Incremental View Maintenance with Triple-Lock Factorization Benefits

fdbresearch.github.io

Milos Nikolic and Dan Olteanu (Oxford)
Université Libre de Bruxelles, December 2017
partially funded by the Wiener Anspach Foundation

Integrate analytics into relational data systems

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data

- Small analytics code vs. large data: Avoid expensive data export/import in the software stack
- Exploit database technology and the relational structure (schema, query, functional dependencies)
- Build better models faster and using larger datasets

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data

- Small analytics code vs. large data: Avoid expensive data export/import in the software stack
- Exploit database technology and the relational structure (schema, query, functional dependencies)
- Build better models faster and using larger datasets

2. Analytics code can be cast as join-aggregate queries

- Many similar queries that massively share computation
- Fixpoint computation needed for model convergence

In-Database Analytics Builds on Three Observations

1. Move the analytics and not the data

- Small analytics code vs. large data: Avoid expensive data export/import in the software stack
- Exploit database technology and the relational structure (schema, query, functional dependencies)
- Build better models faster and using larger datasets

2. Analytics code can be cast as join-aggregate queries

- Many similar queries that massively share computation
- Fixpoint computation needed for model convergence

3. State-of-the-art relational data systems not scalable enough

- Highly redundant data representation and processing
- Tractability map for queries and analytics mostly uncharted

Analytics

Analytics

Complexity gap for some models: $\mathcal{O}\left(|D B|^{\text {fhtw }}\right)$ vs. $\mathcal{O}\left(|D B|^{n}\right)$, where n is the number of relations in the database and fhtw $\ll n$ is the fractional hypertree width of the join of all database relations.

Software Prototypes

F@Oxford and inDBLearn@LogicBlox (now Infor) support:

- ridge linear regression
- polynomial regression
- factorisation machines
- logistic regression
- support vector machines
- principal component analysis
- decision trees
- frequent itemset
- ...

Datasets continuously evolve over time

In-Database Analytics over Streaming Datasets

- Datasets continuously evolve over time
- E.g.: data streams from sensors, social networks, apps
- Real-time analytics over streaming data
- Users want fresh up-to-date data models

Continuously arriving data
evaluated views

Real-Time Analytics via Incremental View Maintenance (IVM)

Dataset

Analytics

Result

Real-Time Analytics via Incremental View Maintenance (IVM)

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D},+, *, \mathbf{0}, \mathbf{1})$

Unified Framework for Real-Time In-Database Analytics

Unified framework F-IVM for a host of tasks, e.g.,

- database join-aggregate queries
- gradient computation for least-squares regression models
- matrix chain multiplication

Key to unified computation:

- same in-database computation, coupled with
- task-specific rings $(\mathcal{D},+, *, \mathbf{0}, \mathbf{1})$

Key to performance: Triple-lock factorisation for

1. delta analytics, compiled to optimised $\mathrm{C}++$ code
2. representation of the result
3. bulk updates via tensor decomposition techniques

Software Prototype

F-IVM@Oxford:

- Prototype implemented on top of DBToaster's backend
- Performance: Up to 2 OOM faster than classical IVM and DBToaster and up to 4 OOM less memory than DBToaster
"Concrete recipe on how to IVM the next analytic task you may face" (anonymous SIGMOD'18 reviewer)

Talk Outline

Why Real-Time In-Database Analytics?

Factorized Ring Computation

Incremental View Maintenance

Applications
Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

First Example: COUNT Aggregate

Compute COUNT over the natural join: $R(A, B), S(A, C, E), T(C, D)$

$$
\begin{aligned}
Q= & \text { SELECT }
\end{aligned} \begin{aligned}
& \text { FUM }(1) \\
& \text { FROM R }
\end{aligned}
$$

How can we compute Q?

Join hypergraph

First Example: COUNT Aggregate

Naïve: compute the join and then $\operatorname{SUM}(1)$

$$
\begin{array}{rlll}
Q= & \text { SELECT } & \text { SUM (1) } \\
& \text { FROM R NATURAL JOIN } & \text { S } \\
& \text { NATURAL JOIN } & T
\end{array}
$$

First Example: COUNT Aggregate

Naïve: compute the join and then $\operatorname{SUM}(1)$

$$
\begin{array}{rlrl}
Q= & \text { SELECT } & \text { SUM (1) } & \\
& \text { FROM R } & \text { NATURAL JOIN } & \text { S } \\
& \text { NATURAL JOIN } & T
\end{array}
$$

SUM(1)

First Example: COUNT Aggregate

Push SUM past joins to eliminate variables

```
Q = SELECT SUM(1)
```

 FROM R NATURAL JOIN S
 NATURAL JOIN T

First Example: COUNT Aggregate

Push SUM past joins to eliminate variables

$$
Q=\operatorname{SUM}\left(C_{B} * C_{C}\right)
$$


```
Q = SELECT SUM(1)
```

 FROM R NATURAL JOIN S
 NATURAL JOIN T
 $V_{R}=A, \operatorname{SUM}(1)$ as $C_{B} \quad V_{S T}=A, \operatorname{SUM}\left(C_{D} * C_{E}\right)$ as C_{C}

GROUP BY A
I
$R(A, B)$

GROUP BY A

$$
\begin{array}{cc}
V_{T}=C, \operatorname{SUM}(1) \text { as } C_{D} & V_{S}=A, C, \operatorname{SUM}(1) \text { as } C_{E} \\
\text { GROUP BY } C & \text { GROUP BY } A, C \\
\text { I } & \mathbf{I} \\
\mathrm{T}(\mathrm{C}, \mathrm{D}) & \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{array}
$$

First Example: COUNT Aggregate

Push SUM past joins to eliminate variables

```
Q = SELECT SUM(1)
```

 FROM R NATURAL JOIN S
 NATURAL JOIN T
 Distributivity of * over SUM enables this query rewriting
Q computed in $\mathcal{O}(N)$ time
$V_{R}=A, \operatorname{SUM}(1)$ as $C_{B} \quad V_{S T}=A, \operatorname{SUM}\left(C_{D} * C_{E}\right)$ as C_{C} using a hierarchy of views!

