
1 / 18

Learning Linear Regression Models
over Factorized Joins

Maximilian Schleich

Dan Olteanu
Radu Ciucanu

University of Oxford

ACM SIGMOD June 28, 2016

Goals of this Work

Learn regression models over joins of large input tables.

I Common analytics scenario in industry.

Provide runtime guarantees for machine learning algorithms.

I Ideally, achieve worst-case optimality.

2 / 18

Our Observations

Join computation entails a high degree of redundancy, which can be

avoided by factorized computation and representation.

I We developed worst-case optimal factorized join algorithms. [TODS’15]

I Factorized joins require exponentially less time than standard joins.

I Aggregates (COUNT, SUM, MIN, MAX) can be computed in

one pass over factorized data. [VLDB’13]

Regression models can be learned in linear time over factorized joins.

I This translates to orders of magnitude performance improvements over

state of the art on real datasets.

3 / 18

What are Factorized Databases?

Building Regression Models at Speed

Complexity and Experiments

4 / 18

Outline

Factorized Databases by Example

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog sausage

hotdog onion

hotdog bun

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

.

5 / 18

Factorized Databases by Example

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

.

A flat relational algebra expression encoding the above query result is:

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∪

〈Elise〉 × 〈Friday〉 × 〈burger〉 × 〈bun〉 × 〈2〉 ∪ . . .

It uses relational product (×), union (∪), and singleton relations (e.g., 〈1〉).

The attribute names are not shown to avoid clutter.
6 / 18

Factorized Databases by Example

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈4〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

There are several algebraically equivalent factorized representations defined by

distributivity of product over union and commutativity of product and union.

7 / 18

Factorized Databases by Example

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

8 / 18

Factorized Databases by Example

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

COUNT(*):

I values → 1,
I ∪ → +,
I × → ∗.

9 / 18

Factorized Databases by Example

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

dish

day item

costumer price

12

66

2 3

1 1 1

1 1

3 2

1 2

COUNT(*):

I values → 1,
I ∪ → +,
I × → ∗.

10 / 18

Factorized Databases by Example

∪

〈burger〉 〈hotdog〉

× ×

∪

〈sausage〉〈bun〉〈onion〉

×× ×

∪

〈4〉

∪

〈Friday〉

×

∪

〈Joe〉 〈Steve〉

∪

〈patty〉 〈bun〉 〈onion〉

× × ×

∪ ∪ ∪

〈6〉 〈2〉 〈2〉

∪

〈Friday〉

×

∪

〈Elise〉

〈Monday〉

×

∪

〈Elise〉

dish

day item

costumer price

SUM(dish * price):
I Assume there is a function f that turns dish into reals.
I All values except for dish & price → 1,
I ∪ → +,
I × → ∗.

11 / 18

Factorized Databases by Example

+

f (〈burger〉) f (〈hotdog〉)

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

dish

day item

costumer price

20∗f (〈burger〉)+16∗f (〈hotdog〉)

1620

2 10

1 1 6

2 2

8
2

4 2

SUM(dish * price):
I Assume there is a function f that turns dish into reals.
I All values except for dish & price → 1,
I ∪ → +,
I × → ∗.

12 / 18

What are Factorized Databases?

Building Regression Models at Speed

Complexity and Experiments

13 / 18

Outline

Building Regression Models at Speed

We learn regression models with an iterative optimization method.

Building regression models in two steps.

1. data-dependent computation
I Defined by set of aggregates of the form sum(X*Y) like in our example.

I These aggregates can be done in one pass over the factorized join.

I The redundancy in the flat data is not necessary for learning!

2. data-independent convergence
I Parameter convergence step on top of the aggregate set

System F for learning regression models over joins of large input tables.

Three flavors to compute the aggregates:

1. over the factorized join,

2. on the fly, over a non-materialized factorized join,

3. or in one optimized SQL query.

14 / 18

Building Regression Models at Speed

We learn regression models with an iterative optimization method.

Building regression models in two steps.

1. data-dependent computation
I Defined by set of aggregates of the form sum(X*Y) like in our example.

I These aggregates can be done in one pass over the factorized join.

I The redundancy in the flat data is not necessary for learning!

2. data-independent convergence
I Parameter convergence step on top of the aggregate set

System F for learning regression models over joins of large input tables.

Three flavors to compute the aggregates:

1. over the factorized join,

2. on the fly, over a non-materialized factorized join,

3. or in one optimized SQL query.

14 / 18

Building Regression Models at Speed

We learn regression models with an iterative optimization method.

