
1 / 171

From Joins to Aggregates

and Optimization Problems

Dan Olteanu (Oxford & Turing)

https://fdbresearch.github.io

Data Science Class

Alan Turing Institute

Jan 29, 2018

https://fdbresearch.github.io


Acknowledgements

Some work reported in this tutorial has been done in the context of the FDB

project, LogicBlox, and RelationalAI by
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Goal of This Tutorial

Introduction to a principled, relatively new approach to in-database computation

It starts where mainstream introductory/advanced courses on databases finish.

Joins
I Worst-case optimal join algorithms
I Listing vs. factorized representations of join results

Aggregates
I Generalization of join algorithms to aggregates over joins
I Functional aggregate queries with applications in, e.g., DB, logic,

probabilistic graphical models, matrix chain computation
I New algorithms with low computational complexity

Optimizations
I In-database learning of regression and classification models

Quizzes: Test your understanding after class
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Part 1. Joins

Part 2. Aggregates

Part 3. Optimization
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Join Queries

Basic building blocks in query languages. Studied extensively.

However, worst-case optimal join algorithms were only proposed recently.

[NPRR12,NRR13,V14,OZ15,ANS17]

Likewise for systematic investigation of redundancy in the computation and

representation of join results. [OZ12,OZ15,KO17]

This tutorial highlights recent work on worst-case optimal join algorithms under

listing and factorized data representations.
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Plan for Part 1 on Joins

Introduction to join queries via examples

Size bounds for results of join queries

I Standard (exhaustive) listing representation

I Factorized (succinct) representations

Worst-case optimal join algorithms

I LFTJ (LeapFrog TrieJoin) used by LogicBlox for listing representation

I FDB (Factorized Databases) for factorized representations
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Introduction to Join Queries
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Join Example: Itemized Customer Orders

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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Join Example: Listing the Triangles in the Database

R1 R2 R3 R1(A,B),R2(A,C),R3(B,C)

A B

a0 b0

a0 . . .

a0 bm

a1 b0

. . . b0

am b0

A C

a0 c0

a0 . . .

a0 cm

a1 c0

. . . c0

am c0

B C

b0 c0

b0 . . .

b0 cm

b1 c0

. . . c0

bm c0

A B C

a0 b0 c0

a0 b0 . . .

a0 b0 cm

a0 b1 c0

a0 . . . c0

a0 bm c0

a1 b0 c0

. . . b0 c0

a1 b0 c0
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Join Hypergraphs

We associate a hypergraph H = (V, E) with every join query Q

Each variable in Q corresponds to a node in V

Each relation symbol in Q corresponds to a (hyper)edge in E

Example: Triangle query R1(A,B),R2(A,C),R3(B,C)

R1 R2

R3

A

B C

V = {A,B,C}

E = {{A,B}, {A,C}, {B,C}}
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Join Hypergraphs

We associate a hypergraph H = (V, E) with every join query Q

Each variable in Q corresponds to a node in V

Each relation symbol in Q corresponds to a (hyper)edge in E

Example: Order query O(cust, day, dish),D(dish, item), I (item, price)

O

D

I

dish

day item

cust price

V = {cust, day, dish, item, price}

E = {{cust, day, dish}, {dish, item}, {item, price}}

11 / 171



Hypertree Decompositions

Definition[GLS99]: A (hypertree) decomposition T of the hypergraph (V, E) of

a query Q is a pair (T , χ), where

T is a tree

χ is a function mapping each node in T to a subset of V called bag.

Properties of a decomposition T :

Coverage: ∀e ∈ E , there must be a node t ∈ T such that e ⊆ χ(t).

Connectivity: ∀v ∈ V, {t | t ∈ T , v ∈ χ(t)} forms a connected subtree.

The hypergraph of the query

R1(A,B),R2(B,C),R3(C ,D)

A hypertree decomposition

A

B

C

D

A,B

B,C

C ,D
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Hypertree Decompositions

Definition[GLS99]: A (hypertree) decomposition T of the hypergraph (V, E) of

a query Q is a pair (T , χ), where

T is a tree

χ is a function mapping each node in T to a subset of V called bag.

Properties of the decomposition T :

Coverage: ∀e ∈ E , there must be a node t ∈ T such that e ⊆ χ(t).

Connectivity: ∀v ∈ V, {t | t ∈ T , v ∈ χ(t)} forms a connected subtree.

The hypergraph of the triangle query

R1(A,B),R2(A,C),R3(B,C)

A hypertree decomposition

R1 R2

R3

A

B C

A,B,C
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Variable Orders

Definition[OZ15]: A variable order ∆ for a query Q is a pair (F , key), where

F is a rooted forest with one node per variable in Q

key is a function mapping each variable A to a subset of its ancestor

variables in F .

Properties of a variable order ∆ for Q:

For each relation symbol, its variables lie along the same root-to-leaf path

in F . For any such variables A and B, A ∈ key(B) if A is an ancestor of B.

For every child B of A, key(B) ⊆ key(A) ∪ {A}.

Possible variable orders for the path query R1(A,B),R2(B,C),R3(C ,D):

A

B

C

D

key(A) = ∅

key(B) = {A}

key(C) = {B}

key(D) = {C}

B

A C

D

key(B) = ∅

key(C) = {B}

key(D) = {C}

key(A) = {B}
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Variable Orders

Definition[OZ15]: A variable order ∆ for a query Q is a pair (F , key), where

F is a rooted forest with one node per variable in Q

key is a function mapping each variable A to a subset of its ancestor

variables in F .

Properties of a variable order ∆ for Q:

For each relation symbol, its variables lie along the same root-to-leaf path

in F . For any such variables A and B, A ∈ key(B) if A is an ancestor of B.

For every child B of A, key(B) ⊆ key(A) ∪ {A}.

Possible variable orders for the triangle query R1(A,B),R2(A,C),R3(B,C):

A

B

C

key(A) = ∅

key(B) = {A}

key(C) = {A,B}

B

A

C

key(B) = ∅

key(A) = {B}

key(C) = {A,B}

C

B

A

key(C) = ∅

key(B) = {C}

key(A) = {B,C}
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Hypertree Decompositions ⇔ Variable Orders

From variable order ∆ to hypertree decomposition T : [OZ15]

For each node A in ∆, create a bag key(A) ∪ {A}.

The bag for A is connected to the bags for its children and parent.

Optionally, remove redundant bags

Example: Triangle query R1(A,B),R2(A,C),R3(B,C)

A

B

C

key(A) = ∅

key(B) = {A}

key(C) = {A,B}

⇒

A

A,B

A,B,C

⇒ A,B,C
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Hypertree Decompositions ⇔ Variable Orders

From variable order ∆ to hypertree decomposition T : [OZ15]

For each node A in ∆, create a bag key(A) ∪ {A}.

The bag for A is connected to the bags for its children and parent.

Optionally, remove redundant bags

Example: Path query R1(A,B),R2(B,C),R3(C ,D)

A

B

C

D

key(A) = ∅

key(B) = {A}

key(C) = {B}

key(D) = {C}

⇒

A

A,B

B,C

C ,D

⇒ A,B

B,C

C ,D
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]

Create a node A in ∆ for a variable A in the top bag in T

Recurse with T where A is removed from all bags in T .

If top bag empty, then recurse independently on each of its child bags and

create children of A in ∆

Update key for each variable at each step.

Example: Triangle query R1(A,B),R2(A,C),R3(B,C)

Step 1:

A is removed from T
and inserted into ∆

A,B,C

⇒

A

B

C

key(A) = ∅

key(B) = {A}

key(C) = {A,B}
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]

Create a node A in ∆ for a variable A in the top bag in T

Recurse with T where A is removed from all bags in T .

If top bag empty, then recurse independently on each of its child bags and

create children of A in ∆

Update key for each variable at each step.

Example: Triangle query R1(A,B),R2(A,C),R3(B,C)

Step 2:

B is removed from T
and inserted into ∆

A,B,C ⇒

A

B

C

key(A) = ∅

key(B) = {A}

key(C) = {A,B}
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]

Create a node A in ∆ for a variable A in the top bag in T

Recurse with T where A is removed from all bags in T .

If top bag empty, then recurse independently on each of its child bags and

create children of A in ∆

Update key for each variable at each step.

Example: Triangle query R1(A,B),R2(A,C),R3(B,C)

Step 3:

C is removed from T
and inserted into ∆

A,B,C ⇒

A

B

C

key(A) = ∅

key(B) = {A}

key(C) = {A,B}
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]
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B
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]

Create a node A in ∆ for a variable A in the top bag in T

Recurse with T where A is removed from all bags in T .

If top bag empty, then recurse independently on each of its child bags and

create children of A in ∆

Update key for each variable at each step.

Example: Path query R1(A,B),R2(B,C),R3(C ,D)

Step 3:

C is removed from T
and inserted into ∆
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Hypertree Decompositions ⇔ Variable Orders

From hypertree decomposition T to variable order ∆: [OZ15]

Create a node A in ∆ for a variable A in the top bag in T

Recurse with T where A is removed from all bags in T .

If top bag empty, then recurse independently on each of its child bags and

create children of A in ∆

Update key for each variable at each step.

