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Conjunctive Queries with Negated Bounded-Degree Relations

Q(Xg) « body A /\ =Rs(Xs),
Sc€

e body is the body of an arbitrary (positive) conjunctive query
e Xr = (Xj)icr denotes a tuple of variables indexed by F C N
o £ is the set of hyperedges of a multi-hypergraph H = (V, )

e Each S € € corresponds to a bounded-degree relation Rs
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Query Example 1/3: k-walk

Directed graph G = ([n], E) with n nodes and N = |E| edges.

/2\

1 3

\
W() <—E(X1.X2)/\E(XQ.X3)/\"'AE(X;(.X;<+1) k+1 4

NS

Hypergraph 7 is empty since W has no negated relations.
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Query Example 1/3: k-walk

Directed graph G = ([n], E) with n nodes and N = |E| edges.

2
1~ 3

\
W() <—E(X1.X2)/\E(XQ.X3)/\"'AE(X;<.X;<+1) k+1 4

NS

Hypergraph 7 is empty since W has no negated relations.

Time complexity:

e O(kNlog N) [Yannakakis'81]
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Query Example 2/3: k-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

P() %E(Xl,Xz)A E(Xg,Xg)A SAN E(Xk.Xk‘l)/\
/\ Xi # X;

ije[k+1]
i+1<j

Disequality is negation of bounded-degree equality relation:
Xi # X; = (X = X))
Hypergraph H = ([k + 1], {(i,j) [ i,j € [k + 1],i +1 < j})
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Query Example 2/3: k-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

P() %E(Xl,Xz)A E(Xg,Xg)A SAN E(Xk.Xk‘l)/\
/\ Xi # X;

ijelk+1]
i+1<j

Disequality is negation of bounded-degree equality relation:
Xi # X; = (X = X))

Hypergraph H = ([k + 1], {(i,j) [ i,j € [k + 1],i +1 < j})

Time complexity:

o O(k¥Nlog N) [Plehn, Voigt'90]

e 29K \/log N using color-coding [Alon, Yuster, Zwick'95] 3/20



Query Example 3/3: induced (chordless) k-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

/() (*E(X1X2) N E(X2X3) VANCIERVAN E(Xk,Xk‘l)/\
N (CEX:X) A X # X))

ijElk+1]
itl<j

Each edge twice in 7{ due to negated edge relation and disequality
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Query Example 3/3: induced (chordless) k-path

Directed graph G = ([n], E) with n nodes and N = |E| edges.

/() (*E(X1X2) N E(X2X3) VANCIERVAN E(Xk,Xk‘l)/\
N (CEX:X) A X # X))

ijElk+1]
itl<j

Each edge twice in 7{ due to negated edge relation and disequality

Time complexity:

e W/[2]-hard [Chen, Flum'07]
o O(f(k,d)Nlog N) if G has maximum degree d;
f depends exponentially on k and d [Plehn, Voigt'90]
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Main Result: Time Complexity for Query Evaluation

Database with relations of size O(N)

Query Q with positive body and negation hypergraph #
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Main Result: Time Complexity for Query Evaluation

Database with relations of size O(N)

Query Q with positive body and negation hypergraph #

Using a reduction to InsideOut [Abo Khamis et al'16]
O( FlnsideOut(Q) log N - (thtWF(bOdY) ar \output\))
depends on structure of same as for body

degree of relations
and InsideOut
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Main Result: Time Complexity for Query Evaluation

Database with relations of size O(N)

Query Q with positive body and negation hypergraph #

Using a reduction to InsideOut [Abo Khamis et al'16]
O(  Finsideout(Q)  -log N - (NFWr(*0d9) 1 joutput|))
depends on ;trructure of H same as for body

degree of relations
and InsideOut

Using a reduction to PANDA [Abo Khamis et al'17]
O( Fpanpa(Q) - (poly(log N) - NsubWE(2ody) 4 oo loutput]))
depends on structure of H same as for body
degree of relations
and PANDA
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Our Query Evaluation Approach

1. Untangling negated bounded-degree relations
Rewrite negated subquery into not-all-equal conjunction
Not-all-equal (NAE) is multi-dimensional analog of #
2. Boolean tensor decomposition for NAE conjunction

Probabilistic construction with efficient derandomization

Generalization of color-coding from cliques of # to NAE

conjunctions

3. Use existing algorithms InsideOut and PANDA
Decomposition preserves fhtw and subw of positive body
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Untangling Bounded-Degree Relations



The Untangling Step via an Example

Given: Database with relations R, S, T with sizes O(N)

Task: Compute the Boolean query

Q() « R(A, B) A S(B,C) A~T(A, C)

