Boolean Tensor Decomposition for Conjunctive Queries with Negation

Mahmoud Abo Khamis Hung Q. Ngo **Dan Olteanu** Dan Suciu **RelationalAl (USA)** & **U. Oxford (UK)** & U. Washington (USA)

International Conference on Database Theory Lisbon, March 2019

$$Q(\boldsymbol{X}_F) \leftarrow \operatorname{body} \land \bigwedge_{S \in \overline{\mathcal{E}}} \neg R_S(\boldsymbol{X}_S),$$

- body is the body of an arbitrary (positive) conjunctive query
- $X_F = (X_i)_{i \in F}$ denotes a tuple of variables indexed by $F \subset \mathbb{N}$
- $\overline{\mathcal{E}}$ is the set of hyperedges of a multi-hypergraph $\overline{\mathcal{H}} = (\overline{\mathcal{V}}, \overline{\mathcal{E}})$
 - Each $S \in \overline{\mathcal{E}}$ corresponds to a **bounded-degree relation** R_S

Query Example 1/3: k-walk

Hypergraph $\overline{\mathcal{H}}$ is empty since W has no negated relations.

Directed graph G = ([n], E) with n nodes and N = |E| edges. $1 \xrightarrow{2} 3$ $W() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \dots \land E(X_k, X_{k+1})$ $k + 1 \xrightarrow{4}$

Hypergraph $\overline{\mathcal{H}}$ is empty since W has no negated relations.

Time complexity:

• $\mathcal{O}(kN \log N)$

[Yannakakis'81]

Directed graph G = ([n], E) with n nodes and N = |E| edges.

$$P() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \dots \land E(X_k, X_{k+1}) \land$$
$$\bigwedge_{\substack{i,j \in [k+1]\\i+1 < j}} X_i \neq X_j$$

Disequality is negation of bounded-degree equality relation:

 $X_i \neq X_j \equiv \neg (X_i = X_j)$ Hypergraph $\overline{\mathcal{H}} = ([k+1], \{(i,j) \mid i, j \in [k+1], i+1 < j\})$ Directed graph G = ([n], E) with n nodes and N = |E| edges.

$$P() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \dots \land E(X_k, X_{k+1}) \land$$
$$\bigwedge_{\substack{i,j \in [k+1]\\i+1 < j}} X_i \neq X_j$$

Disequality is negation of bounded-degree equality relation:

$$X_i \neq X_j \equiv \neg (X_i = X_j)$$

 $\mathsf{Hypergraph} \ \overline{\mathcal{H}} = ([k+1], \{(i,j) \mid i, j \in [k+1], i+1 < j\})$

Time complexity:

\$\mathcal{O}(k^k N \log N)\$ [Plehn, Voigt'90]
 2^{\mathcal{O}(k)} N \log N\$ using color-coding [Alon, Yuster, Zwick'95] ^{3/20}

Query Example 3/3: induced (chordless) *k*-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

$$I() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \dots \land E(X_k, X_{k+1}) \land \\ \bigwedge_{\substack{i,j \in [k+1]\\i+1 < j}} (\neg E(X_i, X_j) \land X_i \neq X_j))$$

Each edge twice in $\overline{\mathcal{H}}$ due to negated edge relation and disequality

Query Example 3/3: induced (chordless) k-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

$$I() \leftarrow E(X_1, X_2) \land E(X_2, X_3) \land \dots \land E(X_k, X_{k+1}) \land \\ \bigwedge_{\substack{i,j \in [k+1]\\ i+1 < j}} (\neg E(X_i, X_j) \land X_i \neq X_j))$$

Each edge twice in $\overline{\mathcal{H}}$ due to negated edge relation and disequality Time complexity:

- W[2]-hard [Chen, Flum'07]
- \$\mathcal{O}(f(k, d) N \log N)\$ if G has maximum degree d;
 f depends exponentially on k and d [Plehn, Voigt'90]

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$

Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$

Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$

Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

1. Untangling negated bounded-degree relations

Rewrite negated subquery into not-all-equal conjunction Not-all-equal (NAE) is multi-dimensional analog of \neq

2. Boolean tensor decomposition for NAE conjunction

Probabilistic construction with efficient derandomization Generalization of color-coding from cliques of \neq to NAE conjunctions

Use existing algorithms InsideOut and PANDA
 Decomposition preserves fhtw and subw of positive body

Untangling Bounded-Degree Relations

The Untangling Step via an Example

Given: Database with relations R, S, T with sizes O(N)Task: Compute the Boolean query

 $Q() \leftarrow R(A, B) \land S(B, C) \land \neg T(A, C)$

What is the time complexity for computing Q?

