑

e∈E(H) γt(e), and the width of the
decomposition is maxt∈V(T )weight(γt). The fractional hypertree width of H, fhtw(H), is the
minimum possible width of a fractional hypertree decomposition of H.

Example 2.4. Given the natural join

Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )

a tree decomposition of H(Q2) is shown in Figure 2.1(b). Each bag Bi comprises the single
hyperedge Ri. The tree decomposition is connected, since for each query variable A-F the set
of nodes of the tree containing that variable form a connected set (highlighted in Figure 2.1(b)
in colour). By setting γ1(R1) = γ2(R2) = γ3(R3) = γ4(R4) = 1 and γi(Rj) = 0 for i 6= j,∑

e3v γt(e) ≥ 1 is satisfied for all v ∈ Bt, and weight (γt) = 1 for all t ∈ V(T ). Thus the
width of this hypertree decomposition = maxt∈V(T )weight(γt) = 1. But fhtw(t) ≥ 1; thus the
fractional hypertree width of H(Q) = 1.

Fractional Edge Cover Number of a Query.

Definition 2.5 ([10]). A fractional edge cover of a hypergraph H = (V, E) is a mapping
ψ : E 7→ [0,∞) such that ∑

e∈E,v∈e
ψ(e) ≥ 1 for all v ∈ V

The number
∑

e∈E ψ(e) is the weight of ψ, and the fractional edge cover number, ρ∗(Q) is the
(rational) minimum weight among all fractional edge covers of H(Q).

Informally, ρ∗(Q) is the minimum number of hyperedges of H(Q) required to cover all vertices
of H(Q) at least once, relaxed to allow fractional cover by individual hyperedges.

Example 2.6. In the case of Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), ρ∗(Q2) = 3,
since each of the hyperedges corresponding to R1, R2 and R4 are necessary to cover the variables
C, D and F respectively, but between them they are sufficient to cover all the query variables.

α-acyclic Queries.

Definition 2.7 ([1]). An α-acyclic query Q is one that satisfies each of five equivalent prop-
erties:

(i) Each instance I of the query that is pairwise consistent is globally consistent.

(ii) Q has a full reducer.

(iii) Q has a join tree.

(iv) The output of the GYO algorithm on Q is empty.

(v) The hypergraph H(Q) is acyclic.

Example 2.8. From Figure 2.1, Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) can be
seen to have an acyclic hypergraph (informally, there is no set of hyperedges that form a cycle).
Thus by (v) in definition 2.7, query Q2 is α-acyclic.

It has also been shown that α-acyclic queries are precisely those that have fractional hyper-
tree width = 1 [9]. Q2 being α-acyclic is thus consistent with the fractional hypertree width
of H(Q2) = 1 in Example 2.4 and Figure 2.1.
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2.1.3 Rings and semirings.

Definition 2.9. A ring (R,⊕,⊗,0,1) is a set R with closed binary operations ⊕ and ⊗, the
additive identity 0, and the multiplicative identity 1 satisfying the axioms (∀a, b, c ∈ R):

(i) a⊕ b = b⊕ a.

(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c).

(iii) 0⊕ a = a⊕ 0 = a.

(iv) ∃ − a ∈ R : a⊕ (−a) = (−a)⊕ a = 0.

(v) (a⊗ b)⊗ c = a⊗ (b⊗ c).

(vi) a⊗ 1 = 1 ∗ a = a.

(vii) a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c and (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c.

A semiring (R,⊕,⊗,0,1) satisfies all of the above properties except the additive inverse prop-
erty and adds the axiom that 0⊗ a = a⊗ 0 = 0. A commutative (semi)ring is one for which
a⊗ b = b⊗ a.

Example 2.10. The number sets Z, Q, R, and C with arithmetic operations + and · and
numbers 0 and 1 form commutative rings. The set M of (n × n) matrices forms a non-
commutative ring (M, ·,+, 0n,n, In), where 0n,n and In are the zero matrix and the identity
matrix of size (n × n). The set N of natural numbers is a commutative semiring but not
a ring because it has no additive inverse. Further examples are the max-product semiring
(R+,max,×, 0, 1), the Boolean semiring ({true, false},∨,∧, false, true), and the set semiring
(2U ,∪,∩, ∅, U) of all possible subsets of a given set U .

To note that ring computation can be asymptotically more efficient than semiring compu-
tation. For example, generalising the example of equation (1.5) to the expression:∑

i∈[n]

∑
j∈[n],j 6=i

i · j (2.3)

Restricting the operations used to semiring addition and multiplication requires the addition
of n(n − 1) individual products, with complexity O(n2). But allowing the ring operation of
subtraction (that is, the additive inverse) allows the sum to be re-written as:∑

i∈[n]

(
i

(∑
j∈[n]

j − i
))

With this rewriting,
∑

j∈[n] j need be computed only once; this can be done in time O(n).
For each of the n values of i the quantity i(

∑
j∈[n] j − i) can then be computed in constant

O(1) time with respect to n (a single subtraction and a single multiplication). The overall
complexity of the expression becomes

O(n) + n · O(1) = O(n)

that is, an asymptotic complexity improvement on the expression in (2.3).

2.2 Least-Squares Linear Regression Model

2.2.1 The Least-Squares Objective Function

The standard linear regression model (for example, [15]) involves a vector of input data vari-
ables (or features) x = x1 . . . xn, a set of parameters of the model w = w0 . . . wn and an scalar
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output response (or label) variable y, between which an underlying linear relationship in w is
assumed (thus ensuring desirable analytical properties with respect to w) [6]:

y = h(x1, x2, . . . , xn) ≡ w0 + wTφ(x) for some function φ : Rn 7→ Rn (2.4)

For the purposes of this dissertation, we assume the simpler case where h is linear in both w
and x, that is

y = w0 +

n∑
k=1

wkxk

The task is to estimate (learn) the values of each wk from a set of training data, that is,

a set of m observations x
(i)
1 . . . x

(i)
n for i = 1 . . .m. This can done by finding the values of wk

that minimises a least-squares objective function or loss function which, for the purposes of
this dissertation, is

J(w) =
1

2m

m∑
i=1

(
y(i) − (w0 +

n∑
k=1

wkx
(i)
k )

)2

(2.5)

2.2.2 Minimising the Least-Squares Objective Function

Minimising the least-squares objective function J(w) is equivalent to finding the value of w
for which the partial derivatives or gradients of J(w) with respect to each wj are zero. Using
standard differentiation techniques, this is equivalent to solving the set of linear equations

∂

∂w0
J(w) =

−1

m

m∑
i=1

(
y(i) − (w0 +

n∑
k=1

wkx
(i)
k )

)
= 0

∂

∂wj
J(w) =

−1

m

m∑
i=1

x
(i)
j

(
y(i) − (w0 +

n∑
k=1

wkx
(i)
k )

)
= 0 j ∈ [n] (2.6)

In practice, the label y and features xk are drawn from the columns of the same dataset; by
assuming a fixed value of −1 for its label parameter, the label y can be treated symmetrically
with the xk and the partial derivatives of the objective function can be rewritten as

∂

∂w0
J(w) =

1

m

m∑
i=1

(
w0 +

n∑
k=1

wkx
(i)
k

)

= w0 +
1

m

m∑
i=1

n∑
k=1

wkx
(i)
k = 0

∂

∂wj
J(w) =

1

m

m∑
i=1

(
x
(i)
j w0 +

n∑
k=1

x
(i)
j wkx

(i)
k

)
j ∈ [n]

=
w0

m

m∑
i=1

x
(i)
j +

1

m

m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k = 0 j ∈ [n] (2.7)

The set of linear equations in (2.7) can be solved by analytical (for example, matrix)
techniques: the resulting value of w is known as the ordinary least squares or ols solution
to the linear regression problem [14]. For large n, however, the analytical approach can be
computationally very costly; in such cases, the minimisation can be achieved using an iterative
numerical approach involving the partial derivatives of the objective function with respect to
each wj . This dissertation uses one such approach, known as batch gradient descent [15].
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Specifically, the batch gradient descent algorithm starts with an initial (randomly chosen)
value for each wj and performs repeated updates according to the rule

wj := wj − α
∂

∂wj
J(w) (2.8)

where α is a step size known as the learning rate. The least-squares objective function is
convex, thus has a global minimum, and each iteration of (2.8) takes place in the direction
of a decreasing gradient. Assuming a suitable (that is, not too large) learning rate α, the
batch gradient descent method will always converge to this minimum. A variety of techniques
exist for regulating the learning rate, from adaptive techniques which adapt the learning rate
according to the current values of the gradients, to more sophisticated backtracking techniques
[8].

The practical challenge is thus how to compute most efficiently the required gradients
required in (2.7) from the training dataset. To note that, as currently written, these gradient
computations involve the semiring operations of addition and multiplication; existing state of
the art algorithms for learning linear regression model parameters, such as the F algorithm
use only these operations to compute the required aggregates [18]. As will be seen below, the
novel aspect of this dissertation is that it employs ring computation to rewrite the gradients
of equation (2.7), resulting in asymptotic efficiency gains when learning the same parameters.

2.2.3 More Sophisticated Linear Regression Techniques

This dissertation focuses only on minimising the least-squares regression function of (2.5).
However, if the training data are ‘noisy’, this approach can result in overfitting, in the sense
that the computed parameters for the model are overly sensitive to the noise in the training
data rather than to the underlying shape of the training data. To avoid this, the least squares
regression model can be extended to accommodate penalty terms, such as the `2-norm used
in Ridge Linear Regression; this results in a smoother fit between the training data and the
calculated model [14].

2.3 One-Hot Encoding of Categorical Variables

Equations (2.5) to (2.7) are valid in the case where the model features are continuous-valued
quantities, such as weight or distance; in this case, each continuous variable maps to a single
scalar xi for some i. There are many real-life situations, however, where discrete-valued cat-
egorical (or ‘classification’) features may determine the value of a label: for example, where
the price of a dress is dependent on its colour, or where the monthly sales figures for a food
store are dependent on the chain that the store is part of. In fact, categorical features may
constitute the majority of features in commercial machine learning applications [16]. This
poses an immediate practical challenge for the linear regression model: that of how to carry
out the batch gradient descent computations on discrete features. What, for example, does
wkxk mean when xk represents a colour or a brand? One possible approach is to retain a single
feature for the variable, but to encode each possible category numerically, for example in the
case of dress colours, red = 0, green = 1, blue = 2. But any particular choice of encoding
values then imposes an implicit ordering/skew on the model parameter wk for this feature;
put another way, a single model parameter cannot capture impartially a multi -way choice.

A standard solution in machine learning is to use one-hot encoding whereby each single
categorical data variable is encoded using an indicator vector of features, with one model
parameter per value in the active domain of the feature [11]. Thus, in the case of dress colours,
where the active domain of the variable colour comprises, say, {red, green, blue}, the categorical
variable colour is now mapped to an indicator vector xcolour, where xcolour = {xred, xgreen, xblue}.
The value red for colour is then encoded as [1, 0, 0], green as [0, 1, 0] and blue as [0, 0, 1], with
associated model parameters wred, wgreen and wblue. (The name one-hot encoding derives from
the fact that only one bit of each indicator vector can be 1 or ‘hot’.) In the sense that the
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R1

A B C

a1 b1 c1
a1 b1 c2
a1 b2 c1
a2 b1 c2

R2

A B D

a1 b1 d1
a1 b1 d2
a1 b2 d1
a2 b1 d2

R3

A E

a1 e1
a1 e2
a2 e1
a2 e3

R4

E F

e1 f1
e1 f2
e2 f1
e3 f2

(a) All query variables continuous

R1

A B C : c1 C : c2

a1 b1 1 0
a1 b1 0 1
a1 b2 1 0
a2 b1 0 1

R2

A B D

a1 b1 d1
a1 b1 d2
a1 b2 d1
a2 b1 d2

R3

A E

a1 e1
a1 e2
a2 e1
a2 e3

R4

E F : f1 F : f2

e1 1 0
e1 0 1
e2 1 0
e3 0 1

(b) Query variables C and F categorical

Figure 2.2: Example data for relations R1 to R4, (a) where all query variables represent
continuous data quantities; and (b) the same data, one-hot encoded, when query variables C
and F represent categorical (discrete) data quantities.

vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are ‘equidistant’, one-hot encoding does not impose any
ordering/skew on the model parameters in the batch gradient descent computations. Moreover,
the computations themselves apply exactly as for continuous features (notwithstanding the fact
that any values xk corresponding to a single one-hot encoded feature will take only the value
0 or 1).

Example 2.11. Consider again the relations R1(A,B,C), R2(A,B,D), R3(A,E), and R4(E,F ).
Figure 2.2(a) shows a sample listing representation of the relations in the case where all query
variables represent continuous data quantities. Figure 2.2(b) shows a one-hot encoded repre-
sentation of the same relations in the case where query variables C and F are categorical query
variables representing discrete data quantities.

A significant drawback of one-hot encoding, however is that the size of the linear regression
model – that is, the number of its model parameters – is now determined by the number of
possible values for the categorical variables within the training dataset, and can be of the
same order of magnitude as the size of the underlying database. For example, suppose that
dress colour appeared as variable of a single database relation Rmax – the largest relation
in the database – and that every dress was a different colour. The number of parameters
for dress colour would thus be the same as the number of tuples in that relation (recall that
|D| = O(|Rmax|)).

2.4 Factorised Databases

2.4.1 Listing Representations

The traditional way of storing relational data is in ‘flat’ tabular format, i.e. explicitly enumer-
ating each individual tuple in each relation. Materializing the join of two or more relations -
for example, a natural join on common variables – in such a listing representation can lead to
a high degree of data redundancy/duplication.

As an example consider again the relations R1(A,B,C), R2(A,B,D), R3(A,E), and
R4(E,F ) and their natural join Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) where
the tuples in each relation are as shown in Figure 2.2(a).

There is clearly multiple data redundancy in the listing representation, highlighted in
Figure 2.3. If quantities such as aggregates are required to be computed over the join, this
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Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )
A B C D E F

a1 b1 c1 d1 e1 f1
a1 b1 c1 d1 e1 f2
a1 b1 c1 d1 e2 f1
a1 b1 c1 d2 e1 f1
a1 b1 c1 d2 e1 f2
a1 b1 c1 d2 e2 f1
a1 b1 c2 d1 e1 f1
a1 b1 c2 d1 e1 f2
a1 b1 c2 d1 e2 f1
a1 b1 c2 d2 e1 f1
a1 b1 c2 d2 e1 f2
a1 b1 c2 d2 e2 f1
a1 b2 c1 d1 e1 f1
a1 b2 c1 d1 e1 f2
a1 b2 c1 d1 e2 f1
a2 b1 c2 d2 e1 f1
a2 b1 c2 d2 e1 f2
a2 b1 c2 d2 e3 f2

Figure 2.3: Listing representation ofQ2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) where
the tuples in each relation are as shown in Figure 2.2(a).

redundancy will lead to corresponding computational inefficiencies, where effectively identical
sub-computations are performed multiple times over the duplicated data. For example, to
compute the aggregate SUM(A × E × F ) over the materialized listing representation above
would result in a sum of 18 individual products, involving multiple computations of each of
a1 × e1 × f1, a1 × e1 × f2, and a1 × e2 × f1.

2.4.2 Size Bounds for Listing Representations

Proposition 2.12. Given a join query Q

• for any database D, Q(D) has a listing representation with size

O(|D|ρ∗(Q)) (2.9)

where ρ∗(Q) is the fractional edge cover number of H(Q) [10];

• there exist arbitrarily large databases D for which Q(D) has a listing representation with
size

Ω

(
(|D|/|P|)ρ∗(Q)

)
,

where |P| is the projection (schema) size of Q [3].

Example 2.13. Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) – for which, as seen
above, ρ∗(Q2) = 3 – admits a listing representation of size O(|D|3).

Example 2.14. A hypergraph H(Q1) for the query Q1 = R1(X1), R2(X2), · · · , Rn(Xn) is
shown in Figure 2.4. Clearly, all n hyperedges are required to cover the n nodes of H(Q1),
thus ρ∗(Q1) = n. A theoretical bound for the data size of the listing representation of Q1 is
thus O(|D|n); this is consistent with the actual size of the Cartesian product mn if |Ri| = m.
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X1
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· · · Xn
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Figure 2.4: Hypergraph for query Q1 = R1(X1), R2(X2), · · · , Rn(Xn)

A

B E

C D F

key = {}

key = {A}

key = {A,B} key = {E}

key = {A}

key = {A,B}

Figure 2.5: d-tree for natural join Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )

2.4.3 Factorised Representations

Factorised representations (or factorisations) of databases provide a succinct (also lossless and
complete) way of representing relational data as relational algebra expressions, using unions,
products and (singleton) relations [19]. This is done in a way that exploits the underlying
structure and interdependencies of the relations within a query (irrespective of the size and
actual content of those relations) so as to avoid the explicit enumeration of duplicate values.
This underlying query structure is encapsulated in a d-tree, defined as follows:

Definition 2.15 ([19]). An f-tree over a schema S is a rooted forest with each node labelled
by a non-empty subset of S such that each attribute of S occurs exactly one node. A d-tree is
an f-tree in which each node A is annotated by a set of attributes key(A) such that

— key(A) ⊆ anc(A);
— key(A) is a union of nodes; and
— for any child B of A, key(B) ⊆ key(A) ∪ A;

where the set key(A) specifies the ancestor attributes of A on which the attributes in the subtree
rooted at A may depend.

Example 2.16. A d-tree for Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) is shown in
Figure 2.5.

A d-tree can be constructed from static analysis of a query over a given database schema
(that is, without regard to the actual tuples of the database) Some points to note:

Dependent variables – for example, variables within a single relation – lie on a single root-
to-leaf path.Thus, in the case of Q2, A,B,C lie on a single path, as do A,B,D, A,E, and E,F .
The converse is not necessarily true, however, as a variable may depend on only a strict subset
of its ancestors. For example, variable F of Q2 has anc(F ) = {A,E} but key(F ) = {E}. This
is evident in the listing representation of Figure 2.3: for example, if E = e1 than F can always
take the values f1 or f2, irrespective of the value of A; similarly, if E = e2 then F can only
take the value f1, irrespective of the value of A.
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Branching within a d-tree indicates conditional independence between query variables,
conditioned on the values of their common ancestors/keys within the tree. For example, the
branching to B and E below A indicates that B and E are independent conditioned on the
value of A; the branching to C and D below B indicates that C and D are independent
conditioned on the values for A and B. It is precisely this conditional independence that leads
to redundancy in a listing representation of the query, as it results in the Cartesian product of
some subset of data values. This is also evidenced in Figure 2.3, where, for any given value of
A, the listing representation must include every possible combination of B and E values and,
for any given A,B pair, every possible combination of C and D values.

