In-Database Learning with Sparse Tensors

Mahmoud Abo Khamis, Hung Ngo, XuanLong Nguyen,
Dan Olteanu, and Maximilian Schleich

Toronto, October 2017

RelationalAl

Talk Outline

Current Landscape for DB-+ML

1/29

Brief Outlook at Current Landscape for DB+ML (1/2)

No integration

e ML & DB distinct tools on the technology stack

e DB exports data as one table, ML imports it in own format
e Spark/PostgreSQL + R supports virtually any ML task

e Most DB+ML solutions seem to operate in this space

2/29

Brief Outlook at Current Landscape for DB+ML (1/2)

No integration

e ML & DB distinct tools on the technology stack
e DB exports data as one table, ML imports it in own format
e Spark/PostgreSQL + R supports virtually any ML task

e Most DB+ML solutions seem to operate in this space

Loose integration

e Each ML task implemented by a distinct UDF inside DB
e Same running process for DB and ML
e DB computes one table, ML works directly on it

e MadLib supports comprehensive library of ML UDFs

2/29

Brief Outlook at Current Landscape for DB+ML (2/2)

Unified programming architecture

e One framework for many ML tasks instead of one UDF per
task, with possible code reuse across UDFs

e DB computes one table, ML works directly on it

e Bismark supports incremental gradient descent for convex
programming; up to 100% overhead over specialized UDFs

3/29

Brief Outlook at Current Landscape for DB+ML (2/2)

Unified programming architecture

e One framework for many ML tasks instead of one UDF per
task, with possible code reuse across UDFs

e DB computes one table, ML works directly on it

e Bismark supports incremental gradient descent for convex
programming; up to 100% overhead over specialized UDFs

Tight integration = In-Database Analytics

e One evaluation plan for both DB and ML workload;
opportunity to push parts of ML tasks past joins

e Morpheus + Hamlet supports GLM and naive Bayes

e Our approach supports PR/FM with continuous & categorical

features, decision trees, ...
3/29

In-Database Analytics

e Move the analytics, not the data
e Avoid expensive data export/import
e Exploit database technologies

e Build better models using larger datasets
e Cast analytics code as join-aggregate queries

e Many similar queries that massively share computation

e Fixpoint computation needed for model convergence

4/29

Analytics

materialized

output

feature

extraction

v

» o> —(7)
AN

model
AQ 8 <=<=m

Optimized Gradient-descent
join-aggregate Trainer

queries O

5/29

Does It Pay Off?

’ Retailer dataset (records) H excerpt (17M) ‘ full (86M) ‘
Linear regression
Features (cont+-categ) 33 + 55 334-3,653
Aggregates (cont+-categ) 595+2,418 595+145k
MadLib Learn 1,898.35 > 24h
R Join (PSQL) 50.63 =
Export/Import 308.83 -
Learn 490.13 =
Our approach Aggregate+Join 2551 380.31
Converge (runs) 0.02 (343) 8.82 (366)
Polynomial regression degree 2
Features (cont+categ) 562+2,363 562+141k
Aggregates (cont+categ) 158k+742k 158k+37M
MadLib Learn > 24h =
Our approach Aggregate+Join 132.43 1,819.80
Converge (runs) 3.27 (321) | 219.51 (180)

6,/29

Talk Outline

What We Did So Far
Factorized Learning over Normalized Data

Learning under Functional Dependencies

7/29

Unified In-Database Analytics for Optimization Problems

Our target: retail-planning and forecasting applications

Typical databases: weekly sales, promotions, and products
Training dataset: Result of a feature extraction query

Task: Train model to predict additional demand generated for
a product due to promotion

Training algorithm for regression: batch gradient descent
e Convergence rates are dimension-free

ML tasks: ridge linear regression, degree-d polynomial
regression, degree-d factorization machines; logistic
regression, SVM; PCA.