GROUP BY A

I
$R(A, B)$

GROUP BY A

$$
\begin{array}{cc}
V_{T}=C, \operatorname{SUM}(1) \text { as } C_{D} & V_{S}=A, C, \operatorname{SUM}(1) \text { as } C_{E} \\
\text { GROUP BY } C & \text { GROUP BY } A, C \\
\text { I } & \text { I } \\
\mathrm{T}(\mathrm{C}, \mathrm{D}) & \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{array}
$$

A Slightly Different Example: SUM Aggregate

SUM over products of B and C

$$
\begin{array}{rlll}
\mathrm{Q}= & \operatorname{SELECT} & \operatorname{SUM}(\mathbf{B} * \mathbf{C}) \\
\text { FROM R } & \text { NATURAL JOIN } & \mathrm{S} \\
& \text { NATURAL JOIN } & \mathrm{T}
\end{array}
$$

A Slightly Different Example: SUM Aggregate

SUM over products of B and C

$$
\begin{array}{rlll}
\mathrm{Q}= & \text { SELECT } & \operatorname{SUM}(\mathbf{B} * \mathbf{C}) \\
\text { FROM R } & \text { NATURAL JOIN } & \mathrm{S} \\
& \text { NATURAL JOIN } & \mathrm{T}
\end{array}
$$

Factorized evaluation

Reuse counts of D and E when joining on C

Multiply by Conly after joining on C

$$
\begin{array}{cc}
V_{T}=C, \operatorname{SUM}(1) \text { as } S_{D} & V_{S}=A, C, \operatorname{SUM}(1) \text { as } S_{E} \\
\text { GROUP BY } C & \text { GROUP BY } A, C \\
\mathbf{I} & \mathbf{I} \\
\mathrm{~T}(\mathrm{C}, \mathrm{D}) & \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{array}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathbf{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM } \mathrm{R} \text { NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$$
Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)
$$

$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A

$$
\begin{gathered}
\mathrm{I} \\
\mathrm{R}(\mathrm{~A}, \mathrm{~B})
\end{gathered}
$$

GROUP BY A

$$
\begin{array}{cc}
V_{T}=C, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} & V_{S}=A, C, \operatorname{SUM}\left(g_{D}(D)\right) \text { as } S_{E} \\
\text { GROUP BY C } & \text { GROUP BY } A, C \\
\text { I } & \text { I } \\
\mathrm{T}(\mathrm{C}, \mathrm{D}) & \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{array}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM } \mathrm{R} \text { NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)$

Join on \& eliminate one variable at a time
$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A

$$
\begin{gathered}
\text { I } \\
\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \\
V_{T}=\mathrm{C}, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} \\
\text { GROUP BY C } \\
\text { I eliminate D } \\
\mathrm{T}(\mathrm{C}, \mathrm{D})
\end{gathered}
$$

GROUP BY A

$$
V_{T}=C, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} \quad V_{S}=A, C, \operatorname{SUM}\left(g_{D}(D)\right) \text { as } S_{E}
$$

GROUP BY A, C

$$
\frac{\mathrm{I}}{\mathrm{~S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)$

Join on \& eliminate one variable at a time
$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A

$$
\begin{gathered}
\text { I } \\
\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \\
V_{T}=\mathrm{C}, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} \\
\text { GROUP BY C } \\
\text { I eliminate D } \\
\mathrm{T}(\mathrm{C}, \mathrm{D})
\end{gathered}
$$

GROUP BY A

$$
V_{T}=C, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} \quad V_{S}=A, C, \operatorname{SUM}\left(g_{D}(D)\right) \text { as } S_{E}
$$

GROUP BY A, C

$$
\begin{aligned}
& \text { I eliminate E } \\
& \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{aligned}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)$

$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A
$V_{T}=C, \operatorname{SUM}\left(g_{E}(E)\right)$ as $S_{D} \quad V_{S}=A, C, \operatorname{SUM}\left(g_{D}(D)\right)$ as S_{E} GROUP BY C
 GROUP BY A GROUP BY A, C

$$
\begin{aligned}
& \text { I eliminate E } \\
& \mathrm{S}(\mathrm{~A}, \mathrm{C}, \mathrm{E})
\end{aligned}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$$
Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)
$$

Join on \& eliminate one variable at a time
$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A

$$
\begin{aligned}
& \text { I eliminate } B \\
& R(A, B)
\end{aligned}
$$

GROUP BY A

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathbf{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$$
Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)
$$

eliminate A

Join on \& eliminate one variable at a time
$V_{R}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad V_{S T}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A

$$
\begin{aligned}
& \text { I eliminate } B \\
& R(A, B)
\end{aligned}
$$

GROUP BY A

Query Evaluation Plans using Variable Orders

One variable order for
 $R(A, B), S(A, C, E), T(C, D)$

Query Evaluation Plans using Variable Orders

$$
\begin{aligned}
& \text { One variable order for } \\
& R(A, B), S(A, C, E), T(C, D)
\end{aligned}
$$