The factorised representation (or factorisation) of a query employs a nested tree structure
which mirrors the branching of the query’s d-tree. This enables conditionally independent
variable values from separate relations, which would give rise to a Cartesian product in a
listing representation of the join, to be stored separately and – crucially – only once, rather
than multiple times. Factorised representations are relational algebra expressions, comprising
unions, Cartesian products and singleton relations involving a single variable and value, 〈A :
a〉. This dissertation considers specifically factorised representations with definitions, defined
formally as follows:

Definition 2.17 ([19]). A factorised representation with definitions is a set of named expres-
sions {N1 : D1, . . . , Nn := Dn}, where each name Ni is a unique symbol and each Di is an
expression with products, unions, singletons and names of other expressions. Formally, an
expression over a schema S is one of the following:

• ∅, representing the empty relation over S,

• 〈〉, representing the relation consisting of the nullary tuple, if S = ∅,

• 〈A : a〉, representing the unary relation with a single tuple with value a, if S = {A} and
a is a value in the domain D,

• (E1 ∪ E2 · · · ∪ En) representing the union of the relations represented by Ei, where each
Ei is an expression over S,

• (E1×E2 · · · ×En) representing the Cartesian product of the relations represented by Ei,
where each Ei is an expression over schema Si, such that S is the disjoint union of all
Si,

• a name Ni of another expression Di over S, representing the same relation as Di.

Example 2.18. The natural join query Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ),
where the tuples in each relation are as shown in Figure 2.2(a), has a factorisation as shown
in Figure 2.6.

The factorisation in Figure 2.6 has eliminated much of the redundancy in the listing rep-
resentation of the query: for example, the sub-tuple a1, b1, c1 is now recorded only once,
compared with six times in the listing representation of Figure 2.3. But there is still some
residual redundancy in Figure 2.6: specifically that the two sub-trees rooted at e1 are identical.
Recall that key(F ) = {E} ⊂ anc(F ) = {A,E}, because F is independent, conditioned on E,
from variable A. Thus any value of E gives rise to the same set of values of F in the query
result, irrespective of where in the query representation that value of E occurs. This enables
further streamlining of the factorisation by only recording the values of F for a given value of
E against the first occurrence of that value of E. If that value of E occurs multiple times in
the query result, subsequent occurrences can simply reference the first, a process referred to
as caching. Figure 2.7 shows the factorisation of Q2 with caching.
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∪

a1 a2

× ×

∪ ∪ ∪ ∪

b1 b2 e1 e2 b1 e1 e3

× × × × × × ×

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

c1 c2 d1 d2 c1 d1 f1 f2 f1 c2 d2 f1 f2 f2

Figure 2.6: Factorisation of Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) where the
tuples in each relation are as shown in Figure 2.2(a), and with residual redundancy highlighted.

∪

a1 a2

× ×

∪ ∪ ∪ ∪

b1 b2 e1 e2 b1 e3

× × × × × ×

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

c1 c2 d1 d2 c1 d1 f1 f2 f1 c2 d2 f2

Figure 2.7: Factorisation of Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), where the
tuples in each relation are as shown in Figure 2.2(a), and using caching to remove residual
redundancy.
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2.4.4 Size Bounds for Factorisations

For this simple example, the size of the factorisation of Q2 – that is, the total number of
symbols a1, c2, etc, ∪,×, used in the representation – is only 47 (42 with caching), compared
with 18 × 6 = 108 (that is, the data size of the query × the size of the query schema) in
the listing representation of Q2. More generally, a theoretical upper bound for the size of
the factorized representation of an arbitrary equi-join query Q over database D (analogous to
equation 2.9 for listing representations) exists:

Proposition 2.19 ([19]). Given a join query Q

(i) for any database D, Q(D) has a factorised representation with size

O(|P|2 · |D|fhtw(Q)) (2.10)

where P is the number of query variables, and fhtw(Q) is the fractional hypertree width
of the query Q, satisfying 1 ≤ fhtw(Q) ≤ ρ∗(Q) ≤ |Q| = number of relations in Q;

(ii) There exist arbitrarily large queries Q for which fhtw(Q) = 1 and ρ∗(Q) = |Q|, where
the gap between fhtw(Q) and ρ∗(Q) can be as great as |Q|.

Two points to note from Proposition 2.19: first, for any given natural join query Q, the number
of query variables is fixed and Q(D) has a factorised representation with size O(|D|fhtw(Q)).
This simplification makes for more straightforward comparisons of the performance of different
algorithms over the same factorised representation in Chapter 3. And, second, in case (ii),
from (2.10) Q(D) admits a factorised representation with size

O(|P|2 · |D|fhtw(Q))

=O(|P|2 · |D|1)
=O(|P|2 · |D|)

where P is the (fixed) number of (distinct) query variables; and from (2.9), Q(D) admits a
listing representation with size

O(|D|ρ∗(Q))

=O(|D||Q|)
=O(|D|n)

where n is the number of relations in Q. The size of the factorised representation is therefore
exponentially smaller than that of the corresponding listing representation.

Example 2.20. The query Q1 = R1(X1), R2(X2), · · · , Rn(Xn) has the hypergraph shown in
Figure 2.4, d-tree shown in Figure 2.8 and factorisation shown in Figure 2.9 (in the case where
|R1| = |R2| = · · · = |Rn| = m). It can be seen from the hypergraph that Q1 is α-acyclic; thus
fhtw(Q) = 1. P = number of query variables = n; a theoretical upper bound on the size of
the factorisation is therefore O(|P|2 · |D|) = O(n2 · nm) = O(n3m); this is consistent with the
actual size of the factorisation = (mn+ n+ 1) in Figure 2.9, and exponentially smaller than
the data size of the Cartesian product = mn.

Intuitively, the benefits of factorisation (in terms of size and also, therefore, the reduction in
the time required to perform any computations over the factorisation) increase as the level of
conditional independence between the variables of the underlying relations increases, that is,
the greater the degree of branching in the d-tree/factorisation.

As well as deriving size bounds for the factorisation of an equi-join query Q over database
D, previous work has presented a worst-case optimal recursive algorithm to compute such a
representation [19]:
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X1 X2 · · · Xn

key = {} key = {} key = {}

Figure 2.8: D-tree for natural join Q1 = R1(X1), R2(X2), · · · , Rn(Xn)

×

∪ ∪ ∪

x11 x12 · · · x1m x21 x22 · · · x2m · · · xn1 xn2 · · · xnm

Figure 2.9: Factorisation of Q1 = R1(X1), R2(X2), · · · , Rn(Xn) where |Ri| = m

Proposition 2.21 ([19]). Given any conjunctive query Q and a database D, a factorised
representation of Q(D) can be computed in time

O(|D|fhtw(Q) · log|D|)

with respect to data complexity.

Crucially, the factorisation can be obtained directly from the underlying database and the
d-tree for the query; there is no need to materialise a listing representation of the join as an
intermediate step. In the case of α-acyclic queries (for which fhtw(Q) = 1) this complexity
becomes O(|D| · log|D|).

2.4.5 Computation over Factorised Datasets

The tree structure of a factorisation lends itself naturally to recursive computations over a
traversal of the tree, replacing the semiring operations of Union (∪) and Cartesian product
(×) with appropriate arithmetic semiring (or ring) operations. For example, to compute
the sum of all values in a factorised dataset, union can simply be replaced by addition, and
Cartesian Product by multiplication. The structure of a ‘typical’ algorithm for computing
some quantity over a factorisation E is given in Figure 2.10. Some highlighted points to note:

This algorithm uses caching (1, 4). Recall, for example, that variable F in query Q2 has
key(F ) = {E} 6= anc(F ) = {A,E} – the values of F in any given tuple of the query depend
only on the value of its key E. An algorithm looking to perform a computation on the set
of F values for a particular value of E therefore first checks to see if that E-value has been
seen previously: if so, the results of the previous computation for F given that value of E can
be retrieved from the cache and used (1); if not, the computation can be performed, and the
results stored in the cache (4) for the next time the same key is encountered.

The purpose of the count (2, 5) and multiplier (6) quantities is to ensure that the compu-
tation takes account of every tuple in the listing representation of the join, effectively ‘decom-
pressing’ the factorisation, but doing so by scaling (once) each computation ‘g’, rather than
carrying out the same computation ‘g’ multiple times (a process that can be thought of as
pushing the computation ‘g’ ‘through’ the join).

The overall complexity of this algorithm depends on the complexity of function ‘f ’ –
executed once per value symbol in the factorisation (3) – and the complexity of function ‘g’
– executed once per variable symbol in the factorisation per branch below that symbol in the
factorisation (7) – that is, per branch below that variable in the d-tree). This gives an intuitive
computational complexity for typical-algo of

O(size of factorisation(O(f) + b · O(g))) (2.11)

where b is some measure of the ‘average degree of branching’ within the d-tree. (As will be seen
in the following chapter, in the case of the F and F# algorithms to learn linear regression model
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typical-algo (Factorization E, varMap)

switch E:

∪

a1

E(1)

. . . ak

E(k). . .

A = var(E); keyMap = πkey(A)(varMap); Notes

if (key(A) 6= anc(A)) {
(count, quantity) = cache[keyMap]; if (count 6= 0) break; 1

}
count = 0;

if (∀j ∈ [k] : E(j) = ∅) then foreach j ∈ [k] do count(j) = 1;
else foreach j ∈ [k] do {

(count(j), quantity(j)) = typical-algo(E(j), varMap× {(A : aj)});
count += count(j); 2

quantity = f(count(j), quantity(j)); // some function f 3
}
if (key(A) 6= anc(A)) cache[keyMap] = (count, quantity); 4

×

E(1) . . .E(k)

count = 1;
foreach j ∈ [k] do {

(count(j), quantity(j)) = typical-algo(E(j), varMap);

count ∗ = count(j); 5
}
foreach j ∈ [k] do {
multiplier(j) = count/count(j); 6

quantity = g(count(j), quantity(j)); // some function g 7
}

return (count, quantity);

Figure 2.10: Structure of a typical algorithm for performing recursive computation to calculate
some quantity over a factorized join E.

parameters, the complexity of ‘f ’ and ‘g’ may also depend on the depth of their respective
union and Cartesian product operators within the factorisation tree).

Two final points to note: first, recall that the size of a factorisation relative to the corre-
sponding listing representation of a join decreases with the degree of branching in the d-tree.
As can be seen from equation (2.11) the complexity of a computational algorithm over a factori-
sation of a given size increases with the degree of branching. Overall, however, the reduction
in the size of the factorisation can far outweigh the increased complexity of the algorithm from
the branching within the d-tree. In fact, even taking into account the time to construct the
factorisation of the query, the overall time to perform computation over a factorisation can
still be log-linear in the size of the database, compared with potentially exponential for the
same computation over a flat representation of the query. Second, equation (2.11) suggests
that efficiency gains in the ‘branching computation’ ‘g’ may have greater relative benefits for
the overall complexity of the algorithm than the same efficiency gains in the ‘union compu-
tation’ ‘f ’. Function ‘g’ would therefore be a particularly good candidate for rewriting to
replace semi-ring operations with ring operations. As will be seen in the following chapter, the
F# algorithm developed in this dissertation achieves precisely this improvement over current
state-of-the-art algorithms, such as F, for learning linear regression model parameters.

2.5 Join Algorithms: Leapfrog Triejoin

Typical database join algorithms (such as sort-merge join and block-nested loop join) are
relation-oriented, that is, individual relations within the query are joined in turn. Where
a query involves more than two relations, the efficiency of the overall join process is highly
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dependent on the query plan determining the order in which the individual relations are to
be added to the join. The Leapfrog Triejoin, on the other hand, is a variable-oriented join
algorithm for constructing listing (flat) representations of full conjunctive queries: queries
taking the form of equation 2.1 with the restriction that the projection list P =

⋃
i Si over

all relations Ri (thus a superset of the natural join queries considered in this project) [23],
[24]. A Leapfrog Triejoin for query Q with schema S(X1, X2, . . . Xn) is constructed using a
backtracking search process on individual variables of the query schema. First, each of the
relations involved in the query are joined on variable X1; for each suitable value of X1 (if
any) each of the relations are then joined on variable X2, then X3, and so on, until a tuple
(x1, x2, . . . xn) has been created that satisfies the query condition ψ. The search then backtracks
to ensure that, for each value x1, every possible combination of x2, is enumerated and, for
each (x1, x2) every value of x3 is enumerated, and so on. Leapfrog Triejoin is intuitively
simple to understand and straightforward to implement recursively. It has also been proved to
be worst-case optimal (that is, no other algorithm has a better computational complexity for
handling worst-case queries), computing a listing representation of query Q in time O(|D|ρ∗(Q))
modulo log factors. Moreover, there are classes of queries for which Leapfrog Triejoin strictly
out-performs other more sophisticated worst-case join algorithms [24].

The basic building block of the Leapfrog Triejoin is the leapfrog join, a variant of sort-
merge join which simultaneously joins a set of unary relations over the same query variable
(with computational complexity proportional to the size of the smallest input relation) [23].
By choosing a variable order consistent with that of the d-tree for a query Q, the same leapfrog
join technique can used to construct a factorised representation of Q. For example, in the case
of query Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), leapfrog join can first be used
to join the relations on A (that is, R1, R2, R3). For each possible join value 〈A : a〉, leapfrog
join can then be used to join the relations on B (that is, R1, R2) and E (that is, R3, R4),
and so on. The resulting tree structure of join values corresponds precisely to the factorised
representation of Q as depicted in Figure 2.6; the leapfrog join approach can also incorporate
caching, resulting in the representation in Figure 2.7.
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Chapter 3

F#: Ring-based Gradient
Computation

Chapter 2 described the linear regression model for which a set of parameters needs to be
learned, and the typical structure of an algorithm for computing quantities over the factorised
representation of a database query. This chapter brings these two together: it describes a
state of the art algorithm, F ([22]) for computing the query aggregates necessary to learn
those parameters (where the query is the training dataset for the linear regression model)
and presents an intuitive analysis of its computational complexity. It then demonstrates that,
with a rewriting of these aggregate quantities using more powerful computation primitives
(specifically ring computation over the real numbers), an improved algorithm, F#, exists
which offers asymptotic complexity improvements over the state of the art. Chapter 4 then
describes the practical implementation in C++ of the F# algorithm, as part of an end-to-end
batch gradient descent supervised learning process.

3.1 F: State of the Art Gradient Computation

The state of the art for learning the parameters of linear regression models over factorised
joins is the work of Schleich et al., specifically the F system. This includes algorithms both for
computing the required aggregates over a materialised factorisation of the result of any join
query, and for simultaneous computation of the factorisation and the aggregates in memory
[22]. For this dissertation, the focus is the computation of aggregates over a materialised
factorisation.

Recall from (2.7) that the gradients required for a single iteration of the batch gradient
descent algorithm are

∂

∂w0
J(w) = w0 +

1

m

m∑
i=1

n∑
k=1

wkx
(i)
k

∂

∂wj
J(w) =

w0

m

m∑
i=1

x
(i)
j +

1

m

m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k j ∈ [n] (3.1)

where w0 . . . wn are the current values of the model parameters. To note that m is now the size
of the materialised factorised representation of the query over which the aggregates are being
computed: from Proposition 2.19 this size is O(|D|fhtw(Q)) . The terms in these gradients
correspond to aggregates over the training dataset: in the case of the F algorithm [22] these
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aggregates were defined as follows:

C , m = count of tuples

L[Xj ] ,
m∑
i=1

x
(i)
j = sum of Xj values

Q[Xj , Xk] , Cofactor[Xj , Xk] ,
m∑
i=1

x
(i)
j x

(i)
k

L is thus a vector quantity, with an element corresponding to each model parameter, that is,
one element per continuous-valued variable. Cofactor is a (square) matrix with one row and
one column for each model parameter. A key insight of Schleich et al. [22] was that, with
these aggregate definitions, the gradients for a single iteration of the batch gradient descent
algorithm in equation (3.1) could be rewritten as

∂

∂w0
J(w) = w0 +

1

C

n∑
k=1

wkL[Xk]

∂

∂wj
J(w) =

w0

C
L[Xj ] +

1

C

n∑
k=1

wkCofactor[Xj , Xk] j ∈ [n]

and that, with this rearrangement, the values of the query aggregates required at each con-
vergence step of the batch gradient descent process would be independent of the values of
the parameters at that step. This would enable computation of the aggregates (including the
n-dimensional vector L and the n × nCofactor matrix) to be performed only once over any
given factorised query result; the batch gradient descent algorithm could then be performed
directly on the precomputed aggregates, rather than repeatedly recomputing the query and
the aggregates. Moreover, in the case of a dataset with n continuous-valued variables, the
size of the cofactor matrix itself (n × n) would be independent of the size m of the dataset.
Two further insights of Schleich et al. [22] were, first, that computation of these aggregates
would require only a single pass over any factorised query; in light of the size bounds from
Proposition 2.19, for a specific query in the case of continuous-valued variables, this should
enable the aggregates to be learned in time O(|D|fhtw(Q)). And, second, that the Cofactor
matrix is symmetric, meaning that only the upper half of the matrix need be computed.

The F algorithm is shown in Figure 3.1. Its structure follows closely the structure of the
‘typical’ algorithm over a factorisation shown in Figure 2.10 of Section 2.4.5. Using a similar
structural analysis to that presented in Section 2.4.5, the overall computational complexity of
the F algorithm depends on (i) the complexity of the computation ‘f ’ executed once per union
of the factorisation (that is, once per value symbol in the factorisation), in this case

foreachB ∈ Schema[Ej ] do {
LE [B] = LE [B] += LEj [B];

foreach D ∈ Schema[Ej ] do { QE [B,D] += QEj [B,D] }
} (3.2)

and (ii) the computational complexity of the computation ‘g’ executed once per Cartesian
product in the factorisation (that is, once per variable symbol in the factorisation per branch
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F (Factorization E, varMap)

if (visited) return; switchE:

〈A : a〉

×

E1 . . . Ek

CE = 1;
foreach j ∈ [k] do { F(Ej); CE = CE · CEj ; }
LE = a · CE ; QE [A,A] = a · LE [A];
foreach j ∈ [k] do {

foreach B ∈ Schema[Ej ] do {
LE [B] = LEj · CE/CEj

QE [A,B] = a · LEj [B] · CE/CEj

}
foreach B,D ∈ Schema[Ej ] s.t. B < D do {
QE [B,D] = QEj [B,D] · CE/CEj

}
foreach j < l ∈ [k], B ∈ Schema[El], B ∈ Schema[Ej ] do {
QE [B,D] = LEl

[B] · LEj [D] · CE/(CEl
· CEj );

}
}

∪

E1 . . . Ek

CE = 0; foreach j ∈ [k], B,D ∈ Schema[Ej ] do {
LE [B] = 0, QE [B,D] = 0;

}
foreach j ∈ [k] do { F(Ej); CE = CE+ = CEj ; }
foreach j ∈ [k], B ∈ Schema[Ej ] do {
LE [B] = LE [B] += LEj [B];
foreach D ∈ Schema[Ej ] do { QE [B,D] += QEj [B,D] }

}
visited = true;

Figure 3.1: F algorithm for computing the gradients for linear regression in one pass over a
factorized join E. Algorithm taken from [22]

of the d-tree below that variable), in this case

foreach B ∈ Schema[Ej ] do {
LE [B] = LEj · CE/CEj

QE [A,B] = a · LEj [B] · CE/CEj

}
foreach B,D ∈ Schema[Ej ] s.t. B < D do {
QE [B,D] = QEj [B,D] · CE/CEj

}
foreach j < l ∈ [k], B ∈ Schema[El], B ∈ Schema[Ej ] do {
QE [B,D] = LEl

[B] · LEj [D] · CE/(CEl
· CEj );

} (3.3)

Expression (3.2) is quadratic in the the size of Schema[Ej ]. The first foreach term of (3.3)
is linear in the size of Schema[Ej ], that is, in the size of the subtree of the d-tree rooted at
variable Ej , and the second foreach term of (3.3) is quadratic in the size of Schema[Ej ].
The final foreach term of (3.3) is quadratic in the size of Schema[Ej ], but also linear in [k],
that is, in the degree of branching of the d-tree at Ej . From equation (2.11) we thus have an
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intuitive computational complexity for F of

O(size of factorisation(O(f) + b · O(g)))

=O(size of factorisation · (s2 + b · (b · s2))
=O(size of factorisation · s2 · (1 + b2))

=O(size of factorisation · s2 · b2) (3.4)

where b is again some measure of the ‘average degree of branching’ within the d-tree, and s is
now some measure of the ‘average Schema size’ of the d-tree (that is, the average size of the
traversal for a subtree of the d-tree). To note that b and s have an inverse relationship: the
greater the degree of branching of a d-tree, the more ‘shallow’ the d-tree is, and the smaller
the traversal of each of its subtrees. However, for any specific query (that is, for fixed b and s),
the computational complexity of the algorithm is determined by the size of the factorisation,
that is O(|D|fhtw(Q)) from Proposition 2.19 (modulo log factors, if the time to construct the
factorisation is included [22]).