Example: Path query R1(A,B),R2(B,C),R3(C ,D)

Step 4:

D is removed from T
and inserted into ∆

A,B

B,C

C ,D

⇒

A

B

C

D

key(A) = ∅

key(B) = {A}

key(C) = {B}

key(D) = {C}
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Size Bounds for Listing Representation
of Join Results
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How Can We Bound the Size of the Join Result?

Example: the path query R1(A,B),R2(B,C),R3(C ,D)

Assumption: All relations have size N.

The result is included in the result of R1(A,B),R3(C ,D)

I Its size is upper bounded by N2 = |R1| × |R3|
I All variables are ”covered” by the relations R1 and R3

There are databases for which the result size is at least N2

I Let R1 = [N]× {1},R2 = {1} × [N],R3 = [N]× {1}.

Conclusion: Size of the query result is Θ(N2) for some inputs
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How Can We Bound the Size of the Join Result?

Example: the triangle query R1(A,B),R2(A,C),R3(B,C)

Assumption: All relations have size N.

The result is included in the result of R1(A,B),R3(B,C)
I Its size is upper bounded by N2 = |R1| × |R3|
I All variables are ”covered” by the relations R1 and R3

There are databases for which the result size is at least N
I Let R1 = [N]× {1},R2 = [N]× {1},R3 ⊃ {(1, 1)}

Conclusion: Size gap between the N2 upper bound and the N lower bound

Question: Can we close this gap and give tight size bounds?
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Edge Covers and Independent Sets

We can generalize the previous examples as follows:

For the size upper bound:

Cover all nodes (variables) by k edges (relations) ⇒ size ≤ Nk .

This is an edge cover of the query hypergraph!

For the size lower bound:

m independent nodes ⇒ construct database such that size ≥ Nm.

This is an independent set of the query hypergraph!

maxm = |IndependentSet(Q)| ≤ |EdgeCover(Q)| = mink

maxm and mink do not necessarily meet!

Can we further refine this analysis?
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The Fractional Edge Cover Number ρ∗(Q)

The two bounds meet if we take their fractional versions [AGM08]

Fractional edge cover of Q with weight k ⇒ size ≤ Nk .

Fractional independent set with weight m ⇒ ∃ database with size ≥ Nm.

By duality of linear programming:

maxm = |FractionalIndependentSet(Q)| = |FractionalEdgeCover(Q)| = mink

This is the fractional edge cover number ρ∗(Q)!

For query Q and database of size N, the query result has size O(Nρ
∗(Q)).
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The Fractional Edge Cover Number ρ∗(Q)

For a join query Q(A1 ∪ · · · ∪ An) = R1(A1), . . . ,Rn(An),

ρ∗(Q) is the cost of an optimal solution to the linear program:

minimize
∑

i∈[n] xRi

subject to
∑

i :edge Ri covers node A xRi ≥ 1 ∀A ∈
⋃

j∈[n] Aj ,

xRi ≥ 0 ∀i ∈ [n].

xRi is the weight of edge (relation) Ri in the hypergraph of Q

Each node (variable) has to be covered by edges with sum of weights ≥ 1

In the integer program variant for the edge cover, xRi ∈ {0, 1}
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Example of Fractional Edge Cover Computation (1)

Consider the join query Q: R(A, B,C), S(A,B,D),T (A,E),U(E,F ).

A

B

C D

E

F

R

S
U

T

The three edges R, S ,U to cover all nodes.

FractionalEdgeCover(Q) ≤ 3

Each node C , D, and F must be covered by a distinct edge.

FractionalIndependentSet(Q) ≥ 3

⇒ ρ∗(Q) = 3

⇒ Size ≤ N3 and for some inputs is Θ(N3).

33 / 171



Example of Fractional Edge Cover Computation (2)

Consider the triangle query Q: R1(A,B),R2(A,C),R3(B,C).

R1 R2

R3

A

B C

minimize xR1 + xR2 + xR3

subject to

A : xR1 + xR2 ≥ 1

B : xR1 + xR3 ≥ 1

C : xR2 + xR3 ≥ 1

xR1 ≥ 0 xR2 ≥ 0 xR3 ≥ 0

Our previous size upper bound was N2:

This is obtained by setting any two of xR1 , xR2 , xR3 to 1.

What is the fractional edge cover number for the triangle query?

We can do better: xR1 = xR2 = xR3 = 1/2. Then, ρ∗ = 3/2.

Lower bound reaches N3/2 for R1 = R2 = R3 = [
√
N]× [

√
N].

34 / 171



Example of Fractional Edge Cover Computation (2)

Consider the triangle query Q: R1(A,B),R2(A,C),R3(B,C).

R1 R2

R3

A

B C

minimize xR1 + xR2 + xR3

subject to

A : xR1 + xR2 ≥ 1

B : xR1 + xR3 ≥ 1

C : xR2 + xR3 ≥ 1

xR1 ≥ 0 xR2 ≥ 0 xR3 ≥ 0

Our previous size upper bound was N2:

This is obtained by setting any two of xR1 , xR2 , xR3 to 1.

What is the fractional edge cover number for the triangle query?

We can do better: xR1 = xR2 = xR3 = 1/2. Then, ρ∗ = 3/2.

Lower bound reaches N3/2 for R1 = R2 = R3 = [
√
N]× [

√
N].

34 / 171



Example of Fractional Edge Cover Computation (3)

Consider the (4-cycle) join: R(A1,A2),S(A2,A3),T (A3,A4),W (A4,A1).

The linear program for its fractional edge cover number:

R

T

W S

A1 A2

A3A4

minimize xR + xS + xT + xW

subject to

A1 : xR + xW ≥ 1

A2 : xR + xS ≥ 1

A3 : xS + xT ≥ 1

A4 : xT + xW ≥ 1

xR ≥ 0 xS ≥ 0 xT ≥ 0 xW ≥ 0

Possible solution: xR = xT = 1. Another solution: xS = xW = 1. Then, ρ∗ = 2.

Lower bound reaches N2 for R = T = [N]× {1} and S = W = {1} × [N].
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Refinement under Cardinality Constraints

Common case in practice:

Relations have different sizes

Small-size projections of relations may be added to the join query

Recall the linear program for computing the fractional edge cover number

ρ∗(Q) of a join query Q(A1 ∪ · · · ∪ An) = R1(A1), . . . ,Rn(An):

minimize
∑

i∈[n] xRi

subject to
∑

i :edge Ri covers node A xRi ≥ 1 ∀A ∈
⋃

j∈[n] Aj ,

xRi ≥ 0 ∀i ∈ [n].
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Refinement under Cardinality Constraints

Common case in practice:

Relations have different sizes

Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a

join query Q(A1 ∪ · · · ∪ An) = R1(A1), . . . ,Rn(An):

minimize N
∑

i∈[n] xRi

subject to
∑

i :edge Ri covers node A xRi ≥ 1 ∀A ∈
⋃

j∈[n] Aj ,

xRi ≥ 0 ∀i ∈ [n].

Assumption: All relations have the same size N.
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Refinement under Cardinality Constraints

Common case in practice:

Relations have different sizes

Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a

join query Q(A1 ∪ · · · ∪ An) = R1(A1), . . . ,Rn(An):

minimize
∏

i∈[n] N
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subject to
∑

i :edge Ri covers node A xRi ≥ 1 ∀A ∈
⋃
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xRi ≥ 0 ∀i ∈ [n].

Assumption: All relations have the same size N.
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Refinement under Cardinality Constraints

Common case in practice:

Relations have different sizes

Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a

join query Q(A1 ∪ · · · ∪ An) = R1(A1), . . . ,Rn(An):

minimize
∏

i∈[n] N
xi
i

subject to
∑

i :edge Ri covers node A xRi ≥ 1 ∀A ∈
⋃

j∈[n] Aj ,

xRi ≥ 0 ∀i ∈ [n].

Assumption: Relation Ri has size Ni , ∀i ∈ [n].
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Size Bounds for Factorized Representations
of Join Results
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Recall the Itemized Customer Orders Example

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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Factor Out Common Data Blocks

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .

The listing representation of the above query result is:

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪ . . .

It uses relational product (×), union (∪), and data (singleton relations).

The attribute names are not shown to avoid clutter.
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This is How A Factorized Join Looks Like!

∪

〈burger〉 〈hotdog〉

× ×

∪

〈bun〉 〈onion〉 〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

customer price

Var order Factorized representation of the join result

There are several algebraically equivalent factorized representations defined:

by distributivity of product over union and their commutativity;

as groundings of variable orders.

43 / 171



.. Now with Further Compression using Caching

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

Observation:

price is under item, which is under dish, but only depends on item,

.. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!
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Same Data, Different Factorization

∪

〈Monday〉 〈Friday〉

× ×

∪ ∪

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Joe〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

〈Steve〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪ ∪ ∪

〈2〉 〈2〉 〈4〉

day

customer

dish

item

price
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.. and Further Compressed using Caching

∪

〈Monday〉 〈Friday〉

× ×

∪ ∪

〈Elise〉

×

∪

〈burger〉

×

∪

〈patty〉〈bun〉〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

〈Elise〉

×

∪

〈burger〉

×

〈Joe〉

×

∪

〈hotdog〉

×

∪

〈bun〉 〈onion〉〈sausage〉

× × ×

∪

〈4〉

〈Steve〉

×

∪

〈hotdog〉

×

day∅

customer
{day}

dish
{customer ,

day}

item
{dish}

price
{item}
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Which factorization should we choose?