Tree of query variables
Variables of a relation lie on a root-to-leaf path

Query Evaluation Plans using Variable Orders

One variable order for
 $$
R(A, B), S(A, C, E), T(C, D)
$$

Tree of query variables

Variables of a relation lie on a root-to-leaf path

Captures (conditional) independence among vars

View Trees

Create a view at each var X

with schema depends(X)

View Trees

Create a view at each var X with schema depends(X)

View at variable X :

joins its child views

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM } \mathrm{R} \text { NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

$$
Q=\operatorname{SUM}\left(S_{B} * S_{C} * g_{A}(A)\right)
$$

$\mathrm{V}^{@ B}=A, \operatorname{SUM}\left(g_{B}(B)\right)$ as $S_{B} \quad \mathrm{~V}^{@ C}=A, \operatorname{SUM}\left(S_{D} * S_{E} * g_{C}(C)\right)$ as S_{C}

GROUP BY A
I
$R(A, B)$

GROUP BY A

$$
\begin{gathered}
\mathrm{V}^{@ \mathrm{D}}=\mathrm{C}, \operatorname{SUM}\left(g_{E}(E)\right) \text { as } S_{D} \mathrm{~V}^{@ \mathrm{E}}= \\
\text { GROUP BY } C \\
\text { GROUP BY } A, C, \mathrm{SUM}\left(g_{D}(D)\right) \text { as } S_{E} \\
\mathrm{~T}(\mathrm{C}, \mathrm{D})
\end{gathered}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathbf{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM } \mathrm{R} \text { NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

Imagine aggregate values are of type \mathcal{R}

$$
g_{X}: \operatorname{Dom}(X) \rightarrow \mathcal{R}
$$

Can we evaluate Q using the query plan from before?

More General Example: SUM Aggregate

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathrm{A}}(\mathbf{A}) * \mathbf{g}_{\mathrm{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathrm{E}}(\mathbf{E})\right) \\
& \text { FROM } \mathrm{R} \text { NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

Imagine aggregate values are of type \mathcal{R}

$$
g_{X}: \operatorname{Dom}(X) \rightarrow \mathcal{R}
$$

Can we evaluate Q using the query plan from before?

Yes(!), but we need to:

- Define $*$ and + binary operators in \mathcal{R}
- Define zero in $\mathcal{R} \quad$ (for initial values)
- Define one in $\mathcal{R} \quad$ (e.g., if X is not used, $g_{X}(x)=1$)
- Ensure distributivity of $*$ over +

Rings

- A ring $(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$ is a set \mathcal{R} with two binary ops:

Additive commutativity

$$
a+b=b+a
$$

Additive associativity

$$
(a+b)+c=a+(b+c)
$$

Additive identity
$\mathbf{0}+\mathrm{a}=\mathrm{a}+\mathbf{0}=a$
Additive inverse $\exists-a \in \mathcal{R}: a+(-a)=(-a)+a=0$
Multiplicative associativity $(a * b) * c=a *(b * c)$
Multiplicative identity

$$
a * \mathbf{1}=\mathbf{1} * a=a
$$

Left and right distributivity

$$
\begin{aligned}
& a *(b+c)=a * b+a * c \text { and } \\
& (a+b) * c=a * c+b * c
\end{aligned}
$$

- Examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^{n}$, matrix ring, polynomial ring

Factorized Ring Computation

- Relations are functions
- mapping keys (tuples) to payloads (ring elements)

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

Finitely many tuples with non-zero payloads
r_{1} and r_{2} are elements from a ring

- Query language
- Operations: union, join, and variable marginalization
- More expressiveness via application-specific rings
- Query evaluation
- using view trees shown before

More General SUM Aggregate

$$
\begin{aligned}
\mathbf{Q}= & \operatorname{SELECT} \operatorname{SUM}\left(\mathbf{g}_{\mathbf{A}}(\mathbf{A}) * \mathbf{g}_{\mathbf{B}}(\mathbf{B}) * \mathbf{g}_{\mathrm{C}}(\mathbf{C}) * \mathbf{g}_{\mathrm{D}}(\mathbf{D}) * \mathbf{g}_{\mathbf{E}}(\mathbf{E})\right) \\
& \text { FROM R NATURAL JOIN } \mathrm{S} \text { NATURAL JOIN } \mathrm{T}
\end{aligned}
$$

In our formalism:

$$
\mathrm{Q}=\underbrace{\bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}}_{\text {variable marginalization }}(\underbrace{\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D]}_{\text {natural joins }})
$$

Intuition: Relation payloads carry out the summation!
Marginalization of X applies g_{x}, sums payloads, projects away X Join multiplies payloads of matching tuples

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

Union \uplus

A	B	\rightarrow	$(\mathrm{R} \uplus \mathrm{S})[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
a_{3}	b_{2}	\rightarrow	s_{2}

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

Union \uplus

A	B	\rightarrow	$(\mathrm{R} \uplus \mathrm{S})[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
a_{3}	b_{2}	\rightarrow	s_{2}

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[\mathrm{B}, \mathrm{C}]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

Union \uplus

A	B	\rightarrow	$(\mathrm{R} \uplus \mathrm{S})[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
a_{3}	b_{2}	\rightarrow	s_{2}

