Incremental View Maintenance with
Triple-Lock Factorization Benefits
fdbresearch.github.io

Milos Nikolic and Dan Olteanu (Oxford)

Université Libre de Bruxelles, December 2017

partially funded by the Wiener Anspach Foundation

fdbresearch.github.io

Integrate analytics into relational data systems

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data
e Small analytics code vs. large data: Avoid expensive data
export/import in the software stack

e [Exploit database technology and the relational structure
(schema, query, functional dependencies)

e Build better models faster and using larger datasets

1/46

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data
e Small analytics code vs. large data: Avoid expensive data
export/import in the software stack

e [Exploit database technology and the relational structure
(schema, query, functional dependencies)

e Build better models faster and using larger datasets

2. Analytics code can be cast as join-aggregate queries
e Many similar queries that massively share computation

e Fixpoint computation needed for model convergence

1/46

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data
e Small analytics code vs. large data: Avoid expensive data
export/import in the software stack

e [Exploit database technology and the relational structure
(schema, query, functional dependencies)

e Build better models faster and using larger datasets

2. Analytics code can be cast as join-aggregate queries
e Many similar queries that massively share computation

e Fixpoint computation needed for model convergence

3. State-of-the-art relational data systems not scalable enough
e Highly redundant data representation and processing

e Tractability map for queries and analytics mostly uncharted 1/46

Analytics

materialised
result
feature 11 [|
extraction |——p > > —
query IN
v
ine 4= sominion) €= [model]
uery Engine) model
v j’
Optimised Gradient-descent

join-aggregate Trainer

queries A

2/46

Analytics

materialised
result

feature I T T 1]
extraction |[——p > > —>
IN

query

V¥
. model
uery Engine
CQuery Evgre b= (gt [oss
J d

Optimised Gradient-descent

join-aggregate Trainer

queries A

Complexity gap for some models: O(|DB|"™) vs. O(|DB|"),

where n is the number of relations in the database and fhtw < n is

the fractional hypertree width of the join of all database relations. 2/46

Software Prototypes

FQOxford and inDBLearn@LogicBlox (now Infor) support:

e ridge linear regression

e polynomial regression

e factorisation machines

e logistic regression

e support vector machines

e principal component analysis
e decision trees

e frequent itemset

3/46

Datasets continuously evolve over time

In-Database Analytics

e Datasets continuously evolve over time
e E.g.: data streams from sensors, social networks, apps

e Real-time analytics over streaming data
e Users want fresh up-to-date data models

Web Analytics Sensor Networks ~ Cloud Monitoring

FVENTS N RUNTIME N DECISION ACT|IONS
ENGINE SUPPORT
Continuously Continuously
arriving data evaluated views

4/46

Real-Time Analytics via Incremental View Maintenance (IVM)

Dataset

Analytics

«-(0

Result

5/46

Real-Time Analytics via Incremental View Maintenance (IVM)

—@—

Dataset

Analytics

Result

5/46

Real-Time Analytics via Incremental View Maintenance (IVM)

—@—

Dataset

Analytics

Result

5/46

Real-Time Analytics via Incremental View Maintenance (IVM)

o

4
EAPENSIVE

4

Dataset

Analytics

Result

5/46

Real-Time Analytics via Incremental View Maintenance (IVM)

o

4

EAPENSIVE
4

Dataset

Analytics

Result

5/46

@ =— =
' =0
EXPENSIVE

3 4
I

Dataset

Analytics

| /1

Result

5/46

for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

e database join-aggregate queries
e gradient computation for least-squares regression models
e matrix chain multiplication

6,/46

for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

e database join-aggregate queries
e gradient computation for least-squares regression models
e matrix chain multiplication

Key to unified computation:

e same in-database computation, coupled with
e task-specific rings (D, +,*,0,1)

6/46

for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

e database join-aggregate queries
e gradient computation for least-squares regression models
e matrix chain multiplication

Key to unified computation:

e same in-database computation, coupled with
e task-specific rings (D, +,*,0,1)

Key to performance: Triple-lock factorisation for

1. delta analytics, compiled to optimised C++ code

2. representation of the result

3. bulk updates via tensor decomposition techniques 6/46

Software Prototype

F-IVM@Oxford:

e Prototype implemented on top of DBToaster’s backend

e Performance: Up to 2 OOM faster than classical IVM and
DBToaster and up to 4 OOM less memory than DBToaster

"Concrete recipe on how to IVM the next analytic task

you may face” (anonymous SIGMOD'18 reviewer)

7/46

Talk Outline

Factorized Ring Computation

8/46

First Example: COUNT Aggregate

Compute COUNT over the natural join: A
R(A,B), S(A,C,E), T(C,D) R

wn

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T T

How can we compute Q7 Join hypergraph

9/46

First Example: COUNT Aggregate

Naive: compute the join and then SUM(1)

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

SUM(1)
I
XA
/ \
R(A,B) Xl
/ \
T(C,D) S(A,C,E)

10/46

First Example: COUNT Aggregate

Naive: compute the join and then SUM(1)

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

SUM(1)
[
DA Let all relations be of size NV
/ N\ Computing Q takes O(N3) time!
R(A,B) D<]C
»

/ \ Can we do better?

