Incremental View Maintenance with Triple-Lock Factorization Benefits

Milos Nikolic and Dan Olteanu
Toronto, October 2017
RelationalAI
In-Database Analytics

- Integrate analytics into relational database engines
 - Mathematical optimization, statistics, ML, data mining

- Move the analytics, not the data
 - Avoid expensive data export/import
 - Exploit database technologies
 - Build better models using larger datasets
Datasets continuously evolve over time
 - E.g.: data streams from sensors, social networks, apps

Real-time analytics over streaming data
 - Users want fresh data models
 - Long-lived (continuous) queries provide up-to-date results
Challenges: In-Database Real-time Analytics

1. Analytics over relational databases
 - Combine different data sources to improve models
 - Common practice: join relations, then build models
 \[\Rightarrow \text{Inefficient:} \text{ high redundancy in computation and representation of join results} \]

2. Low-latency processing
 - Naïve solution: re-compute query results as data changes
 \[\Rightarrow \text{Inefficient:} \text{ high-latency processing} \]
 - Common practice: IVM (Incremental View Maintenance)
 For query \(Q \), database \(D \), and change \(\Delta D \), compute (the hopefully cheaper) delta \(\Delta Q \):
 \[
 Q(D + \Delta D) = Q(D) + \Delta Q(D, \Delta D)
 \]

3. Support for complex analytics
Our Approach: **Factorized IVM**

- "Concrete recipe on how to IVM the next analytic task you may face" (anonymous SIGMOD’18 reviewer)
- Generalized aggregates over joins
 - Relations are functions mapping tuples to ring values
 - Computation described by application-specific rings
- Triple-lock factorization: keys, payloads, updates
 - Factorized Keys = Factorized Query Processing
 - Factorized Payloads = Avoid listing representation
 - Bulk updates decomposed into sums of joins of factors
- Prototype implemented on top of DBToaster
 - Performance: Up to 2 OOM faster than classical IVM and DBToaster and up to 4 OOM less memory than DBToaster
Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications

 Learning Linear Regression Models

 Factorized Representation of Conjunctive Query Results

 Matrix Chain Multiplication
- Relations are modeled as factors
 - Functions mapping keys (tuples of values) to payloads (ring elements)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>→</th>
<th>R[A, B]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>→</td>
<td>r_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>→</td>
<td>r_2</td>
</tr>
</tbody>
</table>

r_1 and r_2 are elements from a ring

- Query language: Subset of FAQ
 - Operations: union, join, and variable marginalization
 - More expressiveness via application-specific rings

- Query evaluation: FDB/FAQ engine variation
• A ring \((D, +, *, 0, 1)\) is a set \(D\) with two binary ops:

 Additive commutativity \(a + b = b + a\)
 Additive associativity \((a + b) + c = a + (b + c)\)
 Additive identity \(0 + a = a + 0 = a\)
 Additive inverse \(\exists -a \in D : a + (-a) = (-a) + a = 0\)

 Multiplicative associativity \((a * b) * c = a * (b * c)\)
 Multiplicative identity \(a * 1 = 1 * a = a\)

 Left and right distributivity \(a * (b + c) = a * b + a * c\) and
 \((a + b) * c = a * c + b * c\)

• Examples: \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^n\), matrix ring, polynomial ring
Factors R, S, and T with payloads from a ring $(D, +, *, 0, 1)$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>→</th>
<th>$R[A, B]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>→</td>
<td>r_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>→</td>
<td>r_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>→</th>
<th>$T[B, C]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>c_1</td>
<td>→</td>
<td>t_1</td>
</tr>
<tr>
<td>b_2</td>
<td>c_2</td>
<td>→</td>
<td>t_2</td>
</tr>
</tbody>
</table>

Operations:

Union \uplus

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>→</th>
<th>$(R \uplus S)[A, B]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>→</td>
<td>r_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>→</td>
<td>$r_2 + s_1$</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
<td>→</td>
<td>s_2</td>
</tr>
</tbody>
</table>

Join \otimes

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>→</th>
<th>$((R \uplus S) \otimes T)[A, B, C]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>→</td>
<td>$r_1 \ast t_1$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>c_1</td>
<td>→</td>
<td>$(r_2 + s_1) \ast t_1$</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
<td>c_2</td>
<td>→</td>
<td>$s_2 \ast t_2$</td>
</tr>
</tbody>
</table>

