Boolean Tensor Decomposition for Conjunctive Queries with Negation

Mahmoud Abo Khamis Hung Q. Ngo Dan Olteanu Dan Suciu
RelationalAI (USA) & U. Oxford (UK) & U. Washington (USA)

International Conference on Database Theory
Lisbon, March 2019
Conjunctive Queries with Negated Bounded-Degree Relations

\[Q(X_F) \leftarrow \text{body} \land \bigwedge_{S \in \overline{E}} \neg R_S(X_S), \]

- **body** is the body of an arbitrary (positive) conjunctive query
- \(X_F = (X_i)_{i \in F} \) denotes a tuple of variables indexed by \(F \subset \mathbb{N} \)
- \(\overline{E} \) is the set of hyperedges of a multi-hypergraph \(\overline{H} = (\overline{V}, \overline{E}) \)
- Each \(S \in \overline{E} \) corresponds to a **bounded-degree relation** \(R_S \)
Directed graph $G = ([n], E)$ with n nodes and $N = |E|$ edges.

$W() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1})$

Hypergraph \overline{H} is empty since W has no negated relations.
Query Example 1/3: k-walk

Directed graph $G = ([n], E)$ with n nodes and $N = |E|$ edges.

$W() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1})$

Hypergraph \overline{H} is empty since W has no negated relations.

Time complexity:

- $O(kN \log N)$ [Yannakakis’81]
Directed graph \(G = ([n], E) \) with \(n \) nodes and \(N = |E| \) edges.

\[
P() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1}) \land \\
\bigwedge_{i,j \in [k+1], i+1 < j} X_i \neq X_j
\]

Disequality is negation of bounded-degree equality relation:

\[
X_i \neq X_j \equiv \lnot (X_i = X_j)
\]

Hypergraph \(\overline{\mathcal{H}} = ([k + 1], \{(i, j) \mid i, j \in [k + 1], i + 1 < j\}) \)
Query Example 2/3: k-path

Directed graph $G = ([n], E)$ with n nodes and $N = |E|$ edges.

$$P() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1}) \land \bigwedge_{i,j \in [k+1], i+1 < j} X_i \neq X_j$$

Disequality is negation of bounded-degree equality relation:

$$X_i \neq X_j \equiv \neg(X_i = X_j)$$

Hypergraph $\overline{H} = ([k+1], \{(i, j) \mid i, j \in [k+1], i + 1 < j\})$

Time complexity:

- $O(k^k N \log N)$ [Plehn, Voigt'90]
- $2^{O(k)} N \log N$ using color-coding [Alon, Yuster, Zwick'95]
Directed graph $G = ([n], E)$ with n nodes and $N = |E|$ edges.

$I() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1}) \land \bigwedge_{i,j \in [k+1], i+1 < j} (\neg E(X_i, X_j) \land X_i \neq X_j))$

Each edge twice in \overline{H} due to negated edge relation and disequality
Directed graph $G = ([n], E)$ with n nodes and $N = |E|$ edges.

$I() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \cdots \land E(X_k, X_{k+1}) \land \bigwedge_{i,j \in [k+1], \ i+1 < j} (\neg E(X_i, X_j) \land X_i \neq X_j)\) \bigwedge

Each edge twice in \overline{H} due to negated edge relation and disequality

Time complexity:

- $O(f(k, d)N \log N)$ if G has maximum degree d;
 f depends exponentially on k and d [Plehn, Voigt’90]
Main Result: Time Complexity for Query Evaluation

Database with relations of size $O(N)$

Query Q with positive body and negation hypergraph \overline{H}
Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$

Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Using a reduction to InsideOut $[\text{Abo Khamis et al’16}]$

\[
\mathcal{O}(F_{\text{InsideOut}}(Q) \cdot \log N \cdot (N^{fhtw_F(\text{body})} + |\text{output}|))
\]

depends on structure of $\overline{\mathcal{H}}$
degree of relations and InsideOut

same as for body
Main Result: Time Complexity for Query Evaluation

Database with relations of size $O(N)$

Query Q with positive body and negation hypergraph \overline{H}

Using a reduction to InsideOut

$$\mathcal{O}(F_{\text{InsideOut}}(Q) \cdot \log N \cdot (N^{\text{fhtw}_F(\text{body})} + |\text{output}|))$$

depends on structure of \overline{H}
degree of relations
and InsideOut

same as for body

Using a reduction to PANDA

$$\mathcal{O}(F_{\text{PANDA}}(Q) \cdot (\text{poly}(\log N) \cdot N^{\text{subw}_F(\text{body})} + \log N \cdot |\text{output}|))$$

