Learning Regression Models over Factorized Joins

Maximilian Schleich
Dan Olteanu
and FDB Team \& Collaborators

University of Oxford

http://www.cs.ox.ac.uk/projects/FDB/

September 2016

Our Key Observations \& Results At a Glance

- Join computation entails a high degree of redundancy, which can be avoided by factorized computation and representation.
- We developed worst-case optimal factorized join algorithms.
- Factorized joins require exponentially less time than standard joins.
- Aggregates (COUNT, SUM, MIN, MAX) can be computed in one pass over factorized data.
- Regression models can be learned in linear time over factorized joins.
- This translates to orders of magnitude performance improvements over state of the art on real datasets.

Outline

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

Factorized Databases by Example

Orders (O for short)			Dish (D for short)		Items (1 for short)	
customer	day	dish	dish	item	item	price
Elise	Monday	burger	burger	patty	patty	6
Elise	Friday	burger	burger	onion	onion	2
Steve	Friday	hotdog	burger	bun	bun	2
Joe	Friday	hotdog	hotdog	bun	sausage	4
			hotdog hotdog	onion sausage		

Consider the natural join of the above relations:

O(customer, day, dish), D (dish, item), I(item, price)				
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2
\ldots	\ldots	\ldots	\ldots	\ldots

Factorized Databases by Example

O (customer, day, dish), D (dish, item), I(item, price)				
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2
\ldots	\cdots	\cdots	\cdots	\ldots

A flat relational algebra expression encoding the above query result is:

\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle patty \rangle	\times	$\langle 6\rangle$	\cup
\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle onion \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle bun \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle patty \rangle	\times	$\langle 6\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle onion \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle bun \rangle	\times	$\langle 2\rangle$	$\cup \ldots$

It uses relational product (\times), union (\cup), and data (singleton relations).

- The attribute names are not shown to avoid clutter.

This is How Factorized Databases Look Like!

Join tree
Factorized representation of the join result
There are several algebraically equivalent factorized representations defined:

- by distributivity of product over union and their commutativity;
- as groundings of join trees.

.. Now with Further Compression

Observation:

- price is under item, which is under dish, but only depends on item,
- .. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!

Aggregates over Factorized Databases (1/2)

SQL aggregates can be computed in one pass over the factorization:

- COUNT (*):
- values $\mapsto 1$,
- $\cup \mapsto+$,
- $\times \mapsto$.

Aggregates over Factorized Databases (1/2)

SQL aggregates can be computed in one pass over the factorization:

- COUNT (*) :
- values $\mapsto 1$,
- $\cup \mapsto+$,
- $\times \mapsto$.

Aggregates over Factorized Databases (2/2)

SQL aggregates can be computed in one pass over the factorization:
■ SUM(dish * price):

- Assume there is a function f that turns dish into reals.
- All values except for dish \& price $\mapsto 1$,
- $\cup \mapsto+$,
- $\times \mapsto$.

Aggregates over Factorized Databases (2/2)

SQL aggregates can be computed in one pass over the factorization:

- SUM(dish * price):
- Assume there is a function f that turns dish into reals.
- All values except for dish \& price $\mapsto 1$,
$-\cup \mapsto+$,
- $\times \mapsto$.

Just 'Cause We Can: Same Data, Different Factorization

.. and Further Compressed

Which factorized representations should we choose?

Outline

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

Size of Factorized Databases

The size of a factorization is the number of its values.
Example:

$$
\begin{gathered}
F_{1}=(\langle 1\rangle \cup \cdots \cup\langle n\rangle) \times(\langle 1\rangle \cup \cdots \cup\langle m\rangle) \\
F_{2}=\langle 1\rangle \times\langle 1\rangle \cup \cdots \cup\langle 1\rangle \times\langle m\rangle \\
\cup \cdots \cup \\
\quad\langle n\rangle \times\langle 1\rangle \cup \cdots \cup\langle n\rangle \times\langle m\rangle .
\end{gathered}
$$

- F_{1} is factorized, F_{2} is flat
- $F_{1} \equiv F_{2}$

■ BUT $\left|F_{1}\right|=m+n \ll\left|F_{2}\right|=m * n$.