Join \otimes

A	B	C	\rightarrow	$((\mathrm{R} \uplus \mathrm{S}) \otimes \mathrm{T})[A, B, C]$
a_{1}	b_{1}	c_{1}	\rightarrow	$r_{1} * t_{1}$
a_{2}	b_{1}	c_{1}	\rightarrow	$\left(r_{2}+s_{1}\right) * t_{1}$
a_{3}	b_{2}	c_{2}	\rightarrow	$s_{2} * t_{2}$

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	C_{1}	\rightarrow	t_{1}
$\mathrm{~b}_{2}$	C_{2}	\rightarrow	t_{2}

Union \uplus

A	B	\rightarrow	$(R \uplus S)[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
d_{3}	b_{2}	\rightarrow	5_{2}

Join \otimes

A	B	C	\rightarrow	$((\mathrm{R} \uplus \mathrm{S}) \otimes \mathrm{T})[A, B, C]$
a_{1}	b_{1}	c_{1}	\rightarrow	$r_{1} * t_{1}$
a_{2}	b_{1}	c_{1}	\rightarrow	$\left(r_{2}+s_{1}\right) * t_{1}$
a_{3}	b_{2}	c_{2}	\rightarrow	$s_{2} * t_{2}$

Query Operators

Relations R, S, and T with payloads from a $\operatorname{ring}(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

Union \uplus

A	B	\rightarrow	$(\mathrm{R} \uplus \mathrm{S})[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
a_{3}	b_{2}	\rightarrow	s_{2}

Join \otimes

A	B	C	\rightarrow	$((\mathrm{R} \uplus \mathrm{S}) \otimes \mathrm{T})[A, B, C]$
a_{1}	b_{1}	c_{1}	\rightarrow	$r_{1} * t_{1}$
a_{2}	b_{1}	c_{1}	\rightarrow	$\left(r_{2}+s_{1}\right) * t_{1}$
a_{3}	b_{2}	c_{2}	\rightarrow	$s_{2} * t_{2}$

Marginalization \bigoplus_{A}

$$
\begin{aligned}
& \text { for a given } \\
& g_{A}: \operatorname{Dom}(A) \rightarrow \mathcal{R}
\end{aligned} \begin{array}{lclc}
\mathrm{B} & \mathrm{C} & \rightarrow & \left(\oplus_{\mathrm{A}}(\mathrm{R} \uplus \mathrm{~S}) \otimes \mathrm{T}\right)[B, C] \\
\cline { 2 - 5 } & b_{1} & c_{1} & \rightarrow \\
r_{1} * t_{1} * g_{A}\left(a_{1}\right)+\left(r_{2}+s_{1}\right) * t_{1} * g_{A}\left(a_{2}\right) \\
b_{2} & c_{2} & \rightarrow & s_{2} * t_{2} * g_{A}\left(a_{3}\right) \\
\hline
\end{array}
$$

General Query Form

$$
\begin{aligned}
\mathrm{Q}= & \operatorname{SELECT} X_{1}, \ldots, X_{f}, \operatorname{SUM}\left(\mathbf{g}_{\mathbf{f}+\mathbf{1}}\left(\mathbf{X}_{\mathbf{f}+\mathbf{1}}\right) * \cdots * \mathbf{g}_{\mathbf{m}}\left(\mathbf{X}_{\mathbf{m}}\right)\right) \\
& \text { FROM } R_{1} \text { NATURAL JOIN } \ldots \text { NATURAL JOIN } R_{n} \\
& \text { GROUP BY } X_{1}, \ldots, X_{f}
\end{aligned}
$$

Expressed as Functional Aggregate Query:

$$
\mathrm{Q}\left[X_{1}, \ldots, X_{f}\right]=\bigoplus_{X_{f+1}} \ldots \bigoplus_{X_{m}} \otimes_{i \in[n]} \mathrm{R}_{\mathrm{i}}\left[\mathcal{S}_{i}\right]
$$

where:

- Relations $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$ are defined over variables X_{1}, \ldots, X_{m}
- X_{1}, \ldots, X_{f} are free variables
- R_{i} maps keys over schema \mathcal{S}_{i} to payloads in a ring $(\mathcal{R},+, *, \mathbf{0}, \mathbf{1})$
- Aggregations $\bigoplus_{X_{f+1}}, \ldots, \bigoplus_{X_{m}}$ use functions g_{f+1}, \ldots, g_{m}

Talk Outline

Why Real-Time In-Database Analytics?
 Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

Incremental Computation

- Maintain query results under updates to the input relations

- Incremental View Maintenance (IVM) in databases
- Often with limited query support and poor performance

Incremental View Maintenance

- Ring payloads simplify incremental computation
- Updates are uniformly represented as relations

A	B	\rightarrow	$\delta \mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	-1
a_{4}	b_{3}	\rightarrow	2

Tuples with positive/negative payloads denote insertions/deletions

- Applying updates: $\mathrm{R}_{\text {new }}[A, B]=\mathrm{R}_{\text {old }}[A, B] \uplus \delta \mathrm{R}[A, B]$
- The query language is closed under taking deltas

$$
\begin{aligned}
& \delta(\mathrm{R} \uplus \mathrm{~S})=\delta \mathrm{R} \uplus \delta \mathrm{~S} \\
& \delta(\mathrm{R} \otimes \mathrm{~S})=(\delta \mathrm{R} \otimes \mathrm{~S}) \uplus(\mathrm{R} \otimes \delta \mathrm{~S}) \uplus(\delta \mathrm{R} \otimes \delta \mathrm{~S}) \\
& \delta\left(\bigoplus_{A} \mathrm{R}\right)=\bigoplus_{A} \delta \mathrm{R}
\end{aligned}
$$

