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Our Key Observations & Results At a Glance

m Join computation entails a high degree of redundancy, which can be
avoided by factorized computation and representation.

> We developed worst-case optimal factorized join algorithms. [TODS'15]
> Factorized joins require exponentially less time than standard joins.

> Aggregates (COUNT, SUM, MIN, MAX) can be computed in
one pass over factorized data. [VLDB'13]

m Regression models can be learned in linear time over factorized joins.

> This translates to orders of magnitude performance improvements over
state of the art on real datasets.



Outline

What are Factorized Databases?
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Factorized Databases by Example

Orders (O for short) Dish (D for short) Items (I for short)
customer day dish dish item item price
Elise Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday  hotdog burger bun bun 2
Joe Friday  hotdog hotdog bun sausage 4

hotdog onion

hotdog sausage

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise =~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2

2

Elise Friday burger bun
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Factorized Databases by Example

A flat relational algebra expression encoding the above query result is:

(Elise)

X
X
X
X
X
X

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday  burger  onion 2
Elise Friday burger bun 2
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c ¢ c ccc

It uses relational product (x), union (U), and data (singleton relations).

m The attribute names are not shown to avoid clutter.
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This is How Factorized Databases Look Like!

/ b
dish (burger) (hotdog)
| |
X X
U @] @] U
/N IR \ SN
day item (Monday) (Friday) (patty) (bun) (onion) (Friday)  (bun) (onion) (sausage)

| | | | | | | | |
X X X X X X X X X
\ \ \ \ \ \ \ \ \
U U U @] U U U U U
I I I I I 7/ N\ I I I
costumer  price (Elise)  (Elise) (6) (2) (2) (Joe) (Steve) (2) 2) (4)

Join tree Factorized representation of the join result

There are several algebraically equivalent factorized representations defined:
m by distributivity of product over union and their commutativity;

m as groundings of join trees.

6/40



.. Now with Further Compression

/ b
dish (burger) ( hotdog)
| |
U @] U @]
7N\ SN IO \
day item (Monday) (Friday) (patty) (bun) (onion) (bun)(onion)(sausage)  (Friday)
| | | | | | | | |
X X X X X X __x X X
[ [ [ A [ [
U U U ur- U U @]
I I I I I 7N
costumer  price (Elise)  (Elise) (6) (2) 2

|
(4) (Joe) (Steve)
Observation:

® price is under item, which is under dish, but only depends on item,
..

so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!
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Aggregates over Factorized Databases (1/2)

/ U
dish (burger) (hotdog)
/ \ / x \

U U U
/ \ N \ ~ \

day item (Monday) (Friday) (patty} (bun) (onion) (bun)(onion)(sausage)  (Friday)
| | | | | | \ | |
X X X X XX X% X X
\ \ \ A \ \
U U U u- ) U U

| | | | | VRN

costumer  price (Elise)  (Elise) (6) (2) (2) (4) (Joe) (Steve)

SQL aggregates can be computed in one pass over the factorization:
m COUNT (*):

» values — 1,
> U +,
> X ok,



Aggregates over Factorized Databases (1/2)

dish 1 1
] . 5] .
+/ \+ +/ \+
/N N N \
day item 1 1 1 1 1 1 1 1 1
T R R !
I[1] I[1] ] 1 -7 I[1] I[2]
+ + + +—= + + +
. \ \ R ET AR N
costumer  price 1 1 1 1 1 1 1

SQL aggregates can be computed in one pass over the factorization:

m COUNT (*):

> values — 1,
> U +,
> X ok,



Aggregates over Factorized Databases (2/2)

/U\

dish (burger) (hotdog)
| |
/ " \ / " \
U @] U @]
7N\ PRI SN \
day item (Monday) (Friday) (patty) (bun) (onion) (bun)(onion)(sausage)  (Friday)
| | | | | | | | |
X X X X XX X% X X
\ \ \ A \ \
U U U ur- U U U
I I I I I I N
costumer  price (Elise)  (Elise) (6) (2) (2) (4) (Joe) (Steve)

SQL aggregates can be computed in one pass over the factorization:
® SUM(dish * price):
> Assume there is a function f that turns dish into reals.
> All values except for dish & price — 1,
> U+,
X ek
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Aggregates over Factorized Databases (2/2)

l20*f ({burger))+16xf ({hotdog))