How much space does factorization save?

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ admits

- a flat representation of size $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$.
[AGM'08]

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ admits

- a flat representation of size $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$.
[AGM'08]
- a factorization without caching of size $O\left(|\mathbf{D}|^{s(Q)}\right)$.
[OZ'11]

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ admits

- a flat representation of size $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$.
[AGM'08]
- a factorization without caching of size $O\left(|\mathbf{D}|^{s(Q)}\right)$.
[OZ'11]
- a factorization with caching of size $O\left(|\mathbf{D}|^{f f t w(Q)}\right)$.
[OZ'15]

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ admits

- a flat representation of size $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$.
[AGM'08]
- a factorization without caching of size $O\left(|\mathbf{D}|^{s(Q)}\right)$.
- a factorization with caching of size $O\left(|\mathbf{D}|^{\text {fhtw }(Q)}\right)$.
[OZ'15]

$$
1 \leq \operatorname{fhtw}(Q) \underbrace{\leq}_{\text {up to } \log |Q|} s(Q) \underbrace{\leq}_{\text {up to }|Q|} \rho^{*}(Q) \leq|Q|
$$

- $|Q|$ is the number of relations in Q
- $\rho^{*}(Q)$ is the fractional edge cover number of Q
- $s(Q)$ is the factorization width of Q
- fhtw (Q) is the fractional hypertree width of Q

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ admits

- a flat representation of size $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$.
[AGM'08]
- a factorization without caching of size $O\left(|\mathbf{D}|^{s(Q)}\right)$.
- a factorization with caching of size $O\left(|\mathbf{D}|^{\text {fhtw }(Q)}\right)$.

These size bounds are asymptotically tight!
■ Best possible bounds for representations obtained by grounding join trees of Q, but not necessarily instance optimal:

There exists databases \mathbf{D} such that the grounding of any join tree of Q over \mathbf{D} has sizes: $\Omega\left(|\mathbf{D}|^{\rho^{*}(Q)}\right), \Omega\left(|\mathbf{D}|^{s(Q)}\right)$, and respectively $\Omega\left(|\mathbf{D}|^{\text {fhtw }(Q)}\right)$.

Factorization Example

Consider the following join query:

$$
Q=R(\mathbf{A}, \mathbf{B}, C), S(\mathbf{A}, \mathbf{B}, D), T(\mathbf{A}, \mathbf{E}), U(\mathbf{E}, F)
$$

Its hypergraph (relations $=$ hyperedges, variables $=$ nodes) and join tree:

We assume for simplicity databases \mathbf{D} such that $|R|=|S|=|T|=|U|=O(|\mathbf{D}|)$.

Fractional Edge Cover Number $\rho^{*}(Q)$

- Upper bound $O\left(|\mathbf{D}|^{3}\right)$ on the size of query result:

Edges R, S, U cover the whole query: $\operatorname{Edge} \operatorname{Cover}(Q) \leq 3$.

- Lower bound $\Omega\left(|\mathbf{D}|^{3}\right)$ on the size of query result:

Each of C, D, and F must be covered by an edge: $\operatorname{IndSet}(Q) \geq 3$.
$\Rightarrow \rho^{*}(Q)=3$
\Rightarrow The size of the query result is at most cubic and there are databases for which the size must be cubic.

Factorization Width $s(Q)$

$$
\bigcup_{a \in \mathbf{A}}\left(\langle a\rangle \times \bigcup_{b \in \mathbf{B}}\left(\langle b\rangle \times\left(\bigcup_{c \in C}\langle c\rangle\right) \times\left(\bigcup_{d \in D}\langle d\rangle\right)\right) \times \bigcup_{e \in \mathrm{E}}\left(\langle e\rangle \times\left(\bigcup_{f \in F}\langle f\rangle\right)\right)\right)
$$

The number of values for a variable is dictated by the number of actual combinations of values for its ancestors:

- One value $\langle f\rangle$ for each tuple (a, e, f) in the query result.
- The number of F-values is $\left|\pi_{A, E, F}(Q(\mathbf{D}))\right|$.