• $\mathcal{O}(N^2)$ trivially: First join R and S and then filter with T

The Untangling Step via an Example

Given: Database with relations R, S, T with sizes O(N)Task: Compute the Boolean query

 $Q() \leftarrow R(A, B) \land S(B, C) \land \neg T(A, C)$

What is the time complexity for computing Q?

- $\mathcal{O}(N^2)$ trivially: First join R and S and then filter with T
- Subquadratic if T has degree bounded by a constant

Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation T(A, C):

Maximum number of tuples with the same value for A or C

Classical notion of degree $\Delta(T)$ of relation T(A, C):

Maximum number of tuples with the same value for A or C

Our notion of degree deg(T) accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings

If T has schema S: $\Delta(T) \leq deg(T) \leq |S| \cdot (\Delta(T) - 1) + 1$

Classical notion of degree $\Delta(T)$ of relation T(A, C):

Maximum number of tuples with the same value for A or C

Our notion of degree deg(T) accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings

If \mathcal{T} has schema $S: \ \Delta(\mathcal{T}) \leq deg(\mathcal{T}) \leq |S| \cdot (\Delta(\mathcal{T}) - 1) + 1$

Assumption in our example: T has degree 2, that is,

 \exists matchings M_1 and M_2 : $T(A, C) \equiv M_1(A, C) \lor M_2(A, C)$

Intermezzo: What is a Matching?

M is matching iff $\forall \mathbf{x}_S, \mathbf{x}'_S \in M$ either $\mathbf{x}_S = \mathbf{x}'_S$ or $\forall i \in S : x_i \neq x'_i$

Linear-time decomposition of relation R into $|S| \cdot \Delta(R)$ matchings

Intermezzo: Negating a Binary Matching

Assume matching $M_i(A, C)$. When is $(\bigcirc, \blacksquare) \in \neg M_i$?

1. \blacksquare is in the domain of *C* but not in M_i

$$W_i(C) = Dom(C) \land \neg(\exists_X M_i(X, C))$$

$$\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{bmatrix}$$

$$M_i$$
 Dom(C)
$$\end{bmatrix}$$

Intermezzo: Negating a Binary Matching

Assume matching $M_i(A, C)$. When is $(\bigcirc, \blacksquare) \in \neg M_i$?

1. \blacksquare is in the domain of *C* but not in M_i $W_i(C) = Dom(C) \land \neg(\exists_X M_i(X, C))$

2. or \blacksquare is paired with $\bigcirc \neq \bigcirc$ in M_i $\exists_{A_i}(M(A_i, C) \land A_i \neq A)$

Intermezzo: Negating a Binary Matching

Assume matching $M_i(A, C)$. When is $(\bigcirc, \blacksquare) \in \neg M_i$? M_i 1. \blacksquare is in the domain of C but not in M_i $W_i(C) = Dom(C) \land \neg(\exists_X M_i(X, C))$ 2. or \blacksquare is paired with $\bigcirc \neq \bigcirc$ in M_i Mi $\exists_{A_i}(M(A_i, C) \land A_i \neq A)$

$$\neg M_i(A, C) \equiv W_i(C) \lor \exists_{A_i}(M(A_i, C) \land A_i \neq A)$$

Recall: $T(A, C) \equiv M_1(A, C) \lor M_2(A, C)$, M_1 and M_2 matchings

$$\neg T(A,C) \equiv \underbrace{\neg M_1(A,C)}_{W_1(C) \lor \exists_{A_1}(M_1(A_1,C) \land A_1 \neq A)} \land \underbrace{\neg M_2(A,C)}_{W_2(C) \lor \exists_{A_2}(M_2(A_2,C) \land A_2 \neq A)}$$