The size of a factorization is the number of its values.

Example:

F1 =
(
〈1〉 ∪ · · · ∪ 〈n〉

)
×
(
〈1〉 ∪ · · · ∪ 〈m〉

)
F2 =〈1〉 × 〈1〉 ∪ · · · ∪ 〈1〉 × 〈m〉

∪ · · · ∪

〈n〉 × 〈1〉 ∪ · · · ∪ 〈n〉 × 〈m〉.

F1 is factorized, F2 is a listing representation

F1 ≡ F2

BUT |F1| = m + n� |F2| = m ∗ n.

How much space does factorization save over the listing representation?
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Size Bounds for Join Results

Given a join query Q, for any database of size N, the join result admits

a listing representation of size O(Nρ
∗(Q)). [AGM08]

a factorization without caching of size O(Ns(Q)). [OZ12]

a factorization with caching of size O(N fhtw(Q)). [OZ15]

1 ≤ fhtw(Q) ≤︸︷︷︸
up to log |Q|

s(Q) ≤︸︷︷︸
up to |Q|

ρ∗(Q) ≤ |Q|

|Q| is the number of relations in Q

ρ∗(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q

fhtw(Q) is the fractional hypertree width of Q [M10]
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Size Bounds for Join Results

Given a join query Q, for any database of size N, the join result admits

a listing representation of size O(Nρ
∗(Q)). [AGM08]

a factorization without caching of size O(Ns(Q)). [OZ12]

a factorization with caching of size O(N fhtw(Q)). [OZ15]

These size bounds are asymptotically tight!

Best possible size bounds for factorized representations over variable

orders of Q and for listing representation, but not database optimal!

There exists arbitrarily large databases for which
I the listing representation has size Ω(Nρ

∗(Q))
I the factorization with/without caching over any variable order of Q has size

Ω(Ns(Q)) and Ω(N fhtw(Q)) respectively.
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Example: The Factorization Width s

A

B

C D

E

F

R

S
U

T A

B

C D

E

F

The structure of the factorization over the above variable order ∆:⋃
a∈A

(
〈a〉 ×

⋃
b∈B

(
〈b〉 ×

( ⋃
c∈C

〈c〉
)
×
( ⋃
d∈D

〈d〉
))
×
⋃
e∈E

(
〈e〉 ×

( ⋃
f∈F

〈f 〉
)))

The number of values for a variable is dictated by the number of valid tuples of

values for its ancestors in ∆:

One value 〈f 〉 for each tuple (a, e, f ) in the join result.

Size of factorization = sum of sizes of results of subqueries along paths.
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Example: The Factorization Width s

A

B

C D

E

F

R

S
U

T A

B

C D

E

F

The factorization width for ∆ is the largest ρ∗ over subqueries defined by

root-to-leaf paths in ∆

s(Q) is the minimum factorization width over all variable orders of Q

In our example:

Path A–E–F has fractional edge cover number 2.

⇒ The number of F -values is ≤ N2, but can be ∼ N2.

All other root-to-leaf paths have fractional edge cover number 1.

⇒ The number of other values is ≤ N.

s(Q) = 2 ⇒ Factorization size is O(N2)

Recall that ρ∗(Q) = 3 ⇒ Listing representation size is O(N3)
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Example: The Fractional Hypertree Width fhtw

Idea: Avoid repeating identical expressions, store them once and use pointers.

A

B

C D

E

F

R

S
U

T A

B

C D

E

F

key(A) = ∅

key(B) = {A}

key(C) = {A,B} key(D) = {A,B}

key(E) = {A}

key(F ) = {E}

⋃
a∈A

[
〈a〉 × · · · ×

⋃
e∈E

(
〈e〉 ×

( ⋃
f∈F

〈f 〉
))]

Observation:

Variable F only depends on E and not on A: key(F ) = {E}

A value 〈e〉 maps to the same union
⋃

(e,f )∈U〈f 〉 regardless of its pairings

with A-values.

⇒ Define Ue =
⋃

(e,f )∈U〈f 〉 for each value 〈e〉 and use Ue instead of the

union
⋃

(e,f )∈U〈f 〉.
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Example: The Fractional Hypertree Width fhtw

Idea: Avoid repeating identical expressions, store them once and use pointers.

A

B

C D

E

F

R

S
U

T A

B

C D

E

F

key(A) = ∅

key(B) = {A}

key(C) = {A,B} key(D) = {A,B}

key(E) = {A}

key(F ) = {E}

A factorization with caching would be:⋃
a∈A

[
〈a〉 × · · · ×

⋃
e∈E

(
〈e〉 × Ue

)]
;

{
Ue =

⋃
(e,f )∈U

〈f 〉
}

fhtw for ∆ is the largest ρ∗(Qkey(X )∪{X}) over subqueries Qkey(X )∪{X}

defined by the variables key(X ) ∪ {X} for each variable X in ∆

fhtw(Q) is the minimum fhtw over all variable orders of Q

In our example: fhtw(Q) = 1 < s(Q) = 2 < ρ∗(Q) = 3.
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Alternative Characterizations of fhtw

The fractional hypertree width fhtw has been originally defined for hypertree

decompositions. [M10]

Given a join query Q.

Let T be the set of hypertree decompositions of the hypergraph of Q.

fhtw(Q) = min(T ,χ)∈T maxn∈T ρ
∗(Qχ(n))

Alternative characterization of the fractional hypertree width fhtw using the

mapping between hypertree decompositions and variable orders [OZ15]

Given a join query Q.

Let VO be the set of variable orders of Q.

fhtw(Q) = min(F ,key)∈VO maxv∈F ρ
∗(Qkey(v)∪{v})
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Relational Counterpart
of Factorized Representation
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Covers: Relational Counterparts of Factorizations

Factorized representations are not relational :(

I This makes it difficult to integrate them into relational data systems

Covers of Query Results [KO17]

I Relations that are lossless representations of query results, yet are as

succinct as factorized representations

I For a join query Q and any database of size N, a cover has size O(N fhtw(Q))

and can be computed in time Õ(N fhtw(Q))

How to get a cover?

I Construct a hypertree decomposition of the query

I Project query result onto the bags of the hypertree decomposition

I Construct on these projections the hypergraph of the query result

I Take a minimal edge cover of this hypergraph
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Recall the Itemized Customer Orders Example

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6
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. . . . . . . . . . . . . . .
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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A Minimal Edge Cover of the Hypergraph

Elise Monday burger

Elise Friday burger

burger patty

burger onion

burger bun

patty 6

onion 2

bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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A Cover of (a part of) the Query Result

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

customer,day,dish

dish,item

item,price

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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Compression by Factorization in Practice
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Compression Contest: Factorized vs. Zipped Relations

 1

 10

 100

 1  2  4  8  16  32

C
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tio

Database Scale

Tabular/Factorized
Tabular/Gzip(Tabular)

Factorized/Gzip(Factorized)

Result of query Orders 1 Dish 1 Items [BKOZ13]

Tabular = listing representation in CSV text format

Gzip (compression level 6) outputs binary format

Factorized representation in text format (each digit takes one character)

Observations:

Gzip does not exploit distant repetitions!

Factorizations can be arbitrarily more succinct than gzipped relations.

Gzipping factorizations improves the compression by 3x.
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Factorization Gains in Practice (1/3)

Retailer dataset used for LogicBlox analytics

Relations: Inventory (84M), Sales (1.5M), Clearance (368K), Promotions

(183K), Census (1K), Location (1K).

Compression factors (caching not used):

I 26.61x for natural join of Inventory, Census, Location.

I 159.59x for natural join of Inventory, Sales, Clearance, Promotions
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Factorization Gains in Practice (2/3)

LastFM public dataset

Relations: UserArtists (93K), UserFriends (25K), TaggedArtists (186K).

Compression factors:

I 143.54x for joining two copies of Userartists and Userfriends

With caching: 982.86x

I 253.34x when also joining on TaggedArtists

I 2.53x/ 3.04x/ 924.46x for triangle/4-clique/bowtie query on UserFriends

I 9213.51x/ 552Kx/ ≥86Mx for versions of triangle/4-clique/bowtie queries

with copies for UserArtists for each UserFriend copy
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Factorization Gains in Practice (3/3)

Twitter public dataset

Relation: Follower-Followee (1M)

Compression factors:

I 2.69x for triangle query

I 3.48x for 4-clique query

I 4918.73x for bowtie query
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Worst-Case Optimal Join Algorithms
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How Fast Can We Compute Join Results?