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

View tree

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Delta view tree

Delta Propagation

Consider our running examples
Maintain the query result under updates to T

Updates to Multiple Relations

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Delta view tree (for R)

Delta view tree (for T)

Updates to Multiple Relations

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Delta view tree (for R)

Delta view tree (for T)

Factorizable Bulk Updates

Assume update $\delta \mathrm{S}[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$
We may then factorize subsequent updates up the delta tree

Factorizable Bulk Updates

Assume update $\delta \mathrm{S}[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$
We may then factorize subsequent updates up the delta tree

Factorizable Bulk Updates

Assume update $\delta \mathrm{S}[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$
We may then factorize subsequent updates up the delta tree

Factorizable Bulk Updates

Assume update $\delta \mathrm{S}[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$
We may then factorize subsequent updates up the delta tree

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$
We may then factorize subsequent updates up the delta tree

Talk Outline

Why Real-Time In-Database Analytics?

Factorized Ring Computation

Incremental View Maintenance

Applications
Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

Applications

Our framework can capture a host of problems using task-specific rings

- Gradient computation for learning regression models
- Factorized representation of results of conjunctive queries
- Matrix chain multiplication
- Group-by aggregation over joins (we've seen this already)

Next: zoom in the first problem above
(Ask me about the other ones!)

Learning Linear Regression Models

- Find model parameters Θ best satisfying:

- Iterative gradient computation:

$$
\boldsymbol{\Theta}_{i+1}=\boldsymbol{\Theta}_{i}-\alpha \mathbf{X}^{\top}\left(\mathbf{X} \boldsymbol{\Theta}_{i}-\mathbf{Y}\right) \quad \text { (repeat until convergence) }
$$

- Matrices $\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{X}^{\top} \mathbf{Y}$ computed once for all iterations
- Compute $\operatorname{SUM}\left(X_{i} \cdot X_{j}\right), \operatorname{SUM}\left(X_{i}\right)$, and $\operatorname{SUM}(1)$ for variables X_{i} and X_{j}
- We assume in this talk that all variables are continuous

Learning Linear Regression Models over Joins

Compute $\mathbf{X}^{\top} \mathbf{X}$ where \mathbf{X} is the join of the input relations

- Naïve: compute the join, then $\mathcal{O}\left(m^{2}\right)$ sums over the join result ($m=$ \#query variables)
- Factorized: compute one optimized join-aggregate query
- Using our running query

$$
\mathrm{Q}=\bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D])
$$

but a different payload ring and different functions g_{x} !

Linear Regression Ring

Set of triples $\mathcal{R}=\left(\mathbb{Z}, \mathbb{R}^{m}, \mathbb{R}^{m \times m}\right)$
(COUNT, vector of $\operatorname{SUM}\left(X_{i}\right)$, matrix of $\operatorname{SUM}\left(X_{i} \cdot X_{j}\right)$)

$$
\begin{aligned}
a+{ }^{\mathcal{R}} b & =\left(c_{a}+c_{b}, \mathbf{s}_{a}+\mathbf{s}_{b}, \mathbf{Q}_{a}+\mathbf{Q}_{b}\right) \\
a *^{\mathcal{R}} b & =\left(c_{a} c_{b}, c_{b} \mathbf{s}_{a}+c_{a} \mathbf{s}_{b}, c_{b} \mathbf{Q}_{a}+c_{a} \mathbf{Q}_{b}+\mathbf{s}_{a} \mathbf{s}_{b}^{T}+\mathbf{s}_{b} \mathbf{s}_{a}^{T}\right) \\
\mathbf{0} & =\left(0, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m}\right) \\
\mathbf{1} & =\left(1, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m}\right)
\end{aligned}
$$

Function $g_{X_{j}}$ for variable X_{j} $g_{X_{j}}(x)=(1, \mathbf{s}, \mathbf{Q})$ where
\mathbf{s} has all 0 s except $s_{j}=x$
\mathbf{Q} has all Os except $Q_{j, j}=x^{2}$

Performance: Learning Linear Regression Models over Joins

Streaming dataset with 5 relations

The natural join has 43 variables

Matrix with 946 distinct aggregates

Comparing IVM strategies on a common system

- F-IVM (9 views)
- SQL-OPT (9 views)
- DBToaster (3, 425 views)
- IVM (951 views)

Summary: Factorized Incremental View Maintenance

- Framework for unified IVM of in-database analytics
- Captures many application scenarios
- Based on 3 shades of factorization
- Factorized query evaluation
- Exploits conditional independence among query variables
- Factorized representation of query results
- Enables succinct result representation
- Factorized updates
- Exploits low-rank tensor decomposition of updates
- Performance: Up to 2 OOM faster and 4 OOM less memory than state-of-the-art IVM techniques

Our IVM framework can accommodate any ring

As My Girl Beyoncé Repeatedly Said..

Thank you!

