March 14, 2012

Research Seminar, DCSIS, Birkbeck College

(ロ)、(型)、(E)、(E)、 E) の(の)

Factorised Relational Databases

Dan Olteanu and Jakub Závodný, University of Oxford

Factorised Representations of Relations

				Ord		ltem	
Cust		ckey okey		date	okey disc		
ckey	name		1	1	1995	1	0.1
1	Joe		1	2	1996	1	0.2
2	Dan		2	3	1994	3	0.4
3	Li		2	4	1993	3	0.1
4	Мо		3	5	1995	4	0.4
			3	6	1996	5	0.1

Consider a query joining the three relations above:

Cus	t ⊠ _{ckey}	, Ord	\bowtie_{okey}	ltem
ckey	name	okey	date	disc
1	Joe	1	1995	0.1
1	Joe	1	1995	0.2
2	Dan	3	1994	0.4
2	Dan	3	1994	0.1
2	Dan	4	1993	0.4
3	Li	5	1995	0.1

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Factorised Representations of Relations

Cus	t ⊠ _{ckey}	, Ord	\bowtie_{okey}	Item
ckey	name	okey	date	disc
1	Joe	1	1995	0.1
1	Joe	1	1995	0.2
2	Dan	3	1994	0.4
2	Dan	3	1994	0.1
2	Dan	4	1993	0.4
3	Li	5	1995	0.1

A *flat* relational algebra expression of the query result is:

$\langle 1 \rangle$	×	$\langle \textit{Joe} \rangle$	×	$\langle 1 angle$	×	$\langle 1995 angle$	×	$\langle 0.1 angle$	U
$\langle 1 angle$	×	$\langle \textit{Joe} angle$	×	$\langle 1 angle$	×	$\langle 1995 angle$	×	$\langle 0.2 \rangle$	U
$\langle 2 \rangle$	×	$\langle Dan angle$	×	$\langle 3 \rangle$	×	$\langle 1994 angle$	×	$\langle 0.4 \rangle$	U
$\langle 2 \rangle$	×	$\langle Dan angle$	×	$\langle 3 \rangle$	×	$\langle 1994 angle$	×	$\langle 0.1 angle$	U
$\langle 2 \rangle$	×	$\langle Dan angle$	×	$\langle 4 \rangle$	×	$\langle 1993 \rangle$	×	$\langle 0.4 \rangle$	U
$\langle 3 \rangle$	×	$\langle Li \rangle$	×	$\langle 5 \rangle$	×	$\langle 1995 \rangle$	×	$\langle 0.1 \rangle$	

It uses relational product (×), union (U), and unary relations (e.g., $\langle 1 \rangle).$

Factorised Representations of Relations

$\langle 1 \rangle$	×	$\langle \textit{Joe} \rangle$	×	$\langle 1 \rangle$	×	$\langle 1995 angle$	×	$\langle 0.1 angle$	U
$\langle 1 angle$	×	$\langle \textit{Joe} angle$	×	$\langle 1 angle$	×	$\langle 1995 angle$	×	$\langle 0.2 \rangle$	U
$\langle 2 \rangle$	×	$\langle Dan angle$	×		×	$\langle 1994 \rangle$	×	$\langle 0.4 \rangle$	U
$\langle 2 \rangle$	×	$\langle Dan angle$	×		×	$\langle 1994 \rangle$	×	$\langle 0.1 angle$	U
$\langle 2 \rangle$	×	$\langle \textit{Dan} \rangle$	×	$\langle 4 \rangle$	×	$\langle 1993 \rangle$	×	$\langle 0.4 \rangle$	U
$\langle 3 \rangle$	×	$\langle Li \rangle$	×	$\langle 5 \rangle$	×	$\langle 1995 \rangle$	×	$\langle 0.1 angle$	