T(C,D) S(A,C,E)

10/46

First Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

SUM(...)
I
XA
e ~N
SUM(...) SUM(...)
I I
R(A, B) g
e ~N
SUM(...) SUM(...)

| |
T(C,D) S(A,C,E) 11/46

First Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(CB * C(_‘)

|
XA
7 N
Vg = A,SUM(1) as Cg Vst = A,SUM(Cp * Cg) as Cc
GROUP BY A GROUP BY A
| |
R(A,B) Xl
7 N
Vs = C,SUM(1)as Cp Vs = A, C,SUM(1) as Ce
GROUP BY C GROUP BY A, C

| |
T(C,D) S(A,C,E) 12/46

First Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

= SUM(Cg * C
Q (Cs* Cc) Distributivity of * over SUM

I enables this query rewriting
XA . .

- N Q@ computed in O(N) time

Vg = A;SUM(1) as Cg Vst = A,SUM(Cp * Cg) as Cc using a hierarchy of views!
GROUP BY A GROUP BY A

| |
R(A, B) Xl
7 N
Vr = C,SUM(1)as Cp Vs = A, C,SUM(1) as Ce
GROUP BY C GROUP BY A, C
| |
T(C,D) S(A,C,E) 12/46

A Slightly Different Example: SUM Aggregate

SUM over products of B and C Q = SELECT SUM(B xC)
FROM R NATURAL JOIN S
NATURAL JOIN T

13/46

A Slightly D ent Example: SUM Aggregate

SUM over products of B and C

Q@ = SUM(Sg * S¢)
I
>Xa
~ N

SELECT SUM(B *C)
FROM R NATURAL JOIN S
NATURAL JOIN T

Factorized evaluation

Reuse counts of D and E
when joining on C

Vg = A,SUM(B) as Sg Vst = A,SUM(Sp * Sg * C) as Sc Multiply by C only

GROUP BY A

I
R(A,B)

7
Vr = C,SUM(1) as Sp

GROUP BY C

|
T(C,D)

GROUP BY A

after joining on C

V5 = A, C,SUM(l) as SE
GROUP BY A, C

S(A,C,E) 13/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(SB * SC *gA(A))

|
A
e ~~
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A
| |
R(A, B) s
— N
Vi = C,SUM(ge(E)) as Sp Vs = A, C,SUM(gp(D)) as Sg
GROUP BY C GROUP BY A, C
| |
T(C,D) S(A,C,E)
14/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sp * Sc * ga(A)) Join on & eliminate

I one variable at a time
XA
e ~
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A
| |
R(A, B) Xl
— N
Vo = C,SUM(ge(E)) as Sp Vs = A, C,SUM(gp(D)) as Sk
GROUP BY C GROUP BY A, C
I eliminate D l
T(C,D) S(A, C,E)
14/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sg * S¢ * ga(A)) Join on & eliminate

I one variable at a time
XA
e ~
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A
| |
R(A, B) Xl
— N
Vo = C,SUM(ge(E)) as Sp Vs = A, C,SUM(gp(D)) as Sk
GROUP BY C GROUP BY A, C
I eliminate D | eliminate E-
T(C,D) S(A, C,E)
14/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sg * S¢ * ga(A)) Join on & eliminate

I one variable at a time
XA
e ~
VR = A,SUM(gB(B)) as SB V57’ = A,SUM(SD * SE *gC(C)) as S(_‘
GROUP BY A GROUP BY A
l I eliminate C
R(A, B) Xl
— N
Vr = C,SUM(ge(E)) as Sp Vs = A, C,SUM(gp(D)) as Se
GROUP BY C GROUP BY A, C
I eliminate D | eliminate E-
T(C,D) S(A, C,E)
14/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sg * S¢ * ga(A)) Join on & eliminate

I one variable at a time
XA
e ~
VR = A,SUM(gB(B)) as SB V57’ = A,SUM(SD * SE *gC(C)) as S(_‘
GROUP BY A GROUP BY A
l I eliminate C
R(A, B) Xl
— N
Vr = C,SUM(ge(E)) as Sp Vs = A, C,SUM(gp(D)) as Se
GROUP BY C GROUP BY A, C
I eliminate D | eliminate E-
T(C,D) S(A, C,E)
14/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sg * Sc * ga(A)) Join on & eliminate

I _ one variable at a time
XA
7 ~
VR = A,SUM(gB(B)) as SB V57’ = A,SUM(SD * SE *gC(C)) as S(_‘
GROUP BY A GROUP BY A
I I eliminate C
R(A, B) Xl
/ N
VT = C,SUM(gE(E)) as SD V5 = A, C.,SUM(gD(D)) as SE
GROUP BY C GROUP BY A, C
I eliminate D | eliminate E-
T(C,D) S(A,C,E)