The Triangle Query

$$
\mathrm{Q}_{\Delta}[]=\oplus_{A} \oplus_{B} \oplus_{C} \mathrm{R}[A, B] \otimes \mathrm{S}[B, C] \otimes \mathrm{T}[C, A]
$$

Relational Data Ring

- Set of relations over \mathcal{R} with \uplus and \otimes forms a ring of relations
- Relation $\mathbf{0}$ maps every tuple to $\mathbf{0} \in \mathcal{R}$
- Relation $\mathbf{1}$ maps the empty tuple to $\mathbf{1} \in \mathcal{R}$, others to $\mathbf{0} \in \mathcal{R}$
- Payload: Relations over $\mathcal{R}=\mathbb{Z}$ with the same schema!

Evaluating Conjunctive Queries using Relational Payloads

- Consider the conjunctive query:

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

- Compute Q using relations with relational payloads

$$
\mathrm{Q}=\bigoplus_{A} \oplus_{B} \oplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D])
$$

- Lift (aggregate) functions:

$$
g_{X}(x)= \begin{cases}\frac{x}{x \rightarrow 1} & \text { if } X \text { is a free variable } \\ \frac{1}{() \rightarrow 1} & \text { otherwise }\end{cases}
$$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathrm{B}]$
a_{1}	$b_{1} \rightarrow \overline{() \rightarrow 1}$
a_{1}	$b_{2} \rightarrow() \rightarrow 1$
a_{2}	$b_{3} \rightarrow() \rightarrow 1$
a_{3}	$b_{4} \rightarrow() \rightarrow 1$

C	$\mathbf{D} \rightarrow \mathbf{T}[\mathrm{C}, \mathrm{D}]$
c_{1}	$d_{1} \rightarrow \mid() \rightarrow 1$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

$c _ { 3 } \quad d _ { 4 } \rightarrow \longdiv { () \rightarrow 1 }$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

A	B \rightarrow	[A, B]
a_{1}	$b_{1} \rightarrow$	()
a_{1}	$b_{2} \rightarrow$	()
2	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		() $\rightarrow 1$

C D \rightarrow T[C,D]
$c_{1} d_{1} \rightarrow \overline{() \rightarrow 1}$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

$c_{3} \quad d_{4} \rightarrow \overline{() \rightarrow 1}$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

${ }^{1} b_{1} \rightarrow{ }_{0}(0 \rightarrow 1$		
$a_{1} b_{2} \rightarrow{ }_{0 \rightarrow 1}$	$A \rightarrow \mathrm{~V}^{\text {®8P }}$ [${ }^{\text {a }}$	$V^{\text {®A }}$ [
$a_{2} b_{3} \rightarrow 0 \rightarrow 1$	B	
${ }^{33} b_{4} \rightarrow \widehat{(0) \rightarrow 1}$		1
$A \subset \mathrm{E} \rightarrow \mathrm{S}[\mathrm{A}, \mathrm{C}, \mathrm{E}]$	${ }_{3} \rightarrow \frac{\mathrm{~B}}{\frac{1}{4}+1}$	V
${ }_{\text {al }}^{1} c_{1} e_{1} \rightarrow(0) \rightarrow 1$	${ }_{3} \rightarrow \frac{\mathrm{~B}}{}$	R1A Bl
$a_{1} c_{1} e_{e} \rightarrow 0 \rightarrow 0 \rightarrow 1$	$\underline{b_{4} \rightarrow 1}$	R A,
${ }^{1} c_{1} c_{2} e_{3} \rightarrow(0 \rightarrow 1$		
${ }_{22} \mathrm{C}_{2}$ e4 $\rightarrow(0) \rightarrow 1$		$\mathrm{V}^{\text {®0 }}[C] \quad \mathrm{V}^{\text {® }}[A, C]$
c $\mathrm{D} \rightarrow \mathrm{T} \mid$ C. D]	$a_{a} \rightarrow$ D	
	${ }_{\text {d }}^{0_{1-1}}$	$T[C, D] \quad \mathrm{S}[A, C, E]$
$c_{1} d_{1} \rightarrow(0 \rightarrow 1$	$c_{2 \rightarrow} \rightarrow d_{2 \rightarrow 1}$	
$c_{2} d_{2} \rightarrow 0 \rightarrow 1$	${ }_{0}^{d_{3} \rightarrow 1}$	
$c_{2} d_{3} \rightarrow 0 \rightarrow 1$	${ }_{3} \rightarrow \frac{d_{4} \rightarrow 1}{}$	
$c_{3} d_{4} \rightarrow 1(0 \rightarrow 1$		