A factorised representation (or f-representation) of the query result is:

```
 \begin{array}{l} \langle 1 \rangle \times \langle Joe \rangle \times \langle 1 \rangle \times \langle 1995 \rangle \times (\langle 0.1 \rangle \cup \langle 0.2 \rangle) \cup \\ \langle 2 \rangle \times \langle Dan \rangle \times (\langle 3 \rangle \times \langle 1994 \rangle \times (\langle 0.4 \rangle \cup \langle 0.1 \rangle) \cup \langle 4 \rangle \times \langle 1993 \rangle \times \langle 0.4 \rangle) \cup \\ \langle 3 \rangle \times \langle Li \rangle \times \langle 5 \rangle \times \langle 1995 \rangle \times \langle 0.1 \rangle \end{array}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

There are several *algebraically equivalent* factorised representations defined by distributivity of product over union and commutativity of product and union.

Applications of Factorised Representations

- Succinct representation of large intermediate/final results in query evaluation
 - Equality joins induce regularity in the query result and make it factorisable.
- Provenance databases and probabilistic databases
 - Compact encoding of large provenance (10MB/record in GeneOntology DB)
 - ► Factorisation of provenance polynomials is used for efficient query evaluation.
- Incompleteness and non-determinism (choice) in design specifications
 - Whenever we need to deal with a large space of possibilities or choices.
- Compiled relational databases
 - Compile data into compact factorised representation to speed up processing of many subsequent queries.
- Configuration problems
 - Represent the space of feasible solutions (valid combinations of components)

Properties of Factorised Representations of Relations

Factorised Representations

- Are relational algebra expressions.
- Can be exponentially more succinct than the relations they encode.
- Allow for fast (constant-delay) enumeration of tuples
- Reduce data redundancy and boost query performance using a mixture of

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

- vertical data partitioning (product) and
- horizontal data partitioning (union).

Key Challenges and Talk Overview

1. Characterise conjunctive queries based on succinctness of their factorised results.

2. Build a relational DBMS that uses f-representations at the physical layer.

Overview of the Rest of the Talk:

- Factorisations whose nesting structures are inferred from the query
- Tight bounds on size and readability of factorised query results
- FDB: Query engine for factorised databases

Factorisation Trees

A factorisation tree (f-tree) \mathcal{T} over relational schema \mathcal{S} is a rooted forest with nodes labelled by attributes from \mathcal{S} .

 ${\mathcal T}$ defines a nesting structure for f-representations of relations over ${\mathcal S}.$

Example f-trees and corresponding factorisations over $S = \{A, B, C\}$:

$$A \qquad \longleftrightarrow \qquad \bigcup_{a \in A} (\langle a \rangle \times (\bigcup_{b \in B} \langle b \rangle) \times (\bigcup_{c \in C} \langle c \rangle)).$$

$$A \qquad \longleftrightarrow \qquad \bigcup_{a \in A} (\langle a \rangle \times (\bigcup_{b \in B} \langle b \rangle \times (\bigcup_{c \in C} \langle c \rangle))).$$

$$B \qquad \bigcup_{c \in C} (\langle a \rangle \times (\bigcup_{b \in B} \langle b \rangle \times (\bigcup_{c \in C} \langle c \rangle))).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Factorisation Trees for Relations

However, not all f-trees work for all relations.

The f-tree

cannot factorise the relation R

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

because

- For A = 1, the values of B and C are *dependent*, i.e.,