depends on structure of \overline{H}
degree of relations
and PANDA

same as for body
Our Query Evaluation Approach

1. Untangling negated bounded-degree relations

 Rewrite negated subquery into not-all-equal conjunction

 Not-all-equal (NAE) is multi-dimensional analog of \neq

2. Boolean tensor decomposition for NAE conjunction

 Probabilistic construction with efficient derandomization

 Generalization of color-coding from cliques of \neq to NAE conjunctions

3. Use existing algorithms InsideOut and PANDA

 Decomposition preserves fhtw and subw of positive body
Untangling Bounded-Degree Relations
The Untangling Step via an Example

Given: Database with relations \(R, S, T \) with sizes \(\mathcal{O}(N) \)

Task: Compute the Boolean query

\[
Q() \leftarrow R(A, B) \land S(B, C) \land \neg T(A, C)
\]

What is the time complexity for computing \(Q \)?

- \(\mathcal{O}(N^2) \) trivially: First join \(R \) and \(S \) and then filter with \(T \)
The Untangling Step via an Example

Given: Database with relations R, S, T with sizes $O(N)$

Task: Compute the Boolean query

$$Q() \leftarrow R(A, B) \land S(B, C) \land \neg T(A, C)$$

What is the time complexity for computing Q?

- $O(N^2)$ trivially: First join R and S and then filter with T
- Subquadratic if T has degree bounded by a constant
Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C
Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C

Our notion of degree $\text{deg}(T)$ accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings

If T has schema S: $\Delta(T) \leq \text{deg}(T) \leq |S| \cdot (\Delta(T) - 1) + 1$
Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C

Our notion of degree $\text{deg}(T)$ accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings

If T has schema S: $\Delta(T) \leq \text{deg}(T) \leq |S| \cdot (\Delta(T) - 1) + 1$

Assumption in our example: T has degree 2, that is,

\exists matchings M_1 and M_2: $T(A, C) \equiv M_1(A, C) \lor M_2(A, C)$
Intermezzo: What is a Matching?

M is matching iff $\forall x_S, x'_S \in M$ either $x_S = x'_S$ or $\forall i \in S : x_i \neq x'_i$

Linear-time decomposition of relation R into $|S| \cdot \Delta(R)$ matchings
Assume matching $M_i(A, C)$. When is $(\bullet, \blacksquare) \in \neg M_i$?

1. \blacksquare is in the domain of C but not in M_i

$$W_i(C) = \text{Dom}(C) \wedge \neg (\exists X M_i(X, C))$$
Intermezzo: Negating a Binary Matching

Assume matching $M_i(A, C)$. When is $(\bigcirc, \blacksquare) \in \neg M_i$?

1. \blacksquare is in the domain of C but not in M_i

$$W_i(C) = \text{Dom}(C) \land \neg (\exists X M_i(X, C))$$

2. or \blacksquare is paired with $\bigcirc \neq \bigcirc$ in M_i

$$\exists A_i (M(A_i, C) \land A_i \neq A)$$
Intermezzo: Negating a Binary Matching

Assume matching $M_i(A, C)$. When is $(\bullet, \blacksquare) \in \neg M_i$?

1. \blacksquare is in the domain of C but not in M_i

 $W_i(C) = \text{Dom}(C) \land \neg(\exists X M_i(X, C))$

2. or \blacksquare is paired with $\bullet \neq \bullet$ in M_i

 $\exists A_i (M(A_i, C) \land A_i \neq A)$

$\neg M_i(A, C) \equiv W_i(C) \lor \exists A_i (M(A_i, C) \land A_i \neq A)$
Negating a Bounded-degree Relation

Recall: \(T(A, C) \equiv M_1(A, C) \lor M_2(A, C) \), \(M_1 \) and \(M_2 \) matchings

\[
\neg T(A, C) \equiv \neg M_1(A, C) \land \neg M_2(A, C)
\]

\[
\begin{align*}
W_1(C) \land \exists A_1 (M_1(A_1, C) \land A_1 \neq A) & \quad \text{and} \quad W_2(C) \land \exists A_2 (M_2(A_2, C) \land A_2 \neq A) \\
\end{align*}
\]

Flatten out \(\neg T(A, C) \) into a disjunction of four conjunctions:

\[
\begin{align*}
W_1(C) \land W_2(C) \\
W_1(C) \land M_2(A_2, C) \land A \neq A_2 \\
W_2(C) \land M_1(A_1, C) \land A \neq A_1 \\
M_1(A_1, C) \land M_2(A_2, C) \land A \neq A_1 \land A \neq A_2 \\
\end{align*}
\]