Size of factorization $=$ sum of sizes of results of subqueries along paths.
$■ s(Q)$ is the largest $\rho^{*}\left(Q^{\prime}\right)$ for subqueries Q^{\prime} along paths in Q.

Factorization Width $s(Q)$

- Path $A-E-F$ has $\rho^{*}=2$.
\Rightarrow The number of F-values is $\leq|\mathbf{D}|^{2}$, but can be $\sim|\mathbf{D}|^{2}$.
- All other root-to-leaf paths have $\rho^{*}=1$.
\Rightarrow The number of values for any other variable is $\leq|\mathbf{D}|$.
$s(Q)=2$
\Rightarrow Factorization size $\sim|\mathbf{D}|^{2}$
Recall that $\rho^{*}(Q)=3$
\Rightarrow Flat size $\sim|\mathbf{D}|^{3}$

Fractional Hypertree Width fhtw (Q)

Idea: Avoid repeating an identical expression and cache it instead.

- F only depends on E and not on A.
- A value $\langle e\rangle$ binds with the same union $\bigcup_{(e, f) \in U}\langle f\rangle$ regardless of the value $\langle a\rangle$ above it.
\Rightarrow Define $U_{e}=\bigcup_{(e, f) \in U}\langle f\rangle$ for each value $\langle e\rangle$ and use U_{e} instead of the union $\bigcup_{(e, f) \in U}\langle f\rangle$.

Fractional Hypertree Width fhtw (Q)

Idea: Avoid repeating an identical expression and cache it instead.

A factorization with caching would be:

$$
\bigcup_{a \in \mathrm{~A}}\left[\langle a\rangle \times \cdots \times \bigcup_{e \in \mathrm{E}}\left(\langle e\rangle \times U_{e}\right)\right] ; \quad\left\{U_{e}=\bigcup_{(e, f) \in U}\langle f\rangle\right\}
$$

The width fhtw (Q) :
■ Like $s(Q)$, it is the largest $\rho^{*}\left(Q^{\prime}\right)$ for subqueries Q^{\prime} along paths in Q,

- BUT for each variable, only consider those ancestors it depends on! For F, we only consider the subquery over E and F (i.e., U) and ignore A.

For our example: $\operatorname{fhtw}(Q)=1<s(Q)=2<\rho^{*}(Q)=3$.

Compression Contest: Factorized vs. Zipped Relations

Setup:
[BKOZ'13]
■ Flat $=$ flat result of join Orders \bowtie Dish \bowtie Items in CSV text format
■ Gzip (compression level 6) outputs binary format

- Fatorized output in text format (each digit takes one character)

Observations:
■ Gzip does not exploit distant repetitions!

- Factorizations can be arbitrarily more succinct than gzipped relations.

■ Gzipping factorizations improves the compression by $3 x$.

Factorization Gains in Practice (1/3)

US retailer dataset used for LogicBlox/Predictix analytics

■ Relations: Inventory (84M), Sales (1.5M), Clearance (368K), Promotions (183K), Census (1K), Location (1K).

- Compression factors (caching not used):
- 26.61x for natural join of Inventory, Census, Location.
- 159.59x for natural join of Inventory, Sales, Clearance, Promotions

Factorization Gains in Practice (2/3)

LastFM public dataset

■ Relations: UserArtists (93K), UserFriends (25K), TaggedArtists (186K).

