
1 / 40

Learning Regression Models over
Factorized Joins

Maximilian Schleich

Dan Olteanu

and FDB Team & Collaborators

University of Oxford

http://www.cs.ox.ac.uk/projects/FDB/

September 2016

http://www.cs.ox.ac.uk/projects/FDB/

Our Key Observations & Results At a Glance

Join computation entails a high degree of redundancy, which can be

avoided by factorized computation and representation.

I We developed worst-case optimal factorized join algorithms. [TODS’15]

I Factorized joins require exponentially less time than standard joins.

I Aggregates (COUNT, SUM, MIN, MAX) can be computed in

one pass over factorized data. [VLDB’13]

Regression models can be learned in linear time over factorized joins.

I This translates to orders of magnitude performance improvements over

state of the art on real datasets.

2 / 40

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

3 / 40

Outline

Factorized Databases by Example

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

.

4 / 40

Factorized Databases by Example

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

.

A flat relational algebra expression encoding the above query result is:

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪ . . .

It uses relational product (×), union (∪), and data (singleton relations).

The attribute names are not shown to avoid clutter.
5 / 40

This is How Factorized Databases Look Like!

∪

〈burger〉 〈hotdog〉

× ×

∪

〈bun〉 〈onion〉 〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

Join tree Factorized representation of the join result

There are several algebraically equivalent factorized representations defined:

by distributivity of product over union and their commutativity;

as groundings of join trees.

6 / 40

.. Now with Further Compression

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

Observation:

price is under item, which is under dish, but only depends on item,

.. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!

7 / 40

Aggregates over Factorized Databases (1/2)

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

SQL aggregates can be computed in one pass over the factorization:

COUNT(*):

I values 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.

8 / 40

Aggregates over Factorized Databases (1/2)

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

dish

day item

costumer price

12

66

2 3

1 1 1

1 1

3 2

1 2

SQL aggregates can be computed in one pass over the factorization:

COUNT(*):

I values 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.

9 / 40

Aggregates over Factorized Databases (2/2)

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

SQL aggregates can be computed in one pass over the factorization:

SUM(dish * price):
I Assume there is a function f that turns dish into reals.
I All values except for dish & price 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.

10 / 40

Aggregates over Factorized Databases (2/2)

+

f (〈burger〉) f (〈hotdog〉)

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

dish

day item

costumer price

20∗f (〈burger〉)+16∗f (〈hotdog〉)

1620

2 10

1 1 6

2 2

8
2

4 2

SQL aggregates can be computed in one pass over the factorization:

SUM(dish * price):
I Assume there is a function f that turns dish into reals.
I All values except for dish & price 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.

11 / 40

Just ’Cause We Can: Same Data, Different Factorization

∪

〈Monday〉 〈Friday〉

× ×

∪ ∪

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Joe〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

〈Steve〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

day

costumer

dish

item

price

12 / 40

.. and Further Compressed

∪

〈Monday〉 〈Friday〉

× ×

∪ ∪

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Elise〉

×

∪

〈burger〉

×

〈Joe〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪

〈4〉

〈Steve〉

×

∪

〈hotdog〉

×

day

costumer

dish

item

price

13 / 40

Which factorized representations should we choose?

14 / 40

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

15 / 40

Outline

Size of Factorized Databases

The size of a factorization is the number of its values.

Example:

F1 =
(
〈1〉 ∪ · · · ∪ 〈n〉

)
×
(
〈1〉 ∪ · · · ∪ 〈m〉

)
F2 =〈1〉 × 〈1〉 ∪ · · · ∪ 〈1〉 × 〈m〉

∪ · · · ∪

〈n〉 × 〈1〉 ∪ · · · ∪ 〈n〉 × 〈m〉.

F1 is factorized, F2 is flat

F1 ≡ F2

BUT |F1| = m + n� |F2| = m ∗ n.

How much space does factorization save?