The negative subqueries are now disequalities on variables
The Untangling Step

The query Q becomes $Q_1 \lor Q_2 \lor Q_3 \lor Q_4$:

$Q_1() \leftarrow R(A, B) \land S(B, C) \land W_1(C) \land W_2(C)$

$Q_2() \leftarrow R(A, B) \land S(B, C) \land W_1(C) \land M_2(A_2, C) \land A \neq A_2$

$Q_3() \leftarrow R(A, B) \land S(B, C) \land W_2(C) \land M_1(A_1, C) \land A \neq A_1$

$Q_4() \leftarrow R(A, B) \land S(B, C) \land M_1(A_1, C) \land M_2(A_2, C) \land A \neq A_1 \land A \neq A_2$

Our rewriting

- **extends** the positive body of Q
 - Replaced T by (conjunctions of some of) its matchings
 - Added unary relations

- **preserves** the data complexity (fhtw and subw) of body

- **blows up** the query size exponentially in the degree
Boolean Tensor Decomposition
∀i ∈ [\log N], f_i : \text{Dom}(A) \rightarrow \{0, 1\} gives the i-th bit of A

\[A \neq A_2 \equiv \bigvee_{x \in \{0,1\}} \bigvee_{i \in [\log N]} f_i(A) = x \land f_i(A_2) \neq x \]

This is a Boolean decomposition of \(A \neq A_2 \):

- **Rank** \(r \) is the number \(2 \log N \) of conjuncts
- Each conjunct is a conjunction of positive unary relations

Analogy: Each function \(f_i \) is a “coloring”:

It assigns a \(\{0, 1\} \) color to each element of \text{Dom}(A)
How to Evaluate Conjunctions of Disequalities Efficiently?

Q_2 becomes the disjunction of $2 \log N$ acyclic queries

$$Q_2^{x,i} \leftarrow R(A, B) \land S(B, C) \land W_1(C) \land M_2(A_2, C) \land f_i(A) = x \land f_i(A_2) \neq x$$

Time complexity:

- $Q_2^{x,i}$ can be answered in time $O(N \log N)$
- Q_2 can be answered in time $O(N \log^2 N)$
- Further shave off a $\log N$ factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring
How to Evaluate Conjunctions of Disequalities Efficiently?

Q_2 becomes the disjunction of $2 \log N$ acyclic queries

\[
Q_2^{x,i} \leftarrow R(A, B) \land S(B, C) \land W_1(C) \land M_2(A_2, C) \land f_i(A) = x \land f_i(A_2) \neq x
\]

Time complexity:

- $Q_2^{x,i}$ can be answered in time $O(N \log N)$
- Q_2 can be answered in time $O(N \log^2 N)$
- Further shave off a $\log N$ factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring

Q_4 is more involved: $A \neq A_1 \land A \neq A_2$

- Three-dimensional tensor of Boolean rank $\log^2 N$
- We can reduce the rank to $\log N$
Boolean Tensor Decomposition for $A \neq A_1 \land A \neq A_2$

$$A \neq A_1 \land A \neq A_2 \equiv \bigvee_{(c,c_1,c_2) \in \{0,1\}^3} \bigvee_{f \in F} f(A) = c \land f(A_1) = c_1 \land f(A_2) = c_2$$

There exists a family \mathcal{F} of functions $f : \text{Dom}(A) \to \{0,1\}$:

- $\forall (a, a_1, a_2) \in \text{Dom}(A)^3$ st $a \neq a_1 \land a \neq a_2$:
 $$\exists f \in \mathcal{F} \quad \text{st} \quad f(a) \neq f(a_1) \land f(a) \neq f(a_2)$$

- $|\mathcal{F}| = \mathcal{O}(\log N)$

- \mathcal{F} can be constructed in time $\mathcal{O}(N \log N)$
Intermezzo: Disjunct Matrices

A \(k \text{-disjunct} \ t \times N \) matrix \(X \):

\[
\forall j \in [N], S \subseteq [N] \st |S| \leq k, j \not\in S : \exists i \in [t] \st X_{i,j} = 1, (X_{i,j'})_{j' \in S} = 0
\]
Intermezzo: Disjunct Matrices

A **k-disjunct** $t \times N$ matrix X is defined as follows:

\[\forall j \in [N], S \subseteq [N] \text{ st } |S| \leq k, j \not\in S : \exists i \in [t] \text{ st } X_{i,j} = 1, (X_{i,j'})_{j' \in S} = 0 \]

We can construct a k-disjunct matrix X:

- with $t = O(k^2 \log N)$
- in time $O(k^2 N \log N)$

[Porat, Rothschild’11]
How to Use Disjunct Matrices for Our Problem?