14/46

Query Evaluation Plans using

One variable order for
R(A,B), S(A,C,E), T(C,D)

—_\\—
FAN

15/46

Query Evaluation Plans using

One variable order for Tree of query variables
R(A,B), S(A,C,E), T(C,D)

Variables of a relation lie
on a root-to-leaf path

AN

T(C,D) S(A,C,E) 15/46

Query Evaluation Plans using

One variable order for Tree of query variables
R(A,B), S(A,C,E), T(C,D)

Variables of a relation lie
on a root-to-leaf path

Captures (conditional)

\ independence among vars

depends on A _ depends on A

& _/_

depends on C
but not A!

depends on A, C

(c,D) S(A,C,E) 15/46

View Trees

Create a view at each var X
with schema depends(X)

Vel .
vesLA) W 1
I
R(A, B)
verlC) . N

View Trees

Create a view at each var X View at variable X:

with schema depends(X) joins its child views

multiplies aggregates by gx(X)

~ viewatA
aggregates away X

\ (if X is not a free var)

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(SB * SC * gA(A))

I
XA
~ ~
VO = A SUM(gg(B)) as Sg VO = A, SUM(Sp * Sg * gc(C)) as Sc
GROUP BY A GROUP BY A
1 1
R(A,B) X
~ N
VO = C,SUM(ge(E)) as SpVOE = A, C,SUM(gp(D)) as Sg
GROUP BY C GROUP BY A, C
1 1
T(C,D) S(A, C,E)
17/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

17/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Imagine aggregate values are of type R
gx : Dom(X) —» R

Can we evaluate @ using the query plan from before?

17/46

More General Example: SUM Aggregate

Q = SELECT sSUM(ga(A) *gs(B) * gc(C) * go(D) * ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Imagine aggregate values are of type R
gx : Dom(X) —» R

Can we evaluate @ using the query plan from before?

Yes(!), but we need to:

Define % and + binary operators in R

Define zero in R (for initial values)

Define one in R (e.g., if X is not used, gx(x) = 1)

Ensure distributivity of x over +
17/46

e Aring (R,+,%,0,1) is a set R with two binary ops:

Additive commutativity a+b=b+a
Additive associativity (a+ b)+c=a+ (b+c)
Additive identity 0+a=a+0=a
Additive inverse J—a€R:a+(—-a)=(—a)+a=0
Multiplicative associativity (a* b)* c = ax* (bx*c)
Multiplicative identity ax1=1xa=a
Left and right distributivity a*(b+c)=axb+ axc and
(a+b)xc=axc+bxc

e Examples: Z,Q, R, C,R", matrix ring, polynomial ring

18/46

Factorized Ring Computation

e Relations are functions

e mapping keys (tuples) to payloads (ring elements)

A B — RIAB]

Finitely many tuples
ai b1 — rn

a b — r with non-zero payloads

r, and ry are elements from a ring
e Query language
e Operations: union, join, and variable marginalization
e More expressiveness via application-specific rings

e Query evaluation

e using view trees shown before

19/46

More General SUM Aggregate

Q = SELECT SUM(ga(A)*ge(B)*gc(C)+gp(D) *ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

In our formalism:

Q=B DD DpDe (RIA B]®S[A C,E]x T[C,D])

NV
variable marginalization natural joins

Intuition: Relation payloads carry out the summation!
Marginalization of X applies gx, sums payloads, projects away X

Join multiplies payloads of matching tuples

20/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB] A B — S[A B] B C — T[B (]
ai b1 — rn a b — S1 by a — t1
a b — r a3 by — s by o — t

21/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A

B

R[A, B]

A B — S[A B]

B C — T[B (]

ai
a2

by
by

n
)

az
as

b1 =

by —

S1
S2

by a — t1
by o — t

(RWS)[A, B]

rn
rn+ s
S2

21/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[AB] A B — S[AB] B C — T[B(C]
a b o o hoa o &
an 1T —> rn a b 7] by o — 5]
Union W

A B — (RWS)[A B]

ai b1 = r

[2 b1 — 2+ si|

a3 0]

21/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB] A B — S[A B] B C — T[B (]

ag b1 — r a by — S1 by a — t1

a b — rn a3 by — S by o — tr
Union & Join ®

A B — (RWS)A,B] A B C = ((R¥S)®T)AB,C]
ai b1 — n ai b1 a — rn *x ty

a b — r+ s a b a — (p+s1) =t

a3 b — S a3 b o — Sy x tp

21/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[AB] A B — S[AB] B C — T[B(C]

ag b1 — r a by — S1 by ¢ — t1

a b — r a3 by — S by ¢ B
Union W Join ®

A B — (RWS)[A B] A B C — ((RWS)®T)A,B,C]
ay by — r ai b1 a — r *x ty
|32 by — rn + S1| |az b1 ca — (o +s1) * t1|

a3 > 7] r- RN *7 2 o) 55 ¥ 15

21/46

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[AB] A B — S[AB] B C — T[B(C]
ai b1 — rn a b — S1 by a — t1
a b — r a3 by — S by o — 5]
Union & Join ®
A B — (RWS)[A B] A B C — ((RWS)®T)A,B,C]
ai b1 — rn ai b1 a — rn *x ty
a b — r2+s1 a b a — (n+s1)*ts
a3 b — S a3 b o — Sy x tp
Marginalization @ ,
for a given B C — (A(REUS)® T)[B, C]

