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Data Management Challenge

Data management is a defining challenge of our time

• Much cheaper to generate and process data

• Society is becoming increasingly more computational

Existing efforts on scalable relational data systems unsatisfactory

• Highly redundant data representation and processing

• Tractability map for queries and analytics mostly uncharted
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Current Focus: Factorised Databases
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Research Agenda

Investigate foundational and systems aspects of
scalable data management at the confluence of

• Compression,

• Distribution, and

• Approximation

for mixed workloads of

• Database Queries and

• Optimisation Problems

over Relational Data.
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Factorised Databases in Three Minutes!

Consider the natural join on the column Zip of the three relations:
House

Zip Area HPrice

OX1 80 m2 300k
OX1 50 m2 200k
OX2 60 m2 249k
OX2 80 m2 260k

Shop

Zip SName Hours

OX1 M&S 8
OX1 Tesco 24
OX1 CoOp 10
OX2 M&S 6
OX2 Zara 9

Restaurant

Zip RName RPrice

OX1 Ask £
OX1 Zizzi ££
OX2 Eat £
OX2 GBK ££

The join lists the combinations of input tuples for each postcode:

House on Shop on Restaurant

Zip Area HPrice SName Hours RName RPrice

OX1 80 m2 300k M&S 8 Ask £
OX1 80 m2 300k M&S 8 Zizzi ££
OX1 80 m2 300k Tesco 24 Ask £
OX1 80 m2 300k Tesco 24 Zizzi ££

. . . 8 more combinations for OX1 and 8 more for OX2 . . .
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Factorised Databases in Three Minutes!

A factorised join avoids redundancy by exploiting

• the conditional independence in the join result and
• the distributivity of Cartesian product over union.
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Which factorised joins have worst-case optimal size?

Can we compute factorised joins worst-case optimally?
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Factorised Databases in Three Minutes!

• Assume 25K zipcodes and s records per zipcode and relation.
• The factorised join stays linear in the input size.
• The standard join becomes cubic in the input size.
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Factorised In-Database Analytics

Scalable techniques for machine learning over databases that

• exploit the relational structure (schema, query, dependencies),

• push the learning task inside the database query engine, and

• factorise its computation.

Prototypes @Oxford and @LogicBlox (now Infor) support:

• ridge linear regression, polynomial regression, factorisation
machines; logistic regression, SVM; PCA.

• (on-going) decision trees, frequent itemset, ..
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Why In-Database Analytics?

• Move the analytics code, not the data
• Avoid expensive data export/import

• Exploit database technologies

• Build better models using larger datasets

• Cast analytics code as join-aggregate queries
• Many similar queries that massively share computation

• Fixpoint computation needed for model convergence
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In-database vs. Out-of-database Analytics

feature
extraction
query

DB

materialised
result

ML tool θ∗

model
model

reformulation

Factorised
Query Engine

Optimised
join-aggregate

queries

Gradient-descent
Trainer

Complexity gap for some models: O(|DB|fhtw ) vs. O(|DB|n),
where n is the number of relations in the database and fhtw � n is
the fractional hypertree width of the join of all database relations.
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Does It Pay Off in Practice?

Retailer dataset (records) excerpt (17M) full (86M)

Linear regression
Features (cont+categ) 33 + 55 33+3,653
Aggregates (cont+categ) 595+2,418 595+145k
MadLib Learn 1,898.35 sec > 24h
R Join (PSQL) 50.63 sec –

Export/Import 308.83 sec –
Learn 490.13 sec –

Our approach Aggregate+Join 25.51 sec 380.31 sec
(1core, commodity machine) Converge (runs) 0.02 (343) sec 8.82 (366) sec

Polynomial regression degree 2
Features (cont+categ) 562+2,363 562+141k
Aggregates (cont+categ) 158k+742k 158k+37M
MadLib Learn > 24h –
Our approach Aggregate+Join 132.43 sec 1,819.80 sec
(1core, commodity machine) Converge (runs) 3.27 (321) sec 219.51 (180) sec
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Real-Time In-Database Analytics

• Datasets continuously evolve over time
• E.g.: data streams from sensors, social networks, apps

• Real-time analytics over streaming data
• Users want fresh up-to-date data models

Web Analytics Sensor Networks

DECISION 
SUPPORT

RUNTIME
ENGINE

Continuously 
arriving data

Continuously 
evaluated views

EVENTS ACTIONS

Cloud Monitoring
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Real-Time Processing via Incremental Maintenance

Dataset

Result

Analytics
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Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

• database join-aggregate queries
• gradient computation for least-squares regression models
• matrix chain multiplication

Key to unified computation:

• same in-database computation, coupled with
• task-specific rings (D,+, ∗, 0, 1)

Key to performance: Triple-lock factorisation for

1. delta processing, compiled to optimised C++ code
2. representation of the result
3. bulk updates via tensor decomposition techniques
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Performance for Learning a Linear Regression Model
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Want To Find Out More?

• Dec 1, 2017: Talk on in-database learning, Turing Logic
seminar series

• Jan 29, 2018: Advanced 3-hour Turing Data Science class

fdbresearch.github.io
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Thank you!

15/15