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

${ }^{1} b_{1} \rightarrow{ }_{(0 \rightarrow 1}$			
$b_{2} \rightarrow{ }_{0 \rightarrow 1}$	$A \rightarrow \mathrm{~V}^{\text {es }}[\mathrm{A}]$		
$a_{2} b_{3} \rightarrow 0{ }_{0}(0 \rightarrow 1$	\| ${ }_{\text {b }}$	${ }^{\text {VA }}[]$	
${ }^{23} b_{4} \rightarrow \frac{0}{0 \rightarrow 1}$	${\substack { \text { a } \\ \begin{subarray}{c}{b_{1} \rightarrow 1 \\ b_{2} \rightarrow 1{ \text { a } \\ \begin{subarray} { c } { b _ { 1 } \rightarrow 1 \\ b _ { 2 } \rightarrow 1 } }\end{subarray}}^{\text {a }}$,	
$A C E \rightarrow S[A, C, E]$	${ }_{B}$	$V^{\bullet B}[A] \quad V^{\bullet C}[A]$	$\mathrm{A} \rightarrow \mathrm{V}^{00}[A]$
$a_{1} c_{1} e_{1} \rightarrow(0 \rightarrow 1$			CD
$a_{1} c_{1} e_{2} \rightarrow \frac{0}{0}(0 \rightarrow 1$	${ }_{b_{4} \rightarrow 1}$	$\mathrm{R}[A, B]$	${ }_{\text {c }} \mathrm{c}_{1} \mathrm{~d}_{1}$
$a_{1} c_{2} e_{3} \rightarrow{ }_{\text {c }} \rightarrow 0 \rightarrow 1$			
$3_{2} c_{2} e_{4} \rightarrow(0){ }^{\text {a }}$	$c \rightarrow$ voic]	$\mathrm{V}^{\oplus(}[C] \quad \mathrm{V}^{\oplus E}[$ [,$C]$	
-	$\mathrm{C}_{\square} \rightarrow$ D	,	${ }_{\text {cosem }}$
$\mathrm{c} \mathrm{D} \rightarrow \mathrm{T}[$ c, D$]$	${ }_{1}$	$\mathrm{T}[C, D] \quad \mathrm{S}[A, C, E]$	$\mathrm{AC} \rightarrow \mathrm{VE}^{\mathrm{V}}[\mathrm{A}, \mathrm{C}]$
$c_{1} d_{1} \rightarrow \sqrt{(0) 1}$	${ }_{2} \rightarrow d_{2 \rightarrow 1}$		$a_{1} c_{1} \rightarrow{ }_{0 \rightarrow 2}$
$c_{2} d_{2} \rightarrow 0 \rightarrow 1$			
$c_{2} d_{3} \rightarrow 0 \rightarrow 1$			$a_{2} \mathrm{ca}_{2} \rightarrow \frac{(0)+1}{}$
$c_{3} d_{4} \rightarrow$ (0)1			

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

	B \rightarrow	R[A,
a_{1}	b_{1}	
a_{1}	$b_{2} \rightarrow$	()
a_{2}	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		()

A C E \rightarrow S[A,C,E]
$\begin{array}{lll}a_{1} & c_{1} & e_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow \overline{() \rightarrow 1}\end{array}$
$a_{2} \quad c_{2} \quad e_{4} \rightarrow \overline{() \rightarrow 1}$

C	$\mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}]$
c_{1}	$d_{1} \rightarrow \overline{() \rightarrow 1}$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow \overline{() \rightarrow 1}$

$() \rightarrow \left\lvert\, \begin{aligned} & A \\ & a_{1} \\ & a_{2} \\ & a_{2} \end{aligned}\right.$	B C D
	crell
$\mathrm{A} \rightarrow \mathrm{V}^{\text {® }}$ [A]	
	C D
	$\begin{aligned} & \begin{array}{l} c_{1} d_{1} \rightarrow 2 \\ c_{2} d_{2} \rightarrow 1 \\ c_{2} d_{3} \rightarrow 1 \\ \text { C D } \end{array} \end{aligned}$
$a_{2} \rightarrow$	$c_{2} d_{2} \rightarrow 1$ $c_{2} d_{3} \rightarrow 1$
$\mathrm{AC} \rightarrow \mathrm{V}^{\text {®E }}[\mathrm{A}, \mathrm{C}]$	
$a_{1} c_{1} \rightarrow$	()$\rightarrow 2$
$a_{1} c_{2} \rightarrow$	() $\rightarrow 1$
$a_{2} c_{2} \rightarrow$	() $\rightarrow 1$

39/46

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathbf{B}]$
a_{1}	$b_{1} \rightarrow \mid() \rightarrow 1$
a_{1}	$b_{2} \rightarrow \mid() \rightarrow 1$
a_{2}	$b_{3} \rightarrow \mid() \rightarrow 1$
a_{3}	$b_{4} \rightarrow \mid() \rightarrow 1$

A C E \rightarrow S[A,C,E]
$\begin{array}{lll}a_{1} & c_{1} & e_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow() \rightarrow 1\end{array}$
$a_{2} \quad c_{2} \quad e_{4} \rightarrow \overline{() \rightarrow 1}$

C	$\mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}]$
c_{1}	$d_{1} \rightarrow \overline{() \rightarrow 1}$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow \overline{() \rightarrow 1}$
$c _ { 3 } \quad d _ { 4 } \rightarrow \longdiv { () \rightarrow 1 }$

$39 / 46$

Factorized Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathrm{B}]$
a_{1}	$b_{1} \rightarrow \overline{() \rightarrow 1}$
a_{1}	$b_{2} \rightarrow \frac{() \rightarrow 1}{}$
a_{2}	$b_{3} \rightarrow \frac{() \rightarrow 1}{}$
a_{3}	$b_{4} \rightarrow \overline{() \rightarrow 1}$

$A \quad \mathrm{C} \quad \mathrm{E} \rightarrow \mathrm{S}[\mathrm{A}, \mathrm{C}, \mathrm{E}]$
$a_{1} \quad c_{1} \quad e_{1} \rightarrow \overline{() \rightarrow 1}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{2} & c_{2} & e_{4} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{ll}\mathrm{C} & \mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}] \\ c_{1} & d_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

\mathbf{A}	$\rightarrow \mathbf{V}^{\text {®B }}[\mathrm{A}]$
a_{1}	\rightarrowB $b_{1} \rightarrow 1$ $b_{2} \rightarrow 1$
a_{2}	$\rightarrow \frac{\mathrm{~B}}{b_{3} \rightarrow 1}$
a_{3}	$\rightarrow \frac{\mathrm{~B}}{\mathrm{~b}_{4} \rightarrow 1}$

