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Brief Outlook at Current Landscape for ML over DB (1/2)

No integration

• ML & DB distinct tools on the technology stack

• DB exports data as one table, ML imports it in own format

• Spark/PostgreSQL + R supports virtually any ML task

• Most ML over DB solutions operate in this space

Loose integration

• Each ML task implemented by a distinct UDF inside DB

• Same running process for DB and ML

• DB computes one table, ML works directly on it

• MadLib supports comprehensive library of ML UDFs
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Brief Outlook at Current Landscape for ML over DB (2/2)

Unified programming architecture

• One framework for many ML tasks instead of one UDF per

task, with possible code reuse across UDFs

• DB computes one table, ML works directly on it

• Bismark supports incremental gradient descent for convex

programming; up to 100% overhead over specialized UDFs

Tight integration ⇒ In-Database Analytics

• One evaluation plan for both DB and ML workload;

opportunity to push parts of ML tasks past DB joins

• Morpheus + Hamlet supports GLM and näıve Bayes

• Our approach supports PR/FM, decision trees, . . .
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In-Database Analytics

• Move the analytics, not the data

• Avoid expensive data export/import

• Exploit database technologies

• Exploit the relational structure (schema, query, dependencies)

• Build better models using larger datasets and faster

• Cast analytics code as join-aggregate queries

• Many similar queries that massively share computation

• Fixpoint computation needed for model convergence
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In-database vs. Out-of-database Analytics
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Gradient-descent
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Does It Pay Off in Practice?

Retailer dataset (records) excerpt (17M) full (86M)

Linear regression

Features (cont+categ) 33 + 55 33+3,653

Aggregates (cont+categ) 595+2,418 595+145k

MadLib Learn 1,898.35 sec > 24h

R Join (PSQL) 50.63 sec –

Export/Import 308.83 sec –

Learn 490.13 sec –

Our approach Join-Aggregate 25.51 sec 380.31 sec

(1core, commodity machine) Converge (runs) 0.02 (343) sec 8.82 (366) sec

Polynomial regression degree 2

Features (cont+categ) 562+2,363 562+141k

Aggregates (cont+categ) 158k+742k 158k+37M

MadLib Learn > 24h –

Our approach Join-Aggregate 132.43 sec 1,819.80 sec

(1core, commodity machine) Converge (runs) 3.27 (321) sec 219.51 (180) sec
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Unified In-Database Analytics for Optimisation Problems

Our target: retail-planning and forecasting applications

• Typical databases: weekly sales, promotions, and products

• Training dataset: Result of a feature extraction query

• Task: Train model to predict additional demand generated for

a product due to promotion

• Training algorithm: batch gradient descent

• ML tasks: ridge linear regression, polynomial regression,

factorisation machines; logistic regression, SVM; PCA.

8/37



Typical Retail Example

• Database I = (R1,R2,R3,R4,R5)

• Feature selection query Q:

Q(sku, store, color, city, country, unitsSold)←
R1(sku, store, day, unitsSold),R2(sku, color),

R3(day, quarter),R4(store, city),R5(city, country).

• Free variables

• Categorical (qualitative):

F = {sku, store, color, city, country}.
• Continuous (quantitative): unitsSold.

• Bound variables

• Categorical (qualitative): B = {day, quarter}
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Typical Retail Example

• We learn the ridge linear regression model

〈θ, x〉 =
∑
f ∈F
〈θf , xf 〉

• Training dataset: D = Q(I )

• Feature vector x and response y = unitsSold

• The parameters θ obtained by minimising the objective
function:

J(θ) =

least square loss︷ ︸︸ ︷
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +

`2−regulariser︷︸︸︷
‖θ‖22
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Side Note: One-hot Encoding of Categorical Variables

• Continuous variables are mapped to scalars

• yunitsSold ∈ R.

• Categorical variables are mapped to indicator vectors

• country has categories vietnam and england

• country is then mapped to an indicator vector

xcountry = [xvietnam, xengland]> ∈ ({0, 1}2)>.

• xcountry = [0, 1]> for a tuple with country = ‘‘england’’

This encoding leads to wide training datasets and many 0s
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From Optimisation to Sum-Product Queries

We can solve θ∗ := arg minθ J(θ) by repeatedly updating θ in the

direction of the gradient until convergence:

θ := θ − α ·∇J(θ).

Define the matrix Σ = (σij)i ,j∈[|F |], the vector c = (ci )i∈[|F |], and
the scalar sY :

σij =
1

|D|
∑

(x,y)∈D

xix
>
j ci =

1

|D|
∑

(x,y)∈D

y · xi sY =
1

|D|
∑

(x,y)∈D

y2.