- Relation $\pi_{B,C}\sigma_{A=1}(R)$ cannot be factorised as $(\bigcup_{b\in B} \langle b \rangle) \times (\bigcup_{c\in C} \langle c \rangle)$: $[(\langle 1 \rangle \cup \langle 2 \rangle) \times (\langle 1 \rangle \cup \langle 2 \rangle)] \neq [(\langle 1 \rangle \times \langle 1 \rangle) \cup (\langle 2 \rangle \times \langle 2 \rangle)]$

Factorisation Trees for Query Results

We statically infer from queries which f-trees always work for their results.

For a query Q (without projections) and f-tree \mathcal{T}

the result $Q(\mathbf{D})$ can be factorised according to \mathcal{T} for any database **iff**

for all relations of Q, all attributes are on a single root-to-leaf path.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Similar but more involved condition holds for arbitrary conjunctive queries.

Factorisation Trees for Query Results

Consider query $Q = \sigma_{\phi}(R \times S \times T \times U)$, with

- schemas $R(A_R, B_R, C)$, $S(A_S, B_S, D)$, $T(A_T, E_T)$, and $U(E_U, F)$,
- condition $\phi = (A_R = A_S = A_T, B_R = B_S, E_T = E_U).$

F-representations modelled on the left f-tree have the structure:

$$\bigcup_{a \in A_{R}, A_{S}, A_{T}} \left[\langle a \rangle \times \bigcup_{b \in B_{R}, B_{S}} \left(\langle b \rangle \times \left(\bigcup_{c \in C} \langle c \rangle \right) \times \left(\bigcup_{d \in D} \langle d \rangle \right) \right) \times \bigcup_{e \in E_{T}, E_{U}} \left(\langle e \rangle \times \left(\bigcup_{f \in F} \langle f \rangle \right) \right) \right]$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Size of Factorised Representations

The size of an f-representation is the number of its singleton data elements.

$$\begin{split} |(\langle 1\rangle \cup \langle 2\rangle \cup \langle 3\rangle)(\langle 1\rangle \cup \langle 2\rangle)| &= 5, \\ |(\langle 1\rangle \langle 1\rangle \cup \langle 1\rangle \langle 2\rangle \cup \langle 2\rangle \langle 1\rangle \cup \langle 2\rangle \langle 2\rangle \cup \langle 3\rangle \langle 1\rangle \cup \langle 3\rangle \langle 2\rangle)| &= 12. \end{split}$$

The two sizes above differ, although

 $(\langle 1 \rangle \cup \langle 2 \rangle \cup \langle 3 \rangle)(\langle 1 \rangle \cup \langle 2 \rangle) = (\langle 1 \rangle \langle 1 \rangle \cup \langle 1 \rangle \langle 2 \rangle \cup \langle 2 \rangle \langle 1 \rangle \cup \langle 2 \rangle \langle 2 \rangle \cup \langle 3 \rangle \langle 1 \rangle \cup \langle 3 \rangle \langle 2 \rangle)$

How much space do we save by factorisation?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Tight Bounds on the Size of Factorised Representations

Given a query Q, for any f-tree \mathcal{T} of Q there is a rational number $s(\mathcal{T})$ such that:

- For any database **D**, the factorisation of $Q(\mathbf{D})$ over \mathcal{T} has size $O(|\mathbf{D}|^{s(\mathcal{T})})$.
- There exist arbitrarily large databases D for which the factorisation of Q(D) over T has size Θ(|D|^{s(T)}).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

The parameter $s(\mathcal{T})$ is

- a feasible solution to a linear program,
- the fractional edge cover number of a sub-query of Q.
 - this sub-query depends on the shape of \mathcal{T} .
 - ▶ $1 \leq s(\mathcal{T}) \leq |Q|.$

Example of Computing $s(\mathcal{T})$

Consider the following f-tree \mathcal{T} .

• Attributes with the same colour belong to the same input relation.

Number of relations covering the path from root to any node *X*:

- For each node X except for F, this number is 1.
- For node *F*, this number is 2.

s(T) is the maximum of the number of covering relations for each node.
Thus, s(T) = 2.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Tight Bounds on the Size of Factorised Representations

Size bounds for f-trees can be lifted to queries by finding an optimal f-tree:

$$s(Q) = \min_{\mathcal{T}} s(\mathcal{T}).$$

s(Q) characterises queries by factorisability of their results.