16 / 40

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

a flat representation of size O(|D|ρ
∗(Q)). [AGM’08]

a factorization without caching of size O(|D|s(Q)). [OZ’11]

a factorization with caching of size O(|D|fhtw(Q)). [OZ’15]

1 ≤ fhtw(Q) ≤︸︷︷︸
up to log |Q|

s(Q) ≤︸︷︷︸
up to |Q|

ρ∗(Q) ≤ |Q|

|Q| is the number of relations in Q

ρ∗(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q

17 / 40

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

a flat representation of size O(|D|ρ
∗(Q)). [AGM’08]

a factorization without caching of size O(|D|s(Q)). [OZ’11]

a factorization with caching of size O(|D|fhtw(Q)). [OZ’15]

1 ≤ fhtw(Q) ≤︸︷︷︸
up to log |Q|

s(Q) ≤︸︷︷︸
up to |Q|

ρ∗(Q) ≤ |Q|

|Q| is the number of relations in Q

ρ∗(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q

17 / 40

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

a flat representation of size O(|D|ρ
∗(Q)). [AGM’08]

a factorization without caching of size O(|D|s(Q)). [OZ’11]

a factorization with caching of size O(|D|fhtw(Q)). [OZ’15]

1 ≤ fhtw(Q) ≤︸︷︷︸
up to log |Q|

s(Q) ≤︸︷︷︸
up to |Q|

ρ∗(Q) ≤ |Q|

|Q| is the number of relations in Q

ρ∗(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q

17 / 40

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

a flat representation of size O(|D|ρ
∗(Q)). [AGM’08]

a factorization without caching of size O(|D|s(Q)). [OZ’11]

a factorization with caching of size O(|D|fhtw(Q)). [OZ’15]

1 ≤ fhtw(Q) ≤︸︷︷︸
up to log |Q|

s(Q) ≤︸︷︷︸
up to |Q|

ρ∗(Q) ≤ |Q|

|Q| is the number of relations in Q

ρ∗(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q

17 / 40

Size Bounds for Flat and Factorized Join Results

Given a join query Q, for any database D, the join result Q(D) admits

a flat representation of size O(|D|ρ
∗(Q)). [AGM’08]

a factorization without caching of size O(|D|s(Q)). [OZ’11]

a factorization with caching of size O(|D|fhtw(Q)). [OZ’15]

These size bounds are asymptotically tight!

Best possible bounds for representations obtained by grounding join trees

of Q, but not necessarily instance optimal:

There exists databases D such that the grounding of any join tree of Q

over D has sizes: Ω(|D|ρ
∗(Q)), Ω(|D|s(Q)), and respectively Ω(|D|fhtw(Q)).

18 / 40

Factorization Example

Consider the following join query:

Q = R(A,B,C), S(A,B,D),T (A,E),U(E,F).

Its hypergraph (relations = hyperedges, variables = nodes) and join tree:

A

B

C D

E

F

R S

T

U

We assume for simplicity databases D such that

|R| = |S | = |T | = |U| = O(|D|).

19 / 40

Fractional Edge Cover Number ρ∗(Q)

A

B

C D

E

F

R S

T

U

Upper bound O(|D|3) on the size of query result:

Edges R, S ,U cover the whole query: EdgeCover(Q) ≤ 3.

Lower bound Ω(|D|3) on the size of query result:

Each of C , D, and F must be covered by an edge: IndSet(Q) ≥ 3.

⇒ ρ∗(Q) = 3

⇒ The size of the query result is at most cubic and

⇒ there are databases for which the size must be cubic.

20 / 40

Factorization Width s(Q)

A

B

C D

E

F

R S

T

U⋃
a∈A

(
〈a〉 ×

⋃
b∈B

(
〈b〉 ×

(⋃
c∈C

〈c〉
)
×
(⋃
d∈D

〈d〉
))
×
⋃
e∈E

(
〈e〉 ×

(⋃
f∈F

〈f 〉
)))

The number of values for a variable is dictated by the number of actual

combinations of values for its ancestors:

One value 〈f 〉 for each tuple (a, e, f) in the query result.