Given a join query Q, for any database of size N, the join result can be

computed in time

Õ(Nρ
∗(Q)) as listing representation [NPRR12,V14]

Õ(Ns(Q)) as factorization without caching [OZ15]

Õ(N fhtw(Q)) as factorization with caching [OZ15]

These upper bounds essentially follow the succinctness gap. They are:

worst-case optimal (modulo logN) within the given representation model

with respect to data complexity
I additional quadratic factor in the number of variables and linear factor in

the number of relations in Q
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Example: Computing the Factorized Join Result with FDB

Our join: O(customer, day, dish), D(dish, item), I(item, price)

can be grounded to a factorized representation as follows:⋃
O( , ,dish),D(dish, )〈dish〉

×

⋃
O( ,day,dish)〈day〉

×

⋃
O(customer,day,dish)〈customer〉

⋃
D(dish,item)〈item〉

×

⋃
I (item,price)〈price〉

This computation follows the variable order given below:

dish

day

customer

item

price
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Example: Computing the Factorized Join Result with FDB

⋃
O( , ,dish),D(dish, )〈dish〉

×

⋃
O( ,day,dish)〈day〉

×

⋃
O(customer,day,dish)〈customer〉

⋃
D(dish,item)〈item〉

×

⋃
I (item,price)〈price〉

Relations are sorted following any topological order of the variable order

The intersection of relations O and D on dish takes time

O(Nmin log(Nmax/Nmin)) = Õ(Nmin), where Nm = m(|πdishO|, |πdishD|).

The remaining operations are lookups in the relations, where we first fix

the dish value and then the day and item values.
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LeapFrog TrieJoin Algorithm

Much acclaimed worst-case optimal join algorithm used by LogicBlox [V14]

Computes a listing representation of the join result

⇒ It does not exploit factorization

Glorified multi-way sort-merge join with an efficient list intersection

Several generalizations, e.g., PANDA [NRR13,ANS17]

LeapFrog TrieJoin is a special case of FDB, where

the input variable order ∆ is a path, and

for each variable A, key(A) consists of all ancestors of A in ∆.
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Experiment: Factorized vs. Listing Computation

Retailer (3B) LastFM (5.8M)

Join Factorization 169M 316K

Size Listing 3.6B 591M

(values) Compression 21.4× 1870.7×
Join FDB 30 10

Time PostgreSQL 217 61

(sec) Speedup 7× 6.1×
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Both FDB and PostgreSQL list the records in the results of the join queries.
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Part 1. Joins

Part 2. Aggregates

Part 3. Optimization
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Aggregates

Important operators in database query languages and essential for applications.

Natural generalization of aggregates over joins can express a host of problems

across Computer Science. [ANR16]

We highlight recent work on aggregate computation with lowest known

computational complexity. This extends the work from Part 1.

[BKOZ13,ANR16]

Part 3 later discusses an extension of this work to state-of-the-art machine

learning inside the database. [SOC16,ANNOS17]
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Plan for Part 2 on Aggregates

Computation of aggregates over factorized joins using the FDB algorithm

[BKOZ13]

Factorized computation of aggregates using optimized relational queries.

[SOC16,OS16]

Functional Aggregate Queries (FAQs) [ANR16]

I Generalize aggregate-join queries to many semirings, e.g., sum-product,

max-product, Boolean

I FAQ computation is factorized and has the computational complexity of

aggregates over factorized joins

FAQ computation using the InsideOut algorithm [ANR16]
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Examples: Aggregates over Factorized Joins
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Example 1: COUNT Aggregate over Factorized Join

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

SQL aggregates can be computed in one pass over the factorization:

COUNT(*):

I values 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.
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Example 1: COUNT Aggregate over Factorized Join

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

12

66

2 3

1 1 1

1 1

3 2

1 2

SQL aggregates can be computed in one pass over the factorization:

COUNT(*):

I values 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.
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Example 2: SumProd Aggregate over Factorized Join

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

SQL aggregates can be computed in one pass over the factorization:

SUM(dish * price):
I Assume there is a function f that turns dish into reals or indicator vectors.
I All values except for dish & price 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.
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Example 2: SumProd Aggregate over Factorized Join

+

f (〈burger〉) f (〈hotdog〉)

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

20∗f (〈burger〉)+16∗f (〈hotdog〉)

1620

2 10

1 1 6

2 2

8
2

4 2

SQL aggregates can be computed in one pass over the factorization:

SUM(dish * price):
I Assume there is a function f that turns dish into reals.
I All values except for dish & price 7→ 1,
I ∪ 7→ +,
I × 7→ ∗.
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Computing Aggregates over Factorized Joins using FDB

Given an aggregate-join query Q [BKOZ13]

Construct a variable order ∆ where the group-by (free) variables are
above the other (bound) variables of Q

I A new width w measure that is at least fhtw

Compute the factorized join over ∆

I The complexity now depends on the width w

Finally compute the aggregates in one pass over the factorized join.

Is it necessary to first compute the factorized join?

Aggregates can be computed without materializing the factorized join

The factorized join becomes the trace of the aggregate computation

This is the factorized computation of the query Q.
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Example: Factorized Aggregate Computation

The 4-path query Q4 on a graph with the edge relation E (Ei ’s are copies of E):

V1(A),E1(A,B),E2(B,C),E3(C ,D),E4(D,E),V2(E)

C

B D

A EV1 V2

E1 E4

E2 E3 C

B D

A E

key(A) = {B}

key(E) = {D}

key(B) = key(D) = {C}
key(C) = ∅

Recall sizes for factorized results of path queries

ρ∗(Q4) = 3⇒ listing representation has size O(|E |3).

fhtw(Q4) = 1⇒ factorization with caching has size O(|E |).
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Example: Factorized Aggregate Computation

We would like to compute COUNT(Q4):

in O(|E |) time (no free variables, so use best variable order for Q4)

using optimized queries that are derived from the variable order of Q4

without materializing the factorized result of the path query

Convention:

View the relations as functions mapping tuples to numbers.

The functions for input relations map their tuples to 1.
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Example: Factorized Computation of COUNT(Q4)

V1 V2

E1 E4

E2 E3C

B D

A E

⇒

C

B D

E

U1

E2

V2

E3

E4

⇒

C

D

E

U2

E3

V2

E4

⇒

C

D

U2

E3

U3 ⇒ C

U2

U4

⇒
U5

U1(b) =
∑

a∈Dom(A)

V1(a) · E1(b, a) U2(c) =
∑

b∈Dom(B)

E2(c, b) · U1(b)

U3(d) =
∑

e∈Dom(E)

V2(e) · E4(d , e) U4(c) =
∑

d∈Dom(D)

E3(c, d) · U3(d)

U5 =
∑

c∈Dom(C)

U2(c) · U4(c)
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Example: Factorized Computation of COUNT(Q4)

V1 V2

E1 E4

E2 E3C

B D

A E

⇒

C

B D

E

U1

E2

V2

E3

E4

⇒

C

D

E

U2

E3

V2

E4

⇒

C

D

U2

E3

U3 ⇒ C

U2

U4

⇒
U5

This computation strategy corresponds to the following query rewriting:

∑
a∈Dom(A)

∑
b∈Dom(B)

∑
c∈Dom(C)

∑
d∈Dom(D)

∑
e∈Dom(E)

V1(a) · E1(b, a) · E2(c, b) · E3(c, d) · E4(d, e) · V2(e)

= ∑
c∈Dom(C)

( ∑
b∈Dom(B)

E2(c, b) ·
( ∑
a∈Dom(A)

V1(a) · E1(b, a)
))
·

( ∑
d∈Dom(D)

E3(c, d) ·
( ∑
e∈Dom(E)

E4(d, e) · V2(e)
))

92 / 171



Is Factorized Aggregate Computation Practical?

Experiments published in several papers, here a quick glimpse from [ANNOS17]

Retailer dataset (records) excerpt (17M) full (86M)

PostgreSQL computing the join 50.63 sec 216.56 sec

FDB computing both the join and the aggregates 25.51 sec 380.31 sec

Number of aggregates (scalar+group-by) 595+2,418 595+145k

FDB computing both the join and the aggregates 132.43 sec 1,819.80 sec

Number of aggregates (scalar+group-by) 158k+742k 158k+37M

In this experiment:

FDB only used one core of a commodity machine

For both PostgreSQL and FDB, the dataset was entirely in memory

The aggregates represent gradients (or parts thereof) used for learning

degree 1 and 2 polynomial regression models
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Functional Aggregate Queries
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Functional Aggregate Query

FAQ generalizes factorized aggregate computation to a host of problems.