Marginalization \bigoplus_A

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>→</th>
<th>$(\bigoplus_A (R \uplus S) \otimes T)[B, C]$</th>
</tr>
</thead>
</table>
Example: Aggregate Computation

Compute COUNT over the natural join:
\(R(A, B), S(A, C, E), T(C, D) \)

Let all relations be of size \(N \)

View relations as factors mapping tuples to multiplicity from \(\mathbb{Z} \)
Example: Aggregate Computation

Compute COUNT over the natural join:
\(R(A, B), S(A, C, E), T(C, D) \)

Let all relations be of size \(N \)

View relations as factors mapping tuples to multiplicity from \(\mathbb{Z} \)

Naïve: compute the join and then COUNT

\[
Q = \bigoplus_A \bigoplus_B \bigoplus_C \bigoplus_D \bigoplus_E (R \otimes S \otimes T)
\]

Takes \(O(N^3) \) time!
Example: Aggregate Computation

Compute COUNT over the natural join:
\[R(A, B), \ S(A, C, E), \ T(C, D) \]

Let all relations be of size \(N \)

View relations as factors mapping tuples to multiplicity from \(\mathbb{Z} \)

Naïve: compute the join and then COUNT

\[Q = \bigoplus_A \bigoplus_B \bigoplus_C \bigoplus_D \bigoplus_E (R \otimes S \otimes T) \]

Takes \(\mathcal{O}(N^3) \) time!

Can we compute COUNT in \(\mathcal{O}(N) \) time?
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

\[
\begin{align*}
Q & = A \bigoplus B\left[A, B \right] \text{(marginalize B)} \\
V_3\left[C \right] & = D \bigoplus T\left[C, D \right] \text{(marginalize D)} \\
Q & = A \bigoplus \left(V_1\left[A \right] \otimes V_4\left[A \right] \right) \text{(marginalize A)} \\
V_2\left[A, C \right] & = E \bigoplus S\left[A, C, E \right] \text{(marginalize E)} \\
V_4\left[A \right] & = C \bigoplus \left(V_2\left[A, C \right] \otimes V_3\left[C \right] \right) \text{(marginalize C)}
\end{align*}
\]
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

\[
V_1[A] = \bigoplus_B R[A, B] \quad \text{(marginalize B)}
\]
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

\[
V_1[A] = \bigoplus_B R[A, B] \quad \text{(marginalize B)} \quad V_2[A, C] = \bigoplus_E S[A, C, E] \quad \text{(marginalize E)}
\]
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

\[
V_1[A] = \bigoplus_B R[A, B] \quad \text{(marginalize B)} \quad V_2[A, C] = \bigoplus_E S[A, C, E] \quad \text{(marginalize E)}
\]
\[
V_3[C] = \bigoplus_D T[C, D] \quad \text{(marginalize D)}
\]
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

\[V_1[A] = \bigoplus_B R[A, B] \quad \text{(marginalize } B) \]
\[V_2[A, C] = \bigoplus_E S[A, C, E] \quad \text{(marginalize } E) \]
\[V_3[C] = \bigoplus_D T[C, D] \quad \text{(marginalize } D) \]
\[V_4[A] = \bigoplus_C (V_2[A, C] \otimes V_3[C]) \quad \text{(marginalize } C) \]
\[\text{also re-use counts of } E \text{ and } D! \]
Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation \(\text{à la InsideOut/FDB:}\)

\[
\begin{align*}
V_1[A] &= \bigoplus_B R[A, B] \quad \text{(marginalize B)} \\
V_2[A, C] &= \bigoplus_E S[A, C, E] \quad \text{(marginalize E)} \\
V_3[C] &= \bigoplus_D T[C, D] \quad \text{(marginalize D)} \\
V_4[A] &= \bigoplus_C (V_2[A, C] \otimes V_3[C]) \quad \text{(marginalize C)} \\
Q &= \bigoplus_A (V_1[A] \otimes V_4[A]) \quad \text{(marginalize } A) \\
V_4[A] &= \bigoplus_{CD} (V_2[A, C] \otimes V_3[c]) \quad \text{(marginalize } C, D) \quad \text{also re-use counts of } E \text{ and } D!
\end{align*}
\]
Different Modeling of Relations

- Compute $\text{SUM}(C \cdot D)$ over the join $R(A, B)$, $S(A, C, E)$, $T(C, D)$
 - Let the domain of all variables be \mathbb{R}