+
/ \
dish f ({burger)) f ((hotdog))
EI 6] . -
2
. \+ +/ \+
/N N N \
day item 1 1 1 1 1 1 1 1 1
\ \ \ \ \ \ \ \
* * * * o _x _x * *
I[1] I1] o] I 4" .-~ \ I[2]
+ + + + -+ + +
\ \ ! 2] 1[2] | N
costumer  price 1 1 6 2 2 4 1 1

SQL aggregates can be computed in one pass over the factorization:

m SUM(dish * price):
> Assume there is a function f that turns dish into reals.
> All values except for dish & price — 1,
> U +,
>OX ok,
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Just "Cause We Can: Same Data, Different Factorization

day

costumer

dish

item

price

/U\
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x x
| |
U @]
| |
(Elise) (Elise) /<Joe)\ (Steve)
x x x x
| | | |
U U @] U
| | | |
(burger) (burger) (hotdog) (hotdog)
x x x x
| | | |
U U @] @]
IR N I PRI
(patty) (bun) (onion) (patty) (bun) (onion) (bun) (onionsausage)(bun) (onionKsausage)
X oxox X ox o oxxxxxxx
| | | | | | | | | | | |
U @] @] @] U @] U @] @] U @] @]
| | | | | | | | | | | |
© @ @ © @ @ 2 @ @ @ o @



and Further Compressed

day

costumer

dish

item

price

(@]
/ \ .
(Friday)

(Monday)
| |
X X
| |
U @]
| ]
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
| | | |
U U @] U
| | | |
(burger) (burger) (hotdog) (hotdog)
| | | |
X - X X P X
[ -7
U - @]
N PN
(patty) (bun) (onion) (bun) (onion)(sausage)
| | | |
X _ - X
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Which factorized representations should we choose?



Outline

Factorizing the Data
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Size of Factorized Databases

The size of a factorization is the number of its values.
Example:

Fr=((1)uU---u(n)) x ((1)u---U(m))

m F1 is factorized, F; is flat
| | F1 = F2
m BUT |AR|=m+n< |R|=mxn.

How much space does factorization save?

16
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Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

= a flat representation of size O(|D|”"(?)). [AGM’08]
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Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

= a flat representation of size O(|D|”"(?)). [AGM'08]
® a factorization without caching of size O(|D[*(?). [0Z'11]
= a factorization with caching of size O(|D|™*(). [0Z'15]

1< mw(Q) < s(Q) = rr(Q) < |Q

~—~
up to log | Q| up to | Q|

|@] is the number of relations in Q

p*(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q
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Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

= a flat representation of size O(|D|”"(?)). [AGM'08]
= a factorization without caching of size O(|D[*(?). [0Z'11]
= a factorization with caching of size O(|D|™*"(). [0Z'15]

These size bounds are asymptotically tight!

= Best possible bounds for representations obtained by grounding join trees
of Q, but not necessarily instance optimal:

There exists databases D such that the grounding of any join tree of Q
over D has sizes: Q(|D\”*(Q)), Q(\D|5(Q)), and respectively Q(|D|fhtW(Q)).
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Factorization Example

Consider the following join query:
Q= R(Aa B: C)7 S(Aa Ba D)a T(Aa E)a U(E7 F)

Its hypergraph (relations = hyperedges, variables = nodes) and join tree:

We assume for simplicity databases D such that
[RI=1S|=T| = |U| = O(|D]).
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Fractional Edge Cover Number p*(Q)

m Upper bound O(|D|®) on the size of query result:
Edges R, S, U cover the whole query: EdgeCover(Q) < 3.

m Lower bound Q(|D|?) on the size of query result:
Each of C, D, and F must be covered by an edge: IndSet(Q) > 3.

=p"(Q)=3

= The size of the query result is at most cubic and
there are databases for which the size must be cubic.
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Factorization Width s(Q)

U (0 x U (8 < (U@) < (Ute)) x U (&) x (U#))

acA beB ecE feF

The number of values for a variable is dictated by the number of actual
combinations of values for its ancestors:

= One value (f) for each tuple (a, e, f) in the query result.

m The number of F-values is |ma,e,r(Q(D))|.

Size of factorization = sum of sizes of results of subqueries along paths.

m s(Q) is the largest p*(Q’) for subqueries Q" along paths in Q.
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Factorization Width s(Q)

m Path A-E—F has p* = 2.
= The number of F-values is < |D|?, but can be ~ |D|?.

m All other root-to-leaf paths have p* = 1.
= The number of values for any other variable is < |D|.

s(Q)=2 = Factorization size ~ |D|?

