Boolean Tensor Decomposition for Conjunctive Queries with Negation

Mahmoud Abo Khamis Hung Q. Ngo Dan Olteanu Dan Suciu RelationalAI (USA) \& U. Oxford (UK) \& U. Washington (USA)

International Conference on Database Theory
Lisbon, March 2019

Conjunctive Queries with Negated Bounded-Degree Relations

$$
Q\left(\boldsymbol{X}_{F}\right) \leftarrow \operatorname{body} \wedge \bigwedge_{S \in \overline{\mathcal{E}}} \neg R_{S}\left(\boldsymbol{X}_{S}\right),
$$

- body is the body of an arbitrary (positive) conjunctive query
- $\boldsymbol{X}_{F}=\left(X_{i}\right)_{i \in F}$ denotes a tuple of variables indexed by $F \subset \mathbb{N}$
- $\overline{\mathcal{E}}$ is the set of hyperedges of a multi-hypergraph $\overline{\mathcal{H}}=(\overline{\mathcal{V}}, \overline{\mathcal{E}})$
- Each $S \in \overline{\mathcal{E}}$ corresponds to a bounded-degree relation R_{S}

Query Example 1/3: k-walk

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.
$W() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right) \quad k+1$

Hypergraph $\overline{\mathcal{H}}$ is empty since W has no negated relations.

Query Example 1/3: k-walk

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.
$W() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right)$

Hypergraph $\overline{\mathcal{H}}$ is empty since W has no negated relations.

Time complexity:

- $\mathcal{O}(k N \log N)$
[Yannakakis'81]

Query Example 2/3: k-path

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.

$$
\begin{aligned}
& P() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right) \wedge \\
& \bigwedge_{\substack{i, j \in[k+1] \\
i+1<j}} X_{i} \neq X_{j}
\end{aligned}
$$

Disequality is negation of bounded-degree equality relation:

$$
X_{i} \neq X_{j} \equiv \neg\left(X_{i}=X_{j}\right)
$$

Hypergraph $\overline{\mathcal{H}}=([k+1],\{(i, j) \mid i, j \in[k+1], i+1<j\})$

Query Example 2/3: k-path

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.

$$
\begin{aligned}
& P() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right) \wedge \\
& \bigwedge_{\substack{i, j \in[k+1] \\
i+1<j}} X_{i} \neq X_{j}
\end{aligned}
$$

Disequality is negation of bounded-degree equality relation:

$$
X_{i} \neq X_{j} \equiv \neg\left(X_{i}=X_{j}\right)
$$

Hypergraph $\overline{\mathcal{H}}=([k+1],\{(i, j) \mid i, j \in[k+1], i+1<j\})$
Time complexity:

- $\mathcal{O}\left(k^{k} N \log N\right)$
- $2^{\mathcal{O}(k)} N \log N$ using color-coding
[Plehn, Voigt'90]
[Alon, Yuster, Zwick'95] ${ }^{3 / 20}$

Query Example 3/3: induced (chordless) k-path

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.

$$
\begin{aligned}
& I() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right) \wedge \\
&\left.\bigwedge_{\substack{i, j \in[k+1] \\
i+1<j}}\left(\neg E\left(X_{i}, X_{j}\right) \wedge X_{i} \neq X_{j}\right)\right)
\end{aligned}
$$

Each edge twice in $\overline{\mathcal{H}}$ due to negated edge relation and disequality

Query Example 3/3: induced (chordless) k-path

Directed graph $G=([n], E)$ with n nodes and $N=|E|$ edges.

$$
\begin{aligned}
& I() \leftarrow E\left(X_{1}, X_{2}\right) \wedge E\left(X_{2}, X_{3}\right) \wedge \cdots \wedge E\left(X_{k}, X_{k+1}\right) \wedge \\
&\left.\bigwedge_{\substack{i, j \in[k+1] \\
i+1<j}}\left(\neg E\left(X_{i}, X_{j}\right) \wedge X_{i} \neq X_{j}\right)\right)
\end{aligned}
$$

Each edge twice in $\overline{\mathcal{H}}$ due to negated edge relation and disequality
Time complexity:

- W[2]-hard
[Chen, Flum'07]
- $\mathcal{O}(f(k, d) N \log N)$ if G has maximum degree d; f depends exponentially on k and d
[Plehn, Voigt'90]

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$
Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$
Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Using a reduction to InsideOut [Abo Khamis et al'16]

Main Result: Time Complexity for Query Evaluation

Database with relations of size $\mathcal{O}(N)$
Query Q with positive body and negation hypergraph $\overline{\mathcal{H}}$

Using a reduction to InsideOut
[Abo Khamis et al'16]

Using a reduction to PANDA
[Abo Khamis et al'17]

Our Query Evaluation Approach

1. Untangling negated bounded-degree relations

Rewrite negated subquery into not-all-equal conjunction Not-all-equal (NAE) is multi-dimensional analog of \neq
2. Boolean tensor decomposition for NAE conjunction

Probabilistic construction with efficient derandomization Generalization of color-coding from cliques of \neq to NAE conjunctions
3. Use existing algorithms InsideOut and PANDA

Decomposition preserves fhtw and subw of positive body

Untangling Bounded-Degree Relations

The Untangling Step via an Example

Given: Database with relations R, S, T with sizes $\mathcal{O}(N)$
Task: Compute the Boolean query

$$
Q() \leftarrow R(A, B) \wedge S(B, C) \wedge \neg T(A, C)
$$

What is the time complexity for computing Q ?

- $\mathcal{O}\left(N^{2}\right)$ trivially: First join R and S and then filter with T

The Untangling Step via an Example

Given: Database with relations R, S, T with sizes $\mathcal{O}(N)$
Task: Compute the Boolean query

$$
Q() \leftarrow R(A, B) \wedge S(B, C) \wedge \neg T(A, C)
$$

What is the time complexity for computing Q ?

- $\mathcal{O}\left(N^{2}\right)$ trivially: First join R and S and then filter with T
- Subquadratic if T has degree bounded by a constant

Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C

Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C

Our notion of degree $\operatorname{deg}(T)$ accounts for the arity of T :

Smallest number d such that T is a disjoint union of d matchings

If T has schema $S: \Delta(T) \leq \operatorname{deg}(T) \leq|S| \cdot(\Delta(T)-1)+1$

Intermezzo: Bounded-degree Relations

Classical notion of degree $\Delta(T)$ of relation $T(A, C)$:

Maximum number of tuples with the same value for A or C

Our notion of degree $\operatorname{deg}(T)$ accounts for the arity of T :

Smallest number d such that T is a disjoint union of d matchings

If T has schema $S: \Delta(T) \leq \operatorname{deg}(T) \leq|S| \cdot(\Delta(T)-1)+1$

Assumption in our example: T has degree 2 , that is,
\exists matchings M_{1} and $M_{2}: T(A, C) \equiv M_{1}(A, C) \vee M_{2}(A, C)$

Intermezzo: What is a Matching?

M is matching iff $\forall \boldsymbol{x}_{S}, \boldsymbol{x}_{S}^{\prime} \in M$ either $\boldsymbol{x}_{S}=\boldsymbol{x}_{S}^{\prime}$ or $\forall i \in S: x_{i} \neq x_{i}^{\prime}$

Linear-time decomposition of relation R into $|S| \cdot \Delta(R)$ matchings

Intermezzo: Negating a Binary Matching

Assume matching $M_{i}(A, C)$. When is $(\bigcirc, \square) \in \neg M_{i}$?

1. \square is in the domain of C but not in M_{i}

$$
W_{i}(C)=\operatorname{Dom}(C) \wedge \neg\left(\exists_{X} M_{i}(X, C)\right)
$$

Dom(C)

Intermezzo: Negating a Binary Matching

Assume matching $M_{i}(A, C)$. When is $(\bigcirc, \square) \in \neg M_{i}$?

1. \square is in the domain of C but not in M_{i}

$$
W_{i}(C)=\operatorname{Dom}(C) \wedge \neg\left(\exists X M_{i}(X, C)\right)
$$

Dom(C)
2. or \square is paired with $\bigcirc \neq \bigcirc$ in M_{i}

$$
\exists_{A_{i}}\left(M\left(A_{i}, C\right) \wedge A_{i} \neq A\right)
$$

Intermezzo: Negating a Binary Matching

Assume matching $M_{i}(A, C)$. When is $(\bigcirc, \square) \in \neg M_{i}$?

1. \square is in the domain of C but not in M_{i}

$$
W_{i}(C)=\operatorname{Dom}(C) \wedge \neg\left(\exists X M_{i}(X, C)\right)
$$

Dom(C)
2. or \square is paired with $\bigcirc \neq \bigcirc$ in M_{i}

$$
\begin{aligned}
& \exists_{A_{i}}\left(M\left(A_{i}, C\right) \wedge A_{i} \neq A\right) \\
& \quad \neg \neg M_{i}(A, C) \equiv W_{i}(C) \vee \exists_{A_{i}}\left(M\left(A_{i}, C\right) \wedge A_{i} \neq A\right)
\end{aligned}
$$

Negating a Bounded-degree Relation

Recall: $T(A, C) \equiv M_{1}(A, C) \vee M_{2}(A, C), M_{1}$ and M_{2} matchings

$$
\neg T(A, C) \equiv \underbrace{\neg M_{1}(A, C)}_{W_{1}(C) \vee \exists_{A_{1}}\left(M_{1}\left(A_{1}, C\right) \wedge A_{1} \neq A\right)} \wedge \underbrace{\neg M_{2}(A, C)}_{W_{2}(C) \vee \exists_{A_{2}(}\left(M_{2}\left(A_{2}, C\right) \wedge A_{2} \neq A\right)}
$$

Flatten out $\neg T(A, C)$ into a disjunction of four conjunctions:

$$
\begin{aligned}
& W_{1}(C) \wedge W_{2}(C) \\
& W_{1}(C) \wedge M_{2}\left(A_{2}, C\right) \wedge A \neq A_{2} \\
& W_{2}(C) \wedge M_{1}\left(A_{1}, C\right) \wedge A \neq A_{1} \\
& M_{1}\left(A_{1}, C\right) \wedge M_{2}\left(A_{2}, C\right) \wedge A \neq A_{1} \wedge A \neq A_{2}
\end{aligned}
$$

The negative subqueries are now disequalities on variables

The Untangling Step

The query Q becomes $Q_{1} \vee Q_{2} \vee Q_{3} \vee Q_{4}$:
$Q_{1}() \leftarrow R(A, B) \wedge S(B, C) \wedge W_{1}(C) \wedge W_{2}(C)$
$Q_{2}() \leftarrow R(A, B) \wedge S(B, C) \wedge W_{1}(C) \wedge M_{2}\left(A_{2}, C\right) \wedge A \neq A_{2}$
$Q_{3}() \leftarrow R(A, B) \wedge S(B, C) \wedge W_{2}(C) \wedge M_{1}\left(A_{1}, C\right) \wedge A \neq A_{1}$
$Q_{4}() \leftarrow R(A, B) \wedge S(B, C) \wedge M_{1}\left(A_{1}, C\right) \wedge M_{2}\left(A_{2}, C\right) \wedge A \neq A_{1} \wedge A \neq A_{2}$
Our rewriting

- extends the positive body of Q
- Replaced T by (conjunctions of some of) its matchings
- Added unary relations
- preserves the data complexity (fhtw and subw) of body
- blows up the query size exponentially in the degree

Boolean Tensor Decomposition

How to Evaluate Conjunctions of Disequalities Efficiently?

$\forall i \in[\log N], f_{i}: \operatorname{Dom}(A) \rightarrow\{0,1\}$ gives the i-th bit of A

$$
A \neq A_{2} \equiv \bigvee_{x \in\{0,1\}} \bigvee_{i \in[\log N]} f_{i}(A)=x \wedge f_{i}\left(A_{2}\right) \neq x
$$

This is a Boolean decomposition of $A \neq A_{2}$:

- Rank r is the number $2 \log N$ of conjuncts
- Each conjunct is a conjunction of positive unary relations

Analogy: Each function f_{i} is a "coloring":
It assigns a $\{0,1\}$ color to each element of $\operatorname{Dom}(A)$

How to Evaluate Conjunctions of Disequalities Efficiently?

Q_{2} becomes the disjunction of $2 \log N$ acyclic queries
$Q_{2}^{x, i} \leftarrow R(A, B) \wedge S(B, C) \wedge W_{1}(C) \wedge M_{2}\left(A_{2}, C\right) \wedge f_{i}(A)=x \wedge f_{i}\left(A_{2}\right) \neq x$
Time complexity:

- $Q_{2}^{x, i}$ can be answered in time $\mathcal{O}(N \log N)$
- Q_{2} can be answered in time $\mathcal{O}\left(N \log ^{2} N\right)$
- Further shave off a $\log N$ factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring

How to Evaluate Conjunctions of Disequalities Efficiently?

Q_{2} becomes the disjunction of $2 \log N$ acyclic queries
$Q_{2}^{x, i} \leftarrow R(A, B) \wedge S(B, C) \wedge W_{1}(C) \wedge M_{2}\left(A_{2}, C\right) \wedge f_{i}(A)=x \wedge f_{i}\left(A_{2}\right) \neq x$
Time complexity:

- $Q_{2}^{x, i}$ can be answered in time $\mathcal{O}(N \log N)$
- Q_{2} can be answered in time $\mathcal{O}\left(N \log ^{2} N\right)$
- Further shave off a $\log N$ factor (see paper)

Boolean semiring \rightarrow Bit-vector semiring
Q_{4} is more involved: $A \neq A_{1} \wedge A \neq A_{2}$

- Three-dimensional tensor of Boolean rank $\log ^{2} N$
- We can reduce the rank to $\log N$

Boolean Tensor Decomposition for $A \neq A_{1} \wedge A \neq A_{2}$

$$
A \neq A_{1} \wedge A \neq A_{2} \equiv \bigvee_{\substack{\left.c, c_{1}, c_{2}\right) \in\{0,1\}^{3} \\ c \neq c_{1} \wedge c \neq c_{2}}} \bigvee_{\mathcal{F}} f(A)=c \wedge f\left(A_{1}\right)=c_{1} \wedge f\left(A_{2}\right)=c_{2}
$$

There exists a family \mathcal{F} of functions $f: \operatorname{Dom}(A) \rightarrow\{0,1\}$:

- $\forall\left(a, a_{1}, a_{2}\right) \in \operatorname{Dom}(A)^{3}$ st $\quad a \neq a_{1} \quad \wedge \quad a \neq a_{2}:$

$$
\exists f \in \mathcal{F} \quad \text { st } f(a) \neq f\left(a_{1}\right) \wedge f(a) \neq f\left(a_{2}\right)
$$

- $|\mathcal{F}|=\mathcal{O}(\log N)$
- \mathcal{F} can be constructed in time $\mathcal{O}(N \log N)$

Intermezzo: Disjunct Matrices

k-disjunct $t \times N$ matrix X :
$\forall j \in[N], S \subseteq[N]$ st $|S| \leq k, j \notin S:$
$\exists i \in[t]$ st $X_{i, j}=1,\left(X_{i, j^{\prime}}\right)_{j^{\prime} \in S}=\mathbf{0}$

Intermezzo: Disjunct Matrices

$$
\begin{aligned}
& k \text {-disjunct } t \times N \text { matrix } X \text { : } \\
& \forall j \in[N], S \subseteq[N] \text { st }|S| \leq k, j \notin S: \\
& \exists i \in[t] \text { st } X_{i, j}=1,\left(X_{i, j^{\prime}}\right)_{j^{\prime} \in S}=\mathbf{0}
\end{aligned}
$$

We can construct a k-disjunct matrix X
[Porat, Rothschild'11]

- with $t=\mathcal{O}\left(k^{2} \log N\right)$
- in time $\mathcal{O}\left(k^{2} N \log N\right)$

How to Use Disjunct Matrices for Our Problem?

Each row $i=$ function f_{i} in \mathcal{F}
$X_{i, j}=f_{i}(A)$
$X_{i, S}=\left[f_{i}\left(A_{1}\right), f_{i}\left(A_{2}\right)\right] \Rightarrow k=2$

- X has $\operatorname{size} \mathcal{O}(\log N) \times N$
- X constructed in time $\mathcal{O}(N \log N)$

Generalizing the Example

Negating a Ternary Matching

Matching $M\left(X_{1}, X_{2}, X_{3}\right)$. Single out (wlog) X_{3}.
Tuple $\left(x_{1}, x_{2}, x_{3}\right) \in \neg M$ iff

1. At least one of x_{1} or x_{2} is not in M OR
2. x_{1} and x_{2} are in M, but at least one is paired with $x_{3}^{\prime} \neq x_{3}$ OR they are paired with diff. X_{3} values

Negating a Ternary Matching

Matching $M\left(X_{1}, X_{2}, X_{3}\right)$. Single out (wlog) X_{3}.
Tuple $\left(x_{1}, x_{2}, x_{3}\right) \in \neg M$ iff

1. At least one of x_{1} or x_{2} is not in M OR
2. x_{1} and x_{2} are in M, but at least one is paired with $x_{3}^{\prime} \neq x_{3}$ OR they are paired with diff. X_{3} values

$$
\begin{aligned}
\neg M\left(X_{1}, X_{2}, X_{3}\right) \equiv & \left(W_{1}\left(X_{1}\right) \vee W_{2}\left(X_{2}\right)\right) \vee \\
& \exists_{Y_{1}} \exists Y_{2}\left[\operatorname{NAE}\left(Y_{1}, Y_{2}, X_{3}\right) \wedge M\left(X_{1},-, Y_{1}\right) \wedge M\left(-, X_{2}, Y_{2}\right)\right]
\end{aligned}
$$

$\operatorname{NAE}\left(Y_{1}, Y_{2}, X_{3}\right) \stackrel{\text { def }}{=} \neg\left(Y_{1}=Y_{2} \wedge Y_{1}=X_{3} \wedge Y_{2}=X_{3}\right)$

$$
=\quad Y_{1} \neq Y_{2} \vee Y_{1} \neq X_{3} \vee Y_{2} \neq X_{3}
$$

See paper for extension to k-ary matchings.

General Untangling

Query Q rewritten into a disjunction of queries

$$
Q_{i}\left(\boldsymbol{X}_{F}\right) \leftarrow \text { body }_{i} \wedge \bigwedge_{S \in \mathcal{A}_{i}} \operatorname{NAE}\left(\boldsymbol{Z}_{S}\right)
$$

Data complexity (fhtw and subw) of body; same as for body

Number of queries Q_{i} exponential in the degree

General Boolean Tensor Decomposition

General Boolean Tensor Decomposition

Multi-hypergraph $\mathcal{G}=\left(\bigcup_{S} \boldsymbol{Z}_{S}, \mathcal{A}\right)$ of $\bigwedge_{S} \operatorname{NAE}\left(\boldsymbol{Z}_{S}\right)$
Boolean rank $r=P(\mathcal{G}, c) \cdot|\mathcal{F}|$ depends on:

- Chromatic polynomial of \mathcal{G} using $c \leq\left|\bigcup_{S} \boldsymbol{Z}_{S}\right|$ colors
$c=$ maximum chromatic number of a hypergraph defined by any homomorphic image of \mathcal{G}
- Size of a family of hash functions that represent proper c-colorings of homomorphic images of \mathcal{G}