- Model relations as factors with payloads from \mathbb{R}:
 - $R[a, b] = 1$ iff $(a, b) \in R$, 0 otherwise
 - $S[a, c, e] = c$ iff $(a, c, e) \in S$, 0 otherwise
 - $T[c, d] = d$ iff $(c, d) \in T$, 0 otherwise
Different Modeling of Relations

- Compute $\text{SUM}(C \cdot D)$ over the join $R(A, B)$, $S(A, C, E)$, $T(C, D)$
 - Let the domain of all variables be \mathbb{R}
- Model relations as factors with payloads from \mathbb{R}:
 - $R[a, b] = 1$ iff $(a, b) \in R$, 0 otherwise
 - $S[a, c, e] = c$ iff $(a, c, e) \in S$, 0 otherwise
 - $T[c, d] = d$ iff $(c, d) \in T$, 0 otherwise
- The factor Q expressing the sum is:
 \[
 Q = \bigoplus_A \bigoplus_B \bigoplus_C \bigoplus_D \bigoplus_E (R[A, B] \otimes S[A, C, E] \otimes T[C, D])
 \]
 Factor payloads carry out the summation!
- Same as the COUNT query but with diff modeling and ring!
Eager modeling (as in previous examples)

- Assign payload $R[t]$ to each tuple t of relation R
- Computed payloads might be discarded later on
 - $T[c, d] = c \cdot d$ computed for every pair (c, d) in T
 - even for those c-values that do not exist in S
 - *Non-trivial cost with more complex rings!*
Modeling Relations as Factors

Eager modeling (as in previous examples)

- Assign payload $R[t]$ to each tuple t of relation R
- Computed payloads might be discarded later on
 - $T[c, d] = c \cdot d$ computed for every pair (c, d) in T, even for those c-values that do not exist in S
 - *Non-trivial cost with more complex rings!*

Lazy modeling

- Decompose payload computation into a product of functions of one variable: $f(c, d) = c \cdot d = f_C(c) \cdot f_D(c)$
- Use them to *lift variable values to payloads* on demand
 - E.g., after ensuring a C-value appears in both S and T
Factorized Computation with Lift Factors

- Factors R, S, and T with payloads from a ring $(\mathbb{D}, +, \times, 0, 1)$
 - Each tuple has the payload of $1 \in \mathbb{D}$

- Lift factors $\Lambda_A, \Lambda_B, \Lambda_C, \Lambda_D, \Lambda_E$ map the domain of a variable to \mathbb{D}
 - All lift factors map to $1 \in \mathbb{Z}$
 - $\text{COUNT} \quad \Lambda_C[c] = c$ and $\Lambda_D[d] = d$; others map to $1 \in \mathbb{R}$
Factorized Computation with Lift Factors

- Factors R, S, and T with payloads from a ring $(\mathbb{D}, +, \times, 0, 1)$
 - Each tuple has the payload of $1 \in \mathbb{D}$

- Lift factors $\Lambda_A, \Lambda_B, \Lambda_C, \Lambda_D, \Lambda_E$ map the domain of a variable to \mathbb{D}
 - COUNT all lift factors map to $1 \in \mathbb{Z}$
 - $\text{SUM}(C*D)$ $\Lambda_C[c] = c$ and $\Lambda_D[d] = d$; others map to $1 \in \mathbb{R}$

- Lift values of a variable just before its marginalization

$$V_1[A] = \bigoplus_B (R[A, B] \otimes \Lambda_B[B])$$
$$V_3[C] = \bigoplus_D (T[C, D] \otimes \Lambda_D[D])$$
$$Q = \bigoplus_A (V_1[A] \otimes V_4[A] \otimes \Lambda_A[A])$$

$$V_2[A, C] = \bigoplus_E (S[A, C, E] \otimes \Lambda_E[E])$$
$$V_4[A] = \bigoplus_C (V_2[A, C] \otimes V_3[C] \otimes \Lambda_C[C])$$
Variable Orders

Variable order for a join query Q

- Rooted tree with one node per variable in Q
- Function dep maps each variable to a subset of its ancestors

Properties:

- The variables of a factor R lie along the same root-to-leaf path
 - $Y \in \text{dep}(X)$ if X and Y are variables of R and Y is ancestor of X
- For every child B of A, $\text{dep}(B) \subseteq \text{dep}(A) \cup \{A\}$