The number of F -values is |πA,E ,F (Q(D))|.

Size of factorization = sum of sizes of results of subqueries along paths.

s(Q) is the largest ρ∗(Q ′) for subqueries Q ′ along paths in Q.

21 / 40

Factorization Width s(Q)

A

B

C D

E

F

R S

T

U

Path A–E–F has ρ∗ = 2.

⇒ The number of F -values is ≤ |D|2, but can be ∼ |D|2.

All other root-to-leaf paths have ρ∗ = 1.

⇒ The number of values for any other variable is ≤ |D|.

s(Q) = 2 ⇒ Factorization size ∼ |D|2

Recall that ρ∗(Q) = 3 ⇒ Flat size ∼ |D|3

22 / 40

Fractional Hypertree Width fhtw(Q)

Idea: Avoid repeating an identical expression and cache it instead.

A

B

C D

E

F

R S

T

U⋃
a∈A

[
〈a〉 × · · · ×

⋃
e∈E

(
〈e〉 ×

(⋃
f∈F

〈f 〉
))]

F only depends on E and not on A.

A value 〈e〉 binds with the same union
⋃

(e,f)∈U〈f 〉 regardless of the value

〈a〉 above it.

⇒ Define Ue =
⋃

(e,f)∈U〈f 〉 for each value 〈e〉 and use Ue instead of the

union
⋃

(e,f)∈U〈f 〉.

23 / 40

Fractional Hypertree Width fhtw(Q)

Idea: Avoid repeating an identical expression and cache it instead.

A

B

C D

E

F

R S

T

U

A factorization with caching would be:⋃
a∈A

[
〈a〉 × · · · ×

⋃
e∈E

(
〈e〉 × Ue

)]
;

{
Ue =

⋃
(e,f)∈U

〈f 〉
}

The width fhtw(Q):

Like s(Q), it is the largest ρ∗(Q ′) for subqueries Q ′ along paths in Q,

BUT for each variable, only consider those ancestors it depends on!

For F , we only consider the subquery over E and F (i.e., U) and ignore A.

For our example: fhtw(Q) = 1 < s(Q) = 2 < ρ∗(Q) = 3.
24 / 40

Compression Contest: Factorized vs. Zipped Relations

 1

 10

 100

 1 2 4 8 16 32

C
om

pr
es

si
on

 ra
tio

Database Scale

Tabular/Factorized
Tabular/Gzip(Tabular)

Factorized/Gzip(Factorized)

Setup: [BKOZ’13]

Flat = flat result of join Orders 1 Dish 1 Items in CSV text format

Gzip (compression level 6) outputs binary format

Fatorized output in text format (each digit takes one character)

Observations:

Gzip does not exploit distant repetitions!

Factorizations can be arbitrarily more succinct than gzipped relations.

Gzipping factorizations improves the compression by 3x.

Factorization Gains in Practice (1/3)

US retailer dataset used for LogicBlox/Predictix analytics

Relations: Inventory (84M), Sales (1.5M), Clearance (368K), Promotions

(183K), Census (1K), Location (1K).

Compression factors (caching not used):

I 26.61x for natural join of Inventory, Census, Location.

I 159.59x for natural join of Inventory, Sales, Clearance, Promotions

26 / 40

Factorization Gains in Practice (2/3)

LastFM public dataset

Relations: UserArtists (93K), UserFriends (25K), TaggedArtists (186K).

