Incremental View Maintenance with Triple-Lock Factorization Benefits fdbresearch.github.io

Milos Nikolic and Dan Olteanu (Oxford) Université Libre de Bruxelles, December 2017 partially funded by the Wiener Anspach Foundation

Integrate analytics into relational data systems

In-Database Analytics Builds on Three Observations

- 1. Move the analytics and not the data
 - Small analytics code vs. large data: Avoid expensive data export/import in the software stack
 - Exploit database technology and the relational structure (schema, query, functional dependencies)
 - Build better models faster and using larger datasets

In-Database Analytics Builds on Three Observations

- 1. Move the analytics and not the data
 - Small analytics code vs. large data: Avoid expensive data export/import in the software stack
 - Exploit database technology and the relational structure (schema, query, functional dependencies)
 - Build better models faster and using larger datasets
- 2. Analytics code can be cast as join-aggregate queries
 - Many similar queries that massively share computation
 - Fixpoint computation needed for model convergence

In-Database Analytics Builds on Three Observations

- 1. Move the analytics and not the data
 - Small analytics code vs. large data: Avoid expensive data export/import in the software stack
 - Exploit database technology and the relational structure (schema, query, functional dependencies)
 - Build better models faster and using larger datasets
- 2. Analytics code can be cast as join-aggregate queries
 - Many similar queries that massively share computation
 - Fixpoint computation needed for model convergence
- 3. State-of-the-art relational data systems not scalable enough
 - Highly redundant data representation and processing
 - Tractability map for queries and analytics mostly uncharted

In-Database vs. Out-of-database Analytics

In-Database vs. Out-of-database Analytics

Complexity gap for some models: $\mathcal{O}(|DB|^{fhtw})$ vs. $\mathcal{O}(|DB|^n)$, where *n* is the number of relations in the database and *fhtw* \ll *n* is the fractional hypertree width of the join of all database relations. ^{2/46}

Software Prototypes

F@Oxford and inDBLearn@LogicBlox (now Infor) support:

- ridge linear regression
- polynomial regression
- factorisation machines
- logistic regression
- support vector machines
- principal component analysis
- decision trees
- frequent itemset
- . . .

Datasets continuously evolve over time

In-Database Analytics over Streaming Datasets

- Datasets continuously evolve over time
 - E.g.: data streams from sensors, social networks, apps
- Real-time analytics over streaming data
 - Users want fresh up-to-date data models

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D}, +, *, 0, 1)$

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D}, +, *, 0, 1)$

Key to performance: Triple-lock factorisation for

- 1. delta analytics, compiled to optimised C++ code
- 2. representation of the result
- 3. bulk updates via tensor decomposition techniques

F-IVM@Oxford:

- Prototype implemented on top of DBToaster's backend
- Performance: Up to 2 OOM faster than classical IVM and DBToaster and up to 4 OOM less memory than DBToaster

"Concrete recipe on how to IVM the next analytic task you may face" (anonymous SIGMOD'18 reviewer)

Why Real-Time In-Database Analytics?

Factorized Ring Computation

Incremental View Maintenance

Applications

- Learning Linear Regression Models
- Factorized Representation of Conjunctive Query Results
- Matrix Chain Multiplication

Compute COUNT over the natural join: R(A, B), S(A, C, E), T(C, D)

Q = SELECT SUM(1) FROM R NATURAL JOIN S NATURAL JOIN T

How can we compute Q?

Join hypergraph

Naïve: compute the join and then SUM(1)

Naïve: compute the join and then SUM(1)

Let all relations be of size N

Computing Q takes $\mathcal{O}(N^3)$ time!

Can we do better?

