Incremental View Maintenance with Triple-Lock Factorization Benefits

Milos Nikolic and Dan Olteanu
Toronto, October 2017
RelationalAI

In-Database Analytics

- Integrate analytics into relational database engines
- Mathematical optimization, statistics, ML, data mining
- Move the analytics, not the data
- Avoid expensive data export/import
- Exploit database technologies
- Build better models using larger datasets

In-Database Analytics on Streaming Datasets

- Datasets continuously evolve over time
- E.g.: data streams from sensors, social networks, apps
- Real-time analytics over streaming data
- Users want fresh data models
- Long-lived (continuous) queries provide up-to-date results

Challenges: In-Database Real-time Analytics

1. Analytics over relational databases

- Combine different data sources to improve models
- Common practice: join relations, then build models \Rightarrow Inefficient: high redundancy in computation and representation of join results

2. Low-latency processing

- Naïve solution: re-compute query results as data changes \Rightarrow Inefficient: high-latency processing
- Common practice: IVM (Incremental View Maintenance) For query Q, database \mathcal{D}, and change ΔD, compute (the hopefully cheaper) delta ΔQ :

$$
Q(\mathcal{D}+\Delta \mathcal{D})=Q(\mathcal{D})+\Delta Q(\mathcal{D}, \Delta \mathcal{D})
$$

3. Support for complex analytics

Our Approach: Factorized IVM

- "Concrete recipe on how to IVM the next analytic task you may face" (anonymous SIGMOD'18 reviewer)
- Generalized aggregates over joins
- Relations are functions mapping tuples to ring values
- Computation described by application-specific rings
- Triple-lock factorization: keys, payloads, updates
- Factorized Keys $=$ Factorized Query Processing
- Factorized Payloads = Avoid listing representation
- Bulk updates decomposed into sums of joins of factors
- Prototype implemented on top of DBToaster
- Performance: Up to 2 OOM faster than classical IVM and DBToaster and up to 4 OOM less memory than DBToaster

Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

Factorized Ring Computation

- Relations are modeled as factors
- Functions mapping keys (tuples of values) to payloads (ring elements)

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}

Finitely many tuples with non-zero payloads
r_{1} and r_{2} are elements from a ring

- Query language: Subset of FAQ
- Operations: union, join, and variable marginalization
- More expressiveness via application-specific rings
- Query evaluation: FDB/FAQ engine variation

Rings

- A ring $(\mathbf{D},+, *, \mathbf{0}, \mathbf{1})$ is a set \mathbf{D} with two binary ops:

Additive commutativity

$$
a+b=b+a
$$

Additive associativity

$$
(a+b)+c=a+(b+c)
$$

Additive identity
$\mathbf{0}+\mathrm{a}=\mathrm{a}+\mathbf{0}=a$
Additive inverse $\exists-a \in \mathbf{D}: a+(-a)=(-a)+a=\mathbf{0}$
Multiplicative associativity $(a * b) * c=a *(b * c)$
Multiplicative identity

$$
a * \mathbf{1}=\mathbf{1} * a=a
$$

Left and right distributivity

$$
\begin{aligned}
& a *(b+c)=a * b+a * c \text { and } \\
& (a+b) * c=a * c+b * c
\end{aligned}
$$

- Examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^{n}$, matrix ring, polynomial ring

Factor Operations

Factors R, S, and T with payloads from a ring ($\mathbf{D},+, *, \mathbf{0}, \mathbf{1})$:

A	B	\rightarrow	$\mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	r_{2}
B	C	\rightarrow	$\mathrm{T}[B, C]$
b_{1}	c_{1}	\rightarrow	t_{1}
b_{2}	c_{2}	\rightarrow	t_{2}

A	B	\rightarrow	$\mathrm{S}[A, B]$
a_{2}	b_{1}	\rightarrow	s_{1}
a_{3}	b_{2}	\rightarrow	s_{2}

Operations:

Union \uplus

A	B	\rightarrow	$(\mathrm{R} \uplus \mathrm{S})[A, B]$
a_{1}	b_{1}	\rightarrow	r_{1}
a_{2}	b_{1}	\rightarrow	$r_{2}+s_{1}$
a_{3}	b_{2}	\rightarrow	s_{2}

Join \otimes

A	B	C	\rightarrow	$((\mathrm{R} \uplus \mathrm{S}) \otimes \mathrm{T})[A, B, C]$
a_{1}	b_{1}	c_{1}	\rightarrow	$r_{1} * t_{1}$
a_{2}	b_{1}	c_{1}	\rightarrow	$\left(r_{2}+s_{1}\right) * t_{1}$
a_{3}	b_{2}	c_{2}	\rightarrow	$s_{2} * t_{2}$