One variable order for the query $R(A, B)$, $S(A, C, E)$, $T(C, D)$

- $\text{dep}(A) = \emptyset$
- $\text{dep}(B) = \{A\}$
- $\text{dep}(C) = \{A\}$
- $\text{dep}(D) = \{C\}$
- $\text{dep}(E) = \{A, C\}$

Captures conditional independence
View Trees

Variable orders guide query evaluation

- Create a factor view at each variable in the order
- \(V^{@X} \) – view at variable \(X \) with schema \(dep(X) \)
 1. joins the views at its children
 2. lifts and marginalizes \(X \) if \(X \) is not a free (group-by) variable

Variable order

\[
\begin{align*}
\text{dep}(A) &= \emptyset & A \\
\text{dep}(B) &= \{A\} & / \quad \backslash \\
\text{dep}(C) &= \{A\} & B \quad C \\
\text{dep}(D) &= \{C\} & / \quad \backslash \\
\text{dep}(E) &= \{A, C\} & D \quad E
\end{align*}
\]

\[
\Rightarrow
\]

View tree

\[
\begin{align*}
V^{@A}[] &= \bigoplus_A (V^{@B}[A] \otimes V^{@C}[A] \otimes \land_A[A]) \\
V^{@B}[A] \quad \bigtriangleup \quad V^{@C}[A] \quad \bigtriangleup \quad V^{@D}[C] \quad \bigtriangleup \quad V^{@E}[A, C] \\
\quad \bigtriangleup \quad R[A, B] \quad \bigtriangleup \quad \bigtriangleup \quad T[C, D] \quad \bigtriangleup \quad \bigtriangleup \quad S[A, C, E]
\end{align*}
\]

- Views can be materialized if needed
We support a subset of FAQs:

\[Q[X_1, \ldots, X_f] = \bigoplus X_{f+1} \cdots \bigoplus X_m \otimes_{i \in [n]} R_i[S_i] \otimes_{j \in [f+1, m]} \Lambda X_j[X_j] \]

where:

- Factors \(R_1, \ldots, R_n \) are defined over variables \(X_1, \ldots, X_m \)
- \(X_1, \ldots, X_f \) are free variables
- Each factor \(R_i \) maps keys over schema \(S_i \) to payloads in a ring \((\mathcal{D}, +, *, 0, 1) \)
Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications

 Learning Linear Regression Models

 Factorized Representation of Conjunctive Query Results

 Matrix Chain Multiplication
Incremental Computation

- Maintain query results with changes in the underlying data

\[Q(D + \Delta D) = Q(D) + \Delta Q(D, \Delta D) \]

Fast “merge” operation

Smaller and faster delta query (ideally)

- Incremental View Maintenance (IVM) in databases
 - Often with limited query support and poor performance
Incremental View Maintenance with Factors

- Ring payloads simplify incremental computation
 - Updates are uniformly represented as factors

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>→</th>
<th>(\delta R[A, B])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>→</td>
<td>(-1)</td>
</tr>
<tr>
<td>(a_4)</td>
<td>(b_3)</td>
<td>→</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Tuples with positive/negative payloads denote insertions/deletions

- Applying updates: \(R_{new}[A, B] = R_{old}[A, B] \uplus \delta R[A, B] \)

- The query language is closed under taking deltas

\[
\delta (R \uplus S) = \delta R \uplus \delta S \\
\delta (R \otimes S) = (\delta R \otimes S) \uplus (R \otimes \delta S) \uplus (\delta R \otimes \delta S) \\
\delta (\bigoplus_A R) = \bigoplus_A \delta R
\]
Delta Propagation

Consider our running example

Maintain the query result for updates to \(T \)

View tree

\[
\begin{align*}
V^@A[&] \\
V^@B[A] & V^@C[A] \\
R[A, B] & \\
V^@D[C] & V^@E[A, C] & \\
\end{align*}
\]
Consider our running example

Maintain the query result for updates to T
Consider our running example

Maintain the query result for updates to T

View tree

Materialized query result

$V^@A[]$

- $V^@B[A]$
 - $R[A, B]$
 - $V^@D[C]$
 - $T[C, D]$
 - $V^@E[A, C]$
 - $S[A, C, E]$

$V^@C[A]$

$V^@E[A, C]$

$T[C, D]$

Delta view tree

$V^@A[]$

- $V^@B[A]$
 - $R[A, B]$
 - $V^@D[C]$
 - $T[C, D]$
 - $V^@E[A, C]$
 - $S[A, C, E]$
Delta Propagation