• For any database **D**, there is a factorisation of $Q(\mathbf{D})$ with size $O(|\mathbf{D}|^{s(Q)})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

• For f-trees derived from Q, this bound is best possible.

Readability of Factorised Representations

- Assume we annotate tuples by distinct variables (= provenance, keys).
- Factorised representations can be seen as polynomials over such variables
 - \cup becomes sum (+) and \times becomes product (.).

Readability:

- A representation Φ is read-k if the maximum number of occurrences of any variable in Φ is k.
- The readability of Φ is the smallest number k such that there is a read-k representation equivalent to Φ .
- Readability has been proposed in the context of factorisation of Boolean functions [Golumbic et al.'06].
- Example: ψ_1 is read-3 and ψ_2 is read-1. They are equivalent and have readability one.

$$\psi_1 = c_1 o_1 i_1 + c_1 o_1 i_2 + c_2 o_3 i_3 + c_2 o_3 i_4 + c_2 o_4 i_5 + c_3 o_5 i_6.$$

$$\psi_2 = c_1 o_1 (i_1 + i_2) + c_2 (o_3 (i_3 + i_4) + o_4 i_5) + c_3 o_5 i_6.$$

Two Readability Dichotomies

- 1. Let Q be a query.
 - If Q is *hierarchical*, the readability of $Q(\mathbf{D})$ for any database **D** is bounded by a constant.
 - If Q is non-hierarchical, for any f-tree T of Q there exist arbitrarily large databases D such that T(D) is read-Ω(|D|).
- 2. Let Q be a query without repeating relation symbols.
 - If Q is hierarchical, the readability of $Q(\mathbf{D})$ is 1 for any database \mathbf{D} .
 - If Q is non-hierarchical, there exist arbitrarily large databases **D** such that the readability of $Q(\mathbf{D})$ is $\Omega(\sqrt{|\mathbf{D}|})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

What are these hierarchical queries?

Hierarchical query Q:

• For any two equivalence classes of attributes in *Q*, either their sets of relation symbols are disjoint, or one is included in the other.

This is a key property for query characterisation in many applications:

- In probabilistic databases, any tractable non-repeating conjunctive query is hierarchical; non-hierarchical queries are intractable [Suciu&Dalvi'07].
- In the finite cursor machine model of computation [Grohe et al'07], any query that can be evaluated in one pass is hierarchical; non-hierarchical queries need more passes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

- Assumption: we are allowed to first sort the input relations.
- In the Massively Parallel computation model, any query that can be evaluated with one synchronisation step is hierarchical. [Suciu et al'11]

Readability Width of a Query

There is a rational number r(Q) with properties similar to those of s(Q):

- For any database D, the readability of the query result Q(D) is at most M · |D|^{r(Q)}, where M is the max number of repeating relation symbols in Q.
- For any f-tree \mathcal{T} of Q there exist arbitrarily large databases **D** such that the f-representation $\mathcal{T}(\mathbf{D})$ is at least read- $(|\mathbf{D}|/|Q|)^{r(Q)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- r(Q) = 0 for hierarchical queries Q only and r(Q) > 0 for all others.
- r(Q) defines the *readability width* of Q.

FDB: A Query Engine for Factorised Databases

- Uses f-representations to encode relational data
- Query evaluation
 - Relational operators: selection, projection, product
 - New operators for restructuring factorisations
 - Any query can be evaluated by a sequence of operators
- Query optimisation
 - Find the best query and factorisation plan
- \bullet Implementation of an in-memory engine in C++
 - flat/factorised data \rightarrow flat/factorised data
- Experimental evaluation with FDB and relational engines
 - Factorised query results up to 6 orders of magnitude smaller than equivalent relations.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

 FDB up to 5 orders of magnitude faster than PostgreSQL/SQLite/our in-memory relational engine.