Whilst b and s are not precisely defined for the general case, the fact that they can be
determined for specific queries means that equation (3.4) nevertheless provides a useful baseline
against which to compare improvements on the F algorithm.

Example 3.1. Consider the (α-acyclic) query Q1 = R1(X1), R2(X2), · · · , Rn(Xn) of Example
1.1. In the case of continuous-valued variables, the linear regression model has size n. For this
query, the d-tree (shown in Figure 2.8) has maximal branching, with s = 1 and b = n. The
computational complexity of F for this query is thus

O(|D|fhtw(Q) · 12 · n2)
=O(|D|fhtw(Q) · n2)
=O(|D|1 · n2)
=O(nm · n2) = O(n3m) (3.5)

that is, cubic overall in the size of the linear regression model n.

Example 3.2. Consider the (also α-acyclic) single-relation query Q3 = R(X1, X2, . . . , Xn),
where |R| = m, in the case of continuous query variables, again with model size = number of
query variables = n. Recall that dependent attributes (such as those within a single relation)
lie on the same root to leaf path of the query’s d-tree. The d-tree for query Q3 therefore has
no branching, thus s = n/2 (the average number of variables below each query variable in the
single root to leaf path) and b = 1. In this case, the computational complexity of F is

O(|D|fhtw(Q) · (n/2)2 · 12)
=O(|D|fhtw(Q) · n2)
=O(|D|1 · n2)
=O(nm · n2) = O(n3m) (3.6)

again cubic overall in the size of the linear regression model n.

The original F algorithm handled only continuous-valued variables (it was extended for
categorical variables in the DC algorithm of Khamis et al. [16]). However, in the case of
queries Q1 and Q3 above, if each of the n relations had m distinct categorical values, the size
of the model could be as large as O(m·n) = O(|D|). In both cases, the resulting computational
complexity of F would be

O((nm) · (nm)2) = O(n3 ·m3)

thus now cubic in the size of the database.
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3.2 A New Improved Algorithm

3.2.1 Motivation

As seen in equations (3.5) and (3.6) above, using the F algorithm to compute the n2 aggregates
in the n× n Cofactor matrix for query Q with n continuous-valued variables over database D
can take time

O(|D|fhtw(Q) · n2) (3.7)

However, the presence of one-hot encoded categorical variables introduces a distinct model
parameter for each value taken by each categorical variable. In this case, even in the ‘best’ case
of an acyclic query Q with fhtw(Q) = 1, the computational complexity of F can still be O(n3).
The ability to handle categorical variables more efficiently thus provides a key motivation for
finding a better algorithm for computing the aggregates required to learn model parameters.

3.2.2 Rewriting the Gradients Using Ring Computation

The F algorithm uses only semiring computation (that is addition and multiplication) in its
computation of the aggregates C, L and the Cofactor matrix. Returning to the gradients
for the batch gradient descent method in (3.1), we now consider a slightly different set of
aggregates, specifically:

cnt , m = count of tuples

S1[Xj ] ,
m∑
i=1

x
(i)
j = sum of Xj values

S1,w ,
m∑
i=1

S
(i)
1,w ,

m∑
i=1

n∑
k=1

wkx
(i)
k =

n∑
k=1

wkS1[Xk] = weighted sum of Xj values

Grad[Xj ] ,
m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k = weighted sum of paired products XjXk

The aggregates cnt and S1 correspond to the C and L aggregates used in F. S1,w is a new
scalar quantity, and Grad is a vector, with an element corresponding to each model parameter,
that is, one element per continuous-valued variable, and one element for each value taken by
each categorical variable. With these new aggregate definitions, the gradients for a single
iteration of the batch gradient descent algorithm from (3.1) become:

∂

∂w0
J(w) = w0 +

1

cnt
S1,w

∂

∂wj
J(w) =

w0

cnt
S1[Xj ] +

1

cnt
Grad[Xj ] j ∈ [n]

27



The key insight of this project is that, using ring computation (specifically subtraction) it is
possible to rewrite the formula for Grad[Xj ] as follows:

Grad[Xj ] =
m∑
i=1

n∑
k=1

wkx
(i)
j x

(i)
k j ∈ [n]

=
m∑
i=1

(
wjx

(i)
j x

(i)
j +

( n∑
k=1

wkx
(i)
j x

(i)
k

)
− wjx(i)j x

(i)
j

)
j ∈ [n]

=
m∑
i=1

(
wjx

(i)
j x

(i)
j +

( n∑
k=1

wkx
(i)
j x

(i)
k − wjx

(i)
j x

(i)
j

))
j ∈ [n]

=
m∑
i=1

(
wjx

(i)
j x

(i)
j + x

(i)
j

( n∑
k=1

wkx
(i)
k − wjx

(i)
j

))
j ∈ [n]

=
m∑
i=1

(
wjx

(i)
j x

(i)
j + x

(i)
j

(
S
(i)
1,w − wjx

(i)
j︸ ︷︷ ︸

(1)

)
︸ ︷︷ ︸

(2)︸ ︷︷ ︸
(3)

)
j ∈ [n] (3.8)

For each value of i in (3.8), the quantity S
(i)
1,w =

∑n
k=1wkx

(i)
k is linear in n and need be computed

only once; this can be done in time O(n). Moreover, once S
(i)
1,w has been computed, expression

(1) can be computed in constant O(1) time with respect to n (a single multiplication and a
single subtraction); expressions (2) and (3) can then each be computed in O(1) time (with a

single multiplication, and two multiplications and an addition, respectively). Thus, once S
(i)
1,w

has been calculated once in linear time, each of the n elements of Grad can be computed in
constant time with respect to n.

The time to compute the full Grad vector is thus O(n) + n · O(1) = O(n), compared with
the O(n2) time to compute the Cofactor matrix in the F algorithm. It is this ring-rewriting of
Grad that forms the basis of the new algorithm, F#.

3.2.3 The F# Algorithm

Like F, F# computes the aggregates over a materialised factorisation of the result of a join
query; however, it now incorporates the rewritten ring calculation, and handles categorical
values (the implementation in Chapter 4 also allows for model selection whereby query vari-
ables can be excluded completely as model features). Figure 3.2 on page 32 sets out the F#

algorithm: Grad and S1 are vectors with one entry per variable (with initial values 0) while cnt
and S1,w are scalars. The model parameter corresponding to the value ai taken by categorical
variable A is denoted by wA.ai ; the corresponding elements of S1 and Grad are denoted by
S1[A.ai] and Grad[A.ai] respectively.

computational complexity of F# algorithm with continuous-valued variables Us-
ing the same structural analysis presented in Section 2.4.5 as used above for F, the overall
computational complexity of this algorithm depends once again on the complexity of the the
sections of computations ‘f ’ and ‘g’. In the case where all variables are continuous, the rele-
vant computations for ‘f ’ (executed once per union of the factorisation, that is, once per value
symbol in the factorisation) are shown in (3.9) below. To note that the each

∑
j∈[k] here is

the equivalent of the foreach j ∈ [k] of typical-algo; the complexity to consider is therefore
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that of each summand at the point where it is added to its respective sum.

cnt =
∑
j∈[k]

cnt (j);

S1 =
∑
j∈[k]

S
(j)
1 ;

S1[A] =
∑
j∈[k]

aj · cnt (j);

S1,w =
∑
j∈[k]

S
(j)
1,w + wA · S1[A];

Grad =
∑
j∈[k]

(wA · aj · S(j)1 [A] + Grad(j));

Grad[A] =
∑
j∈[k]

aj · (wA · aj · cnt (j) + S
(j)
1,w); (3.9)

Now, each of the individual expressions being summed is of constant O(1) complexity at
the point in the algorithm where it is added to the sum (for example, the summand wA ·
aj · S(j)1 [A] + Grad(j) for Grad requires two multiplications and one addition of pre-computed
quantities). Thus, the complexity of ‘f ’ is O(1).

The relevant computations for ‘g’ (executed once per Cartesian product in the factorisation
per branch of the d-tree below that variable) in this case are as shown in (3.14) below (where
the

∑
j∈[k] for S1,w is again the equivalent of the foreach j ∈ [k] of typical-algo):

foreach j ∈ [k] do {

foreach B ∈ Schema(Grad(j)) do S1[B] = S
(j)
1 [B] · cnt/cnt (j); (3.10)

}

S1,w =
∑
j∈[k]

S
(j)
1,w · cnt/cnt (j); (3.11)

foreach j ∈ [k] do {

S = S1,w − S(j)
1,w · cnt/cnt (j); (3.12)

foreach B ∈ Schema(Grad(j)) do {

Grad[B] = (cnt · Grad(j)[B] + S · S(j)1 [B])/cnt (j); (3.13)

}
} (3.14)

Taking these in turn: expression(3.10) is linear in the size of the Schema of Grad(j), that is, in
the size of the subtree of the d-tree rooted at variable A. For each j ∈ [k], expressions (3.11)
and (3.12) are both O(1); finally,(3.13) is linear in the size of the Schema of Grad(j). In the
case of continuous variables, from (2.11), the intuitive complexity for F# is thus

O(size of factorisation(O(f) + b · O(g)))

=O(size of factorisation · (1 + s · b))
=O(size of factorisation · s · b) (3.15)

where b is again some measure of the ‘average degree of branching’ within the d-tree, and s is
again some measure of the ‘average Schema size’ of the d-tree (that is, the average size of the
traversal for a subtree of the d-tree). Revisiting the two specific examples considered above
for F, but now for F#:

Example 3.3. Consider the (α-acyclic) query Q1 = R1(X1), R2(X2), · · · , Rn(Xn). In the
case of continuous-valued variables, the linear regression model has size n. For this query, the
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d-tree (shown in Figure 2.8) has maximal branching, with s = 1 and b = n. The complexity
of F# for this query is thus

O(|D|fhtw(Q) · n · 1)

=O(|D|1 · n) = O(|D| · n) (3.16)

Example 3.4. Consider the (also α-acyclic) single-relation query Q3 = R(X1, X2, . . . , Xn),
where |R| = m, again with model size n. Recall that dependent attributes (such as those within
a single relation) lie on the same root to leaf path of the query’s d-tree. The d-tree for query
Q3 therefore has no branching, thus s = n/2 and b = 1. In this case, the complexity of F# is

O(|D|fhtw(Q) · 1 · n/2)

=O(|D|1 · n) = O(|D| · n) (3.17)

Comparing with equations (3.5) and (3.6), F# can thus be seen to offer an asymptotic com-
plexity improvement on F in the case of continuous variables.

Time-complexity of F# with categorical variables In the case of categorical variables,
the relevant computations for the ‘f ’ section of the F# algorithm are now:

cnt =
∑
j∈[k]

cnt (j);

S1 =
∑
j∈[k]

S
(j)
1 ;

foreach j ∈ [k] do S1[A.aj ] = cnt (j);

S1,w =
∑
j∈[k]

S
(j)
1,w +

∑
j∈[k]

wA.aj · S1[A.aj ];

Grad =
∑
j∈[k]

(wA.aj · 1 · S
(j)
1 [A.aj ] + Grad(j));

foreach j ∈ [k] do Grad[A.aj ] = wA.aj · cnt (j) + S
(j)
1,w;

Again each of the expressions being summed is O(1) with respect to the size of the database
and the size of Schema[A]; thus ‘f ’ again has complexity O(1). The relevant computations
for ‘g’ are as before:

foreach j ∈ [k] do {

foreach B ∈ Schema(Grad(j)) do S1[B] = S
(j)
1 [B] · cnt/cnt (j); (3.18)

}

S1,w =
∑
j∈[k]

S
(j)
1,w · cnt/cnt (j); (3.19)

foreach j ∈ [k] do {

S = S1,w − S(j)
1,w · cnt/cnt (j); (3.20)

foreach B ∈ Schema(Grad(j)) do {

Grad[B] = (cnt · Grad(j)[B] + S · S(j)1 [B])/cnt (j); (3.21)

}
}

Expressions (3.19) and (3.20) are both O(1), and expressions (3.18) and (3.21) are again both
linear in the size of the Schema of Grad(j). However, rather than its Schema size corresponding
to the number of query variables, Grad(j) now contains an element for every variable in the
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subtree of the d-tree rooted at variable A, and for every value taken by any of those descendent
variables that are categorical. An intuitive overall complexity for F# is now therefore

O(size of factorisation · (1 + sc · b)) (3.22)

where b is again some measure of the ‘average degree of branching’ within the d-tree, and sc
is now the average size of a subtree within the d-tree, weighted according to the number of
values taken by any categorical variables within that subtree.

Two points to note: first, a given categorical variable has greater (negative) impact on the
complexity of F# the more times it appears in a distinct subtree of the d-tree. In general,
therefore, the further a categorical variable is from the root of the d-tree, the greater its
potential impact on the complexity of F#. Second, we know that for a given query (and
d-tree), the complexity of F# is linear in sc which, in turn, is no greater than the size of
the linear regression model. The F# algorithm thus offers again an asymptotic complexity
improvement over F.

There is a significant caveat however! The improved complexity of F# for calculating
the aggregates for a single iteration of the batch gradient descent algorithm comes at a cost.
Specifically, the computation of the aggregates is no longer decoupled from the iterative steps
of the batch gradient descent algorithm, each of which requires a separate computational
pass over the factorised query to compute a fresh set of aggregates (S1,w and Grad) based on
the latest values of the parameters. On the assumption, however, that the number of iterative
steps� the size of the model in the case of categorical variables, F# may still deliver improved
performance overall.
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F# (Factorization E, varMap)

switch E:

∪

a1

E(1)

. . . ak

E(k). . .

A = var(E); keyMap = πkey(A)(varMap);

if (key(A) 6= anc(A)) {
(cnt , S1,w, S1,Grad) = cache[keyMap]; if (cnt 6= 0) break;

}
if (∀j ∈ [k] : E(j) = ∅) then foreach j ∈ [k] do cnt (j) = 1;
else foreach j ∈ [k] do {

(cnt (j), S
(j)
1,w, S

(j)
1 ,Grad(j)) = F#(E(j), varMap× {(A : aj)});

}
cnt =

∑
j∈[k] cnt (j);

S1 =
∑

j∈[k] S
(j)
1 ;

if (A is a categorical variable) then {
foreach j ∈ [k] do S1[A.aj ] = cnt (j);

}
else S1[A] =

∑
j∈[k] aj · cnt (j);

if (A is a categorical variable) then {
S1,w =

∑
j∈[k] S

(j)
1,w +

∑
j∈[k]wA.aj · S1[A.aj ];

Grad =
∑

j∈[k](wA.aj · 1 · S
(j)
1 [A.aj ] + Grad(j));

foreach j ∈ [k] do Grad[A.aj ] = wA.aj · cnt (j) + S
(j)
1,w;

}
else {
S1,w =

∑
j∈[k] S

(j)
1,w + wA · S1[A];

Grad =
∑

j∈[k](wA · aj · S
(j)
1 [A] + Grad(j));

Grad[A] =
∑

j∈[k] aj · (wA · aj · cnt (j) + S
(j)
1,w);

}
if (key(A) 6= anc(A)) cache[keyMap] = (cnt , S1,w,S1,Grad);

×

E(1) . . .E(k)

foreach j ∈ [k] do {
(cnt (j), S

(j)
1,w, S

(j)
1 ,Grad(j)) = F#(E(j), varMap);

}
cnt =

∏
j∈[k] cnt (j);

foreach j ∈ [k] do {
foreach B ∈ Schema(Grad(j)) do S1[B] = S

(j)
1 [B] · cnt/cnt (j);

}
S1,w =

∑
j∈[k] S

(j)
1,w · cnt/cnt (j);

foreach j ∈ [k] do {
S = S1,w − S(j)

1,w · cnt/cnt (j);

foreach B ∈ Schema(Grad(j)) do {
Grad[B] = (cnt · Grad(j)[B] + S · S(j)1 [B])/cnt (j);

}
}

return (cnt , S1,w, S1,Grad);

Figure 3.2: F# algorithm for computing the gradients for linear regression in one pass over a
factorized join E.
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Chapter 4

Implementation

Chapter 3 presented a a new algorithm, F#, for computing query aggregates over the training
dataset for a linear regression model. The F# algorithm takes as its input a materialised
factorisation of the query join; the output of each application of the algorithm is the set of
query aggregates required for a single set of gradients of the least-squares objective function,
that is, for a single iteration (convergence step) of the batch gradient descent process.

Implementation of the end-to-end batch gradient descent process therefore involves three
stages: (i) materialisation of the factorised join; (ii) implementation of the F# algorithm to
compute the required query aggregates; and (iii) embedding the F# computations within the
batch gradient descent iterative process. This chapter describes the practical implementation
in C++ of each these stages, including some of the classes, methods, and individual code frag-
ments used. Chapter 5 then describes the experiments carried out to compare the practical
performance of this implementation against its state of the art competitors.

4.1 Deliverables and the C++ Codebase Used

The implementation of F# within the batch gradient descent process modifies and extends an
existing C++ codebase for the construction of factorised database representations and linear
regression models. The resulting modified structure of the various classes and data sources is
shown in Figure 4.1.

The central deliverable of the implementation is the class CategoricalRegressionOverJoin,
the methods of which implement the F# algorithm for training datasets involving arbitrary
combinations of continuous and categorical model features (and also allow for individual query
variables to be excluded from the features of the model). The full code listing for the new
class CategoricalRegressionOverJoin.cpp is included as Appendix A and in electronic format
with this dissertation.