Then,
J(θ) =

1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖22

=
1

2
θ>Σθ − 〈θ, c〉+

sY
2

+
λ

2
‖θ‖22

∇J(θ) = Σθ − c + λθ
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Σ, c, sY can be Expressed as SQL Queries

SQL queries for σij = 1
|D|
∑

(x,y)∈D xix
>
j (w/o factor 1

|D|):

• xi , xj continuous ⇒ no group-by variable

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous ⇒ one group-by variable

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical ⇒ two group-by variables

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the natural join of tables R1 to R5 in our example.

This query encoding avoids drawbacks of one-hot encoding
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How To Compute Efficiently These

Join-Aggregate Queries?
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Factorised Query Computation by Example

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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Factorised Query Computation by Example

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .

An algebraic encoding uses product (×), union (∪), and values:

Elise × Monday × burger × patty × 6 ∪

Elise × Monday × burger × onion × 2 ∪

Elise × Monday × burger × bun × 2 ∪

Elise × Friday × burger × patty × 6 ∪

Elise × Friday × burger × onion × 2 ∪

Elise × Friday × burger × bun × 2 ∪ . . . 15/37



Factorised Join

∪

burger hotdog

× ×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

Variable order Grounding of the variable order over the input database

There are several algebraically equivalent factorised joins defined

by distributivity of product over union and their commutativity.
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.. Now with Further Compression

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

Observation:

• price is under item, which is under dish, but only depends on item,

• .. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!
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Same Data, Different Factorisation

∪

Monday Friday

× ×

∪ ∪

Elise

×

∪

burger

×

∪
patty bun onion

× × ×

∪ ∪ ∪

6 2 2

Elise

×

∪

burger

×

∪
patty bun onion

× × ×

∪ ∪ ∪

6 2 2

Joe

×

∪

hotdog

×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

Steve

×

∪

hotdog

×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

day

customer

dish

item

price
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.. and Further Compressed

∪

Monday Friday

× ×

∪ ∪

Elise

×

∪

burger

×

∪
patty bun onion

× × ×

∪ ∪ ∪

6 2 2

Elise

×

∪

burger

×

Joe

×

∪

hotdog

×

∪

bun onion sausage

× × ×

∪

4

Steve

×

∪

hotdog

×

day

costumer

dish

item

price
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Grounding Variable Orders to Factorised Joins

Our join: O(customer, day, dish), D(dish, item), I(item, price)

can be grounded to a factorised join as follows:

⋃
O( , ,dish),D(dish, ) dish

×⋃
O( ,day,dish) day

×⋃
O(customer,day,dish) customer

⋃
D(dish,item) item

×⋃
I (item,price) price

This grounding follows the previous variable order.
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Grounding Variable Orders to Factorised Joins

⋃
O( , ,dish),D(dish, ) dish

×⋃
O( ,day,dish) day

×⋃
O(customer,day,dish) customer

⋃
D(dish,item) item

×⋃
I (item,price) price

• Relations sorted following topological order of the variable order

• Intersection of O and D on dish in time Õ(min(|πdishO|, |πdishD|))

• The remaining operations are lookups in the relations, where we

first fix the dish value and then the day and item values
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Factorising the Computation of Aggregates (1/2)

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +,

• × 7→ ∗.
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Factorising the Computation of Aggregates (1/2)

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

dish

day item

customer price

12

66

2 3

1 1 1

1 1

3 2

1 2

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +,

• × 7→ ∗.
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Factorising the Computation of Aggregates (2/2)

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

SUM(dish * price) computed in one pass over the factorisation:

• Assume there is a function f that turns dish into reals.

• All values except for dish & price 7→ 1,

• ∪ 7→ +,

• × 7→ ∗. 24/37



Factorising the Computation of Aggregates (2/2)

+

f (burger) f (hotdog)

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

dish

day item

customer price

20∗f (burger)+16∗f (hotdog)

1620

2 10

1 1 6

2 2

8
2

4 2

SUM(dish * price) computed in one pass over the factorisation:

• Assume there is a function f that turns dish into reals.

• All values except for dish & price 7→ 1,

• ∪ 7→ +,

• × 7→ ∗. 25/37



Talk Outline

Current Landscape for ML over DB

Factorised Learning over Normalised Data

Learning under Functional Dependencies

General Problem Formulation

26/37



Model Reparameterisation using Functional Dependencies

Consider the functional dependency city → country and

• country categories: vietnam, england

• city categories: saigon, hanoi, oxford, leeds,bristol

The one-hot encoding enforces the following identities:

• xvietnam = xsaigon + xhanoi

country is vietnam ⇒ city is either saigon or hanoi

xvietnam = 1⇒ either xsaigon = 1 or xhanoi = 1

• xengland = xoxford + xleeds + xbristol

country is england ⇒ city is either oxford, leeds, or bristol

xengland = 1⇒ either xoxford = 1 or xleeds = 1 or xbristol = 1
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Model Reparameterisation using Functional Dependencies

• Identities due to one-hot encoding
xvietnam = xsaigon + xhanoi

xengland = xoxford + xleeds + xbristol

• Encode xcountry as xcountry = Rxcity, where

R =

saigon hanoi oxford leeds bristol

1 1 0 0 0 vietnam

0 0 1 1 1 england

For instance, if city is saigon, i.e., xcity = [1, 0, 0, 0, 0]>,

then country is vietnam, i.e., xcountry = Rxcity = [1, 0]>.