8/29

Typical Retail Example

e Database | = (R1, Rz, R3, Ra, Rs)

e Feature selection query Q:

Q(sku, store, color, city, country, unitsSold) +
Ri(sku, store, day, unitsSold), Rx(sku, color),
R3(day, quarter), Ry(store, city), Rs(city, country).

e Free variables
e Categorical (qualitative):
F = {sku, store, color, city, country}.
e Continuous (quantitative): unitsSold.
e Bound variables

e Categorical (qualitative): B = {day, quarter}

9/29

Typical Retail Example

e We learn the ridge linear regression model

<0,X> = Z <9f,Xf>

feF

e Input data: D = Q(/)
e Feature vector x and response y = unitsSold.

e The parameters @ are obtained by minimizing the objective

function:
least square loss (,—regularizer
1 2 2
J(0) = 30| > (B —y)P+ lel;
(x,y)€eD

10/29

Side Note: One-hot Encoding of Categorical Variables

e Continuous variables are mapped to scalars
® YunitsSold € R.

e Categorical variables are mapped to indicator vectors
e country has categories vietnam and england

e country is then mapped to an indicator vector
xcountry = [Xvietnanu Xemgland]T € ({07 1}2)T-

® Xcountry — [0,].]T for a tuple with country = ¢‘england’’

This encoding leads to wide training datasets and many Os

11/29

Side Note: Least Square Loss Function

Goal: Describe a linear relationship fun(x) = 61x + 6 so we can
estimate new y values given new x values.

y against x

16
14
12
10

.
y distances from the regression line ——»

Regression line

o N s oo

e We are given n (black) data points (x;, yi)ie[n

e We would like to find a (red) regression line fun(x) such that
the (green) error - (fun(x;) — yi)? is minimized
12/29

From Optimization to SumProduct FAQ Queries

We can solve 6* := arg ming J(0) by repeatedly updating @ in the
direction of the gradient until convergence:

0:=6—a- VJO).

13/29

From Optimization to SumProduct FAQ Queries

We can solve 6* := arg ming J(0) by repeatedly updating @ in the
direction of the gradient until convergence:

0:=6—a- VJO).

Define the matrix X = (07); jeq F|), the vector € = (ci)ieF)), and
the scalar sy:

1
UU*WZXX Ci = | ZYX, SYZWZ}/2

(x.,y)eD (x y)eD (x,y)eD

13/29

From Optimization to SumProduct FAQ Queries

We can solve 6* := arg ming J(0) by repeatedly updating @ in the
direction of the gradient until convergence:

0:=6—a- VJO).

Define the matrix X = (07); jeq F|), the vector € = (ci)ieF)), and
the scalar sy:

1 . 1 1)
O'U:m Z X,’Xj C,':ﬁ Zy'x,' SY:ﬁ y.

(x.,y)eD (x,y)eD (x,y)eD

1_hen, 1 2 A .
J(e):m Z ((6,x) —y) +§H0||2
(x,y)eD

_]. T Sy A 2
= 56780 - (0,¢) + 2+ S 1613
13/29

Expressing 3, c, sy as SumProduct FAQ Queries

FAQ queries for ojj = |—1‘ > (xy)eD X (w/o factor ﬁ)

e X;, Xj continuous = no free variable

Yij = Z Z T H le(aS(Rk

feF:areDom(xs) beB:abeDOm(xb) ke[s]

e X; categorical, x; continuous => one free variable

Yijlai] = Z Z aj - H LRu(as(ry)

feF—{i}:arcDom(xs) beB:a,cDom(x,) k€[5]

e X;, x; categorical = two free variables

Yijlai, aj] = Z Z H LRe(asiryy

feF—{ij}:arcDom(xs) beB:a,ecDom(x,) k€[5]

14/29

Expressing 3, c, sy as SQL Queries

SQL queries for oj; = ﬁ Z(ny)eD x,-xJ—-r (w/o factor ﬁ)

e X;, Xj continuous = no group-by attribute

SELECT SUM(xi*x) FROM D;

e x; categorical, x; continuous = one group-by attribute

SELECT x;, SUM(x;) FROM D GROUP BY x;;

e X, xj categorical = two group-by variables

SELECT x;,x;, SUM(1) FROM D GROUP BY x;, x;;

This query encoding avoids drawbacks of one-hot encoding 15/29

Side Note: Factorized Learning over Normalized Data

Idea: Avoid Redundant Computation for DB Join and ML

Realized to varying degrees in the literature

16/29

Side Note: Factorized Learning over Normalized Data

Idea: Avoid Redundant Computation for DB Join and ML

Realized to varying degrees in the literature

e Rendle (libFM): Discover repeating blocks in the materialized
join and then compute ML once for all
e Same complexity as join materialization!

e NP-hard to (re)discover join dependencies!