: D A
& = Pam(A) =52 by a — nxtxga(a)+(rn+s1)*t* ga(az)
b o — s * to * ga(as)

21/46

General Query Form

Q = SELECT Xi,...,Xr, SUM(gr+1(Xetr1) * - % m(Xm))
FROM Ry NATURAL JOIN ... NATURAL JOIN R,
GROUP BY Xi,..., Xr

Expressed as Functional Aggregate Query:

Q[Xz,.... Xr] = Dx,,, - - - Dx,, icp RilSI]

where:
e Relations Ry, ..., R, are defined over variables Xi,..., X,
® Xi,...,Xr are free variables

e R; maps keys over schema S; to payloads in a ring (R, +,*,0,1)
o Aggregations @y, ..., @Dy, use functions gri1,...,8m

22/46

Talk Outline

Incremental View Maintenance

23/46

Incremental Computation

e Maintain query results under updates to the input relations

Q(D +6D) = Q(D) + 6Q(D,dD)
Fast “merge” operation
Smaller and faster delta query (ideally)

e Incremental View Maintenance (IVM) in databases

e Often with limited query support and poor performance

24 /46

Incremental View Maintenance

e Ring payloads simplify incremental computation

e Updates are uniformly represented as relations

A B — GR[A B]

o b) Tuples wit.h pos'itive/nega.tive payloads
as by — 2 denote insertions/deletions

o Applying updates: Rnew[A, B] = Rod[A, B] W IR[A, B]

e The query language is closed under taking deltas
S(RWS) =R W 4S

S(R®S) = (JR®S) W (R® 5S) W (6R ® 5S)
6(DaR) =D4dR

25/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree
V@A[]
VAN
V@B[A] V@C[A]
\
R[A, B] /N

VOP[C] VOE[A, (]
\ \
T[C,D] S[A,C,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree
Materialized
query result !
V@B[A] V@C [A]
| /N
R[A, B]

VeP[C] VOE[A, (]
\ \
T[C,D] SIA,C,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree = Delta view tree
e (D v
S AN
VOB[A] VeC[Al VEB[A] VeC|A]
| /N | /N
k(. 8] VeP[C] VOE[A (] RiA, 8l VeP[C] VOE[A (]
\ \ \ \
T[C.D] SI[A,C,E] T[C,D] S[A,C,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree Delta view tree
" ! Vo)
VOB[A] VeC[A] V@B[A]/ \V@C[A]
R[A"B] V@D[C/] V\@E[A,C] R[A"’B] V@D[C/] V\@E[AaC]
T[g,D] SLA,L,E] 5T[é=D] SL4=L,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree Delta view tree
" ! Vo)
VOB[A] VeC[A] V@B[A]/ \V@C[A]
R[A"B] V@D[C/] V\@E[A, q] R[A"’B] 5V©D[é] V\@E[Aa C]
119,01 SLA,L,E] 5TTE=D] SL4=L,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree Delta view tree
Materialized
query result ! V@A[]
VRN
V@B[A] V@C[A] V@B[A] 6V@C[A] Precor_np.. &
‘ / \ | ’ N materialized
R[A, B
R[A, B] veo[(] [A B SVP(C]
\ 4
T[C,D] S[A, C,E] 0T[C,D] S[A,C,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree Delta view tree

Materialized
query result

SN
V@B[A] vec [A] V@B[A] SVec [A] Precor_np.. &
N materialized

SVOAL]

/N R[A, B] 4
\ 4
T[C,D] SI[A, C,E] 6T[C,D] S[A,C,E]

26/46

Delta Propagation

Consider our running examples

Maintain the query result under updates to T

View tree Delta view tree
e o
SN
vy = matoratzed
RIA, B] V@D[c/] RIA. Bl jyepq)
119,01 S[A, C, E] 5TTZ=D] S[A, C, E]

26/46

Updates to Multiple Relations

Maintain the query result for updates to R and T

e Two delta propagation paths

e Both paths need to maintain auxiliary views

Delta view tree (for R) Delta view tree (for T)
SVOA[] SVEA[]
VAN 2N
v e
(SR[I B - R[A, B] 7
B veope) veE[a ¢ S svep(c]
\ \ +
T[C,D] S[A, C,E] §T[C,D] S[A, C, E]