We use the following notation (i ∈ [n] = {1, . . . , n}):

Xi are variables,

xi are values in discrete domain Dom(Xi )

x = (x1, . . . , xn) ∈ Dom(X1)× · · · × Dom(Xn)

For any S ⊆ [n],

xS = (xi )i∈S ∈
∏
i∈S

Dom(Xi )

e.g. x{2,5,8} = (x2, x5, x8) ∈ Dom(X2)× Dom(X5)× Dom(X8)
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Functional Aggregate Query: The Problem

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
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Functional Aggregate Query: The Input

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

n = 4

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

F = {3}

n variables X1, . . . ,Xn

a multi-hypergraph H = (V, E)
I Each vertex is a variable (notation overload: V = [n])
I To each hyperedge S ∈ E there corresponds a factor ψS

ψS :
∏
i∈S

Dom(Xi )→ D

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })

97 / 171



Functional Aggregate Query: The Input

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

n = 4

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

F = {3}

n variables X1, . . . ,Xn

a multi-hypergraph H = (V, E)
I Each vertex is a variable (notation overload: V = [n])
I To each hyperedge S ∈ E there corresponds a factor ψS

ψS :
∏
i∈S

Dom(Xi )→ D

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })

97 / 171



Functional Aggregate Query: The Input

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

n = 4

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

F = {3}

n variables X1, . . . ,Xn

a multi-hypergraph H = (V, E)
I Each vertex is a variable (notation overload: V = [n])
I To each hyperedge S ∈ E there corresponds a factor ψS

ψS :
∏
i∈S

Dom(Xi )→ D

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })

97 / 171



Functional Aggregate Query: The Input

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

n = 4

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

F = {3}

n variables X1, . . . ,Xn

a multi-hypergraph H = (V, E)
I Each vertex is a variable (notation overload: V = [n])
I To each hyperedge S ∈ E there corresponds a factor ψS

ψS :
∏
i∈S

Dom(Xi )→ D

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })

97 / 171



Functional Aggregate Query: The Input

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

n = 4

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

V = {1, 2, 3, 4}

E = {{1, 4}, {1, 3}, {2, 3}, {1, 2, 4}}

F = {3}

n variables X1, . . . ,Xn

a multi-hypergraph H = (V, E)
I Each vertex is a variable (notation overload: V = [n])
I To each hyperedge S ∈ E there corresponds a factor ψS

ψS :
∏
i∈S

Dom(Xi )→ D

R+, {true, false}, {0, 1}, 2U , etc.

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })

97 / 171
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ψS :
∏
i∈S

Dom(Xi )→ D

R+, {true, false}, {0, 1}, 2U , etc.

a set F ⊆ V of free variables (wlog, F = [f ] = {1, . . . , f })
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Functional Aggregate Query: The Output

FAQ-expression

ϕ(x3) =
∑

x1

∏
x2

maxx4 ψ1,2,4ψ2,3ψ1,3ψ1,4

ϕ(X3)

ψ124(X1,X2,X4)

ψ23(X2,X3)

ψ13(X1,X3)

ψ14(X1,X4)
All functions have the same range D

Compute the function ϕ :
∏

i∈F Dom(Xi )→ D.

ϕ defined by the FAQ-expression

ϕ(x[f ]) =
⊕(f +1)

xf +1∈Dom(Xf +1)

· · ·
⊕(n−1)

xn−1∈Dom(Xn−1)

⊕(n)

xn∈Dom(Xn)

⊗
S∈E

ψS(xS)

For each
⊕(i)

I Either
(

D,
⊕(i),

⊗)
is a commutative semiring

I Or
⊕(i) =

⊗
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Semirings

(D,⊕,⊗) is a commutative semiring when

Additive identity 0 ∈ D : 0⊕ e = e ⊕ 0 = e

Multiplicative identity 1 ∈ D : 1⊗ e = e ⊗ 1 = e

Annihilation by 0 0⊗ e = e ⊗ 0 = 0

Distributive law a⊗ b ⊕ a⊗ c = a⊗ (b ⊕ c)

Common examples (there are many more!)

Boolean ({true, false},∨,∧)

sum-product (R,+,×)

max-product (R+,max,×)

set (2U ,∪,∩)
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SumProduct ⊂ FAQ

Problem (SumProduct)

Given a commutative semiring (D,⊕,⊗), compute the function

ϕ(x1, . . . , xf ) =
⊕
xf +1

⊕
xf +2

· · ·
⊕
xn

⊗
S∈E

ψS(xS)

SumProduct
I Rina Dechter (Artificial Intelligence 1999 and earlier)

≡ Marginalize a Product Function
I Aji and McEliece (IEEE Trans. Inform. Theory 2000)
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Many examples for SumProduct

({true, false},∨,∧)
I Constraint satisfaction problems
I Boolean conjunctive query evaluation
I SAT
I k-colorability
I etc.

(U,∪,∩)
I Conjunctive query evaluation

(R,+,×)
I Permanent
I DFT
I Inference in probabilistic graphical models
I #CSP
I Matrix chain multiplication
I Aggregates in DB

(R+,max,×)
I MAP queries in probabilistic graphical models
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SumProduct Example 1: Boolean Query Evaluation

Boolean Conjunctive Queries:

Boolean query Φ with set rels(Φ) of relation symbols

Each relation symbol R ∈ rels(Φ) has variables vars(R)

Φ = ∃X1 . . .∃Xn :
∧

R∈rels(Φ)

R(vars(R))

FAQ encoding:

φ =
∨

x

∧
S∈E

ψS(xS), where

Φ has the hypergraph (V, E) with

V =
⋃

R∈rels(Φ) vars(R) and E = {vars(R) | R ∈ rels(Φ)}

For each S ∈ E , there is a factor ψS such that ψS(xS) = (xS ∈ R)
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SumProduct Example 2: Matrix Chain Multiplication

Compute the product A = A1 · · ·An of n matrices

Each matrix Ai is over field F and has dimensions pi × pi+1

FAQ encoding:

We use n + 1 variables X1, . . . ,Xn+1 with domains Dom(Xi ) = [pi ]

Each matrix Ai can be viewed as a function of two variables:

ψi,i+1 : Dom(Xi )× Dom(Xi+1)→ F, where ψi,i+1(x , y) = (Ai )xy

The problem is now to compute the FAQ expression

φ(x1, xn+1) =
∑

x2∈Dom(X2)

· · ·
∑

xn∈Dom(Xn)

∏
i∈[n]

ψi,i+1(xi , xi+1).

103 / 171



SumProduct Example 3: Queries in Graphical Models

Discrete undirected graphical model represented by a hypergraph (V, E)

V = {X1, . . . ,Xn} consists of n discrete random variables

There is a factor ψS :
∏

i∈S Dom(Xi )→ R+ for each edge S ∈ E

FAQ expression to compute the marginal Maximum A Posteriori estimates:

φ(x1, . . . , xf ) = max
xf +1∈Dom(Xf +1)

· · · max
xn∈Dom(Xn)

∏
S∈E

ψS(xS)

FAQ expression to compute the marginal distribution of variables X1, . . . ,Xf :

φ(x1, . . . , xf ) =
∑

xf +1∈Dom(Xf +1)

· · ·
∑

xn∈Dom(Xn)

∏
S∈E

ψS(xS)

For conditional distributions p(xA | xB), the variables XB are set to values xB .
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Example 1: FAQ Computation using InsideOut

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3)·ψ2(x2, x4, x5)·ψ3(x4, x5, x6)·ψ4(x6, x8)·ψ5(x5, x7)

X2

X1

X3

X4

X5

X7 X6

X8

ψ1
ψ2

ψ3

ψ4

ψ5

X2

X1

X3

X4

X5

X7 X6

X8

key(X2) = ∅

key(X1) = {X2}

key(X3) = {X1,X2}

key(X4) = {X2}

key(X5) = {X2,X4}

key(X6) = {X4,X5}

key(X8) = {X6}

key(X7) = {X5}

ρ∗(ϕ) = 4, s(ϕ) = 2, fhtw(ϕ) = 1. The above variable order ∆ has the

free variables x1, x2, x4 on top of the others and fhtw(∆) = 1.

The query result has size: O(N) when factorized; O(N2) when listed
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Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8
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Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

ϕ(x1, x2, x4) =
∑

x5,x6,x7,x8

(∑
x3

ψ1(x1, x2, x3)

︸ ︷︷ ︸
ψ6(x1,x2)

)
· ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

107 / 171
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X1 X4

X5

X7 X6
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⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
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X1 X4

X5

⇒
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X1 X4
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108 / 171



Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

ϕ(x1, x2, x4) =
∑

x5,x6,x7,x8

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7) Õ(N)
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x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) ·
(∑

x8

ψ4(x6, x8)

︸ ︷︷ ︸
ψ7(x6)

)
· ψ5(x5, x7)
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x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) ·
(∑

x7

ψ5(x5, x7)

︸ ︷︷ ︸
ψ8(x5)

)
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X1 X4
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X1 X4

X5

X6

⇒
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X1 X4

X5

⇒
X2

X1 X4
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x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ8(x5) Õ(N)
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Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

ϕ(x1, x2, x4) =
∑

x5,x6,x7,x8

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑

x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) =
∑
x5

ψ6(x1, x2) · ψ2(x2, x4, x5) ·
(∑

x6

ψ3(x4, x5, x6) · ψ7(x6)

︸ ︷︷ ︸
ψ9(x4,x5)

)
· ψ8(x5)
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X7 X6

X8

⇒
X2

X1 X4
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X7 X6

X8

⇒
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X1 X4

X5

X7 X6

⇒
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X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4
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ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) =
∑
x5

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ9(x4, x5) · ψ8(x5) Õ(N)
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Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

ϕ(x1, x2, x4) =
∑

x5,x6,x7,x8

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑

x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) =
∑
x5

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ9(x4, x5) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) = ψ6(x1, x2) ·
(∑

x5

ψ2(x2, x4, x5) · ψ9(x4, x5) · ψ8(x5)

︸ ︷︷ ︸
ψ10(x2,x4)

)
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Example 1: FAQ Computation using InsideOut