Other classes (DTreeNode, CategoricalFactorisedJoin, and the Union struct) are modifica-
tions or extensions of existing classes, for example, to support the introduction of categorical
(and excluded) features into the implementation, whilst the DTree and Launcher classes have
been used with only very minimal changes. The code of selected classes that have been added
to the CategoricalFactorisedJoin class, and which are discussed below, is included as Ap-
pendix B and in electronic format with this dissertation. The full C++ codebase is held in
a private GitHub repository; if you would like access to this, please contact Professor Dan
Olteanu or one of his team.

4.2 Materialised Factorisation of the Join Query

4.2.1 Data Structures Used for D-Tree and Factorisation

Recall that the branching structure of the factorised representation of a query is determined by
the branching structure of the underlying d-tree for the query. Algorithms that iterate over a
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Union
(struct)

Categorical
Factorised
Join (class)

Categorical
Regression
OverJoin

(class)

Launcher
(class)

DTree
(class)

dTreeNode
(class)

DBdtree.txt

variables.txt

schema.conf

constructs d-tree

(i) requests factorisation

constructs regression model

and invokes its run() method

(ii) requests sets of categorical values

Figure 4.1: Class structure and data inputs to the F# implementation. Classes in green are
used with minimal changes, classes in yellow with minor modifications (e.g. to accommo-
date catetorical features), and the CategoricalRegressionOverJoin class in red is new for the
implementation.
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key = {}

key = {A}

key = {A,B} key = {E}

key = {A}

key = {A,B}

Figure 4.2: d-tree for natural join Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )

materialised factorisation, such as F and F#, therefore require both the factorisation and the d-
tree to be materialised in memory. Methods for computing aggregates over a factorisation take
as their arguments both a factorisation (or a subtree of a factorisation) and the corresponding
d-tree (or subtree of the d-tree).

The d-tree is materialised as a tree of doubly linked nodes, each of which is an instance of
the DTreeNode class, corresponding to a single node (that is, query variable) of the d-tree. The
information stored in each DTreeNode object includes the name of the query variable together
with parent, child and sibling information to aid navigation through the tree.

The materialised factorisation of the query dataset also uses nodes, this time instances
of the Union struct. Each Union instance corresponds to a single union in the factorisation
(that is, a union of singletons 〈A : a〉 for some query variable A). Figure 4.3 shows the
correspondence between the factorisation and the Union instances in its materialisation for the
query Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ) where the tuples in each relation are
as shown in Figure 2.2(a). Notice that each Union instance in the materialised factorisation
has one child Union instance per value 〈A : a〉 and per branch at the query variable A in the
d-Tree (shown in Figure 4.2). This corresponds precisely to the branching structure of the F#

algorithm, where computations are performed once per value, per branch of the d-tree at that
value’s variable.

The leapfrog join (described in Section 2.5) is used for two purposes in the implementation
of F#. First, it forms the basis of an recursive method to create a factorised representation
of the query join, using the structure of the query’s d-tree to define the variable order for the
join (and thus the branching structure of the factorisation itself). The run() method from
an existing C++ class in the codebase (FactorizedJoin) was reused as the run() method of a
new class CategoricalFactorizedJoin. This is invoked by the CategoricalRegressionOverJoin

class, returning the root node of the materialised factorisation, over which the recursive F#

computations are performed.

4.2.2 Construction of the Materialised Factorisation

The factorised representation returned by the run() method is similar to that of Figure 4.3 (for
example, it employs caching) but with two key additions. Standard relational algebra operates
under set semantics, and a relation may not contain duplicate tuples. In practice, however,
relational database systems (and SQL) operate under bag semantics, permitting duplicate
values. Moreover, supervised learning tasks such as linear regression are sensitive to these:
the values of the learned model parameters depend on the frequencies of training dataset items
as well as their values. Thus the first addition to the materialised factorisation is that each
Union instance records not only a set of values 〈A : a〉 but also the frequency with which each
value occurs in the underlying query.

The second addition is that, given the recursive nature of the leapfrog join implemen-
tation, it is straightforward to incorporate the computation of the count values (cnt) from
the F# algorithm into the construction of the factorisation itself, and this has been done.
This does not affect the computational complexity of either algorithm: it simply transfers
a computational step from the F# algorithm to the join algorithm. In the case of query
Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), and with these two additions, the factori-
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∪

a1 a2

× ×

∪ ∪ ∪ ∪

b1 b2 e1 e2 b1 e3

× × × × × ×

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

c1 c2 d1 d2 c1 d1 f1 f2 f1 c2 d2 f2

Figure 4.3: Factorisation of Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), where the
tuples in each relation are as shown in Figure 2.2(a), showing the correspondence with Union

instances in the materialised factorisation.

∪:18

a1:1 a2:1

×:15 ×:3

∪:5 ∪:2 ∪:1 ∪:3

b1:1 b2:1 e1:1 e2:1 b1:1 e3:1

×:4 ×:1 ×:2 ×:1 ×:1 ×:1

∪:2 ∪:2 ∪:1 ∪:1 ∪:2 ∪:1 ∪:1 ∪:1 ∪:1

c1:1 c2:1 d1:1 d2:1 c1:1 d1:1 f1:1 f2:1 f1:1 c2:1 d2:1 f2:1

Figure 4.4: Factorisation of Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F ), where the
tuples in each relation are as shown in Figure 2.2(a), using caching, including frequencies,
together with cnt values for each union and Cartesian product.
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CategoricalRegressionOverJoin::getCategoricalValues() {

CategoricalFactorisedJoin::sortDataForCategoricalValues();

CategoricalFactorisedJoin::getCategoricalValues() {

CategoricalFactorisedJoin::runCategoricalValuesFinder() {

// implementation of leapfrog join on the categorical variable

CategoricalFactorisedJoin::leapfroggingJoinSingleAttribute() {

}

}

}

Figure 4.5: High-level structure of the methods of the CategoricalFactorisedJoin class invoked
by the getCategoricalValues() method of the CategoricalRegressionOverJoin class to determine
the values taken by each categorical query variable (method detail omitted). The code for the
methods added to the CategoricalFactorisedJoin class is included in Appendix B.

sation over which the implementation of F# operates is now as shown in Figure 4.4. Notice
that, as per the F# algorithm, the cnt value at a union is the semiring sum of the cnt values
of the child Cartesian products below that union (or, where there is no Cartesian product, the
count of any leaf values below that union). Conversely, the cnt value at a Cartesian product
is the semiring product of the cnt values of the child unions below that Cartesian product.

The second use of leapfrog join in the implementation is to compute the set of values that
are taken by each categorical query variable (recall that each value taken by a categorical
query variable maps to a distinct parameter in the linear regression model). This is achieved
by sorting and then joining the query’s relations only on that categorical variable. Four new
methods of the CategoricalFactorizedJoin class are invoked by the getCategoricalValues()

method of the CategoricalRegressionOverJoin class, the high-level structure of which is shown
in Figure 4.5 (the code for these methods is listed in Appendix B).

Together these four methods return the full set of values taken by each categorical variable
in the query. This information across all categorical variables, in turn, determines the number
of model parameters required, and thus the size of the the associated vectors of aggregates
required for each batch gradient descent iteration. It also allows a mapping to be constructed
from each categorical value to an index position within those vectors (described in more detail
in section 4.3.1 below).

4.3 Implementation of F# Aggregate Computations

4.3.1 Structure of Aggregate Vectors

Each application of the F# algorithm computes the set of aggregates cnt , S1, S1,w and Grad
over the whole materialised factorisation of the query dataset. Considering first the case
where all features are continuous, cnt and S1,w are scalars, and S1 and Grad are vectors, each
with one element corresponding to each model parameter, that is per query variable. Each
of these aggregates is computed recursively over the factorisation; the implementation of F#

does this by storing the aggregate values computed at each union of the factorisation in the
corresponding Union instance. Thus four instance variables are added to the Union struct: cnt
and S1,w are stored as doubles, and the vector quantities S1 and Grad are stored as simple
C++ array structures.

The ordering of the elements within the S1 and Grad vectors is, however, crucial to the
implementation of F#. At the point where S1 and Grad are being computed for a given Union

instance corresponding to a union of 〈A : a〉 values, the only non-zero elements of S1 and
Grad are those corresponding to the query variables in the subset of the d-tree rooted at query
variable A (in the listing of the F# algorithm in Figure 3.2, this is termed the Schema of the
variable). At a Union instance in the factorisation corresponding to a leaf variable of the d-tree,
the S1 and Grad vectors both contain only a single non-zero element (corresponding to that leaf
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query variable). As the computation proceeds up the factorisation to its root (corresponding
to the root of the d-tree), the size of S1 and Grad increases from 1 to the number of variables in
the query. A ‘good’ choice of ordering for the elements of S1 and Grad can therefore make for
simpler and more elegant computations within the algorithm, and avoid the need for repeated
computations on zero vector elements (in a worst case, potentially reducing the complexity
gains promised by the algorithm).

The ordering identified as ‘best’ for this implementation corresponds to the post-order
(left-right-root) traversal of the d-tree; for Q2 = R1(A,B,C), R2(A,B,D), R3(A,E), R4(E,F )
with d-tree shown in Figure 4.2, the ordering is thus [C,D,B, F,E,A]. The specific advantages
of this ordering are as follows: first, the Schema of any query variable in the d-tree forms a
contiguous subset of this traversal (for example, [C,D,B] for query variable B, or [F,E] for
query variable E). Second, the Schemas of the children of a query variable in the d-tree
form a contiguous set of disjoint subsets of the traversal (for example, the children of A are B
and E with Schemas [C,D,B], [F,E] respectively). Finally, just as the structure of a d-tree
can be determined by static analysis of the query (irrespective of the specific content of the
database), the size and individual element positions of the S1 and Grad vectors for any given
Union instance can be obtained from a simple traversal of the relevant subtree of the d-tree.

With this choice of ordering, the S1 and Grad vectors for any given Union instance can be
constructed to hold only elements corresponding to the schema of that Union instance’s query
variable. Intuitively, as the S1 and Grad aggregates are processed at a Cartesian product in
the factorisation, the variables in the Schema of each child’s vector of aggregates simply take
the next available index positions in the parent’s vector of aggregates; the parent’s own query
variable then takes the final position in its own vector of aggregates. This also ensures that,
at each union of the factorisation, any aggregates being combined always have their elements
in consistent positions.

The computations performed by F# on the S1 and Grad vectors also involve the latest
values of the model parameters w = (w1, w2, . . . , wn), a vector of constant size stored as a
C++ array of type double. Consistent with the indexing chosen for the vectors of aggregates,
in the case of continuous features, the index position of each model parameter within that
vector is set as the position of its associated query variable in the traversal of the full d-tree.
When carrying out computations involving the aggregate vectors for any given query variable
A, to ensure that the elements of those vectors are always combined with the correct model
parameters and the correct elements of the aggregate vectors for other query variables, three
pieces of information are therefore required for the variable A:

(i) the number of elements in the aggregate vectors corresponding to variable A, that is, the
size of the traversal of the subtree of the d-tree rooted at A.

(ii) the index position in the post-order traversal of the whole d-tree of the first element in
the post-order traversal of the subtree of the d-tree rooted at A, that is, the parameter
corresponding to the ‘first’ element of A’s own aggregate vectors.

(iii) a mapping from any given query variable in the subtree of the d-tree rooted at A to that
variable’s position in the post-order traversal of that subtree, including the index for the
variable A itself.

Each of these items of information is a property purely of the d-tree, irrespective of the data
in the query. For implementation purposes, additional instance variables have therefore been
added to the DTreeNode class:

• for (i) unsigned int _numOfDescendentAggr;

• for (ii) unsigned int _indexOfNodeInRootAggregates; and

• for (iii) the traversal itself vector<unsigned int> _traversal and the required mapping
of variables to indices map<unsigned int, unsigned int> _indexOfAttrInNodeAggregates.
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In the case of categorical features, exactly the same variable ordering can be used within the
S1 and Grad vectors; however, each value taken by a categorical query variable now results in
a separate model parameter. The vector of model parameters and final aggregate vectors S1
and Grad returned by the F# algorithm now include one index position for each value taken
by each categorical feature. As the F# computations proceed up the tree, however, there
is no guarantee that computations for different Union instances will see the same categorical
values in the same order! Two approaches are possible here: one more ‘dynamic’, one more
‘static’. In the more dynamic approach, the S1 and Grad vectors for each Union instance
start with a single element for each categorical feature; as more values for that categorical
variable are seen by the computations over that object, S1 and Grad expand accordingly. An
advantage of this approach is that S1 and Grad never contain redundant zeros. However, as
S1 and Grad are processed by the computations at each Cartesian products and union of the
factorisation, a complex process of repeated resizing and re-indexing is required to maintain
consistent element positions within each of the aggregate vectors (and within the vector of
model parameters itself) when combining aggregate vectors higher up the factorisation. The
more ‘static’ approach is to determine in advance the values taken by each categorical variable
(this can be done in a similar way to constructing the full factorisation, recording only the
values of the categorical variable). Knowing the possible categorical values determines the
number of elements that will be required in the S1 and Grad vectors; it also enables a fixed
mapping from each categorical value to an index position within each vector, resulting in
more computations on zero vector elements, but avoiding the computational effort of repeated
re-sizing and re-indexing.

The ‘static’ approach has been taken in the implementation, with a further instance variable
added to the DTreeNode class to hold the number of categorical variables for that query
variable (now determined, as noted above, prior to the execution of the F# computations).
The mapping between the value of a categorical feature and its index positions within a sub-
vector of aggregates for that particular feature is the same for all vectors of aggregates where
that query variable has a corresponding index position (for example, in the case of query Q2

the variable C has an index position (= 0) in the aggregate vectors for query variables A,
B, and C. Rather than being stored in a specific DTreeNode, this information is therefore
stored as an instance variable of the CategoricalRegressionOverJoin class, from where it can
be made available to all relevant computations (as a map _catAggrToOverallAggrMapping).

4.3.2 Methods Performing the Core F# Computations

The key methods to perform the end-to-end batch gradient descent process including the F#

computations are all invoked from the run() method of the CategoricalRegressionOverJoin

class, the high-level structure of which is shown in Figure 4.6. The four new methods
which actually implement the F# computations are computeMultiplicity, computeS1,
computeS1w, and computeGrad, the full code for which is included in Appendix A.

Recall the aggregates that are being computed (including the ring rewriting of Grad) are
as follows:

cnt , m, S1[Xj ] ,
m∑
i=1

x
(i)
j

S1,w ,
m∑
i=1

S
(i)
1,w ,

m∑
i=1

n∑
k=1

wkx
(i)
k

Grad[Xj ] ,
m∑
i=1

(
wjx

(i)
j x

(i)
j + x

(i)
j

(
S
(i)
1,w − wjx

(i)
j

))
and that the cnt quantities have been computed for each Union instance in the factorisation
during its construction. Notice also that the values of S1 are independent of the values of the
model parameters at any point in the batch gradient descent process. The computation of
S1 can thus be decoupled from the batch gradient descent iterations and can be performed
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CategoricalRegressionOverJoin::run() {

loadFeatures();

getCategoricalValues();

computeAggregateVectorInfo(dTreeRoot);

_joinEngine->run();

computeParameters() {

computeMultiplicity(rootNode, _dTree->_root, 1);

computeS1(rootNode, _dTree->_root);

// choose initial (random) model parameters

optimize() {

// first convergence step of batch gradient descent

computeGradient() {

computeS1w(rootNode, _dTree->_root)

computeGrad(rootNode, _dTree->_root)

}

// subsequent convergence steps of batch gradient descent

while(!converged){

//update model parameters in direction of gradient

computeGradient() {

computeS1w(rootNode, _dTree->_root)

computeGrad(rootNode, _dTree->_root)

}

}

}

}

}

Figure 4.6: High level structure of the methods invoked from the run() method of the Categor-
icalRegressionOverJoin class to compute a complete set of linear regression model parameters
(method detail omitted). Full code for this class is given in Appendix A.
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×

E(1) . . .E(k)

S1,w =
∑

j∈[k] S
(j)
1,w · cnt/cnt (j);

foreach j ∈ [k] do {
S = S1,w − S(j)

1,w · cnt/cnt (j);

foreach B ∈ Schema(Grad(j)) do {
Grad[B] = (cnt · Grad(j)[B] + S · S(j)1 [B])/cnt (j);

}
}

Figure 4.7: Section of F# algorithm with ring computation; code for the higlighted computa-
tional step is shown in Figure 4.9

over the factorisation only once, using the method computeS1. There is another component of
the F# computations that can be decoupled in this way: from the algorithm listing in Figure
3.2, it can be seen that the computations for S1, S1,w and Grad each involve a ‘multiplier’
factor cnt/cnt (j), which is the same for each Union instance in the factorisation, and is also
independent of the particular values of the model parameters at a given convergence step of
the batch gradient descent process. Its computation is also performed once over the whole
factorisation by the computeMultiplicity method. This leaves the S1,w and Grad quantities:
these must be computed afresh each time the model parameters are updated, hence their
inclusion within the loop structure of the optimize method.

A consequence of this decoupling is that computation of a full set of aggregates using the
F# algorithm now involves more than one pass over the factorisation, specifically one pass for
the computation of each aggregate S1, S1,w and Grad. This does not affect the complexity of the
algorithm (there are now fewer computational steps within each pass); aside from removing
redundant identical computations of S1 and cnt/cnt (j), it also makes the code for each of
the individual S1, S1,w and Grad methods simpler and more maintainable. As will be seen
in Chapter 5 however, experimental results on large-scale datasets in fact revealed that this
design choice had a significant negative impact on practical performance.

Ring computation The key contribution of the F# algorithm of Figure 3.2 is the use of
ring computation, specifically in the computational steps for Grad re-listed in Figure 4.7. An
outline of the corresponding ring computation in the implementation of the computeGrad()

method, is shown in the code excerpt of Figure 4.8. Appendix A includes full code for all
methods of the CategoricalRegressionOverJoin class.

Handling categorical features As noted in Section 4.3.1 above, the presence of categor-
ical variables/features (and non-feature variables excluded from the linear regression model)
requires complicated indexing and mapping to ensure that the correct elements of vectors of
aggregates and parameters are used in the computations. For example, the code corresponding
to the single highlighted computational step in Figure 4.7 is given in Figure 4.9, showing the
use of the various indexes and mappings.