- Compression factors:
- 143.54x for joining two copies of Userartists and Userfriends

With caching: 982.86x

- 253.34x when also joining on TaggedArtists
- 2.53x/ 3.04x/ 924.46x for triangle/4-clique/bowtie query on UserFriends
- 9213.51x/552Kx/ $\geq 86 \mathrm{Mx}$ for versions of triangle/4-clique/bowtie queries with copies for UserArtists for each UserFriend copy

Factorization Gains in Practice (3/3)

Twitter public dataset

■ Relation: Follower-Followee (1M)

- Compression factors:
- 2.69x for triangle query
- 3.48x for 4-clique query
- 4918.73x for bowtie query

Outline

What are Factorized Databases?
 Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

Join Queries

Given a join query Q, for any database \mathbf{D}, the join result $Q(\mathbf{D})$ can be computed in

- $O\left(|\mathbf{D}|^{\rho^{*}(Q)}\right)$ as flat representation
[NPRR'12]
- $O\left(|\mathbf{D}|^{s(Q)}\right)$ as factorization without caching
- $O\left(|\mathbf{D}|^{f h t w(Q)}\right)$ as factorization with caching

The above times essentially follow the succinctness gap. They are:

- worst-case optimal within the given representation model.
- modulo poly-log factors in $|\mathbf{D}|$.
- with respect to data complexity.

Aggregates \& Regression Models

SQL aggregates can be computed in one pass over factorized data. [BKOZ'13]

Polynomial Regression and Factorization Machines models of degree d can be learned over a factorized relation with schema $\left(X_{1}, \ldots, X_{n}\right)$ in two steps:
[OS'16]

1. Data-dependent step: Aggregate computation

$$
\sum \times_{i \in S} X_{i} \text {, where } S \subseteq\left\{X_{1}, \ldots, X_{n}\right\} \text { is a multiset of arity } \leq 2 d
$$

2. Data-independent step: Convergence of the model parameter Perform fixpoint computation on top of the aggregates.

Outline

What are Factorized Databases?
Factorizing the Data
Factorizing the Computation
Linear Regression in more Detail

Regression Recap

- Training dataset computed as join of database tables

$$
\left(\begin{array}{cccc}
y^{(1)} & x_{1}^{(1)} & \ldots & x_{n}^{(1)} \\
y^{(2)} & x_{1}^{(2)} & \ldots & x_{n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
y^{(m)} & x_{1}^{(m)} & \ldots & x_{n}^{(m)}
\end{array}\right)
$$

$y^{(i)}$ are labels, $x_{1}^{(i)}, \ldots, x_{n}^{(i)}$ are features, all mapped to reals.

- We'd like to learn the parameters $\Theta=\left(\theta_{0}, \ldots, \theta_{n}\right)$ of the linear function

$$
h_{\Theta}(x)=\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{n} x_{n}
$$

For uniformity, we add $x_{0}=1$ so that $h_{\Theta}(x)=\sum_{k=0}^{n} \theta_{k} x_{k}$.

- Function h_{Θ} approximates the label y of unseen tuples $\left(x_{1}, \ldots, x_{n}\right)$.

Least-Squares Linear Regression

- We consider the least squares regression model with the cost function:

$$
J(\Theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\Theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Least-Squares Linear Regression

- We consider the least squares regression model with the cost function:

$$
J(\Theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\Theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Batch gradient descent (BGD):

- Repeatedly change Θ to make $J(\Theta)$ smaller until convergence:

$$
\begin{aligned}
\forall 0 \leq j \leq n: \theta_{j} & :=\theta_{j}-\alpha \frac{\delta}{\delta \theta_{j}} J(\Theta) \\
& :=\theta_{j}-\alpha \sum_{i=1}^{m}\left(\sum_{k=0}^{n} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is the learning rate.

Least-Squares Linear Regression

- We consider the least squares regression model with the cost function:

$$
J(\Theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\Theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Batch gradient descent (BGD):
■ Repeatedly change Θ to make $J(\Theta)$ smaller until convergence:

$$
\begin{aligned}
\forall 0 \leq j \leq n: \theta_{j} & :=\theta_{j}-\alpha \frac{\delta}{\delta \theta_{j}} J(\Theta) \\
& :=\theta_{j}-\alpha \sum_{i=1}^{m}\left(\sum_{k=0}^{n} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is the learning rate.
- We consider wlog that y is also part of x 's and has $\theta=-1$.