A Slightly Different Example: SUM Aggregate

SUM over products of ${\sf B}$ and ${\sf C}$

Q = SELECT SUM(B * C)

- FROM R NATURAL JOIN S
 - NATURAL JOIN T

A Slightly Different Example: SUM Aggregate

One variable order for R(A, B), S(A, C, E), T(C, D)

Query Evaluation Plans using Variable Orders

One variable order for R(A, B), S(A, C, E), T(C, D)

Tree of query variables

Variables of a relation lie on a root-to-leaf path

Query Evaluation Plans using Variable Orders

One variable order for R(A, B), S(A, C, E), T(C, D)

Tree of query variables

Variables of a relation lie on a root-to-leaf path

Create a view at each var X with schema depends(X)

View Trees

 $\label{eq:Q} \begin{aligned} \textbf{Q} &= \text{SELECT SUM}\left(\,\textbf{g}_{A}(A) * \textbf{g}_{B}(B) * \textbf{g}_{C}(C) * \textbf{g}_{D}(D) * \textbf{g}_{E}(E)\,\right) \\ & \text{FROM } \textbf{R} \text{ NATURAL JOIN } \textbf{S} \text{ NATURAL JOIN } \textbf{T} \end{aligned}$

Imagine aggregate values are of type ${\mathcal R}$

 $g_X : \mathsf{Dom}(X) \to \mathcal{R}$

Can we evaluate Q using the query plan from before?

 $\label{eq:Q} \begin{aligned} \textbf{Q} &= \text{SELECT SUM}\left(\,\textbf{g}_{A}(A) * \textbf{g}_{B}(B) * \textbf{g}_{C}(C) * \textbf{g}_{D}(D) * \textbf{g}_{E}(E)\,\right) \\ & \text{FROM } \textbf{R} \text{ NATURAL JOIN } \textbf{S} \text{ NATURAL JOIN } \textbf{T} \end{aligned}$

Imagine aggregate values are of type ${\mathcal R}$

 $g_X : \mathsf{Dom}(X) \to \mathcal{R}$

Can we evaluate Q using the query plan from before?

Yes(!), but we need to:

- Define * and + binary operators in \mathcal{R}
- Define zero in \mathcal{R} (for initial values)
- Define one in \mathcal{R} (e.g., if X is not used, $g_X(x) = 1$)
- Ensure distributivity of * over +

• A ring $(\mathcal{R}, +, *, 0, 1)$ is a set \mathcal{R} with two binary ops:

$$a + b = b + a$$

$$(a + b) + c = a + (b + c)$$

$$0 + a = a + 0 = a$$

$$\exists - a \in \mathcal{R} : a + (-a) = (-a) + a = 0$$

$$(a * b) * c = a * (b * c)$$

$$a * 1 = 1 * a = a$$

$$a * (b + c) = a * b + a * c \text{ and}$$

$$(a + b) * c = a * c + b * c$$

• Examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^n$, matrix ring, polynomial ring

Factorized Ring Computation

- Relations are functions
 - mapping keys (tuples) to payloads (ring elements)

- 	R[<i>A</i> , <i>B</i>]	\rightarrow	В	A
with non-zero payloads	r ₁ r ₂	$\stackrel{\rightarrow}{\rightarrow}$	$b_1 \\ b_1$	a ₁ a ₂

 r_1 and r_2 are elements from a ring

- Query language
 - Operations: union, join, and variable marginalization
 - More expressiveness via application-specific rings
- Query evaluation
 - using view trees shown before

More General SUM Aggregate

 $\label{eq:Q} \begin{aligned} \mathsf{Q} &= \mbox{ SELECT SUM} \left(\, g_{\mathsf{A}}(\mathsf{A}) \ast g_{\mathsf{B}}(\mathsf{B}) \ast g_{\mathsf{C}}(\mathsf{C}) \ast g_{\mathsf{D}}(\mathsf{D}) \ast g_{\mathsf{E}}(\mathsf{E}) \, \right) \\ & \mbox{ FROM } \mathsf{R} \mbox{ NATURAL JOIN } \mathsf{S} \mbox{ NATURAL JOIN } \mathsf{T} \end{aligned}$

In our formalism:

 $Q = \bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{F} (R[A, B] \otimes S[A, C, E] \otimes T[C, D])$

variable marginalization

natural joins

Intuition: Relation payloads carry out the summation!