Consider our running example

Maintain the query result for updates to T

View tree

Materialized query result

$V^{@A}[]$

$V^{@B}[A]$

$V^{@C}[A]$

$V^{@D}[C]$

$V^{@E}[A, C]$

$R[A, B]$

$T[C, D]$

$S[A, C, E]$

Delta view tree

$\delta T[C, D]$

$\delta T[C, D]$

$S[A, C, E]$
Consider our running example

Maintain the query result for updates to T

View tree

- $V^{\oplus A}[\]$
 - $V^{\oplus B}[A]$
 - $R[A, B]$
 - $V^{\oplus D}[C]$
 - $T[C, D]$
 - $V^{\oplus E}[A, C]$
 - $S[A, C, E]$
 - $V^{\oplus C}[A]$

Delta view tree

- $V^{\oplus A}[\]$
 - $V^{\oplus B}[A]$
 - $R[A, B]$
 - $V^{\oplus D}[C]$
 - $\delta V^{\oplus D}[C]$
 - $\delta T[C, D]$
 - $\delta T[C, D]$
 - $V^{\oplus E}[A, C]$
 - $S[A, C, E]$
Delta Propagation

Consider our running example

Maintain the query result for updates to T
Delta Propagation

Consider our running example

Maintain the query result for updates to T

View tree

Materialized query result

$V^{\oplus_A}[]$

$V^{\oplus_B}[A]$

$V^{\oplus_C}[A]$

$V^{\oplus_D}[C]$

$V^{\oplus_E}[A, C]$

$R[A, B]$

$T[C, D]$

$S[A, C, E]$

Delta view tree

$\delta V^{\oplus_A}[]$

$\delta V^{\oplus_B}[A]$

$\delta V^{\oplus_D}[C]$

$\delta T[C, D]$

$\delta V^{\oplus_C}[A]$

$V^{\oplus_E}[A, C]$

$S[A, C, E]$

Precomp. & materialized
Delta Propagation

Consider our running example

Maintain the query result for updates to T
Updates to Multiple Factors

Maintain the query result for updates to \(R \) and \(T \)

- 2 propagation paths, 1 extra materialization
- Both paths need to maintain auxiliary views

\[
\begin{align*}
\delta & V^{@A}[] \\
\delta & V^{@B}[A] \\
\delta & R[A, B] \\
V^{@C}[A] \\
V^{@D}[C] & \quad V^{@E}[A, C] \\
T[C, D] & \quad S[A, C, E] \\
\end{align*}
\]

Delta view tree (for \(R \))

\[
\begin{align*}
\delta & V^{@A}[] \\
\delta & V^{@B}[A] \\
\delta & V^{@C}[A] \\
V^{@D}[C] & \quad V^{@E}[A, C] \\
R[A, B] & \quad S[A, C, E] \\
\delta & T[C, D] \\
\end{align*}
\]

Delta view tree (for \(T \))
Maintain the query result for updates to R and T

- 2 propagation paths, 1 extra materialization
- Both paths need to maintain auxiliary views

Delta view tree (for R)

```
Update $V^{@B}$ and $V^{@A}$

$\delta V^{@B}[A]
\delta R[A, B]$

$V^{@C}[A]$

$V^{@D}[C]$
```

Delta view tree (for T)

```
Update $V^{@C}$ and $V^{@A}$

$\delta V^{@D}[C]$
$\delta T[C, D]$

```

Update $V^{@B}$ and $V^{@A}$
Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$. We may then factorize subsequent updates up the delta tree.
Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$. We may then factorize subsequent updates up the delta tree.
Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$. We may then factorize subsequent updates up the delta tree.
Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$. We may then factorize subsequent updates up the delta tree.

$$\delta V^{@A}[]$$

$$\delta S_A[A] \otimes (\bigoplus_C V^{@D}[C] \otimes \delta S_C[C]) \otimes \bigoplus_E \delta S_E[E]$$

$$\delta S_A[A] \otimes \delta S_C[C] \otimes \bigoplus_E \delta S_E[E]$$

$$\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$$
Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta S_A[A] \otimes \delta S_C[C] \otimes \delta S_E[E]$. We may then factorize subsequent updates up the delta tree.