16/29

Side Note: Factorized Learning over Normalized Data

Idea: Avoid Redundant Computation for DB Join and ML

Realized to varying degrees in the literature

e Rendle (libFM): Discover repeating blocks in the materialized
join and then compute ML once for all
e Same complexity as join materialization!

e NP-hard to (re)discover join dependencies!

e Kumar (Morpheus): Push down ML aggregates to each input
tuple, then join tables and combine aggregates
e Same complexity as listing materialization of join results!

16/29

Side Note: Factorized Learning over Normalized Data

Idea: Avoid Redundant Computation for DB Join and ML

Realized to varying degrees in the literature

e Rendle (libFM): Discover repeating blocks in the materialized
join and then compute ML once for all
e Same complexity as join materialization!

e NP-hard to (re)discover join dependencies!

e Kumar (Morpheus): Push down ML aggregates to each input
tuple, then join tables and combine aggregates
e Same complexity as listing materialization of join results!

e Our approach: Morpheus + Factorize the join to avoid
expensive Cartesian products in join computation
e Arbitrarily lower complexity than join materialization

16/29

Model Reparameterization using Functional Dependencies

Consider the functional dependency city — country and

e country categories: vietnam, england

e city categories: saigon, hanoi, oxford, leeds,bristol

The one-hot encoding enforces the following identities:

® Xyietnam — Xsaigon + Xnanoi
country is vietnam = city is either saigon or hanoi

Xvietnam = 1 = either Xsaigon — 1 or Xhanos = 1

® Xengland = Xoxford T Xieeds + Xbristol

country is england = city is either oxford, leeds, or bristol

Xengland = 1 = e€ither Xoxsora = 1 OF X1eeas = 1 OF Xprigtor = 1

17/29

Model Reparameterization using Functional Dependencies

e |dentities due to one-hot encoding
Xvietnam = Xsaigon T Xhanoi

Xengland = Xoxford T Xleeds + Xbristol
e Encode Xcountry aS Xcountry = RXcity, Where

saigon hanoi oxford leeds bristol
R= 1 1 0 0 0 vietnam
0 0 1 1 1 england

For instance, if city is saigon, i.e., Xcity = [1,0,0,0,0] ",

then country is vietnam, i.e., Xcountry = RXcity = [1, 0]".

1
0
1100]0_{1]
01 1 1 | o
0
0 18/29

Model Reparameterization using Functional Dependencies

e Functional dependency: city — country
® Xcountry = Rxcity
e Replace all occurrences of Xcountry by RXcity:

Z <0F7 Xf> + <9cou.ntry7 Xcountry> + <0city> Xcity>

feF—{city,country}

= Z <6f7 Xf> ol <0country7 Rxcity> ol <9city7 Xcity>

feF—{city,country}

- Z <6fa Xf> i <RT0country e Gcity7 Xcity>
| -

feF—{city,country} -
city

19/29

Model Reparameterization using Functional Dependencies

e Functional dependency: city — country

® Xcountry = Rxcity
e Replace all occurrences of Xcountry by RXcity:

Z <0F7 xf> + <9country7 Xcountry> + <0city> Xcity>

feF—{city,country}

= Z <6f7 Xf> ol <0country7 Rxcity> ol <9city7 Xcity>

feF—{city,country}

- Z <6f7 Xf> i <RT0country e Gcity7 Xcity>
| S

feF—{city,country} -
city

e We avoid computing aggregates over Xcountry-
e We reparameterize and ignore parameters Ocountry-
e What about the penalty term in the loss function? 19/29