Recall that p*(Q) =3 = Flat size ~ |D®
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Fractional Hypertree Width fhtw(Q)

Idea: Avoid repeating an identical expression and cache it instead.

U [(@) =< J (te) < (LU))]

aceA ecE feF

m F only depends on E and not on A.

= A value (e) binds with the same union {J,, ;)¢ (f) regardless of the value

(a) above it.

= Define U. = . r)cy(f) for each value (e) and use U. instead of the
union U(e,f)eu<f>-
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Fractional Hypertree Width fhtw(Q)

Idea: Avoid repeating an identical expression and cache it instead.

A factorization with caching would be:

Ul xUaxw)l  {u= U 0}

acA e€E (e,F)eU

The width fhtw(Q):
m Like s(Q), it is the largest p*(Q’) for subqueries Q' along paths in Q,

m BUT for each variable, only consider those ancestors it depends on!

For F, we only consider the subquery over E and F (i.e., U) and ignore A.

For our example: fhtw(Q) =1 < s(Q) =2 < p*(Q) = 3.
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Compression Contest: Factorized vs. Zipped Relations

Compression ratio

Setup:

100 |

+— 4
Tabular/Factorized —+— |
Tabular/Gzip(Tabular) —+—
Factorized/Gzip(Factorized) —+— 4
+ + — - + + -+ 3
+—
1 1 1 1 1 1
1 2 4 8 16 32

Database Scale

[BKOZ'13]

m Flat = flat result of join Orders X Dish X Items in CSV text format
m Gzip (compression level 6) outputs binary format
m Fatorized output in text format (each digit takes one character)

Observations:

m Gzip does not exploit distant repetitions!

m Factorizations can be arbitrarily more succinct than gzipped relations.
m Gzipping factorizations improves the compression by 3x.



Factorization Gains in Practice (1/3)

US retailer dataset used for LogicBlox/Predictix analytics

m Relations: Inventory (84M), Sales (1.5M), Clearance (368K), Promotions
(183K), Census (1K), Location (1K).

m Compression factors (caching not used):

> 26.61x for natural join of Inventory, Census, Location.

> 159.59x for natural join of Inventory, Sales, Clearance, Promotions

26
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Factorization Gains in Practice (2/3)
LastFM public dataset
m Relations: UserArtists (93K), UserFriends (25K), TaggedArtists (186K).
m Compression factors:
> 143.54x for joining two copies of Userartists and Userfriends
With caching: 982.86x
> 253.34x when also joining on TaggedArtists

> 2.53x/ 3.04x/ 924.46x for triangle/4-clique/bowtie query on UserFriends

> 9213.51x/ 552Kx/ >86Mx for versions of triangle/4-clique/bowtie queries
with copies for UserArtists for each UserFriend copy
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Factorization Gains in Practice (3/3)

Twitter public dataset

m Relation: Follower-Followee (1M)

m Compression factors:
> 2.69x for triangle query

> 3.48x for 4-clique query

> 4918.73x for bowtie query
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Outline

Factorizing the Computation
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Join Queries

Given a join query Q, for any database D, the join result Q(D) can be
computed in

= O(|D|*" (@) as flat representation [NPRR'12]
= O(|D|*9) as factorization without caching [0Z'15]
m O(|D|"™(@) as factorization with caching [0Z'15]

The above times essentially follow the succinctness gap. They are:
m worst-case optimal within the given representation model.
= modulo poly-log factors in |D].

® with respect to data complexity.



Aggregates & Regression Models

SQL aggregates can be computed in one pass over factorized data. [BKOZ'13]

Polynomial Regression and Factorization Machines models of degree d can be
learned over a factorized relation with schema (Xi,...,X,) in two steps:

[0S'16]

1. Data-dependent step: Aggregate computation

Z XiesXi, where S C {Xi,...,X,} is a multiset of arity < 2d.

2. Data-independent step: Convergence of the model parameter

Perform fixpoint computation on top of the aggregates.



Outline

Linear Regression in more Detail
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Regression Recap

m Training dataset computed as join of database tables

y o D
y®@ sz) oxP
yo g

y(i) are labels, xl(i), . ,x,(,i) are features, all mapped to reals.

= We'd like to learn the parameters © = (6q, ..., 6,) of the linear function

he(X) =09+ O1x1 + ...+ Onxp.