4.3.3 Supporting Methods

The ‘core’ methods to compute S1, S1,w and Grad take both a factorised query join and d-tree
as arguments. But they also rely on information about the linear regression model (the number
of features; whether each feature is continuous or categorical or to be excluded completely from
the model) and the set of values taken by any categorical query variables. This information is
provided by supporting methods as follows (see also Figure 4.1):

• loadFeatures(): the d-tree is constructed from the dtree.txt file. This specifies, for each
named query variable (data attribute) A a numeric identifier, its position in the d-tree –
anc(A) – and its dependencies (if any) on other query variables, that is, key(A). Infor-
mation about the linear regression model is stored in the variables.txt file: this specifies
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// first pass per value and per child of cart product to compute sum of S1w values

double localS1w[numberOfValues];

std::fill_n(localS1w, numberOfValues, 0.0);

for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

// sum S1w values

for (int child = 0; child < numberOfChildren; ++child)

{

localS1w[val] += children[val * numberOfChildren + child]->S1w *

children[val * numberOfChildren + child]->multiplier;

dTreeChild->_next;

}

}

// second pass using local S1w values to compute local S values and update Grad

for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

int index = 0;

for (int child = 0; child < numberOfChildren; ++child)

{

// recursive call to computeGrad()

computeGrad(children[val * numberOfChildren + child], dTreeChild);

// calculate S for each child node using ring computation

double localS = localS1w[val] -

children[val * numberOfChildren + child]->S1w *

children[val * numberOfChildren + child]->multiplier;

// update Grad values

for (int gradIndex = 0; gradIndex < dTreeChild->_numOfDescendentAggr;

++gradIndex)

{

// Grad computation specific to each of conts/cat/non-features

dTreeChild = dTreeChild->_next;

}

}

}

Figure 4.8: Code excerpt from computeGrad method, showing ring computation (some details
omitted for clarity - full code is provided in Appendix A).
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if(_categoricalFeature[nodeID]){

catAggrIndex = _catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

paramIndexToUse = nodeInParamsIndex + attrInNodeIndex + catAggrIndex;

factorisationNode->Grad[index] +=

/* Grad * multiplicity */

children[val * numberOfChildren + child]-> Grad[gradIndex] *

children[val * numberOfChildren + child]->multiplier +

/* S*S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]-> S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count

// + additional terms from union part of algorithm

}

else if(_continuousFeature[nodeID])

{

paramIndexToUse = nodeInParamsIndex + attrInNodeIndex;

factorisationNode->Grad[index] +=

/* Grad * multiplicity */

children[val * numberOfChildren + child]-> Grad[gradIndex] *

children[val * numberOfChildren + child]->multiplier +

/* S*S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]-> S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count

// + additional terms from union part of algorithm

}

else if(_nonFeature[nodeID])

{

paramIndexToUse = nodeInParamsIndex + attrInNodeIndex;

factorisationNode->Grad[index] +=

/* Grad * multiplicity */

children[val * numberOfChildren + child]-> Grad[gradIndex] *

children[val * numberOfChildren + child]-> multiplier +

/* S*S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]-> S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count;

}

Figure 4.9: Code excerpt from computeGrad method, corresponding to the highlighted compu-
tational step from the F# algorithm shown in Figure 4.7
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whether each query variable corresponds to a continuous feature (=0), a categorical fea-
ture (=1), or neither (=2). The only constraint is that the response (= label) feature
must correspond to a continuous query variable, since this is the feature predicted by
the linear regression model. Any ‘non-features’ are disregarded for the purposes of gra-
dient computation (though not, of course, for the construction of the query join). The
loadFeatures() method in effect links the variable/attribute information for the query/d-
tree with the feature information for the linear model. An existing implementation of
loadFeatures() was used, with minor adaptations.

• getCategoricalValues(): for each categorical feature, this method invokes methods of the
CategoricalFactorisedJoinClass to compute the set of values taken by the corresponding
categorical variable in the query. This method, together with the four methods invoked
on the CategoricalFactorisedJoinClass are new (see also Figure 4.5 above).

• computeAggregateVectorInfo(): as noted in the previous section, the set of possible
values for each features determines the structure of the aggregate vectors at each stage
in the recursive computation over the factorisation. Using the information returned by
the getCategoricalValues method, this method populates the relevant instance variables
for each DTreeNode object, together with the mappings between categorical values and
their index positions in the aggregate vectors. This method is new.

• _joinEngine->run(): this invokes the methods of CategoricalFactorisedJoin to mate-
rialise the factorised representation of the natural join, using Leapfrog Triejoin. As
noted above, an existing implementation of the run() method was reused to create the
factorisation itself.

4.4 Implementation of Batch Gradient Descent

The main focus of the implementation is the rewritten ring computations; this is set within
a simple batch gradient descent algorithm, implemented by the optimize() method from the
existing codebase (outlined in Figure (4.6) above). This starts with an initial (randomly
chosen) value for each wj and updates at each convergence step according to the rule

wj := wj − α
∂

∂wj
J(w)

where each update uses a fresh computation of the gradients based on the current value of
the parameters. The initial value for the learning rate α is set at 0.01; subsequent values are
determined dynamically, based on the values of the current gradients. This is done using a
standard technique known as the ”adaptive” Barzilai-Borwein method, the properties of which
are outlined by Goldstein et al. [8].

4.5 Unit Testing

The implementation was tested using small synthetic datasets with a range of combinations of
continuous and categorical query variables (both with and without caching) to ensure that all
factorised representations, aggregates, gradients, and model parameters were being computed
correctly. In all cases, the relevant quantities were computed independently in SQLite (with
pre one-hot encoding of categorical variables) and checked against the C++ output from F#.
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Chapter 5

Experiments

Chapter 4 presented an implementation of F#, a new algorithm exploiting ring computation
for calculating query aggregates over the training dataset for a linear regression model. This
chapter describes the experiments carried out on F#. These enabled its performance to be
compared against existing test data [16] for the industry state of the art (a development of the
F system of Schleich et al, namely DC [16]), and with two open-source commercially available
relational database systems, MADlib [12] 1.8 (M) and R [20] 3.0.2. Chapter 6 describes
some current related academic work in the area of machine learning and databases; on the
basis of the experimental outcomes below, Chapter 7 suggests directions for further work on
the implementation of F#.

5.1 Summary of Experimental Findings

Of the systems compared, F# is the only one able to handle the dataset size and
number of categorical features in v3 and v4 in any reasonable timescale.

F# is 5x faster than the DC implementation of F algorithm for datasets v1 and v2
(in terms of the time to compute a complete set of aggregates required for a single convergence
step of the batch gradient descent process). DC fails (insufficient memory) with the increased
number of categorical features in v3 and v4. However, the benefits for DC of computing
aggregates only once in the learning process more than compensate for the faster computation
of those aggregates by F#.

M is also unable to handle the higher number of categorical features in v3 and v4.
The time that M takes to compute the model parameters analytically for v1 (v2) is equivalent
to 374 (393) convergence steps of F#’s (simple) batch gradient descent process. With a more
sophisticated convergence process (see Section 7.2 below), it is likely that F# would outperform
M on v1 and v2.

R fails for all except the smallest dataset with the fewest categorical features, v1.
For the smallest dataset v1, R is able to compute the model features in less time than F#

requires for its batch gradient process to converge, but F# is able to compute the query join
more efficiently.

The most striking finding from the experimental timings for F#, was that they
effectively depend only on the size of the factorised dataset, and not on the num-
ber of parameters of the linear regression model. These timings (listed in Table 5.2)
suggests that the main driver of complexity for F# in practice is the process of traversing the
factorised join, rather than the computation carried out at each node of the factorisation. In
order to benefit from the theoretical complexity improvements offered by F# it will therefore
be necessary to reduce the number of traversals made by F# over the materialised factorisation
and/or find more efficient data structures with which to represent the materialised join.

45



5.2 Experimental Approach

The key contribution of F# is the rewriting of the aggregates required to calculate a complete
set of gradients for the least-squares objective function, that is for a single convergence step
of the batch gradient descent process. The focus of the implementation for this project has
been the implementation in C++ of these rewritten aggregate computations, rather than the
sophistication of the batch gradient descent process within which these computations are
embedded. In particular, a standard adaptive learning rate α was used (the adaptive BB
method [8]). Given the nature of the training data, in practice this resulted in frequent ‘cycling’
rather than strict convergence (in terms of the value of the least-squares objective function
reducing at each step). To allow for per-convergence aggregate computation step timings to
be compared, the number of convergence steps of the batch gradient descent process for F#

was fixed at 200.
For R and M which do not use batch-gradient descent to solve the least-squares regression

problem (rather, analytical models based on QR-decomposition and closed-form solutions re-
spectively [16]) the comparison with F# is instead in terms of the number of batch gradient
descent convergence steps that F# would be able to process in the time taken for M and R to
compute the model parameters analytically, and in terms of some of the preprocessing tasks,
such as the join time for R.

5.3 The Training Dataset

The training dataset used for the experiments was a real-life large-scale database for forecasting
customer demand and sales for a large retailer. The database comprises five relations with the
following schemas (with the join variables highlighted):

• Inventory(locn, dateid, ksn, inventoryunits). Records the inventory for each product
at each store location on each date.

• Weather(locn, dateid, rain, snow, maxtemp, mintemp, meanwind, thunder). Records
the weather at each store on each date.

• Census(zip, population, white, asian, pacific, black, medianage, + 9 more continuous
variables). Records census (for customer demographic) information for each area by
zip-code.

• Item(ksn, subcategory, category, categoryCluster, prize). Records information on the
products sold at each store.

• Location(locn, zip, rgn cd, clim zn nbr, tot area sq ft, sell area sq ft, + 8 more contin-
uous variables). Records information about each of the retailer’s stores.

The training dataset is the natural join of these five relations A snapshot of the (α-acyclic)
d-tree for this natural join is shown in Figure 5.1. Where a query variable is treated as a
categorical variable in one or more of the experiments, the number of distinct values taken by
that variable in the query has been shown. Whilst necessary for the natural join of the five
relations, dateid and ksn were excluded as model features in all experiments; in the case of
dateid, this is because it would not make sense to make a linear projection on the basis of a
cyclic feature such as the date. And incorporating the categorical variable stock number ksn
would have resulted in over 6,400 additional model features, causing the size of the analytics
to blow up.

Four different configurations of the training dataset were used, v1 to v4. The number of
categorical query variables increases across the experiments, with a commensurate increase in
the number of model features from 88 to 2691 as shown in Table 5.1. The size of the training
dataset for v1 was smaller than that of v2 to v4: v1 was designed specifically to accommodate
the limitations of R and v1/v2 the limitations of M [16] (see Section 5.4 below).
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Figure 5.1: Snapshot of the Retailer d-tree (keys and root variable for intercept omitted)
showing number of distinct values for variables that are categorical in one or more experiments.

v1 v2 v3 v4

Flat join size of training dataset 7.74× 108 3.61× 109

Factorised join size of training dataset 3.69× 107 1.69× 108

Excluded features dateid, ksn
locn, zip locn, zip locn

Categorical features subcategory, category
cluster, rain, snow, thunder

zip locn, zip

Continuous features other 33 query variables

Number of model features 88 88 1390 2691

Table 5.1: Configuration for experiments v1-v4, in terms of the size of training dataset used
(that is, the number of values in flat/factorised representation of the query join) and the mix
of continuous/ categorical/excluded model features.

5.4 Systems Tested Against

DC uses the F algorithm of Schleich et al. within a batch gradient descent process; however,
it requires that any categorical features have already been one-hot encoded in the input data
(with one column per categorical value, as in the one-hot encoded representations of relations
R1(A,B,C) and R4(E,F ) in Table 2.2(b)) [16]. This is in contrast to the implementation
of F# which simply needs to know that a query variable is categorical; it then computes
the appropriate number aggregates and learns the correct number of model parameters auto-
matically. However, as with the original F concept [22], DC decouples the computation of
database aggregates from the convergence steps of the batch gradient descent process; cru-
cially, this means that the database aggregates need be calculated only once in the learning
process. By contrast, F# requires a fresh set of aggregates to be calculated at each convergence
step of the batch gradient descent process.

R [20] 3.0.2 is an open-source statistical analysis package; it was not compared against
using its iterative batch gradient descent functionality, but instead its (faster) analytical ols
approach to solving the least-squares minimisation problem. Limits on the number of values
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that R can process in its data frames means that the largest training dataset that it was able
to handle was that of experiment v1.

The other open-source system compared against was MADlib [12] 1.8 (M), also using an
analytical rather than an iterative solution to the least-squares minimisation problem. M
differs from both F and F# in how it handles categorical variables: it carries out its own one-
hot encoding, requiring one column per categorical value; limits on the number of columns
then constrain the number of categorical variables that can be accommodated [16].

5.5 Experimental Set-Up

To enable comparisons with existing experimental data for DC, M, and R [16], the machine
used was an Intel(R) Core(TM) i7-4770 3.40GHz/64bit/32GB with Linux 3.13.0/g++4.8.4 (no
compiler optimization flags were used, ulimit was set to unlimited). All tables were pre-sorted
on their respective join attributes. This meant that the only sorting of relations required within
F# was as part of the process to determine the set of categorical values for each categorical
attribute (as noted in Section 4.2.2). Each of the four individual experiments v1-v4 was run
five times. In each case, the time for the first run was discarded, and the average timings for
each of the four remaining runs (that is, with a warm cache) reported. For F#, the reported
timings are broken down between individual code methods as follows:

(a) Creating the factorised join
_joinEngine->run();

(b) Pre-Processing Methods: each required to be performed only once, as the outputs of each
method are independent of the values of the model parameters at any given convergence
step of the batch gradient descent process

getCategoricalValues();

computeAggregateVectorInfo();

computeMultiplicity();

computeS1();

(c) First Convergence Step (including one computation of S1,w and Grad)
computeGradient() {

computeS1w();

computeGrad();

}

(d) Time for 200 Convergence Steps (each including one computation of S1,w and Grad)
computeGradient() {

computeS1w();

computeGrad();

}

(e) Average time for a single Convergence Step (over 200 steps).

As with the previous tests run on this dataset [16], the time to load the datasets into
memory was not reported; the various systems perform very differently in this respect, and
the focus for the testing was the computational performance of each system once the data had
loaded.
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run 1 run 2 run 3 run 4 Avg

v1
Pre-processing & first conv. step, o/w 17.18 17.08 17.17 17.17 17.15

construct factorised join 8.21 8.11 8.19 8.19 8.18
pre-processing (incl. Multiplicity/S1) 3.93 3.93 3.93 3.93 3.93
first convergence step (incl. S1,w/Grad) 5.04 5.04 5.04 5.04 5.04

Time for 200 convergence steps 1006 1007 1007 1007 1007

v2
Pre-processing & first conv. step, o/w 73.88 73.61 73.64 73.78 73.73

construct factorised join 34.86 34.76 34.66 34.83 34.78
pre-processing (incl. Multiplicity/S1) 16.53 16.59 16.53 16.50 16.49
first convergence step (incl. S1,w/Grad) 22.49 22.46 22.45 22.46 22.46

Time for 200 convergence steps 4488 4479 4479 4475 4480

v3
Pre-processing & first conv. step, o/w 73.54 73.61 73.63 73.70 73.62

construct factorised join 34.65 34.67 34.75 34.70 34.69
pre-processing (incl. Multiplicity/S1) 16.42 16.47 16.43 16.50 16.46
first convergence step (incl. S1,w/Grad) 22.47 22.47 22.45 22.50 22.47

Time for 200 convergence steps 4483 4482 4478 4483 4482

v4
Pre-processing & first conv. step, o/w 76.93 77.36 77.45 77.28 77.26

construct factorised join 34.07 34.18 34.24 34.24 34.18
pre-processing (incl. Multiplicity/S1) 20.38 20.64 20.60 20.46 20.52
first convergence step (incl. S1,w/Grad) 22.48 22.54 22.61 22.57 22.55

Time for 200 convergence steps 4485 4509 4513 4506 4504

Table 5.2: Time performance comparison (seconds) for individual sets of F# methods when
learning regression models over increasingly larger fragments (v1 to v4) of Retailer. All exper-
iments were run for 200 convergence steps of the batch gradient descent process.

5.6 Breakdown of F# Results

The breakdown of individual execution timings for the various F# methods are given in Table
5.2. The striking (and unexpected) feature of the results (repeated over several independent
runs of the experiments) is that they seem largely independent of the size of the associated
linear regression model for a given size of database. With the rewritten Grad calculations, the
computation time for S1,w/Grad is certainly not quadratic in the size of the model; it would
be expected to be linear, but in fact is close to constant! A further breakdown of the F#

results shows that for each experiment, the times to compute a set of gradients (including
S1,w and Grad) are actually very close to double the times to compute S1, as shown in Table
5.3 for the four datasets. Given that each of the three methods computeS1() computeS1w()

and computeGrad() involves a single pass over the factorised dataset, this suggests that the
dominant factor in the complexity is in fact the time to traverse the factorisation, rather than
the time to perform the actual calculations at each node. This may be a consequence of the
fact that the representation of the factorisation uses linked nodes, which makes for costly
operations to find and process child and sibling nodes within the recursive computations. The
difference between the pre-processing times for v3 and v4 is due to the additional work to
obtain an extra 1300 categorical values, in particular the sorting required on each of the zip
and locn values individually (as noted in Section 4.2.2). And the reduced times for v1 reflects
the fact that the dataset is one-fifth of the size of the dataset for v2 to v4.
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run 1 run 2 run 3 run 4 Avg

v1
computeS1() 2.52 2.53 2.53 2.53 2.53
computeGradient() (incl. S1,w/Grad) 5.04 5.04 5.04 5.04 5.04

v2
computeS1() 11.19 11.12 11.22 11.15 11.17
computeGradient() (incl. S1,w/Grad) 22.49 22.46 22.45 22.46 22.46

v3
computeS1() 11.14 11.17 11.15 11.23 11.17
computeGradient() (incl. S1,w/Grad) 22.47 22.47 22.45 22.50 22.47

v4
computeS1() 11.09 11.18 11.19 11.11 11.14
computeGradient() (incl. S1,w/Grad) 22.48 22.54 22.61 22.57 22.55

Table 5.3: Time performance comparison (seconds) for the F# methods computeS1(), and
computeGradient() over Retailer datasets v1 to v4.

5.7 Results of F# Against Other Systems

A comparison of the performance of F# against DC, M and R is given in Table 5.4. Some
points to note:

Given that the time for F# to compute a first set of gradients includes the time to compute
the aggregates required for a set of gradients, it can be seen that F# offers a small performance
increase over DC for computing a single set of aggregates. However, as noted in Chapter 3,
a disadvantage of F# is that it re-couples the computation of aggregates with the computa-
tion of the gradients at each convergence step of the batch gradient descent process. Unless
convergence occurs within 15 convergence steps of the batch gradient descent process for F#

(this is vanishingly unlikely, given the current adaptive learning rate used by F#) DC will
still be faster overall. That said, the combined memory requirements of a decoupled approach
using the Cofactor matrix and one-hot pre-encoding of categorical variables are simply too
high for DC to be able to process the training datasets for experiments v3 and v4. F#, on the
other hand, is able to process the increasing numbers of categorical variables with only a very
marginal increase in times over that for v2.