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Query Operators

Restructuring operators

• Normalisation factors out expressions common to all terms of a union. Example: f-tree nodes A and B do not have dependent attributes.

• Swap exchanges a node with its parent while preserving normalisation. Example: $\mathcal{T}_{\mathcal{A}}$ depends on \mathcal{A} only, $\mathcal{T}_{\mathcal{B}}$ depends on \mathcal{B} only, $\mathcal{T}_{\mathcal{AB}}$ depends on both \mathcal{A} and \mathcal{B}

《曰》 《曰》 《曰》 《曰》 三百

Query Operators

Selection operators A = B, where A and B label nodes A and B respectively.

• Merge siblings ${\mathcal A}$ and ${\mathcal B}$ into a single node

• Absorb \mathcal{B} into its ancestor \mathcal{A} . Example: \mathcal{T}_i depends on \mathcal{B} and \mathcal{C}_i

Select $A\theta c$ does not change the f-tree; it removes from the f-representation all products containing A-singletons $\langle a \rangle$ for which $a \neg \theta c$.

Query Operators

Further query algebra operators

- Cartesian product of two f-trees is their forest
- **Projection** on attribute list \overline{A} removes from the f-tree all attributes but those in \overline{A} ; empty leaf nodes are removed.
 - The projection operation is more involved if the resulting f-tree must not allow f-representations with duplicates.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

• Work in progress: Order-by, Group-by, Aggregates.

Query Optimisation

Goal: Find the best f-plan = query **and** factorisation plan

- Optimal f-representation of the query result
- Minimal computation cost, i.e., the sizes of intermediate results
- Cost computation based on s(Q) or cardinality and selectivity estimates

Search space defined by

- selection operators may require several swaps before application,
- choice of selection operators and f-tree transformations for each join,

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

- choice of order for join conditions,
- projection push-downs.

Query Optimisation: Example

Build f-plan for selection B = F on the leftmost f-tree, with dependencies $\{A, B, C\}$ and $\{D, E, F\}$.

Alternative f-plans (cost given by $\max s(\mathcal{T}_i)$ over all \mathcal{T}_i 's in the f-plan):

Input and output f-trees with cost 1, intermediate with cost 2

All three f-trees have cost 1.

《曰》 《聞》 《臣》 《臣》 三臣

Experimental Evaluation

Query optimisation. K equalities on R relations with A = 40 attributes.

- exhaustive search used above.
- heuristics perform up to 4 orders of magnitude better, the cost differs by at most 0.5.

Experimental Evaluation

Query evaluation on flat data: FDB vs. Relational DB (RDB).

(日) (日) (日) (日) (日)

• The trend is the same for time performance.

Experimental Evaluation

Query evaluation on factorised data: FDB (dotted lines) vs. RDB (solid lines).

イロト イヨト イヨト イヨト

• The trend is the same for size.

Disclaimer: Discussion for queries without projection!

For any attribute A in an f-tree \mathcal{T} , the number of occurrences of A-values in the factorisation of $Q(\mathbf{D})$ over \mathcal{T} is $|\pi_{\text{path}(A)}(Q(\mathbf{D}))|$.

Example

- $\operatorname{path}(F) = \{A_R, A_S, A_T, E_T, E_U, F\}.$
- The number of occurrences of *F*-values is then $|\pi_{\text{path}(F)}(Q(\mathbf{D}))|$.

Next step:

- The trouble is that $\pi_{\text{path}(A)}(Q(\mathbf{D}))$ requires to know $Q(\mathbf{D})$.
- We would like to express it as a function of Q and D.

Restrict $Q = \pi_{\mathcal{P}}(\sigma_{\phi}(R_1 \times \cdots \times R_n))$ and **D** to the attributes in path(A):

- $Q_A = \sigma_{\phi_{\mathrm{path}(A)}}(\pi_{\mathrm{path}(A)}R_1 \times \cdots \times \pi_{\mathrm{path}(A)}R_n)$,
- D_A obtained by projecting D onto path(A).

Then number of A-values $= |\pi_{\text{path}(A)}(Q(\mathbf{D}))| \le |Q_A(\mathbf{D}_A)|.$

