Factorised Databases

fdbresearch.github.io

Dan Olteanu & FDB Team (University of Oxford) November 2017

Alan Turing Institute

Data management is a defining challenge of our time

- Much cheaper to generate and process data
- Society is becoming increasingly more computational

Existing efforts on scalable relational data systems unsatisfactory

- Highly redundant data representation and processing
- Tractability map for queries and analytics mostly uncharted

Current Focus: Factorised Databases

Investigate foundational and systems aspects of scalable data management at the confluence of

- Compression,
- Distribution, and
- Approximation

for mixed workloads of

- Database Queries and
- Optimisation Problems

over Relational Data.

consider the natural join on the column 21p of the three relations.											
House				Shop			Restaurant				
	Zip	Area	HPrice		Zip	SName	Hours		Zip	RName	RPrice
1	OX1	80 m ²	300k		OX1	M&S	8		OX1	Ask	£
	OX1	50 m ²	200k		OX1	Tesco	24		OX1	Zizzi	££
	OX2	60 m ²	249k		OX1	CoOp	10		OX2	Eat	£
	OX2	80 m ²	260k		OX2	M&S	6		OX2	GBK	££
					OX2	Zara	9				

Consider the natural join on the column Zip of the three relations:

				,			L.				
House				Shop			Restaurant				
	Zip	Area	HPrice		Zip	SName	Hours		Zip	RName	RPrice
1	OX1	80 m ²	300k		OX1	M&S	8		OX1	Ask	£
	OX1	50 m ²	200k		OX1	Tesco	24		OX1	Zizzi	££
	OX2	60 m ²	249k		OX1	CoOp	10		OX2	Eat	£
	OX2	80 m ²	260k		OX2	M&S	6		OX2	GBK	££
					OX2	Zara	9				

Consider the natural join on the column Zip of the three relations:

The join lists the combinations of input tuples for each postcode:

Tiouse w Shop w Restaurant							
Zip	Area	HPrice	SName	Hours	RName	RPrice	
OX1	80 m ²	300k	M&S	8	Ask	£	
OX1	80 m ²	300k	M&S	8	Zizzi	££	
OX1	80 m ²	300k	Tesco	24	Ask	£	
OX1	80 m ²	300k	Tesco	24	Zizzi	££	
8 more combinations for $OX1$ and 8 more for $OX2$							

House \bowtie Shop \bowtie Restaurant

4/15

Factorised Databases in Three Minutes!

A factorised join avoids redundancy by exploiting

- the conditional independence in the join result and
- the distributivity of Cartesian product over union.

Factorised Databases in Three Minutes!

A factorised join avoids redundancy by exploiting

- the conditional independence in the join result and
- the distributivity of Cartesian product over union.

Which factorised joins have worst-case optimal size?

Can we compute factorised joins worst-case optimally? 5/15

Factorised Databases in Three Minutes!

- Assume 25K zipcodes and *s* records per zipcode and relation.
- The factorised join stays linear in the input size.
- The standard join becomes cubic in the input size.

6/15

Scalable techniques for machine learning over databases that

- exploit the relational structure (schema, query, dependencies),
- push the learning task inside the database query engine, and
- factorise its computation.

Prototypes @Oxford and @LogicBlox (now Infor) support:

- ridge linear regression, polynomial regression, factorisation machines; logistic regression, SVM; PCA.
- (on-going) decision trees, frequent itemset, ...

Why In-Database Analytics?

- Move the analytics code, not the data
 - Avoid expensive data export/import
 - Exploit database technologies
 - Build better models using larger datasets
- Cast analytics code as join-aggregate queries
 - Many similar queries that massively share computation
 - Fixpoint computation needed for model convergence

In-database vs. Out-of-database Analytics

In-database vs. Out-of-database Analytics

Complexity gap for some models: $\mathcal{O}(|DB|^{fhtw})$ vs. $\mathcal{O}(|DB|^{n})$, where *n* is the number of relations in the database and *fhtw* \ll *n* is the fractional hypertree width of the join of all database relations.^{9/15}

Does It Pay Off in Practice?

Retailer dataset (records)	excerpt (17M)	full (86M)				
	on					
Features	(cont+categ)	33 + 55	33+3,653			
Aggregates	(cont+categ)	595+2,418	595+145k			
MadLib	Learn	1,898.35 sec	> 24 <i>h</i>			
R	Join (PSQL)	50.63 sec	-			
	Export/Import	308.83 sec	-			
	Learn	490.13 sec	-			
Our approach	Aggregate+Join	25.51 sec	380.31 sec			
(1core, commodity machine)	Converge (runs)	0.02 (343) sec	8.82 (366) sec			
Polynomial regression degree 2						
Features	(cont+categ)	562+2,363	562+141k			
Aggregates	(cont+categ)	158k+742k	158k+37M			
MadLib	Learn	> 24 <i>h</i>	-			
Our approach	Aggregate+Join	132.43 sec	1,819.80 sec			
(1core, commodity machine)	Converge (runs)	3.27 (321) sec	219.51 (180) sec			

10/15

Real-Time In-Database Analytics

- Datasets continuously evolve over time
 - E.g.: data streams from sensors, social networks, apps
- Real-time analytics over streaming data
 - Users want fresh up-to-date data models

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D}, +, *, \mathbf{0}, \mathbf{1})$

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D}, +, *, \mathbf{0}, \mathbf{1})$

Key to performance: Triple-lock factorisation for

- 1. delta processing, compiled to optimised C++ code
- 2. representation of the result
- 3. bulk updates via tensor decomposition techniques

Performance for Learning a Linear Regression Model

14/15

- Dec 1, 2017: Talk on in-database learning, Turing Logic seminar series
- Jan 29, 2018: Advanced 3-hour Turing Data Science class

fdbresearch.github.io

Thank you!