27/46

Updates to Multiple Relations

Maintain the query result for updates to R and T

e Two delta propagation paths

e Both paths need to maintain auxiliary views

Delta view tree (for R) Delta view tree (for T)
Update SVOA[] SVOA] Update
V¥ and V' R Ve and VA

o e
(SR[I B - R[A, B] 7

Bl veppe] veE[A, (] Bl sver

\ \ +
T[C,D] S[A,C,E] JT[C,D] SIA, C,E]

27/46

Factorizable Bulk Updates

Assume update 0S[A, C, E] factorizes as dSaA[A] @ 6Sc[C] @ 0Sg[E]
We may then factorize subsequent updates up the delta tree

SVOA[|

V@Cw
V@D[C V@E[A]
R[A, B] T[C, D] 5S[A, C, E]

28/46

Factorizable Bulk Updates

Assume update 0S[A, C, E] factorizes as dSaA[A] @ 6Sc[C] @ 0Sg[E]
We may then factorize subsequent updates up the delta tree

SVOA[|

MC[A]
V@D[C V@E[A]
R[A, B] T[C, D] SSAlA] ® 5SC[C] ® 0SE[E]

28/46

Factorizable Bulk Updates

Assume update 0S[A, C, E] factorizes as dSaA[A] @ 6Sc[C] @ 0Sg[E]
We may then factorize subsequent updates up the delta tree

SVOA[|

VeelA

6SA[A] © 65¢[C] © @ 6Se[E]
4

R[A, B] T[C, D] 5SA[A] ® 65¢[C] ® SE[E]

28/46

Factorizable Bulk Updates

Assume update 0S[A, C, E] factorizes as dSaA[A] @ 6Sc[C] @ 0Sg[E]
We may then factorize subsequent updates up the delta tree

SVOA[|

5514l © (B¢ VPIC] © 55¢[C]) © B 05eE]

5SA[A] ® 65c[C] ® @ 6Se[E]
1
R[A, B] TIC, D] 3SAJA] ® 8S¢c[C] © SSE[E]

28/46

Factorizable Bulk Updates

Assume update 0S[A, C, E] factorizes as dSa[A] ® 6Sc[C] ® ISg[E]
We may then factorize subsequent updates up the delta tree
(D4 VP[Al ® 6SA[A])®

(D VePIC] ® dSc[Cl)@
D 0Se(E]

\

55A14] @ (@ V(€] © 35¢[C]) © B 5SelE]

5SA[A] ® 65c[C] ® @ 6SE[E]
4+
R[A, B] T[C, D] SA[A] @ 05¢[C] © 8SE[E]

28/46

Talk Outline

Applications
Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results

Matrix Chain Multiplication

29/46

Applications

Our framework can capture a host of problems using
task-specific rings

e Gradient computation for learning regression models

e Factorized representation of results of conjunctive queries

e Matrix chain multiplication
e Group-by aggregation over joins (we've seen this already)

Next: zoom in the first problem above

(Ask me about the other ones!)

30/46

Learning Linear Regression Models

e Find model parameters © best satisfying:

Size (ft?)

Price (£) | Rating

X 0-| Y

Input Params Output

e |terative gradient computation:
©1=0;—aX(XO; —Y) (repeat until convergence)
e Matrices XT X and XTY computed once for all iterations
e Compute SUM(X; - X;), SUM(X;), and SUM(1) for variables

X,' and)(1
e We assume in this talk that all variables are continuous

31/46

Learning Linear Regression Models over Joins

Compute XT X where X is the join of the input relations

e Naive: compute the join, then O(m?) sums over the join
result (m = #query variables)

e Factorized: compute one optimized join-aggregate query

e Using our running query

Q= @A@B @C@D @E(R[A7 B] ®S[A7 C7E] ®T[C5D])

but a different payload ring and different functions gx!

32/46

Linear Regression Ring

Set of triples R = (Z,R™,R™*™)

(COUNT, vector of SUM(X;), matrix of SUM(X; - X;))

a+" b=(ca+ b, Sa+ b, Qa + Qb)
a*™ b= (CsCh, ChSa + C28b, bQa + C2Qp + 58] + bS])
0= (0, 0mx1, 0m><m)
1=(1,0,x1,0mxm)
[
S
Function gx; for variable X; VOB[4] VOC[A]
gx;(x) = (1,s,Q) where R[A‘,B] V@D[C/] V\@E[A, C]
s has all Os except s; = x \ \
Q has all 0s except Q;; = x° pzsr(:aszs TIC, 0] SIA €,]

33/46

Performance: Learning Linear Regression Models over Joins

Streaming dataset with 5 relations
The natural join has 43 variables
Matrix with 946 distinct aggregates
Comparing IVM strategies on a
common system

e F-IVM (9 views)

e SQL-OPT (9 views)

e DBToaster (3,425 views)

e IVM (951 views)

Throughput (tuples/sec)

Allocated Memory (MB)

1E+07

1E+06

1E+05

1E+04

1E+03 +

65536

16384

4096

1024

256

64 +

= F-IVM
¢ F-IVM ONE

—SQLOPT DBT %
+++SQL OPT ONE DBT ONE

00 01 02 03 04 05 06 07 08 09 10
Fraction of Stream Trace Processed

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Stream Trace Processed

Summary: Factorized Incremental View Maintenance

e Framework for unified IVM of in-database analytics
e Captures many application scenarios
e Based on 3 shades of factorization
e Factorized query evaluation
e Exploits conditional independence among query variables
e Factorized representation of query results
e Enables succinct result representation
e Factorized updates
e Exploits low-rank tensor decomposition of updates
e Performance: Up to 2 OOM faster and 4 OOM less memory
than state-of-the-art IVM techniques

Our IVM framework can accommodate any ring

35/46

As My Girl Beyoncé Repeatedly Said..