X2

X1

X3

X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

X8

⇒
X2

X1 X4

X5

X7 X6

⇒
X2

X1 X4

X5

X6

⇒
X2

X1 X4

X5

⇒
X2

X1 X4

ϕ(x1, x2, x4) =
∑

x3,x5,x6,x7,x8

ψ1(x1, x2, x3) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7)

ϕ(x1, x2, x4) =
∑

x5,x6,x7,x8

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ4(x6, x8) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑

x5,x6,x7

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ5(x5, x7) Õ(N)

ϕ(x1, x2, x4) =
∑
x5,x6

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ3(x4, x5, x6) · ψ7(x6) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) =
∑
x5

ψ6(x1, x2) · ψ2(x2, x4, x5) · ψ9(x4, x5) · ψ8(x5) Õ(N)

ϕ(x1, x2, x4) = ψ6(x1, x2) · ψ10(x2, x4) Õ(N)
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Example 2: FAQ Computation with Indicator Projections

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2)·ψ2(x2, x3)·ψ3(x3, x1)·ψ4(x1, x4)·ψ5(x4, x5)·ψ6(x5, x1)

X1

X2

X3

X4

X5

ψ1

ψ2 ψ3 ψ6 ψ5

ψ4
X1

X2

X3

X4

X5

key(X1) = ∅

key(X2) = {X1}

key(X3) = {X1,X2}

key(X4) = {X1}

key(X5) = {X1,X4}

ρ∗(ϕ) = 2.5, s(ϕ) = 1.5, fhtw(ϕ) = 1.5. The above variable order ∆ has

the free variable x1 on top of the others and fhtw(∆) = 1.5.

The (unary) query result has size O(N) when factorized or listed.
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

118 / 171



Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) ·
(∑

x3

ψ
′
1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ′4(x1) · ψ′6(x1)

︸ ︷︷ ︸
ψ7(x1,x2)

)
·

ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

(∑
x2

ψ1(x1, x2) · ψ7(x1, x2) · ψ′4(x1) · ψ′6(x1)

︸ ︷︷ ︸
ψ8(x1)

)
·

ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

ψ8(x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

ψ8(x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N)

ϕ(x1) =
∑
x4

ψ8(x1) · ψ4(x1, x4) ·
(∑

x5

ψ
′
8(x1) · ψ′4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

︸ ︷︷ ︸
ψ9(x1,x4)

)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

ψ8(x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N)

ϕ(x1) =
∑
x4

ψ8(x1) · ψ4(x1, x4) · ψ9(x1, x4) Õ(N1.5)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

ψ8(x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N)

ϕ(x1) =
∑
x4

ψ8(x1) · ψ4(x1, x4) · ψ9(x1, x4) Õ(N1.5)

ϕ(x1) = ψ8(x1) ·
(∑

x4

ψ
′
8(x1) · ψ4(x1, x4) · ψ9(x1, x4)

︸ ︷︷ ︸
ψ10(x1)

)
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Example 2: FAQ Computation with Indicator Projections

X1

X2

X3

X4

X5

⇒
X1

X2 X4

X5

⇒
X1

X4

X5

⇒
X1

X4

⇒
X1

ϕ(x1) =
∑

x2,x3,x4,x5

ψ1(x1, x2) · ψ2(x2, x3) · ψ3(x3, x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1)

ϕ(x1) =
∑

x2,x4,x5

ψ1(x1, x2) · ψ7(x1, x2) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N1.5)

ϕ(x1) =
∑
x4,x5

ψ8(x1) · ψ4(x1, x4) · ψ5(x4, x5) · ψ6(x5, x1) Õ(N)

ϕ(x1) =
∑
x4

ψ8(x1) · ψ4(x1, x4) · ψ9(x1, x4) Õ(N1.5)

ϕ(x1) = ψ8(x1) · ψ10(x1) Õ(N)
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Part 1. Joins

Part 2. Aggregates

Part 3. Optimization
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Optimization Inside the Database

Why solving optimization problems aka analytics inside the database?

1. Bring analytics close to data

⇒ Save non-trivial export/import time

2. Large chunks of analytics code can be rewritten into SumProduct FAQs

⇒ Use scalable/factorized query processing

Hot topic in the current DB research & industry landscape:

Very recent tutorials and research agenda [A17,KBY17,PRWZ17]

This tutorial highlights our recent work [SOC16,ANNOS17]
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In-database vs. Out-of-database Analytics

feature

extraction

query
DB

materialized

output

ML tool θ∗

model
model

reformulation
Factorization

Optimized

aggregate queries

Gradient-descent

Trainer

h

g

h and g are functions over features and respectively model parameters

θ∗ are the parameters of the learned model
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Plan for Part 3 on Optimization

We will first introduce the main technical ideas via an example

I Train a linear regression model using batch gradient descent

I Express gradient computation as database queries

I Re-parameterize the model under functional dependencies

We will then discuss a generalization

I Polynomial regression, factorization machines, classification

We will conclude with complexity & experimental analysis

I Model training faster than computing the input to external ML library!
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In-Database Analytics Approach in This Tutorial

Unified in-database analytics solution for a host of optimization problems.

Deployed in industrial retail-planning and forecasting applications

Typical databases have weekly sales, promotions, and products

Training dataset = Result of a feature extraction query over the database

Task = Train parameterized model to predict, e.g., additional demand

generated for a product due to promotion

Training algorithm = First-order optimization algorithm, e.g., batch or

stochastic gradient descent
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Retail Example
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Simplified Retail Example

Database I = (R1,R2,R3,R4,R5)

Feature selection query Q:

Q(sku, store, color, city, country, unitsSold) =

R1(sku, store, day, unitsSold),R2(sku, color),

R3(day, quarter),R4(store, city),R5(city, country).

Free variables
I Categorical (qualitative): F = {sku, store, color, city, country}.
I Continuous (quantitative): unitsSold.

Bounded variables
I Categorical (qualitative): B = {day, quarter}

We learn the ridge linear regression model 〈θ, x〉 =
∑

f∈F 〈θf , xf 〉 over

D = Q(I ) with feature vector x and response yunitsSold .

The parameters θ are obtained by minimizing the square loss function:

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − yunitsSold)2 +
λ

2
‖θ‖2

2

133 / 171



Recap: One-hot encoding of categorical variables

Continuous variables are mapped to scalars

I yunitsSold ∈ R.

Categorical variables are mapped to indicator vectors

I Say variable country has categories vietnam and england.

I The variable country is then mapped to an indicator vector

xcountry = [xvietnam, xengland]> ∈ ({0, 1}2)>.

I xcountry = [0, 1]> for a tuple with country = ‘‘england’’

One-hot encoding leads to very wide training datasets and many 0-values.
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Recap: Role of the Least Square Loss Function

Goal: Describe a linear relationship fun(x) = θ1x + θ0 between variables x and

y = fun(x), so we can estimate new y values given new x values.

We are given n (black) data points (xi , yi )i∈[n]

We would like to find a (red) regression line fun(x) such that the (green)

error
∑

i∈[n](fun(xi )− yi )
2 is minimized

The role of the `2-regularization ‖θ‖2
2 = θ2

0 + θ2
1 is to avoid

over/under-fitting. It gives preference to functions fun with smaller norms.
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From Optimization to SumProduct FAQ Queries

We can solve θ∗ := arg minθ J(θ) by repeatedly updating θ in the direction of

the gradient until convergence:

θ := θ − α ·∇J(θ).

Define the matrix Σ = (σij)i,j∈[|F |], the vector c = (ci )i∈[|F |], and the scalar sY :

σij =
1

|D|
∑

(x,y)∈D

xix
>
j ci =

1

|D|
∑

(x,y)∈D

y · xi sY =
1

|D|
∑

(x,y)∈D

y 2.

Then,

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2

=
1

2
θ>Σθ − 〈θ, c〉+

sY
2

+
λ

2
‖θ‖2

2

∇J(θ) = Σθ − c + λθ
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Expressing Σ, c, sY as SumProduct FAQ Queries

FAQ queries for σij = 1
|D|
∑

(x,y)∈D xix
>
j (w/o factor 1

|D| ):

xi , xj continuous ⇒ FAQ query with no free variable

ψij =
∑

f∈F :af ∈Dom(xf )

∑
b∈B:ab∈Dom(xb)

ai · aj ·
∏
k∈[5]

1Rk (aS(Rk ))

x i categorical, xj continuous ⇒ FAQ query with one free variable

ψij [ai ] =
∑

f∈F−{i}:af ∈Dom(xf )

∑
b∈B:ab∈Dom(xb)

aj ·
∏
k∈[5]

1Rk (aS(Rk ))

x i , x j categorical ⇒ FAQ query with two free variables

ψij [ai , aj ] =
∑

f∈F−{i,j}:af ∈Dom(xf )

∑
b∈B:ab∈Dom(xb)

∏
k∈[5]

1Rk (aS(Rk ))

S(Rk) is the set of variables of Rk ; aS(Rk )) is a tuple in relation Rk ; 1E is the

Kronecker delta that is 1 (0) whenever the event E holds (does not hold).
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Expressing Σ, c, sY as SQL Queries

SQL queries for σij = 1
|D|
∑

(x,y)∈D xix
>
j (w/o factor 1

|D| ):

xi , xj continuous ⇒ SQL query with no group-by attribute

SELECT SUM(xi*xj) FROM D;

x i categorical, xj continuous ⇒ SQL query with one group-by attribute

SELECT xi , SUM(xj) FROM D GROUP BY xi ;

x i , x j categorical ⇒ SQL query with two free variables

SELECT xi , xj , SUM(1) FROM D GROUP BY xi , xj ;

Σ, c, sY are all aggregates that can be computed inside the database!