Marginalization of X applies g_X , sums payloads, projects away X Join multiplies payloads of matching tuples

Relations R, S, and T with payloads from a ring $(\mathcal{R}, +, *, 0, 1)$:

Α	В	\rightarrow	R[<i>A</i> , <i>B</i>]	А	В	\rightarrow	S[<i>A</i> , <i>B</i>]	В	С	\rightarrow	T[<i>B</i> , <i>C</i>]
a ₁ a ₂	$b_1 \\ b_1$	$\stackrel{\rightarrow}{\rightarrow}$	r ₁ r ₂	а ₂ а ₃	$b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow}$	s ₁ s ₂	$b_1 \\ b_2$	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$t_1 \\ t_2$

Relations R, S, and T with payloads from a ring $(\mathcal{R},+,*,0,1)$:

А	В	\rightarrow	R[<i>A</i> , <i>B</i>]	А	В	\rightarrow	S[A, B]	В	С	\rightarrow	T[B, C]
a ₁ a ₂	$b_1 \\ b_1$	$\stackrel{\rightarrow}{\rightarrow}$	r ₁ r ₂	a2 a3	$b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow}$	s ₁ s ₂	b_1 b_2	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$t_1 \\ t_2$

Union 🖽

А	В	\rightarrow	$(R \uplus S)[A, B]$
a ₁ a ₂ a ₃	$b_1 \\ b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow} \\ \stackrel{\rightarrow}{\rightarrow}$	$r_2 + s_1$ s_2

Relations R, S, and T with payloads from a ring $(\mathcal{R},+,*,0,1)$:

А	В	\rightarrow	R[A, B]
a_1	b_1	\rightarrow	r_1
a 2	b_1	\rightarrow	<i>r</i> 2

А	В	\rightarrow	S[A, B]
a ₂	b_1	\rightarrow	<i>s</i> ₁
a ₃	b ₂	\rightarrow	<i>s</i> ₂

В	С	\rightarrow	T[B, C]
b_1 b_2	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$t_1 \\ t_2$

Union 🖽

А	В	\rightarrow	$(R \uplus S)[A, B]$
a_1	b_1	\rightarrow	<i>r</i> ₁
a 2	b_1	\rightarrow	$r_2 + s_1$
ag	<i>D</i> 2	\rightarrow	s ₂

Relations R, S, and T with payloads from a ring $(\mathcal{R},+,*,0,1)$:

А	В	\rightarrow	R[A, B]	А	В	\rightarrow	S[A, B]	В	С	\rightarrow	T[<i>B</i> , <i>C</i>]
a ₁ a ₂	$b_1 \\ b_1$	$\stackrel{\rightarrow}{\rightarrow}$	r ₁ r ₂	а ₂ а ₃	b ₁ b ₂	$\stackrel{\rightarrow}{\rightarrow}$	s ₁ s ₂	b_1 b_2	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$t_1 \\ t_2$

Union 🖽

А	В	\rightarrow	$(R \uplus S)[A, B]$
a ₁ a ₂ a ₃	$b_1 \\ b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow}_{\rightarrow}$	$r_2 + s_1$ s_2

$\text{Join}\,\otimes$

А	В	С	\rightarrow	$((R \uplus S) \otimes T)[A, B, C]$
a ₁ a ₂ a ₃	$b_1 \\ b_1 \\ b_2$	c ₁ c ₁ c ₂	$\stackrel{\rightarrow}{}$	$(r_2 + s_1) * t_1 \\ s_2 * t_2$

Relations R, S, and T with payloads from a ring $(\mathcal{R},+,*,0,1)$:

А	В	\rightarrow	R[<i>A</i> , <i>B</i>]	А	В	\rightarrow	S[<i>A</i> , <i>B</i>]
a ₁ a ₂	$b_1 \\ b_1$	$\stackrel{\rightarrow}{\rightarrow}$	r ₁ r ₂	a2 a3	$b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow}$	<i>s</i> ₁ <i>s</i> ₂

В	С	\rightarrow	T[B, C]
b_1	<i>c</i> ₁	\rightarrow	t_1
b ₂	<i>c</i> ₂	\rightarrow	t_2

Union 🖽

А	В	\rightarrow	$(R \uplus S)[A, B]$
a_1	b_1	\rightarrow	r_1
a 2	b_1	\rightarrow	$r_2 + s_1$
a3	<i>b</i> ₂	\rightarrow	s 2

$\text{Join}\,\otimes$

А	В	С	\rightarrow	$((R \uplus S) \otimes T)[A, B, C]$
a_1	b_1	<i>c</i> ₁	\rightarrow	$r_1 * t_1$
a 2	b_1	<i>c</i> ₁	\rightarrow	$(r_2 + s_1) * t_1$
аз	D ₂	<i>c</i> ₂	\rightarrow	$s_2 * t_2$