Compression factors:

I 143.54x for joining two copies of Userartists and Userfriends

With caching: 982.86x

I 253.34x when also joining on TaggedArtists

I 2.53x/ 3.04x/ 924.46x for triangle/4-clique/bowtie query on UserFriends

I 9213.51x/ 552Kx/ ≥86Mx for versions of triangle/4-clique/bowtie queries

with copies for UserArtists for each UserFriend copy

27 / 40

Factorization Gains in Practice (3/3)

Twitter public dataset

Relation: Follower-Followee (1M)

Compression factors:

I 2.69x for triangle query

I 3.48x for 4-clique query

I 4918.73x for bowtie query

28 / 40

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

29 / 40

Outline

Join Queries

Given a join query Q, for any database D, the join result Q(D) can be

computed in

O(|D|ρ
∗(Q)) as flat representation [NPRR’12]

O(|D|s(Q)) as factorization without caching [OZ’15]

O(|D|fhtw(Q)) as factorization with caching [OZ’15]

The above times essentially follow the succinctness gap. They are:

worst-case optimal within the given representation model.

modulo poly-log factors in |D|.

with respect to data complexity.

Aggregates & Regression Models

SQL aggregates can be computed in one pass over factorized data. [BKOZ’13]

Polynomial Regression and Factorization Machines models of degree d can be

learned over a factorized relation with schema (X1, . . . ,Xn) in two steps:

[OS’16]

1. Data-dependent step: Aggregate computation

∑
×i∈SXi , where S ⊆ {X1, . . . ,Xn} is a multiset of arity ≤ 2d .

2. Data-independent step: Convergence of the model parameter

Perform fixpoint computation on top of the aggregates.

What are Factorized Databases?

Factorizing the Data

Factorizing the Computation

Linear Regression in more Detail

32 / 40

Outline

Regression Recap

Training dataset computed as join of database tables
y (1) x

(1)
1 . . . x

(1)
n

y (2) x
(2)
1 . . . x

(2)
n

...
...

. . .
...

y (m) x
(m)
1 . . . x

(m)
n

y (i) are labels, x

(i)
1 , . . . , x

(i)
n are features, all mapped to reals.

We’d like to learn the parameters Θ = (θ0, . . . , θn) of the linear function

hΘ(x) = θ0 + θ1x1 + . . .+ θnxn.

For uniformity, we add x0 = 1 so that hΘ(x) =
∑n

k=0 θkxk .

Function hΘ approximates the label y of unseen tuples (x1, . . . , xn).

33 / 40

Least-Squares Linear Regression

We consider the least squares regression model with the cost function:

J(Θ) =
1

2

m∑
i=1

(hΘ(x (i))− y (i))2

Batch gradient descent (BGD):

Repeatedly change Θ to make J(Θ) smaller until convergence:

∀0 ≤ j ≤ n : θj := θj − α
δ

δθj
J(Θ)

:= θj − α
m∑
i=1

(
n∑

k=0

θkx
(i)
k − y (i))x

(i)
j .

α is the learning rate.

We consider wlog that y is also part of x ’s and has θ = −1.

We thus need to compute the following aggregates:

∀0 ≤ j ≤ n : Sj =
m∑
i=1

(
n∑

k=0

θkx
(i)
k)x

(i)
j .

34 / 40

Least-Squares Linear Regression

We consider the least squares regression model with the cost function:

J(Θ) =
1

2

m∑
i=1

(hΘ(x (i))− y (i))2

Batch gradient descent (BGD):

Repeatedly change Θ to make J(Θ) smaller until convergence:

∀0 ≤ j ≤ n : θj := θj − α
δ

δθj
J(Θ)

:= θj − α
m∑
i=1

(
n∑

k=0

θkx
(i)
k − y (i))x

(i)
j .

α is the learning rate.

We consider wlog that y is also part of x ’s and has θ = −1.

We thus need to compute the following aggregates:

∀0 ≤ j ≤ n : Sj =
m∑
i=1

(
n∑

k=0

θkx
(i)
k)x

(i)
j .