F# outperforms R in terms of the time taken to compute the join (a factorised join in the
case of F# and a flat join in the case of R. Whilst R’s analytic solution to the least-squares
minimisation problem is certainly faster than F# with its current adaptive learning rate, R
is unable to compute parameters for any training dataset larger than that of v1. And with a
more efficient learning rate, it is highly likely (and almost certain in the case of v3) that F#

would outperform M.
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v1 v2 v3 v4

Feats (conts + cat) 33 + 55 33+55 33+1340 33+2658

Aggregates 595+2,418 595+2,421 595+111,549 595+157,735

M Learn (ols) 1,898.35 8,855.11 > 79, 200.00 –

R Join (PSQL) 50.63 – – –
Export/Import 308.83 – – –
Learn (qr) 490.13 – – –

F# Time to first conv. step 17.15 73.73 73.62 77.26
o/w Join 8.18 34.78 34.69 34.18

Pre-proc 3.93 16.49 16.46 20.52
First conv. step 5.04 22.46 22.47 22.55

Time 200 conv. steps 1007 4480 4482 4504
Avg time/step 5.02 22.32 22.33 22.44

DC Aggregate 93.31 424.81 OOM OOM
Converge (runs) 0.01 (359) 0.01 (359)

Speedup for computation of first set of aggregates

F#/DC 5× 5× ∞ ∞
Upper limit on F# bgd iterations for F# to outperform competitors

F#/DC 15 15 ∞ ∞
F#/M 374 393 > 3500 ∞
F#/R 165 ∞ ∞ ∞

Table 5.4: Time performance comparison (seconds) for learning a linear regression model
over increasingly larger fragments (v1 to v4) of Retailer. The join size stays the same for
versions v2 to v4 at 3,614,400,131 values as flat vs 169,231,200 values as factorized (21.4×
compression); v1 is a fifth of v2, with 774M values as flat vs 36,929,272 values as factorized
(20.96× compression). (–) means that the system failed to compute due to design limitations.
R can only compute the model for v1, the other versions exceed the size limit of R’s data
frames. M cannot compute any model on v4 since the one-hot encoding requires more than
1600 columns. M/R/DC data from [16]; F# data is new.
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Chapter 6

Related Work

Previous chapters of this dissertation have considered the state of the art for learning the
parameters of linear regression models over the materialised factorisation of the result of any
join query, including an implementation of the new F# algorithm in Chapter 4 and its empirical
performance in Chapter 5. This chapter describes briefly some related academic work in the
crossover between machine learning and databases. Chapter 7 then summarises the outcomes
of the current project on which this dissertation is based, and suggests directions for further
work to improve the implementation of F#.

6.1 In-database Machine Learning

Artificial Intelligence, including machine learning, is a commercially significant, and expanding,
area: The Economist estimated that, in 2015, technology companies invested $8.5 billion on
deals and investments in artificial intelligence, a fourfold increase on 2010, and a far cry
from a field that had been “largely ignored and underfunded” in previous decades [2]. In
May 2015, a panel discussion at the ACM Special Interest Group on Management of Data
(SIGMOD) acknowledged the “new breed of high-value data-driven applications in image
analysis, search, voice recognition, mobile and office productivity products” and “the increasing
crossover between database research and machine learning”, and asked what the role and
contribution of the academic database community to this trend should be. For example, was
there anything fundamentally different about building database systems for machine learning,
and were there long-standing database problems where machine learning could help provide a
solution [21].

Insofar as the work in this dissertation considers the situation where the input to a machine
learning problem is given by a relation representing the result of a join query over a relational
database, it lies precisely within this crossover! It builds on the work on factorised databases,
pioneered by Olteanu and colleagues [4][5][17][18][19][22], in particular the insight that by
removing the redundancy in the listing representation of queries (which is not required for
machine learning over the data) it is possible to speed up the computation and analytics on
the data [18].

Going beyond linear regression models, the use of factorised datasets to learn regression
models can be applied to any regression model where the gradients of the objective function
can be expressed in terms of the semiring operations on which the factorisations rely [18].
Recent work in this area by Ngo et al. has extended the class of regression models to include
includes Ridge Linear Regression (mentioned in Section 2.2.3 above), polynomial regression,
factorization machines, classification, and principal component analysis [16]. Their work pro-
vided a practical answer to the cultural challenge posed by the SIGMOD panel, in terms of
why would in-database solutions be any more efficient than the specialist analytical tools and
techniques currently available for out-of-database processing. In fact it demonstrated that,
using specifically ‘database-centric’ technical contributions, a model can be trained in time
sub-linear in the output size of the feature extraction query. These technical contributions
included: more efficient approaches to the one-hot encoding of categorical variables; remov-
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ing redundancy from the learning process by excluding from the process that are functionally
dependent on other model features; and exploiting join dependencies in the training dataset
to improve the computation times of the gradient descent process. Directions for future re-
search identified by Ngo et al. include: widening the class of statistical models for in-database
training; adapting other optimization algorithms than batch gradient descent (for example
coordinate descent or stochastic gradient); and further exploration of the impact of functional
dependency based reductions in the dimensions of the regression model.

Factorised databases also have parallels with the Functional Aggregate Query (FAQ) prob-
lem [13] which can be thought of as a declarative query language over functions. The input
to the FAQ problem is a set of input functions (or factors) over a set of variables, and the
output is calculated by aggregating over the variables and input factors, where the aggregating
functions form a semi-ring. FAQ can thus be viewed as a generalisation of factorised databases
(FDB): the FAQ framework shows how the FDB problem and computation algorithm can be
applied to many other applications (including matrix operations, logic, and constraint satis-
faction problems) simply by changing the semi-ring operations. The technical contributions in
the work of Ngo et al. discussed here make use of FAQ expressions in the handling of one-hot
encoded features.
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Chapter 7

Conclusions and Future Work

This chapter summarises the outcomes of the current project on which this dissertation is
based, and suggests directions for further work to improve the implementation of F#.

7.1 Conclusions

This dissertation introduced a new algorithm F# to support the efficient supervised learning
of linear regression model parameters over arbitrary natural joins of database relations. The
algorithm accommodates arbitrary combinations of continuous and categorical query variables
(its implementation also gives the flexibility for any query variable to be excluded completely
as a feature of the linear regression model). Moreover, the algorithm has also been shown to
offer asymptotic complexity improvements over the state of the art in this area, namely the F
algorithm of Schleich et al. [22], especially in the presence of categorical query variables.

The algorithm was implemented in C++ and was successfully unit-tested against small syn-
thetic datasets with a range of combinations of continuous and categorical query variables
(including the use of caching) to ensure that the factorised representations, aggregates, and
gradients were being computed correctly.

The performance of F# was investigated using four large-scale real-world retailer datasets
of increasing size and with greater numbers of categorical data quantities. The outcomes were
compared with existing test data using the same datasets [16] for the industry state of the art
(a development of the F system of Schleich et al, namely DC [16]), and with two open-source
commercially available relational database systems, MADlib [12] 1.8 (M) and R [20] 3.0.2.
Out of the four systems compared, only F# was able to compute model parameters for the
larger datasets with greater numbers of categorical variables; on the smaller datasets F# was
also 5x faster than the implementation of F in terms of computing a single set of database
aggregates.

Notwithstanding the success of F# in handling large numbers of categorical values, the
tests on the retailer datasets did not, however, demonstrate in practice the expected asymp-
totic complexity improvements from the use of ring computation. Instead, computation times
appeared to be dominated by the data size of the query, and were constant in the size of the
linear regression model (rather than linear as in the complexity analysis of the F# algorithm).
In particular the faster times to compute a single set of aggregates for F# compared with F
were not sufficient to outweigh the benefits that F gains by calculating database aggregates
only once in the end-to-end learning process. Suggestions for further work to improve the
implementation of F# are set out in the following section.

7.2 Future Work

The current implementation of F# has two key areas for further work and improvement:

Convergence of the Batch Gradient Descent Process A consequence of F# needing to
recompute the full set of query aggregates at each step of the batch gradient descent process is
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that any inefficiency in the convergence of that process will result in steep time-performance
penalties. The current implementation uses an adaptive (Barzilai-Borwein) learning rate. In
practice, however, this is not sufficient to ensure that each successive step of the batch gradient
descent process results in a lower value of the least-squares objective function being minimised
(demonstrated by the fact that the `2 norm of the gradients sometimes increases rather than
decreases from one iterative convergence step to the next). Intuitively, this is an indication
that the step-size at that point is too large, thus overshooting the minimum that the process
is trying to find. The first area for further work is therefore to investigate the use of more
sophisticated convergence techniques, such as backtracking line search; this limits the learning
rate by checking at each iteration that the objective function has decreased sufficiently and, if
not, backtracking until this is the case [8].

Data Structures Used for the Factorised Join As noted above, the experimental results
from the large-scale datasets did not reflect the theoretical performance gains expected from
the rewritten computations in the F# algorithm: the times for the computation of each set of
aggregates were dependent on the size of the factorised query (as expected), but independent of
the size of the linear regression model. This suggests that the dominant factor in the practical
execution time is the work to navigate in memory between the nodes of the factorisation, rather
than to perform the computations at each node of the factorisation. As noted in Chapter 4,
the factorisation of the query join is materialised in memory using a tree of linked Union

structs; the second area for further work is therefore to reduce the number of passes over the
factorisation per set of aggregates, and to investigate alternative, more efficient data structures
for the factorisation itself.
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Appendix A

CategoricalRegressionOverJoin.cpp

This Appendix contains the full code of the CategoricalRegressionOverJoin class. The struc-
ture of the class was modelled on an existing class for another regression method (Regres-
sionOverJoin), but extended with new/modified methods. Comments before each method
indicate the extent to which existing code has been reused.

/*

* CategoricalRegressionOverJoin.cpp

*

* Created on: Jul 5, 2017 - version for experiments

* Author: ruth wells

*

* High level structure based on RegressionOverJoin.cpp

* but with new/modified methods.

*/

#include <boost/spirit/include/phoenix_operator.hpp>

#include <boost/spirit/include/qi.hpp>

#include <cstdlib>

#include <fstream>

#include <cmath>

#include <ctime>

#include <GlobalParams.hpp>

#include <Launcher.h>

#include <Logging.hpp>

#include <CategoricalRegressionOverJoin.h>

static const std::string FEATURE_CONF = "/variables.txt";

static const char COMMENT_CHAR = ’#’;

static const char NUMBER_SEPARATOR_CHAR = ’,’;

static const char PARAMETER_SEPARATOR_CHAR = ’ ’;

static const char ATTRIBUTE_SEPARATOR_CHAR = ’,’;

static const char ATTRIBUTE_NAME_CHAR = ’:’;

namespace phoenix = boost::phoenix;

using namespace boost::spirit;

using namespace std;

using namespace std::chrono;

using namespace dfdb::params;

using namespace dfdb::types;

/*

* Constructor and destructor - reused from RegressionOverJoin

*/
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CategoricalRegressionOverJoin::CategoricalRegressionOverJoin(const std::string&

pathToFiles, std::shared_ptr<Launcher> launcher) :

_pathToFiles(pathToFiles), _launcher(launcher)

{

_dTree = launcher->getDTree();

};

CategoricalRegressionOverJoin::~CategoricalRegressionOverJoin(){};

/*

* CategoricalRegressionOverJoin::run()

*

* Modified from RegressionOverJoin::run to incorporate new methods for handling

* categorical variables.

*

* Computes a CategoricalRegression model

*/

void CategoricalRegressionOverJoin::run()

{

loadFeatures();

_joinEngine = (std::dynamic_pointer_cast<CategoricalFactorisedJoin>

(_launcher->getAggregateEngine()));

#ifdef BENCH

int64_t startGetCatValues = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* Get all our categorical values here */

getCategoricalValues();

/* and also construct the info for the aggregate vectors */

DTreeNode* dTreeRoot = _dTree->_root;

computeAggregateVectorInfo(dTreeRoot);

#ifdef BENCH

int64_t timeCatValues = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - startGetCatValues;

/* Write Categorical Values Computation times to times file */

std::ofstream ofs("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "getCatValues: \t"+to_string(timeCatValues) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

BINFO(

"WORKER - categorical values and aggregate vector info: " +

std::to_string(timeCatValues) + "ms.\n");

DINFO(

"WORKER - categorical values and aggregate vector info have

been determined. \n");

#ifdef BENCH

int64_t startJoin = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* create factorisation */

_joinEngine->run();
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rootNode = _joinEngine -> getFactorisationRoot();

#ifdef BENCH

int64_t timeJoin = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - startJoin;

/* Write factorisation times to times file */

ofs.open("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "joinConstruction: \t"+to_string(timeJoin) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

BINFO(

"WORKER - join construction: " + std::to_string(timeJoin) + "ms.\n");

DINFO(

"WORKER - join has been constructed. \n");

#ifdef BENCH

int64_t start = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* compute parameters (right through to optimize()) */

computeParameters();

#ifdef BENCH

int64_t timeComputeParameters = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - start;

/* Write overall parameter computation times to times file */

ofs.open("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "convergence - total: \t"+to_string(timeComputeParameters) + "\n" +

"--------------------------------------------------------- \n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

BINFO(

"MASTER - convergence - total: "

+ to_string(timeComputeParameters) + "ms.\n");

BINFO("Final gradients [");

for (size_t attr = 0; attr < NUM_OF_PARAMETERS; ++attr)

{

DINFO("gradient["+to_string(attr)+"] = " +

to_string(_gradient[attr]) + "\n");

BINFO(" "+to_string(_gradient[attr]));

}

BINFO("]\n");

BINFO("Final parameters [");

for (size_t param = 0; param < NUM_OF_PARAMETERS; ++param)

{

BINFO(" "+to_string(_parameters[param]));

}

BINFO("]\n");
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exit(0);

};

/*

* CategoricalRegressionOverJoin::computeParameters()

*

* Modified significantly from RegressionOverJoin::computeParameters() to

* incorporate new methods for handling categorical variables and to create/

* populate the various indices and mappings for the vectors of aggregates.

*

* Learns a set of regression model parameters

*/

void CategoricalRegressionOverJoin::computeParameters()

{

int dTreeRootId = _dTree->_root->_id;

unsigned int numberOfCachedValues =

_joinEngine->getNumberOfCachedValues();

/* create the caches */

if (numberOfCachedValues > 0)

{

_S1Cached = new bool[numberOfCachedValues]();

_S1wCached = new bool[numberOfCachedValues]();

_GradCached = new bool[numberOfCachedValues]();

}

/* Initialise the parameters to random values. */

_parameters = new double[NUM_OF_PARAMETERS];

/* seed the random number generator */

srand(time(NULL));

for (size_t parameter = 0; parameter < NUM_OF_PARAMETERS; ++parameter)

_parameters[parameter] =

((ResultType) (rand() % 200 + 1) - 100) / pow(10.0, 10);

/* fix the parameter at -1 for the label/response feature */

LABEL_PARAMETER_INDEX = _dTree->_root->

_indexOfAttrInNodeAggregates[labelID];

_parameters[LABEL_PARAMETER_INDEX] = -1;

/* and we don’t want parameters for non-features */

for (int attrID = 0; attrID < NUM_OF_ATTRIBUTES; ++ attrID)

{

if (_nonFeature[attrID])

{

int attrParamIndex = _dTree->_root->

_indexOfAttrInNodeAggregates[attrID];;

_parameters[attrParamIndex] = 0;

}

}

_previousParameters = new ResultType[NUM_OF_PARAMETERS];

for (size_t parameter = 0; parameter < NUM_OF_PARAMETERS; ++parameter)

{

_previousParameters[parameter] = _parameters[parameter];

}

_gradient = new ResultType[NUM_OF_PARAMETERS]();

_previousGradients = new ResultType[NUM_OF_PARAMETERS]();

/* code to populate the various indexes that link attributes

with model parameters and query variables/attributes */
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for (int attrID = 0; attrID < NUM_OF_ATTRIBUTES; ++attrID)

{

DTreeNode* currentNode = _dTree->getNode(attrID);

/* retrieve the first attribute in the traversal of this node */

int firstAttr = currentNode->_traversal[0];

/* find the corresponding position in the overall d-tree */

int firstAttrPos = _dTree->_root->

_indexOfAttrInNodeAggregates[firstAttr];

/* store this in the current DTreeNode */

currentNode->_indexOfNodeInRootAggregates = firstAttrPos;

}

#ifdef BENCH

int64_t startMultiplicity = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* compute multiplicities */

computeMultiplicity(rootNode, _dTree->_root, 1);

#ifdef BENCH

int64_t timeMultiplicity = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - startMultiplicity;

/* Write Multiplicity Computation times to times file */

std::ofstream ofs("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "convergence: multiplicity: \t"+to_string(timeMultiplicity) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

BINFO(

"MASTER - convergence: multiplicity: " + to_string(timeMultiplicity) + "ms.\n");

#ifdef BENCH

int64_t startS1 = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* compute S1 aggregates */

computeS1(rootNode, _dTree->_root);

#ifdef BENCH

int64_t timeS1 = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - startS1;

/* Write S1 Computation times to times file */

ofs.open("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "convergence: sums: \t"+to_string(timeS1) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

DINFO("Sums Computed! \n");

BINFO(

"MASTER - convergence: sums: " + to_string(timeS1) + "ms.\n");

#ifdef BENCH
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int64_t startOptimize = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

/* run the batch gradient descent iterations */

optimize();

#ifdef BENCH

int64_t timeOptimize = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() - startOptimize;

/* Write Optimize Computation times to times file */

ofs.open("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "convergence: optimize - total: \t"+to_string(timeOptimize) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

DINFO("NUM_OF_PARAMETERS: "+to_string(NUM_OF_PARAMETERS) + "\n");

BINFO(

"MASTER - convergence: optimize - total: " + to_string(timeOptimize) + "ms.\n"+

"MASTER - number of iterations while producing final convergence result: "

+ to_string(_numOfIterations) + "\n");

DINFO("\n");

for (size_t i = 0; i < NUM_OF_PARAMETERS; ++i)

DINFO("param["+to_string(i)+"] : "+to_string(_parameters[i])+" \n");

};

/*

* CategoricalRegressionOverJoin::loadFeatures()

*

* Modified from RegressionOverJoin::loadFeatures to incorporate

* categorical variables.

*

* Loads the text file variables.txt to link d-tree information on attributes

* with linear regression model information on features.