\begin{align*}
\left(\bigoplus_A V_{R}^{@B}[A] \otimes \delta S_A[A] \right) & \otimes \\
\left(\bigoplus_C V_{T}^{@D}[C] \otimes \delta S_C[C] \right) & \otimes \\
\bigoplus_E \delta S_E[E] & \\
\delta S_A[A] & \otimes \left(\bigoplus_C V_{T}^{@D}[C] \otimes \delta S_C[C] \right) \otimes \bigoplus_E \delta S_E[E] \\
\delta S_A[A] & \otimes \delta S_C[C] \otimes \bigoplus_E \delta S_E[E] \\
\delta S_A[A] & \otimes \delta S_C[C] \otimes \delta S_E[E]
\end{align*}
Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models

Factorized Representation of Conjunctive Query Results

Matrix Chain Multiplication
Aggregates over joins with task-specific rings can capture a host of problems

- learning regression models
- factorized representation of results of conjunctive queries
- matrix chain multiplication
- group-by aggregation (we’ve seen this already)
- inference in PGMs etc.

Next: zoom in the first three problems above
Learning Linear Regression Models

- Find model parameters Θ best satisfying:

<table>
<thead>
<tr>
<th>Size (ft2)</th>
<th>#beds</th>
<th>Year</th>
<th>Region 1</th>
<th>Price (£)</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>4026</td>
<td>7</td>
<td>1925</td>
<td>1</td>
<td>3,450,000</td>
<td>3</td>
</tr>
<tr>
<td>1894</td>
<td>6</td>
<td>1948</td>
<td>1</td>
<td>2,750,000</td>
<td>2</td>
</tr>
<tr>
<td>5683</td>
<td>8</td>
<td>1935</td>
<td>0</td>
<td>6,000,000</td>
<td>4</td>
</tr>
<tr>
<td>4198</td>
<td>4</td>
<td>1908</td>
<td>0</td>
<td>4,600,000</td>
<td>1</td>
</tr>
<tr>
<td>2463</td>
<td>5</td>
<td>1928</td>
<td>1</td>
<td>3,250,000</td>
<td>2</td>
</tr>
</tbody>
</table>

- Iterative gradient computation:

$$\Theta_{i+1} = \Theta_i - \alpha X^T (X \Theta_i - Y)$$ (repeat until convergence)

- Matrices $X^T X$ and $X^T Y$ computed once for all iterations
 - Compute $SUM(X_i \cdot X_j)$ for each pair (X_i, X_j) of variables
 - We assume in this talk that all variables are continuous
Compute X^TX when X is the join of input relations

- **Naïve:** compute the join, then $O(m^2)$ sums over the join result ($m = \#query$ variables)
- **Factorized:** compute one optimized join-aggregate query
 - Using our running query

$$Q = \bigoplus_A \bigoplus_B \bigoplus_C \bigoplus_D \bigoplus_E (R[A, B] \otimes S[A, C, E] \otimes T[C, D] \Lambda[A] \otimes \Lambda_B[B] \otimes \Lambda_C[C] \otimes \Lambda_D[D] \otimes \Lambda_E[E])$$

but a different payload ring and different lift factors!
Set of triples $D = (\mathbb{Z}, \mathbb{R}^m, \mathbb{R}^{m \times m})$

\[
\left(\text{COUNT, vector of } SUM(X_i), \text{ matrix of } SUM(X_i \cdot X_j) \right)
\]

\[
a +^D b = (c_a + c_b, sa + sb, Q_a + Q_b)
\]

\[
a \ast^D b = (c_ac_b, cbsa + ca sb, cb Q_a + ca Q_b + sa sb^T + sb sa^T)
\]

\[
0 = (0, 0_{m \times 1}, 0_{m \times m})
\]

\[
1 = (1, 0_{m \times 1}, 0_{m \times m})
\]

Lift factor for variable X_j

\[
\Lambda_{X_j}[x] = (1, s, Q) \text{ where }
\]

\[
s \text{ has all 0s except } s_j = x
\]

\[
Q \text{ has all 0s except } Q_{j,j} = x^2
\]
Performance: Learning Linear Regression Models over Joins

Streaming dataset with 5 relations

The natural join has 43 variables

Matrix with 946 distinct aggregates

Comparing IVM strategies on a common system

- F-IVM (9 views)
- SQL-OPT (9 views)
- DBToaster (3,425 views)
- IVM (951 views)
Relational Data Ring

- Set of factors over D with \cup and \otimes forms a ring of factors
 - Factor 0 maps every tuple to $0 \in D$
 - Factor 1 maps the empty tuple to $1 \in D$, others to $0 \in D$
- Payload: Factors over $D = \mathbb{Z}$ with the same schema!