Marginalization \bigoplus_{A}

$$
\begin{array}{lccc}
\hline \mathrm{B} & \mathrm{C} & \rightarrow\left(\oplus_{\mathrm{A}}(\mathrm{R} \uplus \mathrm{~S}) \otimes \mathrm{T}\right)[B, C] \\
\hline
\end{array}
$$

Example: Aggregate Computation

Compute COUNT over the natural join: $R(A, B), S(A, C, E), T(C, D)$

Let all relations be of size N

View relations as factors mapping tuples to multiplicity from \mathbb{Z}

Join hypergraph

Example: Aggregate Computation

Compute COUNT over the natural join: $R(A, B), S(A, C, E), T(C, D)$

Let all relations be of size N
View relations as factors mapping tuples to multiplicity from \mathbb{Z}

Join hypergraph

Naïve: compute the join and then COUNT

$$
\mathrm{Q}=\bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R} \otimes \mathrm{~S} \otimes \mathrm{~T})
$$

Takes $\mathcal{O}\left(N^{3}\right)$ time!

Example: Aggregate Computation

Compute COUNT over the natural join: $R(A, B), S(A, C, E), T(C, D)$

Let all relations be of size N
View relations as factors mapping tuples to multiplicity from \mathbb{Z}

Join hypergraph

Naïve: compute the join and then COUNT

$$
\mathrm{Q}=\bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R} \otimes \mathrm{~S} \otimes \mathrm{~T})
$$

Takes $\mathcal{O}\left(N^{3}\right)$ time!
Can we compute COUNT in $\mathcal{O}(N)$ time?

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

$\mathrm{V}_{1}[A]=\bigoplus_{B} \mathrm{R}[A, B] \quad$ (marginalize B)

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

$\mathrm{V}_{1}[A]=\bigoplus_{B} \mathrm{R}[A, B] \quad$ (marginalize B$) \quad \mathrm{V}_{2}[A, C]=\bigoplus_{E} \mathrm{~S}[A, C, E] \quad$ (marginalize E)

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

Example: Factorized Aggregate Computation

- Push COUNT past joins to eliminate variables
- Factorized computation à la InsideOut/FDB:

$\mathrm{V}_{1}[A]=\bigoplus_{B} \mathrm{R}[A, B] \quad$ (marginalize B) $\quad \mathrm{V}_{2}[A, C]=\bigoplus_{E} \mathrm{~S}[A, C, E] \quad$ (marginalize E)
$\mathrm{V}_{3}[C]=\bigoplus_{D} \mathrm{~T}[C, D] \quad$ (marginalize D$) \mathrm{V}_{4}[A]=\bigoplus_{C}\left(\mathrm{~V}_{2}[A, C] \otimes \mathrm{V}_{3}[C]\right) \quad$ (marginalize
$\mathrm{Q}=\bigoplus_{A}\left(\mathrm{~V}_{1}[A] \otimes \mathrm{V}_{4}[A]\right) \quad$ (marginalize $D!$
A)

Different Modeling of Relations

- Compute $\operatorname{SUM}(C \cdot D)$ over the join $R(A, B), S(A, C, E)$, $T(C, D)$
- Let the domain of all variables be \mathbb{R}
- Model relations as factors with payloads from \mathbb{R} :
- $\mathrm{R}[a, b]=1$ iff $(a, b) \in R, 0$ otherwise
- $\mathrm{S}[a, c, e]=c$ iff $(a, c, e) \in S, 0$ otherwise
- $\mathrm{T}[c, d]=d$ iff $(c, d) \in T, 0$ otherwise

Different Modeling of Relations

- Compute $\operatorname{SUM}(C \cdot D)$ over the join $R(A, B), S(A, C, E)$, $T(C, D)$
- Let the domain of all variables be \mathbb{R}
- Model relations as factors with payloads from \mathbb{R} :
- $\mathrm{R}[a, b]=1$ iff $(a, b) \in R, 0$ otherwise
- $\mathrm{S}[a, c, e]=c$ iff $(a, c, e) \in S, 0$ otherwise
- $\mathrm{T}[c, d]=d$ iff $(c, d) \in T, 0$ otherwise
- The factor Q expressing the sum is:

$$
\mathrm{Q}=\bigoplus_{A} \bigoplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D])
$$

Factor payloads carry out the summation!