*/

void CategoricalRegressionOverJoin::loadFeatures()

{

/* set up arrays to hold info on type of each feature */

_continuousFeature = new bool[NUM_OF_ATTRIBUTES]();

_categoricalFeature = new bool[NUM_OF_ATTRIBUTES]();

_nonFeature = new bool[NUM_OF_ATTRIBUTES]();

/* Load the two-pass variables config file into an input stream. */

ifstream input(_pathToFiles + FEATURE_CONF);

if (!input)

{

ERROR(_pathToFiles + FEATURE_CONF+" does not exist. \n");

exit(1);

}

/* String and associated stream to receive lines from the file. */

string line;

stringstream ssLine;

int numOfLinearFeatures = 0;

int degreeOfInteractions = 0;

int numOfManualInteractions = 0;

61



/* Ignore comment and empty lines at the top */

while (getline(input, line))

{

if (line[0] == COMMENT_CHAR || line == "")

continue;

break;

}

/*

* Parse the first line with the three numbers; ignore spaces.*/

bool parsingSuccess =

qi::phrase_parse(line.begin(), line.end(),

/* Begin Boost Spirit grammar. */

((qi::int_[phoenix::ref(numOfLinearFeatures) = qi::_1])

>> NUMBER_SEPARATOR_CHAR

>> (qi::int_[phoenix::ref(degreeOfInteractions) =

qi::_1]) >> NUMBER_SEPARATOR_CHAR

>> (qi::int_[phoenix::ref(numOfManualInteractions) =

qi::_1])),

/* End grammar. */

ascii::space);

assert(parsingSuccess && "The parsing of the features file has failed.");

if (degreeOfInteractions > 3)

{

ERROR("degree more than 3 is currently not supported. ");

exit(1);

}

if (degreeOfInteractions < 2)

degreeOfInteractions = 1;

#ifdef DEGREE

if(DEGREE != degreeOfInteractions)

{

ERROR("Value of compiler flag -DDEGREE and degree

of interactions specified in features.txt inconsistent. Aborting.\n")

exit(1);

}

/* Assign value to extern variable in GlobalParams.hpp. */

#else

DEGREE_OF_INTERACTIONS = degreeOfInteractions;

#endif

#ifdef MANUAL

if(MANUAL != numOfManualInteractions)

{

ERROR("Value of compiler flag -DMANUAL and number of manual

interactions specified in features.txt inconsistent. Aborting.\n")

exit(1);

}

/* Assign value to extern variable in GlobalParams.hpp. */

#else

NUM_OF_MANUAL_INTERACTIONS = numOfManualInteractions;

#endif

std::vector<int> linearContinuousFeatures;

int numOfCategoricalFeatures = 0;

int numOfContinuousFeatures = 0;
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int numOfNonFeatures = 0;

/* Read in the features. */

for (int featureNo = 0; featureNo < numOfLinearFeatures; ++featureNo)

{

getline(input, line);

if (line[0] == COMMENT_CHAR || line == "")

{

--featureNo;

continue;

}

ssLine << line;

string attrName;

/* Extract the name of the attribute in the current line. */

getline(ssLine, attrName, ATTRIBUTE_NAME_CHAR);

string typeOfFeature;

/* Extract the dimension of the current attribute. */

getline(ssLine, typeOfFeature);

int attributeID = _dTree->getIndexByName(attrName);

int typeoffeature = stoi(typeOfFeature);

if (attributeID == -1)

{

ERROR("Attribute |"+attrName+"| does not exist.");

exit(1);

}

/* check that label feature is continuous! */

if (featureNo == 0 && typeoffeature != 0)

{

ERROR("The label needs to be continuous! ");

exit(1);

}

if (featureNo == 0)

labelID = attributeID;

/* determine the type of each feature: conts, cat, or non-feature */

switch (typeoffeature)

{

case 0 :

_continuousFeature[attributeID] = true;

++numOfContinuousFeatures;

break;

case 1 :

_categoricalFeature[attributeID] = true;

++numOfCategoricalFeatures;

break;

case 2:

_nonFeature[attributeID] = true;

++numOfNonFeatures;

}

/* Clear string stream. */

ssLine.clear();

}

if (numOfLinearFeatures + numOfManualInteractions == 0)

ERROR("There should be at least one feature in the dataset \n");
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#ifdef LFEATURES

if(LFEATURES != numOfContinuousFeatures)

{

ERROR("Value of compiler flag -DLINEAR and number of linear

features specified in features.txt inconsistent. Aborting.\n")

exit(1);

}

/* Assign value to extern variable in GlobalParams.hpp. */

#else

NUM_OF_LINEAR_FEATURES = numOfContinuousFeatures;

#endif

int numOfFeatures = numOfContinuousFeatures + 1;

/* Check consistency between compile time flag and runtime value

issued from configuration file. */

#ifdef FEATURES

if(FEATURES != numOfFeatures)

{

ERROR("Value of compiler flag -DFEATURES and number

of features specified in features.txt inconsistent. Aborting.\n")

exit(1);

}

/* Assign value to extern variable in GlobalParams.hpp. */

#else

NUM_OF_FEATURES = numOfFeatures;

#endif

/* record the number of categorical features and non-features */

NUM_OF_CAT_FEATURES = numOfCategoricalFeatures;

NUM_OF_NON_FEATURES = numOfNonFeatures;

};

/*

* CategoricalRegressionOverJoin::getCategoricalValues()

*

* New method

*

* Determines the complete set of values taken by any categorical

* query variable.

*/

void CategoricalRegressionOverJoin::getCategoricalValues()

{

/* set up the map we will need for sums and gradients */

/* at this point NUM_OF_CAT_VARIABLES = number of cat attrs! */

_catAggrToOverallAggrMapping =

new std::unordered_map<double, int>[NUM_OF_CAT_FEATURES];

// TODO - need to think about how to delete this idc!!

int numberCategoricalFeatures = 0;

int catVariableNo = 0;

for (size_t attrID = 0; attrID < NUM_OF_ATTRIBUTES; ++attrID)

{

if (_categoricalFeature[attrID])

{

_joinEngine->

sortDataForCategoricalValues(_dTree->getNode(attrID));

categoricalValues = _joinEngine->

getCategoricalValues(_dTree->getNode(attrID));

unsigned int numCatValues =

static_cast<unsigned int>(categoricalValues[1]+0.1);
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numberCategoricalFeatures += numCatValues;

/* populate our maps */

_nodeIDToCatAggrMapping.insert({attrID, catVariableNo});

for (int i = 0; i < numCatValues; ++i)

_catAggrToOverallAggrMapping[catVariableNo].insert

({categoricalValues[i+2], i});

++catVariableNo;

/* record how many categoricalAggregates for this

* dTreeNode */

_dTree->getNode(attrID)->_numCatValues = numCatValues;

}

}

NUM_OF_CAT_FEATURES = numberCategoricalFeatures;

NUM_OF_PARAMETERS = NUM_OF_FEATURES +

NUM_OF_CAT_FEATURES + NUM_OF_NON_FEATURES;

};

/*

* CategoricalRegressionOverJoin::computeAggregateVectorInfo()

*

* New method

*

* Determines the structure of the vector of aggregates for each Union struct

* in the factorisation, based on the structure of the d-tree and the values

* taken by any categorical variables, creating the required indexes and

* mappings.

*/

void CategoricalRegressionOverJoin::

computeAggregateVectorInfo(DTreeNode* dTreeNode)

{

int numberOfChildren = dTreeNode->_numOfChildren;

int nodeID = dTreeNode->_id;

if (numberOfChildren == 0)

{

dTreeNode->_traversal.push_back(nodeID);

dTreeNode->_indexOfAttrInNodeAggregates.insert({nodeID, 0});

if (_categoricalFeature[nodeID])

{

dTreeNode->_numOfDescendentAggr =

dTreeNode->_numCatValues;

}

else // conts or non-feature

{

dTreeNode->_numOfDescendentAggr = 1;

}

}

else

{

int index = 0;

int sizeOfGrandChildAggr = 0;

DTreeNode* dTreeChild = dTreeNode->_firstChild;

dTreeNode->_numOfDescendentAggr = 0;

for (int child = 0; child < numberOfChildren; ++child)

{

/* recursive call */

computeAggregateVectorInfo(dTreeChild);
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/* get index for each aggregate of dTreeNode, by iterating

* over the "traversal" of each dTreeChild to get a

* consistent ordering of nodes

*/

for (int i = 0; i < dTreeChild->_traversal.size(); ++i)

{

/* get child id and corresponding child node */

int grandChildID = dTreeChild->_traversal[i];

DTreeNode* grandChild =

_dTree->getNode(grandChildID);

/* get the size of vector for this child’s

* aggregates */

if (_categoricalFeature[grandChildID])

{

sizeOfGrandChildAggr =

grandChild->_numCatValues;

}

else // conts or non feature

{

sizeOfGrandChildAggr = 1;

}

/* add the amended index to our map/traversal */

dTreeNode->_traversal.push_back(grandChildID);

dTreeNode->_

indexOfAttrInNodeAggregates.insert({grandChildID, index});

/* update our index for next grandChild, using the

* values from the final grandchild */

index += sizeOfGrandChildAggr;

dTreeNode->_numOfDescendentAggr +=

sizeOfGrandChildAggr;

}

dTreeChild = dTreeChild->_next;

}

/* finally, we add the index for the parent under consideration

* which will be the final index after all children/

* grandchildren have been processed */

dTreeNode->_traversal.push_back(nodeID);

dTreeNode->_indexOfAttrInNodeAggregates.insert({nodeID, index});

if(_categoricalFeature[nodeID])

dTreeNode->_numOfDescendentAggr += dTreeNode->_numCatValues;

else // conts or non feature

dTreeNode->_numOfDescendentAggr += 1;

}

};

/*

* CategoricalRegressionOverJoin::computeMultiplicity()

*

* reused from RegressionOverJoin::computeMultiplicity()

*

* determines cnt/cnt_j for each union struct of the factorisation

*/

void CategoricalRegressionOverJoin::computeMultiplicity

(node::Union* factorisationNode, DTreeNode* dTreeNode, unsigned int multi)

{

unsigned int numberOfValues = factorisationNode->numberOfValues;

int numberOfChildren = dTreeNode->_numOfChildren;

node::Union** children = factorisationNode -> children;

factorisationNode -> multiplicity += multi; // o/a caching...

int nodeID = dTreeNode->_id;

double* values = factorisationNode->values;
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for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

unsigned int localCount = 1;

for (int child = 0; child < numberOfChildren; ++child)

{

localCount *= children[val*numberOfChildren+child]->count;

}

for (int child = 0; child < numberOfChildren; ++child)

{

unsigned int multiplicity = multi * localCount /

children[val*numberOfChildren+child]->count;

computeMultiplicity(children[val * numberOfChildren + child],

dTreeChild, multiplicity);

dTreeChild = dTreeChild->_next;

}

}

}

/*

* CategoricalRegressionOverJoin::computeS1()

*

* New method

*

* Computes the aggregate vector S1 for each union struct, taking into account

* whether each query variable is continuous, categorical or excluded as a model

* feature.

*/

void CategoricalRegressionOverJoin::computeS1

(node::Union* factorisationNode, DTreeNode* dTreeNode)

{

if (dTreeNode->_caching)

{

if (_S1Cached[factorisationNode->cacheIndex])

return;

}

int nodeID = dTreeNode->_id;

unsigned int numberOfValues = factorisationNode->numberOfValues;

double *values = factorisationNode->values;

int numberOfChildren = dTreeNode->_numOfChildren;

node::Union** children = factorisationNode->children;

/* size of aggregate vectors for any given node will be

* numOfDescendentAggr, for both conts and cat */

factorisationNode->S1 = new double[dTreeNode->_numOfDescendentAggr];

/* and initialise it to zero values */

std::fill_n(factorisationNode->S1, dTreeNode->_numOfDescendentAggr, 0.0);

/* create the array for Grad too, since same size */

factorisationNode->Grad = new double[dTreeNode->_numOfDescendentAggr];

std::fill_n(factorisationNode->Grad, dTreeNode->_numOfDescendentAggr, 0.0);

/* we will also need to know the index of dTreeNode’s own attribute

* within the traversal of dTreeNode (i.e. at the end of it!) */

int attrInNodeIndex = dTreeNode->_indexOfAttrInNodeAggregates[nodeID];

if (numberOfChildren == 0) /* leaf node of factorisation */

{

if (_categoricalFeature[nodeID])
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{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

int catAggrIndex = _catAggrToOverallAggrMapping

[_nodeIDToCatAggrMapping[nodeID]][values[val]];

factorisationNode->S1[0 + catAggrIndex] = 1.0;

}

}

else if (_continuousFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

/* remember each value occurs once in given leaf,

* and there is only one attribute per leaf */

factorisationNode->S1[0] += values[val];

}

}

else if (_nonFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

/* do nothing - want 0; */

}

}

}

else /* our node has children, so need to combine the sums of the

* "descendent" attributes in the d tree and also create new sums

* for our current attribute in the d-tree - same code applies

* for conts or cat variables */

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

int index = 0;

for (int child = 0; child < numberOfChildren; ++child)

{

/* recursive call */

computeS1(children[val * numberOfChildren + child],

dTreeChild);

children[val * numberOfChildren + child]->multiplier =

values[numberOfValues+val] /

children[val * numberOfChildren + child]->count;

for (int S1Index = 0;

S1Index < dTreeChild->_numOfDescendentAggr;

++S1Index)

{

factorisationNode->S1[index] +=

children[val * numberOfChildren + child]->S1[S1Index] *

children[val * numberOfChildren + child]->multiplier;

++ index;

}

dTreeChild = dTreeChild->_next;

}

/* now the processing for the current attribute */

if (_categoricalFeature[nodeID])

{

/* index of this attribute is no longer 0 */

int catAggrIndex = _catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

factorisationNode->S1[attrInNodeIndex + catAggrIndex]
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+= 1.0 * values[numberOfValues + val];

}

else if (_continuousFeature[nodeID])

{

//

factorisationNode->S1[attrInNodeIndex]

+= values[val] * values[numberOfValues + val];

}

else if (_nonFeature[nodeID])

{

/* do nothing */

}

}

} /* end of else */

/* mark that the values for a cached node are now in place */

if (dTreeNode->_caching)

_S1Cached[factorisationNode->cacheIndex] = true;

};

/*

* CategoricalRegressionOverJoin::computeS1w()

*

* New method

*

* Computes the scalar S1w for each union struct, taking into account

* whether each query variable is continuous, categorical or excluded as a model

* feature.

*/

void CategoricalRegressionOverJoin::computeS1w(

node::Union* factorisationNode, DTreeNode* dTreeNode)

{

if (dTreeNode->_caching)

{

if (_S1wCached[factorisationNode->cacheIndex])

return;

}

int nodeID = dTreeNode->_id;

unsigned int numberOfValues = factorisationNode->numberOfValues;

double *values = factorisationNode->values;

int numberOfChildren = dTreeNode->_numOfChildren;

node::Union** children = factorisationNode->children;

factorisationNode->S1w = 0;

/* we will need to know the parameter corresponding to this nodeID

* using the index of where the node would appear in the root node

* of the dTree */

int nodeInParamsIndex = dTreeNode->_indexOfNodeInRootAggregates;

/* we will also need to know the index of dTreeNode’s on attribute

* within the traversal of dTreeNode (i.e. at the end of it!) */

int attrInNodeIndex = dTreeNode->_indexOfAttrInNodeAggregates[nodeID];

if (numberOfChildren == 0)

{

if (_categoricalFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

/* the place where each value is recorded (as a

* "count" value of 1) is the index of the cat

* value within that attribute (we know the index

* of the attribute itself will be 0, as leaf is
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* only a single attribute */

int catAggrIndex = _catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

factorisationNode->S1w += 1.0 *

_parameters[nodeInParamsIndex + catAggrIndex];

}

}

else if (_continuousFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

// the index of the attribute itself is again 0

factorisationNode->S1w += values[val] *

_parameters[nodeInParamsIndex];

}

}

else if (_nonFeature[nodeID])

{

/* want to do nothing */

}

}

else /* our node has children, so need to combine the sums of the

* "descendent" attributes in the d tree and also create new

* sums for our current attribute in the d-tree - doesn’t

* matter if conts or cat variable */

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

int index = 0;

for (int child = 0; child < numberOfChildren; ++child)

{

/* recursive call */

computeS1w(children[val * numberOfChildren + child],

dTreeChild);

factorisationNode->S1w +=

children[val * numberOfChildren + child]->S1w *

children[val * numberOfChildren + child]->multiplier;

dTreeChild = dTreeChild->_next;

}

/* then do the "current" attribute we will need where

* this attribute appears in the list of parameters -

* this is simply the inded of the node, plus the index

* of where the node attribute appears within that node

* - both of which we know already */

if (_categoricalFeature[nodeID])

{

/* index of this attribute is no longer 0 -

* not a leaf */

int catAggrIndex =

_catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

factorisationNode->S1w += 1.0 *

values[numberOfValues + val] *

_parameters[nodeInParamsIndex + attrInNodeIndex + catAggrIndex];

}

else if (_continuousFeature[nodeID])

{

factorisationNode->S1w += values[val] *

values[numberOfValues + val] *

_parameters[nodeInParamsIndex+attrInNodeIndex];
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}

else if (_nonFeature[nodeID])

{

/* do nothing */

}

}

} /* end of else */

/* mark that the values for a cached node are now in place */

if (dTreeNode->_caching)

_S1wCached[factorisationNode->cacheIndex] = true;

}

/*

* CategoricalRegressionOverJoin::computeGrad()

*

* New method

*

* Computes the aggregate vector Grad for each union struct, taking into account

* whether each query variable is continuous, categorical or excluded as a model

* feature.

*/

void CategoricalRegressionOverJoin::computeGrad

(node::Union* factorisationNode, DTreeNode* dTreeNode)

{

int nodeID = dTreeNode -> _id;

if (dTreeNode->_caching)

{

if (_GradCached[factorisationNode->cacheIndex])

return;

}

/* we already have S1, S1w, mulitiplier, multiplity and

*count (= numberOfValues) for the factorisation node */

unsigned int numberOfValues = factorisationNode->numberOfValues;

node::Union** children = factorisationNode->children;

int numberOfChildren = dTreeNode -> _numOfChildren;

unsigned int multiplicity = factorisationNode->multiplicity;

double* values = factorisationNode->values;

/* reset our Grad vectors to 0.0 */

memset(factorisationNode->Grad, 0, sizeof(double)*dTreeNode->

_numOfDescendentAggr);

/* for Grad we will need to know the parameter corresponding

* to this nodeID using the index of where the node would appear

* in the root node of the dTree */

int nodeInParamsIndex = dTreeNode->_indexOfNodeInRootAggregates;

/* we will also need to know the index of dTreeNode’s own attribute

* within the traversal of dTreeNode (i.e. at the end of it -

* if it’s categorical then we’ll also be adding the value

* index too!!) */

int attrInNodeIndex = dTreeNode->_indexOfAttrInNodeAggregates[nodeID];

if (numberOfChildren == 0) // leaf node of factorisation tree

{

if (_categoricalFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{
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int catAggrIndex = _catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

factorisationNode->Grad[0 + catAggrIndex] += 1.0 *

(_parameters[nodeInParamsIndex + catAggrIndex] * 1.0);

}

}

else if (_continuousFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

factorisationNode->Grad[0] += values[val] *

_parameters[nodeInParamsIndex] * values[val];

}

}

else if (_nonFeature[nodeID])

{

for (unsigned int val = 0; val < numberOfValues; ++val)

{

// do nothing - leave Grad = 0;

}

}

}

else /* Not a leaf node. */

{

/* we need an array to hold our local S1w values so we can

* calculate S in our next pass over the values/children */

double localS1w[numberOfValues];

std::fill_n(localS1w, numberOfValues, 0.0);

for (unsigned int val = 0; val < numberOfValues; ++val)

{

DTreeNode* dTreeChild = dTreeNode->_firstChild;

/* we have to iterate through the children of this node

* twice - the first time to calculate S1w for this value

* values[val] */

for (int child = 0; child < numberOfChildren; ++child)

{

localS1w[val] +=

children[val * numberOfChildren + child]->S1w *

children[val * numberOfChildren + child]->multiplier;

dTreeChild->_next;

}

}

for (unsigned int val = 0; val < numberOfValues; ++val)

{

/* we will just need to be careful as to whether A is

* categorical or a non-feature, as this will determine

* the index of the parameters required for wA and the

* position of A in S1 for the factorisationNode */

int paramIndexToUse;

int aIndexToUse;

int catAggrIndex;

/* we can now iterate over our children again, using

* localS1w to calculate S */

DTreeNode* dTreeChild = dTreeNode->_firstChild;

int index = 0;

for (int child = 0; child < numberOfChildren; ++child)