Each row $i = \text{function } f_i$ in \mathcal{F}

$X_{i,j} = f_i(A)$

$X_{i,S} = [f_i(A_1), f_i(A_2)] \Rightarrow k = 2$

- X has size $O(\log N) \times N$
- X constructed in time $O(N \log N)$

$$
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\Rightarrow
\mathcal{O}(\log N)
$$
Generalizing the Example
Negating a Ternary Matching

Matching $M(X_1, X_2, X_3)$. Single out (wlog) X_3.

Tuple $(x_1, x_2, x_3) \in \neg M$ iff

1. At least one of x_1 or x_2 is not in M OR

2. x_1 and x_2 are in M, but at least one is paired with $x_3' \neq x_3$ OR they are paired with diff. X_3 values

See paper for extension to k-ary matchings.
Matching $M(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$. Single out (wlog) \mathbf{x}_3.

Tuple $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in \neg M$ iff

1. At least one of \mathbf{x}_1 or \mathbf{x}_2 is not in M OR
2. \mathbf{x}_1 and \mathbf{x}_2 are in M, but at least one is paired with $\mathbf{x}_3' \neq \mathbf{x}_3$ OR
 they are paired with diff. \mathbf{x}_3 values

\[
\neg M(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \equiv (W_1(\mathbf{x}_1) \lor W_2(\mathbf{x}_2)) \lor \\
\exists \mathbf{y}_1 \exists \mathbf{y}_2 [\text{NAE}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{x}_3) \land M(\mathbf{x}_1, _ _ \mathbf{y}_1) \land M(_ _ \mathbf{x}_2, \mathbf{y}_2)]
\]

\[
\text{NAE}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{x}_3) \overset{\text{def}}{=} \neg (\mathbf{y}_1 = \mathbf{y}_2 \land \mathbf{y}_1 = \mathbf{x}_3 \land \mathbf{y}_2 = \mathbf{x}_3) \\
= \quad Y_1 \neq Y_2 \lor Y_1 \neq X_3 \lor Y_2 \neq X_3
\]

See paper for extension to k-ary matchings.
General Untangling

Query \(Q \) rewritten into a disjunction of queries

\[
Q_i(X_F) \leftarrow \text{body}_i \land \bigwedge_{S \in A_i} \text{NAE}(Z_S).
\]

Data complexity (fhtw and subw) of \(\text{body}_i \); same as for \(\text{body} \)

Number of queries \(Q_i \); exponential in the degree
General Boolean Tensor Decomposition

\[\bigwedge_{S} \text{NAE}(Z_S) \equiv \bigvee_{j \in [r]} \bigwedge_{i \in \bigcup S Z_S} f_i^{(j)}(Z_i) \]

- \(\bigwedge_{S} \text{NAE}(Z_S) \): rank-\(r \) tensor multivariate function
- \(\bigvee_{j \in [r]} \bigwedge_{i \in \bigcup S Z_S} f_i^{(j)}(Z_i) \): univariate function
- rank-1 tensor

Multi-hypergraph \(G = (\bigcup S Z_S, A) \) of \(\bigwedge_{S} \text{NAE}(Z_S) \)

Boolean rank \(r = P(G, c) \cdot |F| \) depends on:

- Chromatic polynomial of \(G \) using \(c \leq |\bigcup S Z_S| \) colors
- Size of a family of hash functions that represent proper \(c \)-colorings of homomorphic images of \(G \)
General Boolean Tensor Decomposition

$\bigwedge_{S} \text{NAE}(Z_{S}) \equiv \bigvee_{j \in [r]} \bigwedge_{i \in \bigcup S Z_{S}} f_{i}^{(j)}(Z_{i})$

Multi-hypergraph $\mathcal{G} = (\bigcup_{S} Z_{S}, \mathcal{A})$ of $\bigwedge_{S} \text{NAE}(Z_{S})$

Boolean rank $r = P(\mathcal{G}, c) \cdot |\mathcal{F}|$ depends on:

- Chromatic polynomial of \mathcal{G} using $c \leq |\bigcup_{S} Z_{S}|$ colors

 $c =$ maximum chromatic number of a hypergraph defined by any homomorphic image of \mathcal{G}

- Size of a family of hash functions that represent proper c-colorings of homomorphic images of \mathcal{G}