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>R[A, B]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>$\begin{array}{l} c \ c_1 \rightarrow 1 \ c_2 \rightarrow 1 \end{array}$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$\begin{array}{l} c \ c_3 \rightarrow 1 \end{array}$</td>
</tr>
</tbody>
</table>

Keep results of conjunctive queries in payloads
Consider the conjunctive query:

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]

Compute \(Q \) using factors with relational payloads

\[
Q = \bigoplus_A \bigoplus_B \bigoplus_C \bigoplus_D \bigoplus_E (R[A, B] \otimes S[A, C, E] \otimes T[C, D]
\]

\[
\Lambda_A[A] \otimes \Lambda_B[B] \otimes \Lambda_C[C] \otimes \Lambda_D[D] \otimes \Lambda_E[E]
\]

Lift factors:

\[
\Lambda_X[x] = \begin{cases}
X & \text{if } X \text{ is a free variable} \\
x \rightarrow 1 & \\
() \rightarrow 1 & \text{otherwise}
\end{cases}
\]
Listing Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
List of Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
Listing Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]

\[\begin{align*}
A & \rightarrow R[A,B] \\
\begin{array}{c} \rightarrow \end{array} & (\rightarrow 1) \\
\begin{array}{c} \rightarrow \end{array} & (\rightarrow 1) \\
C & \rightarrow V^{\oplus B}[A] \\
\begin{array}{c} \rightarrow \end{array} & (\rightarrow 1) \\
V^{\oplus A}[] & \\
V^{\oplus B}[A] & V^{\oplus C}[A] \\
R[A, B] & \\
V^{\oplus D}[C] & V^{\oplus E}[A, C] \\
\end{align*} \]

\[\begin{align*}
A & \rightarrow V^{\oplus B}[A] \\
\begin{array}{c} \rightarrow \end{array} & (\rightarrow 1) \\
C & \rightarrow V^{\oplus D}[C] \\
\begin{array}{c} \rightarrow \end{array} & (\rightarrow 1) \\
D & \rightarrow T[C, D] \\
C & \rightarrow S[A, C, E] \\
\end{align*} \]
Listing Representation of Conjunctive Query Results

$$Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D)$$

A B → R[A,B]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
</tr>
<tr>
<td>a₂</td>
<td>b₃</td>
</tr>
<tr>
<td>a₃</td>
<td>b₄</td>
</tr>
</tbody>
</table>

A C E → S[A,C,E]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>e₁</td>
</tr>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>e₂</td>
</tr>
<tr>
<td>a₁</td>
<td>c₂</td>
<td>e₃</td>
</tr>
<tr>
<td>a₂</td>
<td>c₂</td>
<td>e₄</td>
</tr>
</tbody>
</table>

A → V@B[A]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₃</td>
<td>b₄</td>
<td>() → 1</td>
</tr>
</tbody>
</table>

A C → V@E[A,C]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₁</td>
<td>c₂</td>
<td>() → 1</td>
</tr>
</tbody>
</table>

C D → T[C,D]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>d₁</td>
<td>() → 1</td>
</tr>
<tr>
<td>c₂</td>
<td>d₂</td>
<td>() → 1</td>
</tr>
<tr>
<td>c₂</td>
<td>d₃</td>
<td>() → 1</td>
</tr>
<tr>
<td>c₃</td>
<td>d₄</td>
<td>() → 1</td>
</tr>
</tbody>
</table>

C → V@D[C]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>d₁</td>
<td>() → 1</td>
</tr>
<tr>
<td>c₂</td>
<td>d₂</td>
<td>() → 1</td>
</tr>
<tr>
<td>c₃</td>
<td>d₄</td>
<td>() → 1</td>
</tr>
</tbody>
</table>

V@A[]

V@B[A]

V@C[A]

R[A, B]

V@D[C]

V@E[A, C]

S[A, C, E]