Relations R, S, and T with payloads from a ring $(\mathcal{R},+,*,0,1)$:

А	В	\rightarrow	R[A, B]		А	В	\rightarrow	S[A	, B]		В	С	\rightarrow	T[B, C]	
a ₁ a ₂	$b_1 \\ b_1$	$\stackrel{\rightarrow}{\rightarrow}$	r ₁ r ₂		а ₂ а ₃	$b_1 \\ b_2$	$\stackrel{\rightarrow}{\rightarrow}$	5 5	1 2		$b_1 \\ b_2$	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$t_1 \\ t_2$	
Un	ion	$ \boxplus $			_			Joi	n ⊗)					
А	В	\rightarrow	(R ⊎ S)[/	A, B]	_			А	В	С	\rightarrow	((F	R ⊎ S)	$\otimes T)[A,$	B, C]
a ₁ a ₂ a ₃	$b_1 \\ b_1 \\ b_2$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$r_1 + s_2 + s_2 s_2$	51	-			a ₁ a ₂ a ₃	$b_1 \\ b_1 \\ b_2$	c ₁ c ₁ c ₂	$\stackrel{\rightarrow}{\rightarrow} \rightarrow$		(<i>r</i> ₂	$r_1 * t_1 + s_1) * t_1 s_2 * t_2$	

Marginalization \bigoplus_A

for a given	В	С	\rightarrow	$(\bigoplus_{A}(R \uplus S) \otimes T)[B, C]$
$g_A:Dom(A) o \mathcal{R}$	b_1 b_2	с ₁ с ₂	$\stackrel{\rightarrow}{\rightarrow}$	$r_1 * t_1 * g_A(a_1) + (r_2 + s_1) * t_1 * g_A(a_2)$ $s_2 * t_2 * g_A(a_3)$

General Query Form

 $Q = SELECT X_1, ..., X_f, SUM(g_{f+1}(X_{f+1}) * \cdots * g_m(X_m))$ FROM R_1 NATURAL JOIN ... NATURAL JOIN R_n GROUP BY $X_1, ..., X_f$

Expressed as Functional Aggregate Query:

$$Q[X_1,\ldots,X_f] = \bigoplus_{X_{f+1}} \ldots \bigoplus_{X_m} \bigotimes_{i \in [n]} \mathsf{R}_i[\mathcal{S}_i]$$

where:

- Relations R₁,..., R_n are defined over variables X₁,..., X_m
- X_1, \ldots, X_f are free variables
- R_i maps keys over schema \mathcal{S}_i to payloads in a ring $(\mathcal{R},+,*,\mathbf{0},\mathbf{1})$
- Aggregations $\bigoplus_{X_{f+1}}, \ldots, \bigoplus_{X_m}$ use functions g_{f+1}, \ldots, g_m

Why Real-Time In-Database Analytics?

Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models Factorized Representation of Conjunctive Query Results Matrix Chain Multiplication

Incremental Computation

• Maintain query results under updates to the input relations

$$Q(\mathcal{D} + \delta \mathcal{D}) = Q(\mathcal{D}) + \delta Q(\mathcal{D}, \delta \mathcal{D})$$

Fast "merge" operation
Smaller and faster delta query (ideally)

- Incremental View Maintenance (IVM) in databases
 - Often with limited query support and poor performance

Incremental View Maintenance

- Ring payloads simplify incremental computation
 - Updates are uniformly represented as relations

А	В	\rightarrow	$\delta R[A, B]$, ,
а ₁ а4	b ₁ b ₃	$\rightarrow \rightarrow$	-1 2	Tuples with positive/negative payloads denote insertions/deletions

- Applying updates: $R_{new}[A, B] = R_{old}[A, B] \uplus \delta R[A, B]$
- The query language is closed under taking deltas

$$\begin{split} \delta(\mathsf{R} \uplus \mathsf{S}) &= \delta \mathsf{R} \uplus \delta \mathsf{S} \\ \delta(\mathsf{R} \otimes \mathsf{S}) &= (\delta \mathsf{R} \otimes \mathsf{S}) \uplus (\mathsf{R} \otimes \delta \mathsf{S}) \uplus (\delta \mathsf{R} \otimes \delta \mathsf{S}) \\ \delta(\bigoplus_A \mathsf{R}) &= \bigoplus_A \delta \mathsf{R} \end{split}$$

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$

We may then factorize subsequent updates up the delta tree

28/46

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$

Why Real-Time In-Database Analytics?

Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models Factorized Representation of Conjunctive Query Results Matrix Chain Multiplication Our framework can capture a host of problems using task-specific rings

- Gradient computation for learning regression models
- Factorized representation of results of conjunctive queries
- Matrix chain multiplication
- Group-by aggregation over joins (we've seen this already)

Next: zoom in the first problem above (Ask me about the other ones!)

Learning Linear Regression Models

• Find model parameters Θ best satisfying:

• Iterative gradient computation:

 $\boldsymbol{\Theta}_{i+1} = \boldsymbol{\Theta}_i - \alpha \, \mathbf{X}^{\mathsf{T}} (\mathbf{X} \, \boldsymbol{\Theta}_i - \mathbf{Y}) \quad \text{(repeat until convergence)}$

- Matrices X^T X and X^T Y computed once for all iterations
 - Compute SUM(X_i · X_j), SUM(X_i), and SUM(1) for variables X_i and X_j
 - We assume in this talk that all variables are continuous

Compute $X^T X$ where X is the join of the input relations

- Naïve: compute the join, then \$\mathcal{O}(m^2)\$ sums over the join result (\$m = #query variables\$)
- Factorized: compute one optimized join-aggregate query
 - Using our running query

 $\mathsf{Q} = \bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E} (\mathsf{R}[A, B] \otimes \mathsf{S}[A, C, E] \otimes \mathsf{T}[C, D])$

but a different payload ring and different functions g_X !

Linear Regression Ring

Set of triples $\mathcal{R} = (\mathbb{Z}, \mathbb{R}^m, \mathbb{R}^{m \times m})$ (COUNT, vector of $SUM(X_i)$, matrix of $SUM(X_i \cdot X_j)$) $a + \mathcal{R} b = (c_a + c_b, \mathbf{s}_a + \mathbf{s}_b, \mathbf{Q}_a + \mathbf{Q}_b)$ $a *^{\mathcal{R}} b = (c_a c_b, c_b \mathbf{s}_a + c_a \mathbf{s}_b, c_b \mathbf{Q}_a + c_a \mathbf{Q}_b + \mathbf{s}_a \mathbf{s}_b^T + \mathbf{s}_b \mathbf{s}_a^T)$ $\mathbf{0} = (0, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m})$ $\mathbf{1} = (1, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m})$ Dense V^{@A}[] payloads V^{@B}[A] V^{@C}[A] Function g_{X_i} for variable X_i $\begin{array}{c} | \\ \mathsf{R}[A,B] \\ \mathsf{V}^{@\mathsf{D}}[C] \\ \mathsf{V}^{@\mathsf{E}}[A,C] \end{array}$ $g_{X_i}(x) = (1, \mathbf{s}, \mathbf{Q})$ where **s** has all 0s except $s_i = x$ | T[C, D] S[A, C, E] Sparse **Q** has all 0s except $Q_{i,i} = x^2$ payloads

Performance: Learning Linear Regression Models over Joins

Streaming dataset with 5 relations

The natural join has 43 variables

Matrix with 946 distinct aggregates

Comparing IVM strategies on a common system

- F-IVM (9 views)
- SQL-OPT (9 views)
- DBToaster (3, 425 views)
- IVM (951 views)

Fraction of Stream Trace Processed

Summary: Factorized Incremental View Maintenance

- Framework for unified IVM of in-database analytics
 - Captures many application scenarios
- Based on 3 shades of factorization
 - Factorized query evaluation
 - Exploits conditional independence among query variables
 - Factorized representation of query results
 - Enables succinct result representation
 - Factorized updates
 - Exploits low-rank tensor decomposition of updates
- Performance: Up to 2 OOM faster and 4 OOM less memory than state-of-the-art IVM techniques

Our IVM framework can accommodate any ring

As My Girl Beyoncé Repeatedly Said..