For uniformity, we add xo = 1 so that he(x) = Y ,_, Okxk.

m Function hg approximates the label y of unseen tuples (xi,. .., Xn).

33/40



Least-Squares Linear Regression

m We consider the least squares regression model with the cost function:

J©) = Z(h@ yy?
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Least-Squares Linear Regression

m We consider the least squares regression model with the cost function:

m

J(©) = %Z(he(x(i)) _ y(i))z

i=1

Batch gradient descent (BGD):

m Repeatedly change © to make J(©) smaller until convergence:

VO<j<n:6; ::9j—aiJ(@)
56,

=0, —« Z(Z kaﬁi) — y(i))><J.(i).

i=1 k=0

m « is the learning rate.
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Least-Squares Linear Regression

m We consider the least squares regression model with the cost function:

m

J(©) = %Z(he(x(i)) _ y(i))z

i=1

Batch gradient descent (BGD):

m Repeatedly change © to make J(©) smaller until convergence:

VO<j<n:0; ::Gj—aiJ(@)
36;

=0, —« Z(Z kaﬁi) — y(i))><J.(i).

i=1 k=0

m « is the learning rate.
= We consider wlog that y is also part of x's and has § = —1.
m We thus need to compute the following aggregates:

Vo<j<n:§=> (O ox)x".

i=1 k=0
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F: Factorised Regression

m The sums .
Vo<j<n:S=> (3 6x")x.
i=1 k=0

can be rewritten so that we can express the cofactor of each 6 in S;:

VO<j<n:S5 = Zﬂk x Cofactory;
k=0

where Cofactor,; = 3 77, x,(f)xj(i)

m We decouple the computation of cofactors from convergence of ©.

> The cofactor computation only depends on the input data.
» Convergence can be done once the cofactors are computed.

m F computes the cofactors in one pass over the factorised input dataset.

» The redundancy in the flat data is not necessary for learning!
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Complexity of F

For a training dataset defined by a join query @ over any database D,

F learns the parameters of any linear function in time O(|D|"™(%).

For (a-)acyclic joins, fhtw = 1 and F learns in optimal time.
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Extensions of F

m Push cofactor matrix computation inside the factorized join computation!

> Removing the lion's share of the computation, and computing cofactor
matrix in one pass over the input data.

m F/SQL: Compute cofactor matrix in SQL.
> Allowing for direct implementation of F in any standard Relational DBMS.

m F currently supports

> any arbitrary nonlinear basis functions,
> polynomial regression models, and
» factorisation machines.

The data complexity stays the same as for linear regression.

Multi-core and distributed learning further improve performance of joins
and aggregates.

m Categorical features needed in real-world cases.

> Resulting large number of features require a slightly different approach.
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Learning Regression Models in Practice

Competing systems:

m F: Our learner over factorized joins

> Next slide: Times for running in one thread on one machine.
= R (QR-decomposition)
m Python StatsModels (ordinary least squares)

m and MADIib (generalized linear model (glm), ordinary least squares (ols))

Datasets:

m US Retailer: Predict the amount of inventory units.

m LastFM: Predict how often a user would listen to an artist based on
similar information for its friends.
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F versus R, Python StatsModels and MADIib

l “ US retailer [ US retailer [ LastFM [ LastFM l
model degree/# params/#agg 1/31/496 | 2/496/123256 1/10/55 2/55/1540
Factorized 97,134,675 97,134,675 315,818 315,818
Size Flat 2,585,046,352 2,585,046,352 590,793,800 590,793,800
Compression 26.61x 26.61x 982.86 % 982.86 %
Join PostgreSQL 249.41 249.41 61.33 61.33
F 3.28 3.28 0.065 0.065
Import R 1189.12* 1189.12* 155.91 276.77
Time P 1164.40* 1164.40* 179.16 328.97
Learn M (glm) 2671.88 2937.49 572.88 746.50
Time R 810.66* 873.14* 268.04 466.52
P 1199.50* 1277.10* 35.74 148.84
F 4.206 30.02 0.081 0.247
Total M (ols) 680.60 3186.90 196.60 1382.49
Time M (glm) 2021.29* - 807.83 -
R 2249.19* - 804.62 -
P 2613.31* - 539.14 -

m We consider Polynomial Regression models of degrees 1 and 2.

m Performance numbers are in seconds.

m We assume data is in memory and sorted.

> P and R have an extra DBMS export & import step (shown explicitly).
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Thank you!
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