We avoid one-hot/sparse encoding of the input data.
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Dimensionality Reduction with Functional Dependencies

Consider the functional dependency city → country

There is one country for each city.

Assume we have:

vietnam, england as categories for country

saigon, hanoi, oxford, leeds,bristol as categories for city

The one-hot encoding enforces the following identities:

xvietnam = xsaigon + xhanoi

That is: If country is vietnam, then city is either saigon or hanoi

if xvietnam = 1 then either xsaigon = 1 or xhanoi = 1

xengland = xoxford + xleeds + xbristol

That is: If country is england, then city is either oxford, leeds, or bristol

if xengland = 1 then either xoxford = 1 or xleeds = 1 or xbristol = 1
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Dimensionality Reduction with Functional Dependencies

Identities due to one-hot encoding

xvietnam = xsaigon + xhanoi

xengland = xoxford + xleeds + xbristol

Encode xcountry as xcountry = Rxcity, where

R =

saigon hanoi oxford leeds bristol

1 1 0 0 0 vietnam

0 0 1 1 1 england

For instance, if city is saigon, i.e., xcity = [1, 0, 0, 0, 0]>,

then country is vietnam, i.e., xcountry = Rxcity = [1, 0]>.

[
1 1 0 0 0

0 0 1 1 1

]
1

0

0

0

0

 =

[
1

0

]

140 / 171



Dimensionality Reduction with Functional Dependencies

Functional dependency: city → country

xcountry = Rxcity

Replace all occurrences of xcountry by Rxcity:

∑
f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry, xcountry〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry,Rxcity〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+

〈
R>θcountry + θcity︸ ︷︷ ︸

γcity

, xcity

〉

We avoid computing aggregates over xcountry.

We reparameterize the problem and ignore parameters θcountry.

What about the penalty term in the loss function?
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Dimensionality Reduction with Functional Dependencies

Functional dependency: city → country

xcountry = Rxcity

γcity = R>θcountry + θcity

Rewrite the penalty term

‖θ‖2
2 =

∑
j 6=city

‖θj‖2
2 +

∥∥∥γcity − R>θcountry

∥∥∥2

2
+ ‖θcountry‖2

2

”Optimize out” θcountry by expressing it in terms of γcity:

θcountry = (Icountry + RR>)−1Rγcity = R(Icity + R>R)−1γcity

Icountry is the order-Ncountry identity matrix and similarly for Icity.

The penalty term becomes

‖θ‖2
2 =

∑
j 6=city

‖θj‖2
2 +

〈
(Icity + R>R)−1γcity,γcity

〉
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The General Picture
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General Problem Formulation

A typical machine learning task is to solve θ∗ := arg minθ J(θ), where

J(θ) :=
∑

(x,y)∈D

L (〈g(θ), h(x)〉 , y) + Ω(θ).

θ = (θ1, . . . , θp) ∈ Rp are parameters

functions g : Rp → Rm and h : Rn → Rm for n numeric features, m > 0
I g = (gj )j∈[m] is a vector of multivariate polynomials
I h = (hj )j∈[m] is a vector of multivariate monomials

L is a loss function, Ω is the regularizer

D is the training dataset with features x and response y .

Example problems: ridge linear regression, degree-d polynomial regression,

degree-d factorization machines; logistic regression, SVM; PCA.
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Special Case: Ridge Linear Regression

General problem formulation:

J(θ) :=
∑

(x,y)∈D

L (〈g(θ), h(x)〉 , y) + Ω(θ).

Under

square loss L , `2-regularization,

data points x = (x0, x1, . . . , xn, y),

p = n + 1 parameters θ = (θ0, . . . , θn),

x0 = 1 corresponds to the bias parameter θ0

g and h identity functions g(θ) = θ and h(x) = x,

we obtain the following formulation for ridge linear regression:

J(θ) :=
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2 .
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Special Case: Degree-d Polynomial Regression

General problem formulation:

J(θ) :=
∑

(x,y)∈D

L (〈g(θ), h(x)〉 , y) + Ω(θ).

Under

square loss L , `2-regularization,

data points x = (x0, x1, . . . , xn, y),

p = m = 1 + n + n2 + · · ·+ nd parameters θ = (θa), where

a = (a1, . . . , an) is a tuple of non-negative integers such that ‖a‖1 ≤ d .

g(θ) = θ,

the components of h are given by ha(x) =
∏n

i=1 x
ai
i .

we obtain the following formulation for polynomial regression:

J(θ) :=
1

2|D|
∑

(x,y)∈D

(〈g(θ), h(x)〉 − y)2 +
λ

2
‖θ‖2

2 .
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Special Case: Factorization Machines

Under

square loss L , `2-regularization,

data points x = (x0, x1, . . . , xn, y),

p = m = 1 + n + r · n parameters and m = 1 + n +
(
n
2

)
features

we obtain the following formulation for degree-2 rank-r factorization machines:

J(θ) :=
1

2|D|
∑

(x,y)∈D


n∑

i=0

θixi +
∑

{i,j}∈
(

[n]
2

)
`∈[r ]

θ
(`)
i θ

(`)
j xixj − y


2

+
λ

2
‖θ‖2

2 .

where

hS (x) =
∏
i∈S

xi , for S ⊆ [n], |S | ≤ 2

gS (θ) =


θ0 when |S | = 0

θi when S = {i}∑r
`=1 θ

(`)
i θ

(`)
j when S = {i , j}.
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Special Case: Classification methods

Examples: support vector machines, logistic regression, Adaboost

Typically, the regularizer is λ
2
‖θ‖2

2

The response is now binary: y ∈ {±1}

The loss function L(γ, y), where γ := 〈g(θ), h(x)〉, takes the form:

I L(γ, y) = max{1− yγ, 0} for support vector machines (SVM),

I L(γ, y) = log(1 + e−yγ) for logistic regression, and

I L(γ, y) = e−yγ for Adaboost.
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Batch Gradient Descent (BGD)

Repeatedly update θ in the direction of the gradient until convergence

θ ← a random point;

while not converged yet do

α← next step size;

d←∇J(θ);

while
(
J(θ − α · d) ≥ J(θ)− α

2
· ‖d‖2

2

)
do α← α/2; // line search

θ ← θ − α · d;

end

BGD needs:

Computation of the gradient vector ∇J(θ)

I Its data-dependent component is computed once for all iterations

Point evaluation J(θ)

I A few times per iteration to adjust α using line search

149 / 171



Compute Parameters θ using BGD

Immediate extension of the linear regression case discussed before.

Define the matrix Σ = (σij)i,j∈[m], the vector c = (ci )i∈[m], and the scalar sY by

Σ =
1

|D|
∑

(x,y)∈D

h(x)h(x)>

c =
1

|D|
∑

(x,y)∈D

y · h(x)

sY =
1

|D|
∑

(x,y)∈D

y 2.

Under square loss L and `2-regularization:

J(θ) =
1

2
g(θ)>Σg(θ)− 〈g(θ), c〉+

sY
2

+
λ

2
‖θ‖2

2

∇J(θ) =
∂g(θ)>

∂θ
Σg(θ)− ∂g(θ)>

∂θ
c + λθ
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Summing Up

Insight #1:

Σ, c, sY are queries that can be computed inside the database!

I They can take much less time than computing the feature extraction query

Insight #2:

The training dataset has repeating data blocks as it satisfies the join

dependencies given by the feature extraction query.

I A factorized training dataset avoids this redundancy.

Insight #3:

The training dataset has many functional dependencies in practice.

I First learn a smaller, reparameterized model whose features functionally

determine the left-out features, then map it back to the original model with

both functionally determining and determined parameters
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Zoom-in: In-database vs. Out-of-database Learning

feature extraction

query

R1 1 . . . 1 Rk

DB

1 1

x
y

|D| ML tool θ∗

model
model

reformulation
Queries:

σ11

...
σij

...

c1

...

Query

optimizer

Factorized query evaluation Cost ≤ N faqw � |D|

Σ, c

θ

J(θ)

∇J(θ)

converged?

Gradient-descent

h

g

g(θ)

No

Yes
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Complexity & Experimental Analysis
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Complexity Analysis: The General Case

Complexity of learning models falls back to factorized computation of

aggregates over joins [BKOZ13,OZ15,SOC16,ANR16]

Let:

(V, E) = hypergraph of Q

N = maxR∈I |R|

|σij | = size of the sparse representation of the σij tensor

faqw(i , j) = FAQ-width of the query that expresses σij over Q

The tensors σij and cj can be sparsely represented by queries with group-by

variables and can be computed in time

Õ

|V|2 · |E| · ∑
i,j∈[m]

(N faqw(i,j) + |σij |)

 .
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Complexity Analysis: Continuous Features Only

Complexity in the general case: [ANNOS17]

Õ

|V|2 · |E| · ∑
i,j∈[m]

(N faqw(i,j) + |σij |)

 .