■ We thus need to compute the following aggregates:

$$
\forall 0 \leq j \leq n: S_{j}=\sum_{i=1}^{m}\left(\sum_{k=0}^{n} \theta_{k} x_{k}^{(i)}\right) x_{j}^{(i)}
$$

F: Factorised Regression

■ The sums

$$
\forall 0 \leq j \leq n: S_{j}=\sum_{i=1}^{m}\left(\sum_{k=0}^{n} \theta_{k} x_{k}^{(i)}\right) x_{j}^{(i)}
$$

can be rewritten so that we can express the cofactor of each θ_{k} in S_{j} :

$$
\forall 0 \leq j \leq n: S_{j}=\sum_{k=0}^{n} \theta_{k} \times \text { Cofactor }_{k j}
$$

where Cofactor ${ }_{k j}=\sum_{i=1}^{m} x_{k}^{(i)} x_{j}^{(i)}$
■ We decouple the computation of cofactors from convergence of Θ.

- The cofactor computation only depends on the input data.
- Convergence can be done once the cofactors are computed.
- F computes the cofactors in one pass over the factorised input dataset.
- The redundancy in the flat data is not necessary for learning!

Complexity of F

For a training dataset defined by a join query Q over any database \mathbf{D}, F learns the parameters of any linear function in time $O\left(|\mathbf{D}|^{f h t w(Q)}\right)$.

For $(\alpha$-)acyclic joins, fhtw $=1$ and \mathbf{F} learns in optimal time.

Extensions of \mathbf{F}

■ Push cofactor matrix computation inside the factorized join computation!

- Removing the lion's share of the computation, and computing cofactor matrix in one pass over the input data.
- F/SQL: Compute cofactor matrix in SQL.
- Allowing for direct implementation of \mathbf{F} in any standard Relational DBMS.
- F currently supports
- any arbitrary nonlinear basis functions,
- polynomial regression models, and
- factorisation machines.

The data complexity stays the same as for linear regression.

- Multi-core and distributed learning further improve performance of joins and aggregates.

■ Categorical features needed in real-world cases.

- Resulting large number of features require a slightly different approach.

Learning Regression Models in Practice

Competing systems:

- F: Our learner over factorized joins
- Next slide: Times for running in one thread on one machine.

■ \mathbf{R} (QR-decomposition)

- Python StatsModels (ordinary least squares)
- and MADlib (generalized linear model (glm), ordinary least squares (ols))

Datasets:
■ US Retailer: Predict the amount of inventory units.

- LastFM: Predict how often a user would listen to an artist based on similar information for its friends.

F versus R, Python StatsModels and MADlib

		US retailer	US retailer	LastFM	LastFM
model degree/\# params/\#agg	$1 / 31 / 496$	$2 / 496 / 123256$	$1 / 10 / 55$	$2 / 55 / 1540$	
	Factorized	$97,134,675$	$97,134,675$	315,818	315,818
Size	Flat	$2,585,046,352$	$2,585,046,352$	$590,793,800$	$590,793,800$
	Compression	$26.61 \times$	$26.61 \times$	$982.86 \times$	$982.86 \times$
Join	PostgreSQL	249.41	249.41	61.33	61.33
	F	3.28	3.28	0.065	0.065
Import	R	1189.12^{*}	1189.12^{*}	155.91	276.77
Time	P	1164.40^{*}	1164.40^{*}	179.16	328.97
Learn	M (glm)	2671.8^{*}	2937.49	572.88	746.50
Time	R	810.66^{*}	873.14^{*}	268.04	466.52
	P	1199.50^{*}	1277.10^{*}	35.74	148.84
	F	4.206	30.02	0.081	0.247
Total	M (ols)	680.60	3186.90	196.60	1382.49
Time	M (glm)	2921.29^{*}	-	807.83	-
	R	2249.19^{*}	-	804.62	-
	P	2613.31^{*}	-	539.14	-

- We consider Polynomial Regression models of degrees 1 and 2.
- Performance numbers are in seconds.

■ We assume data is in memory and sorted.

- P and R have an extra DBMS export \& import step (shown explicitly).

Thank you!