Flatten out $\neg T(A, C)$ into a disjunction of four conjunctions: $W_1(C) \land W_2(C)$ $W_1(C) \land M_2(A_2, C) \land A \neq A_2$ $W_2(C) \land M_1(A_1, C) \land A \neq A_1$ $M_1(A_1, C) \land M_2(A_2, C) \land A \neq A_1 \land A \neq A_2$

The negative subqueries are now disequalities on variables

The Untangling Step

The query Q becomes $Q_1 \vee Q_2 \vee Q_3 \vee Q_4$:

 $Q_1() \leftarrow R(A, B) \land S(B, C) \land \underline{W_1(C) \land W_2(C)}$

 $Q_2() \leftarrow R(A,B) \land S(B,C) \land W_1(C) \land M_2(A_2,C) \land A \neq A_2$

 $Q_3() \leftarrow R(A,B) \land S(B,C) \land \underline{W_2(C)} \land \underline{M_1(A_1,C)} \land A \neq A_1$

 $Q_4() \leftarrow R(A,B) \land S(B,C) \land M_1(A_1,C) \land M_2(A_2,C) \land A \neq A_1 \land A \neq A_2$

Our rewriting

- extends the positive body of Q
 - Replaced T by (conjunctions of some of) its matchings
 - Added unary relations
- preserves the data complexity (fhtw and subw) of body
- blows up the query size exponentially in the degree

Boolean Tensor Decomposition

 $\forall i \in [\log N], f_i : Dom(A) \rightarrow \{0, 1\}$ gives the *i*-th bit of A

$$A \neq A_2 \equiv \bigvee_{x \in \{0,1\}} \bigvee_{i \in [\log N]} f_i(A) = x \land f_i(A_2) \neq x$$

This is a Boolean decomposition of $A \neq A_2$:

- Rank r is the number 2 log N of conjuncts
- Each conjunct is a conjunction of positive unary relations

Analogy: Each function f_i is a "coloring":

It assigns a $\{0,1\}$ color to each element of Dom(A)

How to Evaluate Conjunctions of Disequalities Efficiently?

 Q_2 becomes the disjunction of $2 \log N$ acyclic queries $Q_2^{x,i} \leftarrow R(A, B) \wedge S(B, C) \wedge W_1(C) \wedge M_2(A_2, C) \wedge f_i(A) = x \wedge f_i(A_2) \neq x$ Time complexity:

- $Q_2^{x,i}$ can be answered in time $\mathcal{O}(N \log N)$
- Q_2 can be answered in time $\mathcal{O}(N \log^2 N)$
- Further shave off a log *N* factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring

How to Evaluate Conjunctions of Disequalities Efficiently?

 Q_2 becomes the disjunction of $2 \log N$ acyclic queries $Q_2^{x,i} \leftarrow R(A, B) \wedge S(B, C) \wedge W_1(C) \wedge M_2(A_2, C) \wedge f_i(A) = x \wedge f_i(A_2) \neq x$ Time complexity:

- $Q_2^{x,i}$ can be answered in time $\mathcal{O}(N \log N)$
- Q_2 can be answered in time $\mathcal{O}(N \log^2 N)$
- Further shave off a log *N* factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring

 Q_4 is more involved: $A \neq A_1 \land A \neq A_2$

- Three-dimensional tensor of Boolean rank $log^2 N$
- We can reduce the rank to log N

$$A \neq A_1 \land A \neq A_2 \equiv \bigvee_{\substack{(c,c_1,c_2) \in \{0,1\}^3 \\ c \neq c_1 \land c \neq c_2}} \bigvee_{f(A) = c \land f(A_1) = c_1 \land f(A_2) = c_2}$$

There exists a family \mathcal{F} of functions $f : Dom(A) \to \{0, 1\}$:

- $\forall (a, a_1, a_2) \in \text{Dom}(A)^3 \text{ st } a \neq a_1 \land a \neq a_2$: $\exists f \in \mathcal{F} \qquad \text{st } f(a) \neq f(a_1) \land f(a) \neq f(a_2)$
- $|\mathcal{F}| = \mathcal{O}(\log N)$
- \mathcal{F} can be constructed in time $\mathcal{O}(N \log N)$

Intermezzo: Disjunct Matrices

k-disjunct $t \times N$ matrix X: $\forall j \in [N], S \subseteq [N]$ st $|S| \leq k, j \notin S$: $\exists i \in [t]$ st $X_{i,j} = 1, (X_{i,j'})_{j' \in S} = \mathbf{0}$

Intermezzo: Disjunct Matrices

j

We can construct a k-disjunct matrix X [Porat, Rothschild'11]

- with $t = \mathcal{O}(k^2 \log N)$
- in time $\mathcal{O}(k^2 N \log N)$

How to Use Disjunct Matrices for Our Problem?

Each row i = function f_i in \mathcal{F}

 $X_{i,j}=f_i(A)$

$$X_{i,S} = [f_i(A_1), f_i(A_2)] \Rightarrow k = 2$$

- X has size $\mathcal{O}(\log N) \times N$
- X constructed in time $\mathcal{O}(N \log N)$

Generalizing the Example

Negating a Ternary Matching

Matching $M(X_1, X_2, X_3)$. Single out (wlog) X_3 . Tuple $(x_1, x_2, x_3) \in \neg M$ iff

- 1. At least one of x_1 or x_2 is not in M OR
- 2. x_1 and x_2 are in M, but at least one is paired with $x'_3 \neq x_3$ OR they are paired with diff. X_3 values

Negating a Ternary Matching

Matching $M(X_1, X_2, X_3)$. Single out (wlog) X_3 . Tuple $(x_1, x_2, x_3) \in \neg M$ iff

- 1. At least one of x_1 or x_2 is not in M OR
- 2. x_1 and x_2 are in M, but at least one is paired with $x'_3 \neq x_3$ OR they are paired with diff. X_3 values

$$\neg M(X_1, X_2, X_3) \equiv (W_1(X_1) \lor W_2(X_2)) \lor \\ \exists_{Y_1} \exists_{Y_2} [\mathsf{NAE}(Y_1, Y_2, X_3) \land M(X_1, _, Y_1) \land M(_, X_2, Y_2)]$$

$$\mathsf{NAE}(Y_1, Y_2, X_3) \stackrel{\text{def}}{=} \neg (Y_1 = Y_2 \land Y_1 = X_3 \land Y_2 = X_3)$$
$$= Y_1 \neq Y_2 \lor Y_1 \neq X_3 \lor Y_2 \neq X_3$$

See paper for extension to *k*-ary matchings.

Query ${\it Q}$ rewritten into a disjunction of queries

$$Q_i(\boldsymbol{X}_F) \leftarrow \operatorname{body}_i \wedge \bigwedge_{S \in \mathcal{A}_i} \operatorname{NAE}(\boldsymbol{Z}_S).$$

Data complexity (fhtw and subw) of body, same as for body

Number of queries Q_i exponential in the degree

General Boolean Tensor Decomposition

 $\mathsf{NAE}(\mathbf{Z}_{S}) \equiv \bigvee_{j \in [r]} \bigwedge_{i \in \bigcup_{S} \mathbf{Z}_{S}} \underbrace{f_{i}^{(j)}(\mathbf{Z}_{i})}_{\text{univariate function}}$ rank-r tensor rank-1 tensor multivariate function

General Boolean Tensor Decomposition

Multi-hypergraph $\mathcal{G} = (\bigcup_{S} \mathbf{Z}_{S}, \mathcal{A})$ of $\bigwedge_{S} \mathsf{NAE}(\mathbf{Z}_{S})$

Boolean rank $r = P(\mathcal{G}, c) \cdot |\mathcal{F}|$ depends on:

- Chromatic polynomial of G using c ≤ |∪_S Z_S| colors
 c = maximum chromatic number of a hypergraph defined by any homomorphic image of G
- Size of a family of hash functions that represent proper *c*-colorings of homomorphic images of *G*