JULIKED T,

—d

_ rl"
DU SHOULDI

UT A RINGONIIT]

Thank you!

The Triangle Query

Qu[]=DaBs D RIA Bl ®S[B, (] ® T[C, Al

ON—®Tm —>

VRér[]

\

VRér[Al

|
VESIA, B] R[A, B]
PN

S[B,C] 3 RI[A, B] T[C,A]

A,B

36/46

Relational Data Ring

e Set of relations over R with & and ® forms a ring of relations
e Relation 0 maps every tuple to 0 € R

e Relation 1 maps the empty tuple to 1 € R, othersto 0 € R

e Payload: Relations over R = Z with the same schemal

A B — RIAB]

Keep results of conjunctive

C .
] ueries in payloads
ai b1 — c—1 q py
C2—)1
C
K ey |

37/46

Evaluating Conjunctive Queries using Relational Payloads

e Consider the conjunctive query:

Q(A,B,C,D) = R(A,B),5(A, C,E), T(C, D)

e Compute @ using relations with relational payloads
Q= @A @B @C @D @E(R[A7 B] ® S[A7 & E] ® T[C7 D])

o Lift (aggregate) functions:

X
- if X is a free variable
x—=1
gx(x) =
| ()1 otherwise

38/46

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]
a; by ﬂ’()ﬁl

a; b *}7()4)1

, | V@A[]
a b3 = ()1
a3 b= ()51 / \

V@B[A] V@C [A]

A C E — S[A,CE]
a a e — '() R[A B] / \
a ¢ e — ()
a; ¢ ey — ()
V@D

VOE[A, C]
—_— | |
C D — T[C,D] T[C, D] S[A, C, E]

a d—=])-1

1

1

1

a ¢ e ﬁ'()

1

o dy ﬂ’()_)l

o d —>’()%1

39/46

c3 dy %7()a1

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[AB]

a b =051
a; by ﬁ’ﬁ AAV@B[A]

| S VEA[]
a b—l)51 1B

] _ b 1
as by — O)—1 a b;:l o5 / \@C

B v [A] VEHA]
A C E — S[A,CE] 324'@
»eanal =g R[A B]
aae—[)o1 —
ay o ega'()*,l
» o e ﬁ'()_ﬂ V@D V@E[A C]
\ \

€ D - T[C.D] T[C,D] S[A, C, E]

ca di —V()al
o dy ﬂ’()_)l

o d —>’()%1

39/46

c3 dy %7()a1

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[AB]

a; by ﬂ’()ﬁl
a by =51 A — VOB[A]

| S VEA[]
a b—l)51 1B

T by —1
n b= |51 e /N

B V@B[A] VeC[A]

A C E — S[A,CE] 324'@
»eanal =g R[A B]
aa e—=|)-1 —
ay o ega'()*,l oo
> o e4~>7()_>1 C - Vve[C] V@D V@E[A C]
- a2 | |
C D — T[C,D] ‘éﬁl T[C,D] S[A, C, E]
a &)1 - |do1
o d H’W d3—1

I D
@ & =]0-1 G a1 39/46
c3 dy "7()41 -

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]

a1 by ﬂ’()ﬁl

ar bQﬁii()%l A — VOB[A] VQA[]

ay bz — O)—1 |B

s b 051 B e /N

— : V@Bw vecp

A C E — S[ACE] 2T S

R ST R[A B]

a a e — ()1 -

ay o ega'()*,l b

2 o e —)1 L[c] V@D V@E[A q

— sl | |

C D - T[C.D] ‘éﬁl T[C.D] S[AC.E] ac_veeaq

a di *7()%1 o= |d—1 4

& dzﬂfi()_)l dz—1 aica— 7()*?2
| D ae— |51

o d3 —)—1 c3— di— 1 2o ()51 39/46

c3 dy %7()a1 —

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]

a1 by ﬂ’()ﬁl
a b~ ()-1 A VOA[]
a b—l)51 B
£ b4*>77()_>1 a—|by—1 / \
— o V@BA VeCa
B [] [] A — VeC[a]
A C E — S[ACE] 2o —
CcD
1 B
a; ¢ e — 1 =
7()—> a3 — b1 R[A B] c1d1—>2
a a e — ()1 - C2d2_>1
| cd3—1
a ¢ e — ()*)1 CD
1 C —VeP[C
a ¢ e —)—1 - (€] V@D V@E[A C] ap) — C2d2~>1
D ‘ ‘ cd3—1
A ta o1 -
C D - T[C,D] Dl TIC,D] S[ACE] ac_verag
a di *7()%1 o= |d—1 4
1 d 1 a; cp — ()*)2
o dy —)—1 3 — J
| D ace— |1
o d3 —)—1 c3— di— 1 2o ()51 39/46
e di—= ()1

ai
ai
a2

as

A
ar
ai
ar

az

©
<1
2
(=]

a3

of Conjunctive Query Results

0= Vo]