Complexity in case all features are continuous: [SOC16]

Õ(|V|2 · |E| ·m2 · N fhtw ).

In this case, faqw(i , j) becomes the fractional hypertree width fhtw of Q.

155 / 171



Complexity Analysis: Comparison with State of the Art

Let:

d = degree of polynomial regression model

c = max number of variables in any monomial in h; c ≤ d

ρ∗ = fractional edge cover number of query Q

Comparison against state of the art: [ANNOS17]

faqw(i , j) ≤ fhtw + c − 1 and |σij | ≤ min{|D|,Nc}.

For any query Q with ρ∗ > fhtw + c − 1, there are infinitely many

database instances of size N for which

lim
N→∞

|D|∑
i,j∈[m](N

faqw(i,j) + |σij |) logN
=∞.

Computing σij for degree-d polynomial regression takes

Õ(|V|2 · |E| ·m2 · N fhtw+2d).

under one-hot encoding of categorical variables.
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Factorized Machine Learning in Practice

Experiments published in several papers, here a glimpse from [ANNOS17]

Retailer dataset (records) excerpt (17M) full (86M)

Linear Regression

Number of features (Cont. + Categ.) 33+55 33+3702

MADlib (ols) 1,898.35 sec –

PostgreSQL + R (qr decomposition) 798.96 sec –

FDB 25.53 sec 380.31 sec

Polynomial Regression degree 2

Number of features (Cont. + Categ.) 562+2363 562+154K

MADlib > 22h –

PostgreSQL + R – –

FDB 135.7 sec 2039.31 sec

We measure end-to-end performance: joins + aggregates + convergence

R: ”-” means R’s data frame limit is exceeded and cannot run.

MADlib: ”-” means it cannot one-hot encode the data in a relation with

more than 1600 columns.

157 / 171



From Joins to Aggregates and Optimization Problems

One idea to rule them all

and at their core FACTORIZE them!
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Thank you!

159 / 171



Quizzes
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QUIZ 1: Joins (1/3)

For each of the following queries, please show the following:

1. Hypertree decomposition and variable order for query.

2. The fractional edge cover number and the fractional hypertree width

(assume all relations have the same size).

Path Query of length n:

Pn(X1, . . . ,Xn+1) = R1(X1,X2),R2(X2,X3),R3(X3,X4), . . . ,Rn(Xn,Xn+1).
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QUIZ 1: Joins (2/3)

For each of of the following queries, please show the following:

1. Hypertree decomposition and variable order for query.

2. The fractional edge cover number and the fractional hypertree width

(assume all relations have the same size).

Bowtie Query:

Q./(A,B,C ,D,E) = R1(A,C),R2(A,B),R3(B,C),R4(C ,E),R5(E ,D),R6(C ,D).

A E

B D

CR2 R5

R3 R6

R1 R4
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QUIZ 1: Joins (3/3)

For each of of the following queries, please show the following:

1. Hypertree decomposition and variable order for query.

2. The fractional edge cover number and the fractional hypertree width

(assume all relations have the same size).

Loomis-Whitney Queries of length n: A LWn query has n variables X1, . . . ,Xn

and n relation symbols such that for every i ∈ [n] the relation symbol Ri has

variables {X1, . . . ,Xn} − {Xi}:

LWn(X1, . . . ,Xn) = R1(X2, . . . ,Xn), . . . ,Ri (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), . . . ,

Rn(X1, . . . ,Xn−1)

LW3 is the triangle query.
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QUIZ 2: Aggregates (1/2)

For each of of the following functional aggregate queries:

1. Give a hypertree decomposition and variable order.

2. If you were to compute it as stated below (with all sums done after the

products), what would be its time complexity? (Assume all functions have

the same size.)

3. Is there an equivalent rewriting of ϕ that would allow for quadratic time

complexity? What about linear time?

The n-hop query:

ϕ(x1, xn+1) =
∑

x2,...,xn

ψ1(X1,X2) · ψ2(X2,X3) · ψ3(X3,X4) · . . . · ψn(Xn,Xn+1).
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QUIZ 2: Aggregates (2/2)

For each of of the following functional aggregate queries:

1. Give a hypertree decomposition and variable order.

2. If you were to compute it as stated below (with all sums done after the

products), what would be its time complexity? Assume all functions have

the same size.

3. Is there an equivalent rewriting of ϕ that would allow for quadratic time

complexity? What about linear time?

Query:

ϕ =
∑
a

∑
b

∑
c

∑
f

∑
d

∑
e

ψ1(a, b) · ψ2(a, c) · ψ3(c, d) · ψ4(b, c, e) · ψ5(e, f ).
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QUIZ 3: Optimization

Assume that the natural join of the following relations provides the features we

use to predict revenue:

Sales(store id, product id, quantity, revenue),

Product(product id, color),

Store(store id, distance city center).

Variables revenue, quantity, and distance city center stand for

continuous features, while product id and color for categorical features.

1. Give the FAQs required to compute the gradient of the squares loss

function for learning a ridge linear regression models with the above

features.

2. We know that product id functionally determines color. Give a

rewriting of the objective function that exploits the functional dependency.

3. The FAQs require the computation of a lot of common sub-problems. Can

you think of ways to share as much computation as possible?
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Ngo, Ré, Rudra. In SIGMOD Rec. 2013. https://arxiv.org/abs/1310.3314

168 / 171

https://arxiv.org/abs/cs/9812022
http://epubs.siam.org/doi/10.1137/110859440
http://dl.acm.org/citation.cfm?doid=2274576.2274607
https://arxiv.org/abs/1104.0867
https://arxiv.org/abs/1310.3314


References on Join Computation

V14 Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

Veldhuizen. In ICDT 2014.

http://openproceedings.org/ICDT/2014/paper_13.pdf

OZ15 Size Bounds for Factorised Representations of Query Results.

Olteanu, Zavodny. In ACM TODS 2015.

http://dl.acm.org/citation.cfm?doid=2656335

CO15 Worst-Case Optimal Join At A Time.

Ciucanu, Olteanu. Technical report, Oxford, Nov 2015.

ANS17 What do Shannon-type inequalities, submodular width, and disjunctive

Datalog have to do with one another?

Abo Khamis, Ngo, Suciu. In PODS 2017.

https://arxiv.org/abs/1612.02503

KO17 Covers of Query Results.

Kara, Olteanu. Technical report, Oxford, March 2017. To appear in ICDT 2018.

https://arxiv.org/abs/1709.01600

169 / 171

http://openproceedings.org/ICDT/2014/paper_13.pdf
http://dl.acm.org/citation.cfm?doid=2656335
https://arxiv.org/abs/1612.02503
https://arxiv.org/abs/1709.01600


References on Aggregate Computation

BKOZ13 Aggregation and Ordering in Factorised Databases.

Bakibayev, Kocisky, Olteanu, Zavodny. In PVLDB 2013.

https://arxiv.org/abs/1307.0441

ANR16 FAQ: Questions Asked Frequently.

Abo Khamis, Ngo, Rudra. In PODS 2016.

https://arxiv.org/abs/1504.04044

170 / 171

https://arxiv.org/abs/1307.0441
https://arxiv.org/abs/1504.04044


References on In-Database Analytics

SOC16 Learning Linear Regression Models over Factorized Joins.

Schleich, Olteanu, Ciucanu. In SIGMOD 2016.

http://dl.acm.org/citation.cfm?doid=2882903.2882939

A17 Research Directions for Principles of Data Management (Dagstuhl

Perspectives Workshop 16151).

Abiteboul et al. In SIGMOD Rec. 2017.

https://arxiv.org/pdf/1701.09007.pdf

ANNOS17 In-Database Learning with Sparse Tensors.

Abo Khamis, Ngo, Nguyen, Olteanu, Schleich. March 2017. To appear in PODS

2018.

https://arxiv.org/abs/1703.04780

KBY17 Data Management in Machine Learning: Challenges, Techniques, and

Systems.

Kumar, Boehm, Yang. In SIGMOD 2017, Tutorial.

https://www.youtube.com/watch?v=U8J0Dd_Z5wo

NO17 Incremental View Maintenance with Triple Lock Factorisation Benefits.

Nikolic, Olteanu. March 2017. To appear in SIGMOD 2018.

https://arxiv.org/abs/1703.07484

PRWZ17 Data Management Challenges in Production Machine Learning.

Polyzotis, Roy, Whang, Zinkevich. In SIGMOD 2017, Tutorial.

http://dl.acm.org/citation.cfm?doid=3035918.3054782
171 / 171

http://dl.acm.org/citation.cfm?doid=2882903.2882939
https://arxiv.org/pdf/1701.09007.pdf
https://arxiv.org/abs/1703.04780
https://www.youtube.com/watch?v=U8J0Dd_Z5wo
https://arxiv.org/abs/1703.07484
http://dl.acm.org/citation.cfm?doid=3035918.3054782

	Part 1. Joins
	Part 2. Aggregates
	Part 3. Optimization