Thank you!

$\mathsf{Q}_{\triangle}[\] = \bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \mathsf{R}[A,B] \otimes \mathsf{S}[B,C] \otimes \mathsf{T}[C,A]$

• Set of relations over ${\mathcal R}$ with \uplus and \otimes forms a ring of relations

- Relation $\boldsymbol{0}$ maps every tuple to $\boldsymbol{0}\in\mathcal{R}$
- Relation 1 maps the empty tuple to $1\in \mathcal{R},$ others to $0\in \mathcal{R}$
- Payload: Relations over $\mathcal{R} = \mathbb{Z}$ with the same schema!

А	В	\rightarrow	R[A, B]		
a ₁	b_1	\rightarrow	$ \begin{array}{c} C \\ \hline c_1 \rightarrow 1 \\ c_2 \rightarrow 1 \end{array} $		
a 2	b_1	\rightarrow	$C \over c_3 \rightarrow 1$		

Keep results of conjunctive queries in payloads

Evaluating Conjunctive Queries using Relational Payloads

- Consider the conjunctive query:
 Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)
- Compute *Q* using relations with relational payloads

 $\mathsf{Q} = \bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E} (\mathsf{R}[A, B] \otimes \mathsf{S}[A, C, E] \otimes \mathsf{T}[C, D])$

• Lift (aggregate) functions:

$$g_X(x) = \begin{cases} \frac{|X|}{|x \to 1|} & \text{if } X \text{ is a free variable} \\ \frac{|X|}{|(x \to 1)|} & \text{otherwise} \end{cases}$$

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

- $\begin{array}{ccc} \mathbf{C} & \mathbf{D} \rightarrow \mathbf{T}[\mathbf{C},\mathbf{D}] \\ \hline \hline c_1 & d_1 \rightarrow \hline (\bigcirc \rightarrow 1 \\ c_2 & d_2 \rightarrow \hline (\bigcirc \rightarrow 1 \\ c_2 & d_3 \rightarrow \hline (\bigcirc \rightarrow 1 \\ c_3 & d_4 \rightarrow \hline (\bigcirc \rightarrow 1 \end{array})$

Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)

 $c_2 \quad d_3 \rightarrow () \rightarrow 1$

 $c_3 \quad d_4 \rightarrow () \rightarrow 1$

39/46

Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)

39/46

Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)

Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)

O(A P C D)	רח	$() \to V^{\texttt{QA}}[\;]$			
Q(A, D, C, D) =	$= \kappa(A, D), S(A)$, C, E), I(C, I))	ABCD	
				$a_1 b_1 c_1 d_1 \rightarrow 2$	
$A B \rightarrow R[A,B]$				$a_1 b_1 c_2 d_2 \rightarrow 1$	
				$a_1 b_1 c_2 d_3 \rightarrow 1$	
$a_1 b_1 \rightarrow () \rightarrow 1$				$() \rightarrow a_1 b_2 c_1 d_1 \rightarrow 2$	
$a_1 b_2 \rightarrow 1$	$A \rightarrow V^{@B}[A]$			$a_1 b_2 c_2 d_2 \rightarrow 1$	
		V ^{@A} []		$a_1 b_2 c_2 d_3 \rightarrow 1$	
$a_2 b_3 \rightarrow () \rightarrow 1$	В			$a_2 b_3 c_2 d_2 \rightarrow 1$	
$a_3 b_4 \rightarrow 1$	$a_1 \rightarrow b_1 \rightarrow 1$			$a_2 b_3 c_2 d_3 \rightarrow 1$	
	$b_2 \rightarrow 1$				
	B	V ^{ob} [A] V ^o	°[A]	$A \rightarrow V^{@C}[A]$	
$A C E \rightarrow S[A,C,E]$	$a_2 \rightarrow b_3 \rightarrow 1$	/			
$a_1 c_1 e_1 \rightarrow () \rightarrow 1$	B			C D	
0 / 2	$b_4 \rightarrow 1$	R[A, B]		$a_1 \rightarrow \begin{vmatrix} c_1 & d_1 \rightarrow 2 \\ c_1 & d_1 \rightarrow 1 \end{vmatrix}$	
$a_1 c_1 e_2 \rightarrow () \rightarrow 1$		/		$c_2 a_2 \rightarrow 1$	
$a_1 c_2 e_3 \rightarrow () \rightarrow 1$		/	\	$c_2 a_3 \rightarrow 1$	
0 / 2	$C \to V^{@D}[C]$			CD	
$a_2 c_2 e_4 \rightarrow () \rightarrow 1$		v [C]	v [A, C]	$a_2 \rightarrow c_2 d_2 \rightarrow 1$	
	$c_1 \rightarrow D$			$c_2 d_3 \rightarrow 1$	
$C D \ \rightarrow T[C,D]$	$d_1 \rightarrow 1$	T[C, D]	S[A, C, E]	A C \rightarrow V ^{@E} [A.C]	
$c_1 d_1 \rightarrow (0, 1)$					
	$c_2 \rightarrow d_2 \rightarrow 1$			$a_1 c_1 \rightarrow () \rightarrow 2$	
$c_2 d_2 \rightarrow () \rightarrow 1$	$u_3 \rightarrow 1$				
$c_2 d_3 \rightarrow () \rightarrow 1$	$c_3 \rightarrow D$			$a_1 c_2 \rightarrow 1$	
	$d_4 \rightarrow 1$			$a_2 c_2 \rightarrow () \rightarrow 1$	39/46
$c_3 d_4 \rightarrow () \rightarrow 1$					