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]

b= 1051

by = 7)1
bs =)51

b= 0 =1

©
1

=t

E — S[A,C.E]

=]()—1

€

ay —

a —>1

a3 — 1

€1 —1

C —>

c3—

A - VOB[A]

B
b —1
by —1
B
b3 —1
B
by —1

Cc —VveP[C]

D
d—1
D
dr —1
d3—1
D
dy—1

V@A[]

/N

V@B[A] V@C [A]

R[A, B]

ABCD

a1 b1 o1 dh—2

a1 by cp db—1
a1 by cp dz—1
a1 by d1—2
a1 by cp do—1
a1 by cp dz—1
az bz cp do—1
az b3 cp d3—1

A — VeC[a]

|1€D

V@D[C] V@E[A7 C] a—|cady— 1

cd3—1

TIC,D] S[ACE] ac_verag

aic — '()ﬁ

aj o — '()_>

N

-

a)c — '()_>1

39/46

ai
ai
a2

as

A
ar
ai
ar

az

©
<1
2
(=]

a3

of Conjunctive Query Results

0= Vo]

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]

b= 1051

by = 7)1
bs =)51

b= 0 =1

©
1

=t

E — S[A,C.E]

=]()—1

€

ay —

a —>1

a3 — 1

€1 —1

C —>

c3—

A - VOB[A]

B
b —1
by —1
B
b3 —1
B
by —1

Cc —VveP[C]

D
d—1
D
dr —1
d3—1
D
dy—1

V@A[]

/N

V@B[A] V@C [A]

R[A, B]

ABCD

a1 bifer A2
a1 bi|co dof—1
a1 bi|c daf—1

a1 byfer aif—>2
a1 bo|cy dof—1
a1 bocr dif—1
ap b3 db—1

az b3 cp d3—1

A — VeC[a]

|1€D

V@D[C] V@E[A7 C] a—|cady— 1

cd3—1

TIC,D] S[ACE] ac_verag

aic — '()ﬁ

aj o — '()_>

N

-

a)c — '()_>1

39/46

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B]

a1 by ﬂ’()ﬁl
IR A — VOB[A]
a b=)=1 —_— V@A[]
a b—l)51 12 / \
ai—|bp—1
a3 by — | 1 by —1
ing Vb 5 VOl veq
a————
A C E — S[AGE] b3 —1 ‘
—_— B
aaea—[)o1 * 71 R[A B]
aa e—[)o1
a @ esﬂi()al C - veP[C] V@D[C] VQE[A, ql
2 o a—[)51 —D ‘ ‘
@ e TIC.,D] SIA,C,E] -
C D — T[C,D] | ’ A A C—VOEAC]
a d —>7()%1 = iji aa— ()52
o dr — | 1 1
o d —>’8_) CaﬁdDa1 3162:7()41
D a3 1 4 a o 0—1
N e "~ 40/46
c3 dy %7()a1 /

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[AB]

a1 by %7()a1
] A — VOB[A]
ap b — O)—1 V@A[]
ay bz *7()H1 |8
ai—|bp—1 / \
b I
a by —1()—>1 sz—>1 V@B[A] V@C[A] A — VOC[A]
A C E — S[ACE] 27 o1 ‘ c
- B la—=2
ay c e — ()_>1 aa—rm R[A7 B] n 2:2
aa e—=|)-1 az_>7c
ap o e3 — | B8
1o e 7()%1 C - vep[C] Vep|(] VOE[A, (]
a C € — ()_>1 D ‘ ‘
@ e T[C,D] SIA,C,] oe
C D — T[C,D] |p ’ 1 & A C - VEE[AC]
ca di —>7()%1 o — iji ajcp — '()_>2
o dr — | 1 T
& %,8; Qﬁ% 81C2: 7()41
2 a3 =51l 4 ac O)—1
— = ___~ ~ 40/46
c3 dy %7()41 /