Model Reparameterization using Functional Dependencies

Functional dependency: city — country

— _RT
Xcountry = Rxcity Yeity = R gcountry + acity

Rewrite the penalty term

1615 = > 1615 +|

JFcity

"ch:y RT ecou.ntry + Hecou.ntry H2

Optimize out Ocountry by expressing it in terms of yci¢y:

ecountry - (Icountry iy RRT)_1R7city - R(Icity ol RTR)_IA/City

The penalty term becomes

1613 = D7 16;1 + ((lesey + RTR) ey, Yesty)
i#eity 20/29

Side Note: Learning over Normalized Data with FDs

Hamlet & Hamlet™t

e Linear classifiers (Naive Bayes): model accuracy unlikely to be
affected if we drop a few functionally determined features

e Use simple decision rule: fkeys/key > 207

e Hamlet™ shows experimentally that this idea does not work

for more interesting classifiers, e.g., decision trees

21/29

Side Note: Learning over Normalized Data with FDs

Hamlet & Hamlet™t

e Linear classifiers (Naive Bayes): model accuracy unlikely to be
affected if we drop a few functionally determined features

e Use simple decision rule: fkeys/key > 207

e Hamlet™ shows experimentally that this idea does not work

for more interesting classifiers, e.g., decision trees

Our approach

e Given the model A to learn, we map it to a much smaller
model B without the functionally determined features in A

e Learning B can be OOM faster than learning A

e Once B is learned, we map it back to A
21/29

General Problem Formulation

We want to solve 8* := arg ming J(0), where

JO):= Y L((g(6).h(x)),y)+2A6).

(x,y)eD

e 0= (61,...,6p) € RP are parameters

e functions g : RP - R™ and h: R" — R™
® g = (gj)je[m is a vector of multivariate polynomials
e h = (hj)jem) is a vector of multivariate monomials

e L is a loss function, Q is the regularizer
e D is the training dataset with features x and response y.

Problems: ridge linear regression, polynomial regression,
factorization machines; logistic regression, SVM; PCA.

22/29

Special Case: Ridge Linear Regression

Under

e square loss L , {»-regularization,

e data points x = (xp, X1, .-, Xn, ¥),

e p=n+ 1 parameters 8 = (6o, ..., 0,),

e xp = 1 corresponds to the bias parameter 6,

e identity functions g and h,

we obtain the following formulation for ridge linear regression:

1 2 A a2
J(O) = —— 0, x)—y) + =19
= gpj 3 (10515 + 3101

23/29

Special Case: Degree-d Polynomial Regression

Under

e square loss L , {5-regularization,
e data points x = (xp, X1, ..., Xn, ¥),
e p=m=1+n+n?+---+ n? parameters @ = (0,), where
a = (a1,...,an) with non-negative integers s.t. |la|; < d.
e the components of h are given by hy(x) = []7_; x7,
e 2(0)=09,
we obtain the following formulation for polynomial regression:
1

16) = o7 3 (£(0)H) =) + 2 ol

24/29

Special Case: Factorization Machines

Under
e square loss L , {>-regularization,
e data points x = (xp, X1, ..., Xn, ¥),
e p =14 n—+r- n parameters,

m=1+n+ ('2’) features,

we obtain the following formulation for degree-2 rank-r
factorization machines:
2

1 a 0 (¢ A
HO) =g Do | Dtit 2 66—y | + 516l
(xy)eD | i=0 {ijye(%)
telr]

25/29

Special Case: Classifiers

e Typically, the regularizer is 3|6/|3

e The response is binary: y € {£+1}
e The loss function L(,y), where v := (g(8), h(x)) is
e L(v,y) = max{l — yv,0} for support vector machines,

e L(v,y) =log(l+ e ") for logistic regression,
e L(v,y) =e ¥ for Adaboost.

26/29

Zoom-in:

Learning

=K

feature extraction
ool i b QL oo >——>(o]
Ry ™ ... x Ry N

Queries:
_on
- -
Query ;
- aij
optimizer
o

h model
)
Yes

lg
N
(0)4 — <>

g(0) T
2
B Vo)

Factorized query evaluation Cost < N9% < [D| 27/29

Talk Outline

Our Current Focus

28/29

Our Current Focus

e MultiFAQ: Principled approach to computing many FAQs over
the same hypertree decomposition

e Asymptotically lower complexity than computing each FAQ
independently
e Applications: regression, decision trees, frequent itemset

e SGD using sampling from factorized joins

e Applications: regression, decision trees, frequent itemset
e in-DB linear algebra

e Generalization of current effort, add support for efficient
matrix operations, e.g., inversion

29/29

Thank you!

	Current Landscape for DB+ML
	What We Did So Far
	Factorized Learning over Normalized Data
	Learning under Functional Dependencies

	Our Current Focus