Building regression models in two steps.

1. data-dependent computation
I Defined by set of aggregates of the form sum(X*Y) like in our example.

I These aggregates can be done in one pass over the factorized join.

I The redundancy in the flat data is not necessary for learning!

2. data-independent convergence
I Parameter convergence step on top of the aggregate set

System F for learning regression models over joins of large input tables.

Three flavors to compute the aggregates:

1. over the factorized join,

2. on the fly, over a non-materialized factorized join,

3. or in one optimized SQL query.

14 / 18

What are Factorized Databases?

Building Regression Models at Speed

Complexity and Experiments

15 / 18

Outline

Complexity of F

For a given join query Q over any database D,

the factorized join can be computed in time O(|D|fhtw(Q)). [TODS’15]

fhtw(Q) is the fractional hypertree width of Q.

Aggregates can be computed in linear time over the factorized join. [VLDB’13]

For a training dataset defined by a join query Q over any database D,

F learns any linear regression model in time O(|D|fhtw(Q)).

For (α-)acyclic joins, fhtw = 1 and F learns in optimal time.

Worst-case optimal algorithm for flat joins needs time O(|D|ρ
∗(Q)). [AGM’08]

ρ∗ is the fractional edge cover number of Q.

1 ≤ fhtw(Q) ≤ ρ∗(Q)︸ ︷︷ ︸
up to |Q|, the number of relations joined in Q

≤ |Q|

This gap translates to orders of magnitude performance speedups in practice.

16 / 18

Complexity of F

For a given join query Q over any database D,

the factorized join can be computed in time O(|D|fhtw(Q)). [TODS’15]

fhtw(Q) is the fractional hypertree width of Q.

Aggregates can be computed in linear time over the factorized join. [VLDB’13]

For a training dataset defined by a join query Q over any database D,

F learns any linear regression model in time O(|D|fhtw(Q)).

For (α-)acyclic joins, fhtw = 1 and F learns in optimal time.

Worst-case optimal algorithm for flat joins needs time O(|D|ρ
∗(Q)). [AGM’08]

ρ∗ is the fractional edge cover number of Q.

1 ≤ fhtw(Q) ≤ ρ∗(Q)︸ ︷︷ ︸
up to |Q|, the number of relations joined in Q

≤ |Q|

This gap translates to orders of magnitude performance speedups in practice.

16 / 18

Experimental Setup

We benchmark F against

R (QR-decomp.),

Python StatsModels (ols),

and MADlib (glm, ols).

We use FDB and PostgreSQL to compute the factorized and respectively flat

joins. Aggregates in F/SQL are computed in PostgreSQL.

US Retailer (real):

Three tables: Inventory, Census, and Location.

Regression model predicts the amount of inventory units.

LastFM (real and public):

Three tables.

Regression model predicts how often a user would listen to an artist based

on similar information for its friends.

17 / 18

F versus R, Python StatsModels and MADlib
US retailer L US retailer N1 LastFM L1 LastFM L2

parameters 31 33 6 10

Factorized 97,134,675 97,134,675 376,402 315,818

Size Flat 2,585,046,352 2,585,046,352 369,986,292 590,793,800

Compression 26.61× 26.61× 26.61× 982.86×
Join Fact. (FDB) 36.03 36.03 4.79 9.94

Time Flat (PSQL) 249.41 249.41 54.25 61.33

Import R 1189.12* 1189.12* 155.91 276.77

Time P 1164.40* 1164.40* 179.16 328.97

F/FDB 9.69 9.82 0.53 0.89

Learn M (glm) 2671.88 2937.49 572.88 746.50

Time R 810.66* 873.14* 268.04 466.52

P 1199.50* 1277.10* 35.74 148.84

F 16.29 16.56 0.11 0.25

F/FDB 45.72 45.85 5.32 10.83

F/SQL 108.81 109.02 0.58 2.00

Total M (ols) 680.60 737.02 152.37 196.60

Time M (glm) 2921.29 3186.90 627.13 807.83

R 2249.19* 2311.67* 478.20 804.62

P 2613.31* 2690.91* 269.15 539.14

F vs. M (ols) 41.78× 44.51× 1385.18× 786.40×
Speedup F vs. M (glm) 179.33× 192.45× 5701.18× 3231.32×

F vs. R 138.07× 139.59× 4347.27× 3218.48×
F vs. P 160.42× 162.49× 2446.82× 2156.56×

18 / 18

	What are Factorized Databases?
	Building Regression Models at Speed
	Complexity and Experiments