What is the time complexity for computing Q7

e O(N?) trivially: First join R and S and then filter with T
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The Untangling Step via an Example

Given: Database with relations R, S, T with sizes O(N)

Task: Compute the Boolean query

Q() « R(A, B) A S(B,C) A~T(A, C)

What is the time complexity for computing Q7

e O(N?) trivially: First join R and S and then filter with T

e Subquadratic if T has degree bounded by a constant

7/20



Intermezzo: Bounded-degree Relations

Classical notion of degree A(T) of relation T(A, C):

Maximum number of tuples with the same value for A or C
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Intermezzo: Bounded-degree Relations

Classical notion of degree A(T) of relation T(A, C):
Maximum number of tuples with the same value for A or C
Our notion of degree deg(T) accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings

If T has schema S: A(T) < deg(T) <|S|-(A(T)—-1)+1
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Intermezzo: Bounded-degree Relations

Classical notion of degree A(T) of relation T(A, C):

Maximum number of tuples with the same value for A or C
Our notion of degree deg(T) accounts for the arity of T:

Smallest number d such that T is a disjoint union of d matchings
If T has schema S: A(T) < deg(T)<|S|-(A(T)—-1)+1
Assumption in our example: T has degree 2, that is,

3 matchings M; and My: T(A, C) = Mi(A, C) vV Ma(A, C)
8/20



Intermezzo: What is a Matching?

M is matching iff Vxs, xs € M either xs = x5 or Vi € S : xj # X]

OHA OHA
OH A OH A
OH A OH A
OHA OHA

Relation Matching Matching

Linear-time decomposition of relation R into |S| - A(R) matchings
9/20



Intermezzo: Negating a Binary Matching

Assume matching M;(A, C). When is (@, ®) ¢ —=M;?

1. M is in the domain of C but not in M;
Dom(C)

Wi(C) = Dom(C) A =(IxMi(X, C))

10,20



Intermezzo: Negating a Binary Matching

Assume matching M;(A, C). When is (@, ®) ¢ —=M;?

o N
1. Mis in the domain of C butnotin M; |@ M| M,
Dom(C)
Wi(C) = Dom(C) A -(CxMi(x,c)) | @ W
[]
2. or M is paired with @ £ @ in M; o u
(M(A;, €) Il
E|A,. M(A;, C /\A,’#A)
o
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Intermezzo: Negating a Binary Matching

Assume matching M;(A, C). When is (@, ®) ¢ —=M;?

o N
1. Mis in the domain of C butnotin M; |@ M| M,
Dom(C)
Wi(C) = Dom(C) A -(CxMi(x,c)) | @ W
[]
2. or M is paired with @ £ @ in M; o u
(M(A;, €) Il
E|A,. M(A;, C /\A,’#A)
o

‘_‘MI(Aa C) = Wi(C) v Ia(M(A;, C)NA; # A)‘ 10,20




Negating a Bounded-degree Relation

Recall: T(A, C) = Mi(A, C)V My(A, C), My and M, matchings

T(AC) = My (A, C) A —Ma(A, C)
——— ————
W4 (C)V3a, (My(A1, C)AAIZA)  Wa(C)Vaa, (Ma(Az,C)AAI£A)

Flatten out =T (A, C) into a disjunction of four conjunctions:
Wi (C) A Wa(C)

WA(C) A Ma(As, C) A A # Ag

Wa(C) A My(Ar, C) A A % Ay

Mi(Ar, C) A Mao(As, CYAA# AL A A % Ay

The negative subqueries are now disequalities on variables
11/20



The Untangling Step

The query Q becomes Q1 V @2V Q3 V Q4:
Qi) « R(A, B) A S(B, C) A W4(C) A Ws(C)
() = R(A, B) A S(B, C) A WA(C) A My(As, C) A A # A,
Qs() « R(A, B) A S(B, C) A Wa(C) A My(A1, C) A A # Ay
Qu() < R(A, B) A S(B, C) A Mi(Ay, C) A Ma(As, C)AA# AL A A # Ag

Our rewriting

e extends the positive body of @
e Replaced T by (conjunctions of some of) its matchings

e Added unary relations
e preserves the data complexity (fhtw and subw) of body

e blows up the query size exponentially in the degree
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Boolean Tensor Decomposition



How to Evaluate Conjunctions of Disequalities Efficiently?

Vi € [log N, fi : Dom(A) — {0, 1} gives the i-th bit of A
Ath= \/ \/ fi(A)=x1fi(A)#x

x€{0,1} i€[log N]

This is a Boolean decomposition of A # Aj:

e Rank r is the number 2log N of conjuncts
e Each conjunct is a conjunction of positive unary relations
Analogy: Each function f; is a “coloring”:

It assigns a {0,1} color to each element of Dom(A)
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How to Evaluate Conjunctions of Disequalities Efficiently?

Q> becomes the disjunction of 2log N acyclic queries
Q"+ R(A,B) A S(B, C) A W4(C) A My(Az, C) A Fi(A) = x A fi(A) # x
Time complexity:

o Q;’i can be answered in time O(N log N)

e Q> can be answered in time O(N log? N)

e Further shave off a log N factor (see paper)

Boolean semiring — Bit-vector semiring

14/20



How to Evaluate Conjunctions of Disequalities Efficiently?

Q> becomes the disjunction of 2log N acyclic queries
Q"+ R(A,B) A S(B, C) A W4(C) A My(Az, C) A Fi(A) = x A fi(A) # x
Time complexity:

o Q;’i can be answered in time O(N log N)

e Q> can be answered in time O(N log? N)

e Further shave off a log N factor (see paper)

Boolean semiring — Bit-vector semiring

Q4 is more involved: A # A1 AN A # Ap
e Three-dimensional tensor of Boolean rank log?N

e We can reduce the rank to log N
14/20



Boolean Tensor Decomposition for A # A; N A # A,

A£AMNA# A = \ V f(A) =cAf(A) =anf(A)=
(c,c1,02)€{0, 1}3 feF
c#cNc#e

There exists a family F of functions f : Dom(A) — {0, 1}:
o Y(a,a1,a2) € Dom(A)3st a#a A  a#a
f e F st f(a) # f(a1) A f(a) # f(a2)
o |F| = O(log N)
e F can be constructed in time O(N log N)
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Intermezzo: Disjunct Matrices

k-disjunct t x N matrix X:

Vji€[N,SC[N]st[S|<kjgS:

di € [t] st Xi,j:17(XfJ/)j’€S:0 S J
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Intermezzo: Disjunct Matrices

k-disjunct t x N matrix X:

Vji€[N,SC[N]st[S|<kjgS:

di € [t] st Xi,j:17(XfJ/)j’€S:0 S J

We can construct a k-disjunct matrix X [Porat, Rothschild'11]

e with t = O(k?log N)

e in time O(k*Nlog N)
16/20



How to Use Disjunct Matrices for Our Problem?

Each row i = function f; in F - -
Xij = fi(A)
Xis = [fi(A1), fi(A))] = k =2 i 1 O(log N)
e X has size O(log N) x N s
e X constructed in time O(N log N) N
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Generalizing the Example



Negating a Ternary Matching

Matching M(X1, X2, X3). Single out (wlog) X.
Tuple (x1,x2, x3) € =M iff
1. At least one of x; or x» is not in M OR

2. x1 and xo are in M, but at least one is paired with x§ # x3 OR
they are paired with diff. X3 values
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Negating a Ternary Matching

Matching M(X1, X2, X3). Single out (wlog) X.
Tuple (x1,x2, x3) € =M iff
1. At least one of x; or x» is not in M OR

2. x1 and xo are in M, but at least one is paired with x§ # x3 OR
they are paired with diff. X3 values

ﬁM(Xl,X27X3) = (Wl(Xl) V Wz(Xg))\/
Hylﬂyz[NAE(Yl, YQ,X::,) AM(X1, -, Y1) AM( X, YQ)]

NAE(Y1, Yo, X3) E (Y= YaA Vi = X3 A Yo = X3)
= YN#EVLWYI#EFXVY2#X

See paper for extension to k-ary matchings. 18/20



General Untangling

Query Q rewritten into a disjunction of queries

Qi(XF) +body; A\ NAE(Zs).
SeA;

Data complexity (fhtw and subw) of body; same as for body

Number of queries Q; exponential in the degree
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General Boolean Tensor Decomposition

ANAE(ZS) =\ A @)
S

Jelrl ieUs Zs

N—
rank-r tensor _ K
multivariate function rank-1 tensor

univariate function
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General Boolean Tensor Decomposition

ANAE(ZS) =\ A @)
S

J€lr] ieUs Zs
N—
rank-r tensor _
multivariate function rank-1 tensor

univariate function

Multi-hypergraph G = (s Zs, A) of As NAE(Zs)

Boolean rank r = P(G, ¢) - | F| depends on:

e Chromatic polynomial of G using ¢ < ||Jg Zs| colors
¢ = maximum chromatic number of a hypergraph defined by
any homomorphic image of G

e Size of a family of hash functions that represent proper

c-colorings of homomorphic images of G
20/20