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

A B — R[A,B] 0 — V(]
a1 bla’()ﬁl T A
a b= 051 Ao VeA[] 0=
a b—l)51 12 =
ai—|bp—1 / \
B I

a by —1()—>1 sz—>1 V@B[A] V@C[A] A — VOC[A]
A C E - SACE N T ‘ c
— B] 2
a aea—])o1 ‘93_"1,4_,1 R[A,B] n 2:2
aa e—=|)-1 P

| o —2
a @ e3%7()~>1 C - VeP[C] V@D[C] V@E[A, C] -
2 o e —)1 —D ‘ ‘

T TIC,D] SIA,C.E
C D — T[C.D] B [)] [p &g] A C - VO[AC]
a di —>:()al @ Zj:i aa— ()52
o dp —)—1 o D a2 — '()41
@ d—=]()-1 Pt 2e= J()-1
| - — 1~ " 40/46

e di—= ()1

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

(- VeA[]
A
Constant Delay A VOB[A] voa] R
Enumeration [E a2
ay— |bp—1 / \
1
foreach a in V® sz_) VOE[4] Ve A veC[a)
foreach b in V8 2751 ‘ Ic
foreach c in V@C a3—>—bBA_>1 R[A B] a — 2:;
foreach d in V& C
ap — 1
c—2
output (a,b,c,d) C—VeP[(] VeP[C] VOE[A, (]
a2 | \
c;ﬁl T[C, D] S[A, C, E] A C > VEE[AC]
P S —
d3s—1 Rl 7()—>2
L na= [)-1
dy—1 na— [0

' 41/46

of Conjunctive Query Results

Q(A, B, C,D) = R(A, B),S(A, C,E), T(C, D)

0 —Ver]
Factorized Join A s VOB[A] oA 0= :ﬁs
—_— VA 2
B
/ U \ a1—>7b1—>1 / \
a a sz—>1 VOB[4] VeC[a A s VOC[A]
| \ a —1 E—
x X b3 —~1 ‘ <
VRN / \ e a1 a2
U U U u "1 R[A B] Q-2
/\ / N\ \ [C
bib, @ (&) (&) bs B o —2
\ \ \ D
x B Rt VeP[C] VOE[A, (]
\ P alp | |
L‘J /U\ (;ﬁl T[C, D] S[A, C, E] A C - VO[AC]
di dy d3 o ld—1 1
1 aa— (()—2
D aj o — 7()%1
S P [

L 42/46

Performance: Maintenance of Conjunctive Query Results

B Factorized (Time) = Listing (Time)

Star schema <<+ Factorized (Memory) <<« Listing (Memory)
10000 R 100
T et =
g 1000 10 O
o .. ° e
_E 100 {oeesstteeieeeeeseege E R X OO g
[}

® 10 [B
£ =
S 1 0.01
& 3

0.1 0.001

123456 7 8 9101112131415 16 17 18 19 20
Scale
— Factorized (time) ~— Listing (time)
S n Owﬂa ke SC h ema =+ Factorized (memory) ««« Listing (memory)

L 60
Q
a —
> 50 @
8)
S 1E+06 40 >
£ o
= 30 £
g_ [}
£ 1E+05 20 2
E} B S I
_.C°. 0 &
= 1Ew04 T T T T 0

00 01 02 03 04 05 06 07 08 09 10
Fraction of Stream Trace Processed

43/46

Matrix Chain Multiplication

Input: Matrices A; of size of p; X pji1 over some ring R (i € [n])

e Modeled as relations Ai[Xi, X+ 1] with payloads
carrying matrix values in R

Problem: Compute their product matrix of size p1 X pp+1

AlXz, Xnv1] = Dx, - Dx, Qijcpn) AilXis Xiv 1]

where each lift function gx.(X;) maps any key to payload 1 € R

44/46

Factorized Matrix Updates

Matrix changes

Single-value change = vector outer product
5Ai[Xi,X;+1] = U[X,'] & V[X,'_H]

Several-values change = sum of vector outer products
OA[Xi, Xit1] = Wrepqu[Xi] @ vi[Xit1]

Time complexity for multiplication of n matrices of size p x p:

e Evaluation or IVM: O(p3)
e IVM with factorized updates: O(p?)

45 /46

Performance: Matrix Chain Multiplication

== F-IVM == IVM RE-EVAL

Update to A2 T ooy S OCTAVEFIVM -¢* OCTAVE VM OCTAVE RE-EVAL

g

< A=A1-A2-A3

1000 B

expressed as outer - B L ™ — T

°

Q

p} 10
product : "

&

o 0.1

S oot

ig 0.001 +

128 256 512 1024 2048 4096 8192 16384
Matrix Dimension (n)

_ ~F-VM <o+ OCTAVE F-IVM
Update to A g 100 RE-EVAL (once) OCTAVE RE-EVAL (once)

:d; 1000 °

© A=A1A2A3
expressed as sum of H 1001 A'z(‘mxm///
r outer products L Coiweenti?

g ROPE S

P e -

- T =

o b

E

1 2 4 8 16 32 64 128 256

Tensor Rank (r)

46/46

	Why Real-Time In-Database Analytics?
	Factorized Ring Computation
	Incremental View Maintenance
	Applications
	Learning Linear Regression Models
	Factorized Representation of Conjunctive Query Results
	Matrix Chain Multiplication