Rough estimate:

- Cover all attributes of Q_A by $k \leq |Q_A|$ relations.
- Then, $|Q_A(\mathbf{D}_A)| \leq |\mathbf{D}|^k$.
- Best k is the edge cover number of the hypergraph of Q_A .

Better estimate:

• From edge cover number k to fractional edge cover number $\rho^*(Q_A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

For a query $Q = \sigma_{\phi}(R_1 \times \cdots \times R_n)$, the *fractional edge cover number* $\rho^*(Q)$ is the cost of an optimal solution to the linear program with variables $\{x_{R_i}\}_{i=1}^n$:

$$\begin{array}{ll} \text{minimising} & \sum_{i} x_{R_{i}} \\ \text{subject to} & \sum_{i:R_{i} \in rel(\mathcal{A})} x_{R_{i}} \geq 1 \ \text{for all attribute classes } \mathcal{A}, \\ & x_{R_{i}} \geq 0 \qquad \qquad \text{for all } R_{i}. \end{array}$$

- x_{R_i} is the weight of relation R_i .
- rel(A) are relations with attributes in A.
- Each node A has to be covered by relations in rel(A) such that the sum of the weights of these relations is greater than 1.
- The objective is to minimise the sum of the weights of all relations.
- In the non-weighted edge cover, the variables x_{R_i} can only be assigned the values 0 and 1.

Then $|Q(\mathbf{D})| \leq |\mathbf{D}|^{\rho^*(Q)}$ for all databases **D**. [Atserias, Grohe, Marx; FOCS'08]

- 1. Number of A-values = $|\pi_{\operatorname{path}(A)}(Q(\mathsf{D}))| \le |Q_A(\mathsf{D}_A)| \le |\mathsf{D}_A|^{\rho^*(Q_A)} \le |\mathsf{D}|^{\rho^*(Q_A)}$.
- 2. Define $s(\mathcal{T}) = \max_A \rho^*(Q_A)$.

• $s(\mathcal{T}) = \text{maximal possible } \rho^*(Q_A) \text{ over all attributes } A \text{ from } Q.$

- Then, the size of the factorisation of $Q(\mathbf{D})$ over \mathcal{T} is $\leq |Q| \cdot |\mathbf{D}|^{s(\mathcal{T})} = O(|\mathbf{D}|^{s(\mathcal{T})}).$
- 3. Define $s(Q) = \min_{\mathcal{T}} s(\mathcal{T})$.
 - $s(Q) = \text{minimum possible } s(\mathcal{T}) \text{ over all f-trees } \mathcal{T} \text{ for } Q.$
 - Then, there exists an f-representation of $Q(\mathbf{D})$ with size $O(|\mathbf{D}|^{s(Q)})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Example of computing s(Q)

- For each node X except for F, we have that ρ*(Q_X) = 1 since all attributes in path(X) are covered by one relation.
- path(F) is not covered by one relation and $\rho^*(Q_F) = 2$.
- Thus, $s(\mathcal{T}) = 2$.
- s(Q) = 2 since s(T) = 2 is the smallest possible value for any f-tree T of the query Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Projections

With $R(A_R, B_R)$, $S(A_S, B_S)$, the query $Q = \sigma_{A_R = A_S}(R \times S)$ has s(Q) = 1:

 A_R, A_S A_S B_R

However the query $Q' = \pi_{B_R, C_S}(\sigma_{A_R=A_S}(R \times S))$ has s(Q') = 2.

After projecting away A_R , A_S , B_R and C_S are dependent and cannot be siblings.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ê

 \Rightarrow Projection may increase the factorisation size.

More Succinct Representations: DAG

Avoid repeating identical expressions: store them once and use pointers.

$$\bigcup_{a \in A_R, A_S, A_T} \left[\langle a \rangle \times \cdots \times \bigcup_{e \in E_T, E_U} \left(\langle e \rangle \times \left(\bigcup_{f \in F} \langle f \rangle \right) \right) \right]$$

- Node $\{F\}$ only depends on $\{E_T, E_U\}$.
- A fixed $\langle e \rangle$ binds with the same $\bigcup_{f \in F} \langle f \rangle$ for each $\langle a \rangle$.
 - \Rightarrow store the mapping $\langle e \rangle \mapsto \bigcup_{f \in F} \langle f \rangle$ separately.

$$\bigcup_{a \in A_{\mathcal{R}}, A_{\mathcal{S}}, A_{\mathcal{T}}} \left[\langle a \rangle \times \cdots \times \bigcup_{e \in E_{\mathcal{T}}, E_{\mathcal{U}}} \left(\langle e \rangle \times U_{e} \right) \right]; \qquad \left\{ U_{e} = \bigcup_{f \in F} \langle f \rangle \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●