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

$$\begin{array}{c|c} \underline{A} \rightarrow \mathbf{V}^{\Theta \mathbf{B}}[\mathbf{A}] & \mathbf{V}^{\otimes \mathbf{A}}[] \\ \hline a_{1} \rightarrow \begin{matrix} B \\ b_{2} \rightarrow 1 \\ b_{2} \rightarrow 1 \\ a_{2} \rightarrow \begin{matrix} B \\ b_{3} \rightarrow 1 \\ a_{3} \rightarrow \begin{matrix} B \\ b_{4} \rightarrow 1 \\ c_{1} \rightarrow \begin{matrix} B \\ b_{4} \rightarrow 1 \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \begin{matrix} B \\ c_{2} \rightarrow \end{matrix} \\ c_{2} \rightarrow \cr c_$$

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

$$\begin{array}{c|c} \mathbf{C} & \mathbf{D} \to \mathbf{T}[\mathbf{C}, \mathbf{D}] \\ \hline c_1 & d_1 \to & () \to 1 \\ c_2 & d_2 \to & () \to 1 \\ c_2 & d_3 \to & () \to 1 \\ c_3 & d_4 \to & () \to 1 \end{array}$$

Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

Constant Delay Enumeration

foreach a in $V^{@A}$ foreach b in $V^{@B}$ foreach c in $V^{@C}$ foreach d in $V^{@D}$ output (a,b,c,d)

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

Performance: Maintenance of Conjunctive Query Results

Star schema

Snowflake schema

Input: Matrices A_i of size of $p_i \times p_{i+1}$ over some ring \mathcal{R} $(i \in [n])$

 Modeled as relations A_i[X_i, X_{i+1}] with payloads carrying matrix values in R

Problem: Compute their product matrix of size $p_1 \times p_{n+1}$

$$\mathsf{A}[X_1, X_{n+1}] = \bigoplus_{X_2} \cdots \bigoplus_{X_n} \bigotimes_{i \in [n]} \mathsf{A}_i[X_i, X_{i+1}]$$

where each lift function $g_{X_i}(X_j)$ maps any key to payload $\mathbf{1} \in \mathcal{R}$

Matrix changes

Single-value change \Rightarrow vector outer product $\delta A_i[X_i, X_{i+1}] = u[X_i] \otimes v[X_{i+1}]$

Several-values change \Rightarrow sum of vector outer products $\delta A_i[X_i, X_{i+1}] = \uplus_{k \in [r]} u_k[X_i] \otimes v_k[X_{i+1}]$

Time complexity for multiplication of *n* matrices of size $p \times p$:

- Evaluation or IVM: $O(p^3)$
- IVM with factorized updates: $O(p^2)$

Performance: Matrix Chain Multiplication

Update to A_2 expressed as outer product

Update to A₂ expressed as sum of r outer products