- Same as the COUNT query but with diff modeling and ring!

Modeling Relations as Factors

Eager modeling (as in previous examples)

- Assign payload $\mathrm{R}[t]$ to each tuple t of relation R
- Computed payloads might be discarded later on
- $\mathrm{T}[c, d]=c \cdot d$ computed for every pair (c, d) in T, even for those c-values that do not exist in S
- Non-trivial cost with more complex rings!

Modeling Relations as Factors

Eager modeling (as in previous examples)

- Assign payload $\mathrm{R}[t]$ to each tuple t of relation R
- Computed payloads might be discarded later on
- $\mathrm{T}[c, d]=c \cdot d$ computed for every pair (c, d) in T, even for those c-values that do not exist in S
- Non-trivial cost with more complex rings!

Lazy modeling

- Decompose payload computation into a product of functions of one variable: $f(c, d)=c \cdot d=f_{C}(c) \cdot f_{D}(c)$
- Use them to lift variable values to payloads on demand
- E.g., after ensuring a C-value appears in both S and T

Factorized Computation with Lift Factors

- Factors R, S, and T with payloads from a ring $(\mathbf{D},+, *, \mathbf{0}, \mathbf{1})$
- Each tuple has the payload of $\mathbf{1} \in \mathbf{D}$
- Lift factors $\Lambda_{A}, \Lambda_{B}, \Lambda_{C}, \Lambda_{D}, \Lambda_{E}$ map the domain of a variable to \mathbf{D} COUNT all lift factors map to $1 \in \mathbb{Z}$ $\operatorname{SUM}(\mathbf{C} * \mathrm{D}) \quad \Lambda_{C}[c]=c$ and $\Lambda_{D}[d]=d$; others map to $1 \in \mathbb{R}$

Factorized Computation with Lift Factors

- Factors R, S, and T with payloads from a ring ($\mathbf{D},+, *, \mathbf{0}, \mathbf{1})$
- Each tuple has the payload of $\mathbf{1} \in \mathbf{D}$
- Lift factors $\Lambda_{A}, \Lambda_{B}, \Lambda_{C}, \Lambda_{D}, \Lambda_{E}$ map the domain of a variable to \mathbf{D}

COUNT all lift factors map to $1 \in \mathbb{Z}$
$\operatorname{SUM}\left(\mathbf{C}^{*} \mathbf{D}\right) \quad \Lambda_{C}[c]=c$ and $\Lambda_{D}[d]=d$; others map to $1 \in \mathbb{R}$

- Lift values of a variable just before its marginalization

$$
\begin{aligned}
& \mathrm{V}_{1}[A]=\bigoplus_{B}\left(\mathrm{R}[A, B] \otimes \Lambda_{B}[B]\right) \quad \mathrm{V}_{2}[A, C]=\bigoplus_{E}\left(S[A, C, E] \otimes \Lambda_{E}[E]\right) \\
& \mathrm{V}_{3}[C]=\oplus_{D}\left(T[C, D] \otimes \Lambda_{D}[D]\right) \quad \mathrm{V}_{4}[A]=\oplus_{C}\left(\mathrm{~V}_{2}[A, C] \otimes \mathrm{V}_{3}[C] \otimes \Lambda_{C}[C]\right) \\
& \left.\mathrm{Q}=\oplus_{A}\left(\mathrm{~V}_{1}[A] \otimes \mathrm{V}_{4}[A] \otimes \Lambda_{A}[A]\right)\right)
\end{aligned}
$$

Variable Orders

Variable order for a join query Q

- Rooted tree with one node per variable in Q
- Function dep maps each variable to a subset of its ancestors
- Properties:
- The variables of a factor R lie along the same root-to-leaf path
- $Y \in \operatorname{dep}(X)$ if X and Y are variables of R and Y is ancestor of X
- For every child B of $A, \operatorname{dep}(B) \subseteq \operatorname{dep}(A) \cup\{A\}$
- One variable order for the query $R(A, B), S(A, C, E), T(C, D)$

\[

\]

View Trees

Variable orders guide query evaluation

- Create a factor view at each variable in the order
- $\mathrm{V}^{@ X}$ - view at variable X with schema $\operatorname{dep}(X)$

1. joins the views at its children
2. lifts and marginalizes X if X is not a free (group-by) variable