{

/* call our function recursively on each of our child

* factorisation nodes */

computeGrad(
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children[val * numberOfChildren + child], dTreeChild);

/* calculate S for each child node */

double localS = localS1w[val] -

children[val * numberOfChildren + child]->S1w *

children[val * numberOfChildren + child]->multiplier;

/* now iterate over Grad/S1 */

for (int gradIndex = 0;

gradIndex < dTreeChild->_numOfDescendentAggr;

++gradIndex)

{

if(_categoricalFeature[nodeID])

{

catAggrIndex =

_catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

paramIndexToUse = nodeInParamsIndex +

attrInNodeIndex + catAggrIndex;

aIndexToUse = attrInNodeIndex +

catAggrIndex;

/* we can now do Grad for everything

* except the ’current’ attribute,

* using info we have already: */

factorisationNode->Grad[index] +=

/* Grad * multiplier */

children[val * numberOfChildren + child]-> Grad[gradIndex] *

children[val * numberOfChildren + child]->multiplier +

/* S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]->

S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count +

/* wA * a * cnt(a) * S1(j)[a] */

_parameters[paramIndexToUse] * 1.0 *

values[val + numberOfValues] *

children[val * numberOfChildren + child]->S1[gradIndex] /

children[val * numberOfChildren + child]->count;

}

else if(_continuousFeature[nodeID])

{

paramIndexToUse = nodeInParamsIndex +

attrInNodeIndex;

aIndexToUse = attrInNodeIndex;

/* again do Grad for everything

* except the ’current’ attribute,

* using info we have already: */

factorisationNode->Grad[index] +=

/* Grad * multiplier */

children[val * numberOfChildren + child]->

Grad[gradIndex] *

children[val * numberOfChildren + child]->multiplier +

/* S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]->

S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count +

/* wA * a * cnt(a) * S1(j)[a] */

_parameters[paramIndexToUse] *

values[val] * values[val + numberOfValues] *

children[val * numberOfChildren + child]->S1[gradIndex] /

children[val * numberOfChildren + child]->count;

}

else if(_nonFeature[nodeID])
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{

paramIndexToUse = nodeInParamsIndex +

attrInNodeIndex;

aIndexToUse = attrInNodeIndex;

/* again do Grad for everything

* except the ’current’

* attribute, using info

* we have already: */

factorisationNode->Grad[index] +=

/* Grad * multiplier */

children[val * numberOfChildren + child]->

Grad[gradIndex] *

children[val * numberOfChildren + child]->

multiplier +

/* S1(j)[B]/cnt(j) */

children[val * numberOfChildren + child]->

S1[gradIndex] * localS /

children[val * numberOfChildren + child]->count;

}

++index;

}

dTreeChild = dTreeChild->_next;

}

/* then do the "current" attribute: */

if (_categoricalFeature[nodeID])

{

int catAggrIndex = _catAggrToOverallAggrMapping[

_nodeIDToCatAggrMapping[nodeID]][values[val]];

int paramIndexToUse = nodeInParamsIndex +

attrInNodeIndex + catAggrIndex;

int aIndexToUse = attrInNodeIndex + catAggrIndex;

factorisationNode->Grad[aIndexToUse] += 1.0 *

(_parameters[paramIndexToUse] * 1.0 *

values[numberOfValues + val] +

localS1w[val]);

}

else if (_continuousFeature[nodeID])

{

factorisationNode->Grad[aIndexToUse] += values[val] *

(_parameters[paramIndexToUse] * values[val] *

values[numberOfValues + val] +

localS1w[val]);

}

else if (_nonFeature[nodeID])

{

/* do nothing */

}

}

}

/* If this node allows for caching, we fill the cached aggreates

*with the computed aggregates for this node. */

if (dTreeNode->_caching)

{

_GradCached[factorisationNode->cacheIndex] = true;

}

};

/*

* CategoricalRegressionOverJoin::computeGradient()

*

* Modified from RegressionOverJoin::computeGradient to accommodate the
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* new methods for computing aggregate vectors.

*

* carries out one convergence step of the batch gradient descent process.

*/

void CategoricalRegressionOverJoin::computeGradient()

{

int dTreeRootId = _dTree->_root->_id;

memset(_S1wCached, 0,

sizeof(bool)*_joinEngine->getNumberOfCachedValues());

memset(_GradCached, 0,

sizeof(bool)*_joinEngine->getNumberOfCachedValues());

memset(_gradient, 0,

sizeof(double)*NUM_OF_PARAMETERS);

/* need to recompute S1w and Grad with latest parameters */

computeS1w(rootNode, _dTree->_root);

computeGrad(rootNode, _dTree->_root);

/* gradient[j] = (Grad[j] + S1[j]*w_0)/numOfTuples

* so copy Grad to gradients then perform addition and division */

memcpy(_gradient, rootNode->Grad, sizeof(double)*NUM_OF_PARAMETERS);

for (int aggr = 0; aggr < _dTree->_root->_numOfDescendentAggr; ++aggr)

{

_gradient[aggr] += rootNode->S1[aggr] *

_parameters[NUM_OF_PARAMETERS - 1];

_gradient[aggr] /= rootNode->count;

}

/* _gradient[0] = (S1w +w_0*numOfTuples)/numOfTuples */

_gradient[NUM_OF_PARAMETERS - 1] = (rootNode->S1w +

rootNode->count * _parameters[NUM_OF_PARAMETERS-1]) /

rootNode->count;

BINFO("\n CURRENT STUFF---------------------------------\n")

BINFO("current S1[");

for (size_t param = 0; param < NUM_OF_PARAMETERS; ++param)

{

BINFO(" "+to_string(rootNode->S1[param]));

}

BINFO("\n current parameter[");

for (size_t param = 0; param < NUM_OF_PARAMETERS; ++param)

{

BINFO(" "+to_string(_parameters[param]));

}

BINFO("\n current S1w "+to_string(rootNode->S1w));

BINFO("\n current Grad[");

for (size_t param = 0; param < NUM_OF_PARAMETERS; ++param)

{

BINFO(" "+to_string(rootNode->Grad[param]));

}

BINFO("\n current gradient[");

for (size_t param = 0; param < NUM_OF_PARAMETERS; ++param)

{

BINFO(" "+to_string(_gradient[param]));

}

BINFO("]\n");

};

/*

* CategoricalRegressionOverJoin::computeS1()

*
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* Based closely on RegressionOverJoin::optimize() but using simple adaptive

* step size for batch gradient descent.

*

* Completes the convergence steps for the batch gradient descent process

* to learn the model parameters

*/

void CategoricalRegressionOverJoin::optimize()

{

/* firstGradientNorm is used in the normalised stopping condition:

* gradientNorm / (firstGradientNorm + epsilon) */

double firstGradientNorm = 0.0;

/* Need an initial set of gradients based on initial parameters

* that will be used for convergence testing */

#ifdef BENCH

int64_t startOneGradient = duration_cast<milliseconds>(

system_clock::now().time_since_epoch()).count();

#endif

computeGradient();

#ifdef BENCH

int64_t timeOneGradient = duration_cast<milliseconds>

(system_clock::now().time_since_epoch()).count() -

startOneGradient;

/* Write First Gradient Computation times to times file */

std::ofstream ofs("times.txt", std::ofstream::out | std::ofstream::app);

if (ofs.is_open())

ofs << "convergence: optimize - one gradient: \t"+

to_string(timeOneGradient) + "\n";

else

cout << "Unable to open times.txt \n";

ofs.close();

#endif

DINFO("NUM_OF_PARAMETERS: "+to_string(NUM_OF_PARAMETERS) + "\n");

BINFO(

"MASTER - convergence: optimize - one gradient computation: " +

to_string(timeOneGradient) + "ms.\n");

for (int i = 0; i < NUM_OF_PARAMETERS - 1; ++i)

DINFO("Grad aggregate["+to_string(i)+"] : "+

to_string(rootNode->Grad[i])+" \n");

DINFO("\n");

for (size_t i = 0; i < NUM_OF_PARAMETERS; ++i)

DINFO("gradient["+to_string(i)+"] : "+to_string(_gradient[i])+" \n");

DINFO("\n");

/* Simple gradient descent step */

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)

{

/* do not change label parameter: constrained to be -1 */

if (j == LABEL_PARAMETER_INDEX) continue;

/* _previousParameters and _previousGradients are used to

* compute the stepSize */
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_previousParameters[j] = _parameters[j];

_previousGradients[j] = _gradient[j];

/* firstNorm is the (norm of Gradient)^2 */

firstGradientNorm += _gradient[j] * _gradient[j];

/* Update Parameters in direction of gradient */

_parameters[j] = _parameters[j] - stepSize * _gradient[j];

}

// alpha = nextAlpha;

++_numOfIterations;

firstGradientNorm = sqrt(firstGradientNorm);

while (!_converged && _numOfIterations < 200)

{

/* Compute the gradient based on latest parameter values */

computeGradient();

DINFO("grad: ");

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)

DINFO(to_string(_gradient[j]) + " ")

DINFO("\n");

DINFO("params: ");

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)

DINFO(std::to_string(_parameters[j]) + " ")

DINFO("\n");

/* Update the stepSize */

stepSize = computeStepSize();

/* The norm of the gradients is used both in the stopping

* condition and backtracking (not used here). */

double gradientNorm = 0.0;

/* Update the parameters. */

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)

{

/* again, don’t update label parameters */

if (j == LABEL_PARAMETER_INDEX) continue;

gradientNorm += _gradient[j] * _gradient[j];

/* these are used to compute the adaptive spectral

* stepsize at iteration k+1 */

_previousParameters[j] = _parameters[j];

_previousGradients[j] = _gradient[j];

/* Updates parameter j based in in direction of

* gradient (regularization not used here. */

_parameters[j] = _parameters[j] - stepSize * _gradient[j];

}

DINFO("grad: ");

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)

DINFO(to_string(_gradient[j]) + " ")

DINFO("\n");

DINFO("param: ");

for (size_t j = 0; j < NUM_OF_PARAMETERS; ++j)
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DINFO(to_string(_parameters[j]) + " ")

DINFO("\n");

if (sqrt(gradientNorm) / (firstGradientNorm + 0.01) < _epsilon)

{

_converged = true;

break;

}

++_numOfIterations;

cout << "number of iterations " << _numOfIterations << endl;

}

};
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Appendix B

Methods added to
CategoricalFactorisedJoin.cpp

This Appendix contains the new methods added to the CategoricalFactorisedJoin class. The
structure of the class was modelled on an existing class for another regression method (Fac-
torisedJoin), but extended with new/modified methods. Comments before each method indi-
cate the extent to which existing code has been reused. Methods that are unchanged in the
CategoricalFactorisedJoin class are not listed here.

/*

* CategoricalFactorisedJoin::sortDataForCategoricalVariables()

*

* Modified from FactorisedJoin::sortDataToProcess to allow sorting on

* a single categorical variable.

*

* sorts each of the database tables on the column corresponding to the

* variable of the d-tree node passed as argument.

*/

void CategoricalFactorisedJoin::sortDataForCategoricalValues(DTreeNode* node)

{

/* Contains an ID for each node in the DTree and for each table. */

vector<vector<int>> treeAttributeIDs(NUM_OF_TABLES);

/* Iterate through all tables. */

for (size_t table = 0; table < NUM_OF_TABLES; ++table)

{

/* Iterate through all the table attribute IDs of the current table. */

for (uint_fast16_t id : _dataHandler->getTableAttributes()[table])

{

/* Scan through the (string, ID) mapping to find the attribute

* name of the current attribute ID. */

for (auto pair : _dataHandler->getNamesMapping())

{

if (pair.second == id)

{

/* Retrieve DTree ID with attribute name. */

auto index = _dTree->getIndexByName(pair.first);

treeAttributeIDs[table].push_back(index);

break;

}

}

}

}

79



/*

* The ids vectors will contain the pairs of INDEXES in the array

* attributes-attr. For each attribute KEY-index we append the pairs of

* indexes having that key, so we will have all the pairs of

* <relationIndex-attributeIndex> for each attribute KEY.

*/

_ids = new vector<pair<int, int> > [NUM_OF_ATTRIBUTES];

for (size_t i = 0; i < NUM_OF_ATTRIBUTES; ++i)

{

for (size_t j = 0; j < NUM_OF_TABLES; ++j)

{

for (size_t k = 0; k < treeAttributeIDs[j].size(); ++k)

if (treeAttributeIDs[j][k] == (int) i)

{

_ids[i].push_back(make_pair(j, k));

break;

}

}

}

/* we only need to think about our single node, which we know is an

* attribute, and we know is categorical (else this method would

* not have been invoked in the first place) */

vector<int_fast16_t> priority;

for (size_t table = 0; table < NUM_OF_TABLES; ++table)

{

priority.clear();

int_fast16_t pos = -1;

for (size_t j = 0; j < treeAttributeIDs[table].size(); ++j)

if (node->_id == treeAttributeIDs[table][j])

{

pos = j;

break;

}

if (pos != -1)

{

priority.push_back(pos);

/* Launch sorting; depending on the compiler, this will or will

* not be done in parallel. nb put into if loop, as we’re not

* going to sort if the attribute not in the table!! */

sortingAlgorithm(_data[table].begin(), _data[table].end(),

ValueOrdering(priority.data(), priority.size()));

}

}

}

/*

* CategoricalFactorisedJoin::getCategoricalValues()

*

* new method

*

* joins database tables on just the relation columns for a single categorical

* variable, to get the values that this attribute can take, and which we can

* then use in the aggregates. */

double* CategoricalFactorisedJoin::getCategoricalValues(DTreeNode* node) {

double* result;

// method code based on run() method...
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if (_numOfThreads > 1)

{

cout << "The multi-threaded version is currently not supported. \n";

cout << "Continuing with 1 thread. \n";

_numOfThreads = 1;

}

/* Spawn threads and do partitioning. */

if (_numOfThreads == 1)

{

_partitionFields2 = new PartitionAttributesCatValues[1];

/* Set bounds for the different tables: they cover

* the whole tables */

int* lowerBounds = new int[NUM_OF_TABLES];

int* upperBounds = new int[NUM_OF_TABLES];

for (size_t table = 0; table < NUM_OF_TABLES; ++table)

{

lowerBounds[table] = 0;

upperBounds[table] = _data[table].size() - 1;

}

/* Launch our amended runAggregator to find categorical

* values for this node */

result =

runCategoricalValuesFinder(node, lowerBounds, upperBounds, 0);

/* Clean up bound arrays. */

delete[] lowerBounds;

delete[] upperBounds;

/* and invoke *destructor* on our PartitionAggregateCatValues

* data structure */

delete[] _partitionFields2;

}

return result;

}

/*

* CategoricalFactorisedJoin::runCategoricalValuesFinder()

*

* Modified from FactorisedJoin::runAggregator to perform leapfrogging

* join only on each categorical variable. Uses a new data structure

* defined in CategoricalFactorisedJoin.h

*

*/

double* CategoricalFactorisedJoin::runCategoricalValuesFinder

(DTreeNode* node, int* lowerBounds, int* upperBounds,

unsigned int partition) {

/* we’re not going to use all the partition fields, just the ones

* we need so define a new data structure :-) */

/* Initialize varMap to required size and set entries to zero. */

_partitionFields2[partition].LOWERBOUND =

new int*[NUM_OF_ATTRIBUTES];

_partitionFields2[partition].UPPERBOUND =

new int*[NUM_OF_ATTRIBUTES];

_partitionFields2[partition].catValues =

new std::vector<double>[1];

for (size_t i = 0; i < NUM_OF_ATTRIBUTES; ++i)

{

_partitionFields2[partition].LOWERBOUND[i] =
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new int[NUM_OF_TABLES];

_partitionFields2[partition].UPPERBOUND[i] =

new int[NUM_OF_TABLES];

}

_partitionFields2[partition].ordering =

new int*[NUM_OF_ATTRIBUTES];

for (size_t i = 0; i < NUM_OF_ATTRIBUTES; ++i)

_partitionFields2[partition].ordering[i] =

new int[_ids[i].size()];

DINFO("Before leapfrogging join for categorical values! \n");

/* This performs the join and recursively updates the

* regression aggregates. */

return leapfroggingJoinSingleAttribute

(node, lowerBounds, upperBounds, partition);

}

/*

* CategoricalFactorisedJoin::leapfroggingJoinSingleAttribute()

*

* Modified from FactorisedJoin::leapfroggingJoin() to allow joining on

* a single categorical variables.*

*

* performs leapfrogging join for all database tables on each categorical

* variable.

*/

CategoricalFactorisedJoin::leapfroggingJoinSingleAttribute

(DTreeNode* node, int* lower, int* upper, unsigned int partition)

{

int_fast16_t nodeID = node->_id;

/* lower range pointer for each relation. */

int* l = _partitionFields2[partition].LOWERBOUND[nodeID];

memcpy(l, lower, sizeof(int) * NUM_OF_TABLES);

/* upper range pointer for each relation. */

int* u = _partitionFields2[partition].UPPERBOUND[nodeID];

memcpy(u, upper, sizeof(int) * NUM_OF_TABLES);

vector<double>& unionValues =

_partitionFields2[partition].catValues[0];

unionValues.clear();

/* reserve spaces for the nodeID, and eventual

number of categorical values */

unionValues.push_back(nodeID);

unionValues.push_back(0);

int* ordering = _partitionFields2[partition].ordering[nodeID];

/* Provides order of Relations from min -> max. */

getRelationOrdering(l, node, ordering);

/* Value that satisfies the join query - set in seekValue. */

double val;

unsigned int count = 0;

/* Indexes used by the join algorithm. */

int i, j, rel = 0, numOfRel = _ids[nodeID].size();

bool atEnd = false;

while (!atEnd)
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{

/* seek the value that satisfies the join query */

atEnd =

seekValue(node, rel, ordering, numOfRel, l, upper, val);

if (atEnd)

break;

/* Get range of tuples with value equal to val. */

for (size_t k = 0; k < _ids[nodeID].size(); ++k)

{

i = _ids[node->_id][k].first;

j = _ids[node->_id][k].second;

u[i] = l[i];

while (u[i] < upper[i] && _data[i][u[i] + 1][j] == val)

{

++u[i];

}

}

/*

* In leapfroggingJoin aggregates are updated based on the

* value that satisfied the join query. Here, assuming that

* we don’t have any dangling tuples, we just want to log

* the values of this node that we have seen!

*/

/* Push back the value from this node - remember we already

* have a space reserved for nodeID and another for the count */

unionValues.push_back(val);

++count;

for (size_t k = 0; k < _ids[nodeID].size(); ++k)

{

i = _ids[nodeID][k].first;

l[i] = u[i];

}

i = _ids[nodeID][ordering[rel]].first;

l[i] += 1;

if (l[i] > upper[i])

{

atEnd = true;

break;

}

else

{

rel = (rel + 1) % numOfRel;

}

}

assert (count == unionValues.size());

/* Copy values into array - don’t forget the extra 0 at the

* front to hold the count */

double* result = new double[count+2];

memcpy(result, &unionValues[0],(count + 2)*sizeof(double));

result[1] = count;

return result;
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