A C → V@E[A,C]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>() → 2</td>
</tr>
<tr>
<td>a₁</td>
<td>c₂</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₂</td>
<td>c₂</td>
<td>() → 1</td>
</tr>
</tbody>
</table>
Listing Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
Listing Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>a₂</td>
<td>b₃</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>a₃</td>
<td>b₄</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>e₁</td>
<td>→</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₁</td>
<td>c₁</td>
<td>e₂</td>
<td>→</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₁</td>
<td>c₂</td>
<td>e₃</td>
<td>→</td>
<td>() → 1</td>
</tr>
<tr>
<td>a₂</td>
<td>c₂</td>
<td>e₄</td>
<td>→</td>
<td>() → 1</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c₁</td>
<td>d₁</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>c₂</td>
<td>d₂</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>c₂</td>
<td>d₃</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
<tr>
<td>c₃</td>
<td>d₄</td>
<td>→</td>
<td>() → 1</td>
<td></td>
</tr>
</tbody>
</table>

\[R[A, B] \]

\[V^{@A}[] \]

\[\text{A} \rightarrow V^{@B}[A] \]

\[V^{@B}[A] \]

\[\text{B} \rightarrow b₁ → 1 \]

\[b₂ → 1 \]

\[V^{@C}[A] \]

\[\text{C} \rightarrow V^{@D}[C] \]

\[V^{@D}[C] \]

\[\text{D} \rightarrow d₁ → 1 \]

\[d₂ → 1 \]

\[V^{@E}[A, C] \]

\[\text{T}[C, D] \]

\[S[A, C, E] \]

\[A \rightarrow V^{@C}[A] \]

\[C \rightarrow V^{@E}[A, C] \]

\[A \rightarrow V^{@A}[] \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>a₁ b₁ c₁ d₁ → 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁ b₁ c₂ d₂ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁ b₁ c₂ d₃ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁ b₂ c₁ d₁ → 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁ b₂ c₂ d₂ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁ b₂ c₂ d₃ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₂ b₃ c₂ d₂ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₂ b₃ c₂ d₃ → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Factorized Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]

\[\begin{align*}
A & \rightarrow R[A, B] \\
A & \rightarrow V^{\oplus B}[A] \\
B & \rightarrow V^{\oplus B}[A] \\
C & \rightarrow V^{\oplus D}[C] \\
D & \rightarrow T[C, D] \\
C & \rightarrow V^{\oplus E}[A, C] \\
A & \rightarrow V^{\oplus E}[A, C]
\end{align*} \]
Factorized Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
Factorized Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
Factorized Representation of Conjunctive Query Results

\[Q(A, B, C, D) = R(A, B), S(A, C, E), T(C, D) \]
Performance: Maintenance of Conjunctive Query Results

Star schema

Snowflake schema
Matrix Chain Multiplication

Input: Matrices A_i of size of $p_i \times p_{i+1}$ over some ring D ($i \in [n]$)

- Modeled as factors $A_i[X_i, X_{i+1}]$ with payloads carrying matrix values in D

Problem: Compute their product matrix of size $p_1 \times p_{n+1}$

$$A[X_1, X_{n+1}] = \bigoplus X_2 \cdots \bigoplus X_n \bigotimes_{i \in [n]} A_i[X_i, X_{i+1}] \bigotimes_{j \in [2, n]} \Lambda_{X_j}[X_j]$$

where each lift view $\Lambda_{X_j}[X_j]$ maps any key to payload $\mathbf{1} \in D$.
Factorized Matrix Updates

Matrix changes

- Single-value change \Rightarrow vector outer product
 \[\delta A_i[X_i, X_{i+1}] = u[X_i] \otimes v[X_{i+1}] \]

- Several-values change \Rightarrow sum of vector outer products
 \[\delta A_i[X_i, X_{i+1}] = \biguplus_{k \in [r]} u_k[X_i] \otimes v_k[X_{i+1}] \]

Time complexity for multiplication of n matrices of size $p \times p$:

- Evaluation or IVM: $O(p^3)$
- IVM with factorized updates: $O(p^2)$
Performance: Matrix Chain Multiplication

Update to A_2 expressed as vector outer product

Update to A_2 expressed as sum of r vector outer products
Summary: Factorized Incremental View Maintenance

- Framework for unified IVM of in-database analytics
 - Captures many application scenarios
- Based on 3 shades of factorization
 - Factorized query evaluation
 - Exploits conditional independence among query variables
 - Factorized representation of query results
 - Enables succinct result representation
 - Factorized updates
 - Exploits low-rank tensor decomposition of updates
- Performance: Up to 2 OOM faster and 4 OOM less memory than state-of-the-art IVM techniques
- *Our IVM framework can accommodate any ring*
As My Girl Beyoncé Would Say...

IF YOU LIKED IT
THEN YOU SHOULD PUT A RING ON IT
Thank you!
\[Q_\Delta[] = \bigoplus_A \bigoplus_B \bigoplus_C R[A, B] \otimes S[B, C] \otimes T[C, A] \]