Variable order

- Views can be materialized if needed

FAQs: Functional Aggregate Queries

We support a subset of FAQs:

$$
\mathrm{Q}\left[X_{1}, \ldots, X_{f}\right]=\bigoplus_{X_{f+1}} \ldots \bigoplus_{X_{m}} \otimes_{i \in[n]} \mathrm{R}_{\mathrm{i}}\left[\mathcal{S}_{i}\right] \otimes_{j \in[f+1, m]} \wedge_{X_{j}}\left[X_{j}\right]
$$

where:

- Factors $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$ are defined over variables X_{1}, \ldots, X_{m}
- X_{1}, \ldots, X_{f} are free variables
- Each factor R_{i} maps keys over schema \mathcal{S}_{i} to payloads in a ring ($\mathbf{D},+, *, \mathbf{0}, \mathbf{1}$)

Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications

Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

Incremental Computation

- Maintain query results with changes in the underlying data

- Incremental View Maintenance (IVM) in databases
- Often with limited query support and poor performance

Incremental View Maintenance with Factors

- Ring payloads simplify incremental computation
- Updates are uniformly represented as factors

A	B	\rightarrow	$\delta \mathrm{R}[A, B]$
a_{1}	b_{1}	\rightarrow	-1
a_{4}	b_{3}	\rightarrow	2

Tuples with positive/negative payloads denote insertions/deletions

- Applying updates: $\mathrm{R}_{\text {new }}[A, B]=\mathrm{R}_{\text {old }}[A, B] \uplus \delta \mathrm{R}[A, B]$
- The query language is closed under taking deltas

$$
\begin{aligned}
& \delta(\mathrm{R} \uplus \mathrm{~S})=\delta \mathrm{R} \uplus \delta \mathrm{~S} \\
& \delta(\mathrm{R} \otimes \mathrm{~S})=(\delta \mathrm{R} \otimes \mathrm{~S}) \uplus(\mathrm{R} \otimes \delta \mathrm{~S}) \uplus(\delta \mathrm{R} \otimes \delta \mathrm{~S}) \\
& \delta\left(\bigoplus_{A} \mathrm{R}\right)=\bigoplus_{A} \delta \mathrm{R}
\end{aligned}
$$

Delta Propagation

Consider our running example Maintain the query result for updates to T

View tree

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta view tree

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Delta view tree

Delta Propagation

Consider our running example
Maintain the query result for updates to T

Updates to Multiple Factors

Maintain the query result for updates to R and T

- 2 propagation paths, 1 extra materialization
- Both paths need to maintain auxiliary views

Delta view tree (for R)

Delta view tree (for T)

Updates to Multiple Factors

Maintain the query result for updates to R and T

- 2 propagation paths, 1 extra materialization
- Both paths need to maintain auxiliary views

Delta view tree (for R)

Delta view tree (for T)

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$.
We may then factorize subsequent updates up the delta tree.

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$.
We may then factorize subsequent updates up the delta tree.

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$.
We may then factorize subsequent updates up the delta tree.

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$.
We may then factorize subsequent updates up the delta tree.

Factorizable Bulk Updates

Assume update $\delta S[A, C, E]$ factorizes as $\delta \mathrm{S}_{\mathrm{A}}[A] \otimes \delta \mathrm{S}_{\mathrm{C}}[C] \otimes \delta \mathrm{S}_{\mathrm{E}}[E]$.
We may then factorize subsequent updates up the delta tree.

Talk Outline

Introduction

Factorized Ring Computation

Incremental View Maintenance

Applications
Learning Linear Regression Models
Factorized Representation of Conjunctive Query Results
Matrix Chain Multiplication

Applications

Aggregates over joins with task-specific rings can capture a host of problems

- learning regression models
- factorized representation of results of conjunctive queries
- matrix chain multiplication
- group-by aggregation (we've seen this already)
- inference in PGMs etc.

Next: zoom in the first three problems above

Learning Linear Regression Models

- Find model parameters Θ best satisfying:

Size (ft²)	\#beds	Year	Region 1			Price ($£$)	Rating
4026	7	1925	1			3,450,000	3
1894		1948	1	0		2,750,	2
5683		935	0	0		6,000,00	
4198		1908	0			4,600,000	1
2463	5 In	4t 928	1	Params		3,25 Out	

- Iterative gradient computation:

$$
\boldsymbol{\Theta}_{i+1}=\boldsymbol{\Theta}_{i}-\alpha \mathbf{X}^{T}\left(\mathbf{X} \boldsymbol{\Theta}_{i}-\mathbf{Y}\right) \quad \text { (repeat until convergence) }
$$

- