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Conjunctive Queries with Negated Bounded-Degree Relations

Q(XF )← body ∧
∧
S∈E

¬RS(XS),

• body is the body of an arbitrary (positive) conjunctive query

• XF = (Xi )i∈F denotes a tuple of variables indexed by F ⊂ N

• E is the set of hyperedges of a multi-hypergraph H = (V, E)

• Each S ∈ E corresponds to a bounded-degree relation RS
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Query Example 1/3: k-walk

Directed graph G = ([n],E ) with n nodes and N = |E | edges.

W ()←E (X1,X2) ∧ E (X2,X3) ∧ · · · ∧ E (Xk ,Xk+1)

1
2

3

4k + 1

· · ·

Hypergraph H is empty since W has no negated relations.

Time complexity:

• O(kN logN) [Yannakakis’81]
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Query Example 2/3: k-path

Directed graph G = ([n],E ) with n nodes and N = |E | edges.

P()←E (X1,X2) ∧ E (X2,X3) ∧ · · · ∧ E (Xk ,Xk+1)∧∧
i,j∈[k+1]
i+1<j

Xi 6= Xj

1
2

3

4k + 1

· · ·

Disequality is negation of bounded-degree equality relation:

Xi 6= Xj ≡ ¬(Xi = Xj)

Hypergraph H = ([k + 1], {(i , j) | i , j ∈ [k + 1], i + 1 < j})

Time complexity:

• O(kkN logN) [Plehn, Voigt’90]

• 2O(k)N logN using color-coding [Alon, Yuster, Zwick’95]
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Query Example 3/3: induced (chordless) k-path

Directed graph G = ([n],E ) with n nodes and N = |E | edges.

I ()←E (X1,X2) ∧ E (X2,X3) ∧ · · · ∧ E (Xk ,Xk+1)∧∧
i,j∈[k+1]
i+1<j

(¬E (Xi ,Xj) ∧ Xi 6= Xj))

1
2

3

4k + 1

· · ·

Each edge twice in H due to negated edge relation and disequality

Time complexity:

• W[2]-hard [Chen, Flum’07]

• O(f (k, d)N logN) if G has maximum degree d ;

f depends exponentially on k and d [Plehn, Voigt’90]
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Main Result: Time Complexity for Query Evaluation

Database with relations of size O(N)

Query Q with positive body and negation hypergraph H

Using a reduction to InsideOut [Abo Khamis et al’16]

O( FInsideOut(Q)︸ ︷︷ ︸
depends on structure of H

degree of relations
and InsideOut

· logN · (N fhtwF (body) + |output|)︸ ︷︷ ︸
same as for body

)

Using a reduction to PANDA [Abo Khamis et al’17]

O( FPANDA(Q)︸ ︷︷ ︸
depends on structure of H

degree of relations
and PANDA

· (poly(logN) · NsubwF (body) + logN · |output|)︸ ︷︷ ︸
same as for body

)
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Our Query Evaluation Approach

1. Untangling negated bounded-degree relations

Rewrite negated subquery into not-all-equal conjunction

Not-all-equal (NAE) is multi-dimensional analog of 6=

2. Boolean tensor decomposition for NAE conjunction

Probabilistic construction with efficient derandomization

Generalization of color-coding from cliques of 6= to NAE

conjunctions

3. Use existing algorithms InsideOut and PANDA

Decomposition preserves fhtw and subw of positive body
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Untangling Bounded-Degree Relations
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The Untangling Step via an Example

Given: Database with relations R, S ,T with sizes O(N)

Task: Compute the Boolean query

Q()← R(A,B) ∧ S(B,C ) ∧ ¬T (A,C )

What is the time complexity for computing Q?

• O(N2) trivially: First join R and S and then filter with T

• Subquadratic if T has degree bounded by a constant
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Intermezzo: Bounded-degree Relations

Classical notion of degree ∆(T ) of relation T (A,C ):

Maximum number of tuples with the same value for A or C

Our notion of degree deg(T ) accounts for the arity of T :

Smallest number d such that T is a disjoint union of d matchings

If T has schema S : ∆(T ) ≤ deg(T ) ≤ |S | · (∆(T )− 1) + 1

Assumption in our example: T has degree 2, that is,

∃ matchings M1 and M2: T (A,C ) ≡ M1(A,C ) ∨M2(A,C )
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Intermezzo: What is a Matching?

M is matching iff ∀xS , x ′
S ∈ M either xS = x ′

S or ∀i ∈ S : xi 6= x ′i

Relation

=

Matching

∪

Matching

Linear-time decomposition of relation R into |S | ·∆(R) matchings
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Intermezzo: Negating a Binary Matching

Assume matching Mi (A,C ). When is ( , ) ∈ ¬Mi?

1. is in the domain of C but not in Mi

Wi (C ) = Dom(C ) ∧ ¬(∃XMi (X ,C ))

Dom(C)
Mi

2. or is paired with 6= in Mi

∃Ai
(M(Ai ,C ) ∧ Ai 6= A)

Mi

¬Mi (A,C ) ≡Wi (C ) ∨ ∃Ai
(M(Ai ,C ) ∧ Ai 6= A)
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Negating a Bounded-degree Relation

Recall: T (A,C ) ≡ M1(A,C ) ∨M2(A,C ), M1 and M2 matchings

¬T (A,C ) ≡ ¬M1(A,C )︸ ︷︷ ︸
W1(C)∨∃A1

(M1(A1,C)∧A1 6=A)

∧ ¬M2(A,C )︸ ︷︷ ︸
W2(C)∨∃A2

(M2(A2,C)∧A2 6=A)

Flatten out ¬T (A,C ) into a disjunction of four conjunctions:

W1(C ) ∧W2(C )