$\mathbf{A} \mathbf{C} \rightarrow \mathbf{V}^{\circledR \mathrm{E}}[\mathbf{A}, \mathbf{C}]$
$a_{1} c_{1} \rightarrow \overline{() \rightarrow 2}$
$a_{1} c_{2} \rightarrow(),() \rightarrow 1$
$a_{2} c_{2} \rightarrow() \rightarrow 1$

Factorized Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathrm{B}]$
a_{1}	$b_{1} \rightarrow \overline{() \rightarrow 1}$
a_{1}	$b_{2} \rightarrow \frac{() \rightarrow 1}{}$
a_{2}	$b_{3} \rightarrow \frac{() \rightarrow 1}{}$
a_{3}	$b_{4} \rightarrow \overline{() \rightarrow 1}$

A	C E \rightarrow	S[A,C,E]
a_{1}	$c_{1} \quad e_{1} \rightarrow$	() $\rightarrow 1$
a_{1}	$c_{1} \quad e_{2} \rightarrow$	() $\rightarrow 1$
a_{1}	$c_{2} \quad e_{3} \rightarrow$	() $\rightarrow 1$
a_{2}	$c_{2} e_{4}$	() $\rightarrow 1$

$\begin{array}{ll}\mathrm{C} & \mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}] \\ c_{1} & d_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

Factorized Representation of Conjunctive Query Results

$Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)$

	B \rightarrow	$\mathrm{R}[\mathrm{A}, \mathrm{B}]$
a_{1}	b_{1}	() $\rightarrow 1$
a_{1}	$b_{2} \rightarrow$	() $\rightarrow 1$
a_{2}	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		() $\rightarrow 1$

A C E \rightarrow S[A,C,E]
$\begin{array}{lll}a_{1} & c_{1} & e_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{2} & c_{2} & e_{4} \rightarrow \overline{() \rightarrow 1}\end{array}$

C \quad D \rightarrow T[C,D]
$c_{1} d_{1} \rightarrow() \rightarrow 1$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$
$c _ { 3 } \quad d _ { 4 } \rightarrow \longdiv { () \rightarrow 1 }$
$\mathbf{A} \rightarrow \mathbf{V}^{\text {®B }}[\mathrm{A}]$
$\mathrm{a}_{1} \rightarrow \left\lvert\, \begin{aligned} & \mathrm{B} \\ & b_{1} \rightarrow 1 \\ & b_{2} \rightarrow 1\end{aligned}\right.$

()$\rightarrow \mathbf{V}^{@ A}[]$
()$\rightarrow \begin{array}{l}\mathrm{A} \\ a_{1} \rightarrow 8 \\ a_{2} \rightarrow 2\end{array}$

$\mathbf{A} \rightarrow \mathbf{V}^{\text {©C }}[\mathbf{A}]$
$\mathrm{a}_{1} \rightarrow \left\lvert\, \begin{aligned} & \mathrm{C} \\
& \mathrm{c}_{1} \rightarrow 2 \\
& c_{2} \rightarrow 2\end{aligned}\right.$

$\mathrm{a}_{2} \rightarrow |$| C |
| :--- |
| $\mathrm{c}_{2} \rightarrow 2$ |

$\mathbf{A C} \rightarrow \mathbf{V}^{\text {®E }}[\mathbf{A}, \mathbf{C}]$
$a_{1} c_{1} \rightarrow \overline{() \rightarrow 2}$
$a_{1} c_{2} \rightarrow \overline{() \rightarrow 1}$
$a_{2} c_{2} \rightarrow$

Factorized Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

Constant Delay
Enumeration
foreach a in $V^{@ A}$
foreach b in $V^{® B}$
foreach c in $V^{@ C}$ foreach d in $V^{@ D}$
output (a,b,c,d)

Factorized Representation of Conjunctive Query Results

$Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)$

Performance: Maintenance of Conjunctive Query Results

Star schema

Snowflake schema

Matrix Chain Multiplication

Input: Matrices \boldsymbol{A}_{i} of size of $p_{i} \times p_{i+1}$ over some $\operatorname{ring} \mathcal{R}(i \in[n])$

- Modeled as relations $\mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]$ with payloads carrying matrix values in \mathcal{R}

Problem: Compute their product matrix of size $p_{1} \times p_{n+1}$

$$
\mathrm{A}\left[X_{1}, X_{n+1}\right]=\bigoplus_{X_{2}} \cdots \bigoplus_{X_{n}} \otimes_{i \in[n]} \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]
$$

where each lift function $g_{X_{j}}\left(X_{j}\right)$ maps any key to payload $\mathbf{1} \in \mathcal{R}$

Factorized Matrix Updates

Matrix changes

> Single-value change \Rightarrow vector outer product
> $\delta \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]=\mathrm{u}\left[X_{i}\right] \otimes \mathrm{v}\left[X_{i+1}\right]$

Several-values change \Rightarrow sum of vector outer products
$\delta \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]=\uplus_{k \in[r]} \mathrm{u}_{\mathrm{k}}\left[X_{i}\right] \otimes \mathrm{v}_{\mathrm{k}}\left[X_{i+1}\right]$

Time complexity for multiplication of n matrices of size $p \times p$:

- Evaluation or IVM: $O\left(p^{3}\right)$
- IVM with factorized updates: $O\left(p^{2}\right)$

Performance: Matrix Chain Multiplication

Update to A_{2} expressed as outer product