34 / 40

Least-Squares Linear Regression

We consider the least squares regression model with the cost function:

J(Θ) =
1

2

m∑
i=1

(hΘ(x (i))− y (i))2

Batch gradient descent (BGD):

Repeatedly change Θ to make J(Θ) smaller until convergence:

∀0 ≤ j ≤ n : θj := θj − α
δ

δθj
J(Θ)

:= θj − α
m∑
i=1

(
n∑

k=0

θkx
(i)
k − y (i))x

(i)
j .

α is the learning rate.

We consider wlog that y is also part of x ’s and has θ = −1.

We thus need to compute the following aggregates:

∀0 ≤ j ≤ n : Sj =
m∑
i=1

(
n∑

k=0

θkx
(i)
k)x

(i)
j .

34 / 40

F: Factorised Regression

The sums

∀0 ≤ j ≤ n : Sj =
m∑
i=1

(
n∑

k=0

θkx
(i)
k)x

(i)
j .

can be rewritten so that we can express the cofactor of each θk in Sj :

∀0 ≤ j ≤ n : Sj =
n∑

k=0

θk × Cofactorkj

where Cofactorkj =
∑m

i=1 x
(i)
k x

(i)
j

We decouple the computation of cofactors from convergence of Θ.
I The cofactor computation only depends on the input data.
I Convergence can be done once the cofactors are computed.

F computes the cofactors in one pass over the factorised input dataset.

I The redundancy in the flat data is not necessary for learning!

35 / 40

Complexity of F

For a training dataset defined by a join query Q over any database D,

F learns the parameters of any linear function in time O(|D|fhtw(Q)).

For (α-)acyclic joins, fhtw = 1 and F learns in optimal time.

36 / 40

Extensions of F

Push cofactor matrix computation inside the factorized join computation!
I Removing the lion’s share of the computation, and computing cofactor

matrix in one pass over the input data.

F/SQL: Compute cofactor matrix in SQL.
I Allowing for direct implementation of F in any standard Relational DBMS.

F currently supports
I any arbitrary nonlinear basis functions,
I polynomial regression models, and
I factorisation machines.

The data complexity stays the same as for linear regression.

Multi-core and distributed learning further improve performance of joins

and aggregates.

Categorical features needed in real-world cases.
I Resulting large number of features require a slightly different approach.

37 / 40

Learning Regression Models in Practice

Competing systems:

F: Our learner over factorized joins
I Next slide: Times for running in one thread on one machine.

R (QR-decomposition)

Python StatsModels (ordinary least squares)

and MADlib (generalized linear model (glm), ordinary least squares (ols))

Datasets:

US Retailer: Predict the amount of inventory units.

LastFM: Predict how often a user would listen to an artist based on

similar information for its friends.

38 / 40

F versus R, Python StatsModels and MADlib
US retailer US retailer LastFM LastFM

model degree/# params/#agg 1/31/496 2/496/123256 1/10/55 2/55/1540

Factorized 97,134,675 97,134,675 315,818 315,818

Size Flat 2,585,046,352 2,585,046,352 590,793,800 590,793,800

Compression 26.61× 26.61× 982.86× 982.86×
Join PostgreSQL 249.41 249.41 61.33 61.33

F 3.28 3.28 0.065 0.065

Import R 1189.12* 1189.12* 155.91 276.77

Time P 1164.40* 1164.40* 179.16 328.97

Learn M (glm) 2671.88 2937.49 572.88 746.50

Time R 810.66* 873.14* 268.04 466.52

P 1199.50* 1277.10* 35.74 148.84

F 4.206 30.02 0.081 0.247

Total M (ols) 680.60 3186.90 196.60 1382.49

Time M (glm) 2921.29* – 807.83 –

R 2249.19* – 804.62 –

P 2613.31* – 539.14 –

We consider Polynomial Regression models of degrees 1 and 2.

Performance numbers are in seconds.

We assume data is in memory and sorted.
I P and R have an extra DBMS export & import step (shown explicitly).

39 / 40

Thank you!

40 / 40

	What are Factorized Databases?
	Factorizing the Data
	Factorizing the Computation
	Linear Regression in more Detail