W1(C ) ∧M2(A2,C ) ∧ A 6= A2

W2(C ) ∧M1(A1,C ) ∧ A 6= A1

M1(A1,C ) ∧M2(A2,C ) ∧ A 6= A1 ∧ A 6= A2

The negative subqueries are now disequalities on variables
11/20



The Untangling Step

The query Q becomes Q1 ∨ Q2 ∨ Q3 ∨ Q4:

Q1()← R(A,B) ∧ S(B,C ) ∧W1(C ) ∧W2(C )

Q2()← R(A,B) ∧ S(B,C ) ∧W1(C ) ∧M2(A2,C ) ∧ A 6= A2

Q3()← R(A,B) ∧ S(B,C ) ∧W2(C ) ∧M1(A1,C ) ∧ A 6= A1

Q4()← R(A,B) ∧ S(B,C ) ∧M1(A1,C ) ∧M2(A2,C ) ∧ A 6= A1 ∧ A 6= A2

Our rewriting

• extends the positive body of Q
• Replaced T by (conjunctions of some of) its matchings

• Added unary relations

• preserves the data complexity (fhtw and subw) of body

• blows up the query size exponentially in the degree
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Boolean Tensor Decomposition
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How to Evaluate Conjunctions of Disequalities Efficiently?

∀i ∈ [logN], fi : Dom(A)→ {0, 1} gives the i-th bit of A

A 6= A2 ≡
∨

x∈{0,1}

∨
i∈[logN]

fi (A) = x ∧ fi (A2) 6= x

This is a Boolean decomposition of A 6= A2:

• Rank r is the number 2 logN of conjuncts

• Each conjunct is a conjunction of positive unary relations

Analogy: Each function fi is a “coloring”:

It assigns a {0, 1} color to each element of Dom(A)
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How to Evaluate Conjunctions of Disequalities Efficiently?

Q2 becomes the disjunction of 2 logN acyclic queries

Qx,i
2 ← R(A,B) ∧ S(B,C ) ∧W1(C ) ∧M2(A2,C ) ∧ fi (A) = x ∧ fi (A2) 6= x

Time complexity:

• Qx ,i
2 can be answered in time O(N logN)

• Q2 can be answered in time O(N log2N)

• Further shave off a logN factor (see paper)

Boolean semiring → Bit-vector semiring

Q4 is more involved: A 6= A1 ∧ A 6= A2

• Three-dimensional tensor of Boolean rank log2N

• We can reduce the rank to logN
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Boolean Tensor Decomposition for A 6= A1 ∧ A 6= A2

A 6= A1 ∧ A 6= A2 ≡
∨

(c,c1,c2)∈{0,1}3

c 6=c1∧c 6=c2

∨
f∈F

f (A) = c ∧ f (A1) = c1 ∧ f (A2) = c2

There exists a family F of functions f : Dom(A)→ {0, 1}:

• ∀(a, a1, a2) ∈ Dom(A)3 st a 6= a1 ∧ a 6= a2:

∃f ∈ F st f (a) 6= f (a1) ∧ f (a) 6= f (a2)

• |F| = O(logN)

• F can be constructed in time O(N logN)
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Intermezzo: Disjunct Matrices

k-disjunct t × N matrix X :

∀j ∈ [N],S ⊆ [N] st |S | ≤ k , j 6∈ S :

∃i ∈ [t] st Xi ,j = 1, (Xi ,j ′)j ′∈S = 0

j

0 0

i 1 0 0 0

0 0

N

t

S

We can construct a k-disjunct matrix X [Porat, Rothschild’11]

• with t = O(k2 logN)

• in time O(k2N logN)
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How to Use Disjunct Matrices for Our Problem?

Each row i = function fi in F

Xi ,j = fi (A)

Xi ,S = [fi (A1), fi (A2)] ⇒ k = 2

• X has size O(logN)× N

• X constructed in time O(N logN)

j

0 0

i 1 0 0

0 0

N

O(logN)

S
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Generalizing the Example
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Negating a Ternary Matching

Matching M(X1,X2,X3). Single out (wlog) X3.

Tuple (x1, x2, x3) ∈ ¬M iff

1. At least one of x1 or x2 is not in M OR

2. x1 and x2 are in M, but at least one is paired with x ′3 6= x3 OR

they are paired with diff. X3 values

¬M(X1,X2,X3) ≡ (W1(X1) ∨W2(X2))∨
∃Y1∃Y2 [NAE(Y1,Y2,X3) ∧M(X1, ,Y1) ∧M( ,X2,Y2)]

NAE(Y1,Y2,X3)
def
=¬(Y1 = Y2 ∧ Y1 = X3 ∧ Y2 = X3)

= Y1 6= Y2 ∨ Y1 6= X3 ∨ Y2 6= X3

See paper for extension to k-ary matchings.
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General Untangling

Query Q rewritten into a disjunction of queries

Qi (XF )← bodyi ∧
∧

S∈Ai

NAE(ZS).

Data complexity (fhtw and subw) of bodyi same as for body

Number of queries Qi exponential in the degree
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General Boolean Tensor Decomposition

∧
S

NAE(ZS)︸ ︷︷ ︸
rank-r tensor

multivariate function

≡
∨
j∈[r ]

∧
i∈

⋃
S ZS

f
(j)
i (Zi )︸ ︷︷ ︸

univariate function︸ ︷︷ ︸
rank-1 tensor

Multi-hypergraph G = (
⋃

S ZS ,A) of
∧

S NAE(ZS)

Boolean rank r = P(G, c) · |F| depends on:

• Chromatic polynomial of G using c ≤ |
⋃

S ZS | colors
c = maximum chromatic number of a hypergraph defined by

any homomorphic image of G

• Size of a family of hash functions that represent proper

c-colorings of homomorphic images of G
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