[
1 1 0 0 0

0 0 1 1 1

]
1

0

0

0

0

 =

[
1

0

]
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Model Reparameterisation using Functional Dependencies

• Functional dependency: city → country

• xcountry = Rxcity
• Replace all occurrences of xcountry by Rxcity:

∑
f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry, xcountry〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry,Rxcity〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+

〈
R>θcountry + θcity︸ ︷︷ ︸

γcity

, xcity

〉

• We avoid the computation of the aggregates over xcountry.

• We reparameterise and ignore parameters θcountry.

• What about the penalty term in the loss function?
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Model Reparameterisation using Functional Dependencies

• Functional dependency: city → country

• xcountry = Rxcity γcity = R>θcountry + θcity

• Rewrite the penalty term

‖θ‖22 =
∑

j 6=city

‖θj‖22 +
∥∥∥γcity − R>θcountry

∥∥∥2
2

+ ‖θcountry‖22

• Optimise out θcountry by expressing it in terms of γcity:

θcountry = (Icountry + RR>)−1Rγcity = R(Icity + R>R)−1γcity

• The penalty term becomes

‖θ‖22 =
∑

j 6=city

‖θj‖22 +
〈

(Icity + R>R)−1γcity,γcity

〉
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General Problem Formulation

We want to solve θ∗ := arg minθ J(θ), where

J(θ) :=
∑

(x,y)∈D

L (〈g(θ), h(x)〉 , y) + Ω(θ).

• θ = (θ1, . . . , θp) ∈ Rp are parameters
• functions g : Rp → Rm and h : Rn → Rm

• g = (gj)j∈[m] is a vector of multivariate polynomials

• h = (hj)j∈[m] is a vector of multivariate monomials

• L is a loss function, Ω is the regulariser

• D is the training dataset with features x and response y .

Problems: ridge linear regression, polynomial regression,

Factorisation machines; logistic regression, SVM; PCA.
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Special Case: Ridge Linear Regression

Under

• square loss L , `2-regularisation,

• data points x = (x0, x1, . . . , xn, y),

• p = n + 1 parameters θ = (θ0, . . . , θn),

• x0 = 1 corresponds to the bias parameter θ0,

• identity functions g and h,

we obtain the following formulation for ridge linear regression:

J(θ) :=
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖22 .
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Special Case: Degree-d Polynomial Regression

Under

• square loss L , `2-regularisation,

• data points x = (x0, x1, . . . , xn, y),

• p = m = 1 + n + n2 + · · ·+ nd parameters θ = (θa), where

a = (a1, . . . , an) with non-negative integers s.t. ‖a‖1 ≤ d .

• the components of h are given by ha(x) =
∏n

i=1 x
ai
i ,

• g(θ) = θ,

we obtain the following formulation for polynomial regression:

J(θ) :=
1

2|D|
∑

(x,y)∈D

(〈g(θ), h(x)〉 − y)2 +
λ

2
‖θ‖22 .
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Special Case: Factorisation Machines

Under

• square loss L , `2-regularisation,

• data points x = (x0, x1, . . . , xn, y),

• p = 1 + n + r · n parameters,

• m = 1 + n +
(n
2

)
features,

we obtain the following formulation for degree-2 rank-r
Factorisation machines:

J(θ) :=
1

2|D|
∑

(x,y)∈D


n∑

i=0

θixi +
∑

{i,j}∈([n]
2 )

`∈[r ]

θ
(`)
i θ

(`)
j xixj − y


2

+
λ

2
‖θ‖22 .
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Special Case: Classifiers

• Typically, the regulariser is λ
2‖θ‖

2
2

• The response is binary: y ∈ {±1}

• The loss function L(γ, y), where γ := 〈g(θ), h(x)〉 is

• L(γ, y) = max{1− yγ, 0} for support vector machines,

• L(γ, y) = log(1 + e−yγ) for logistic regression,

• L(γ, y) = e−yγ for Adaboost.
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Zoom-in: In-database vs. Out-of-database Learning

feature extraction

query

R1 on . . . on Rk

DB

on on

x y

|D| ML tool θ∗

model
model

reformulation
Queries:

σ11

...
σij

...
c1
...

Query

optimiser

Factorised query evaluation Cost ≤ N faqw � |D|

Σ, c

θ

J(θ)

∇J(θ)

converged?

Gradient-descent

h

g

g(θ)

No
Yes
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Thank you!
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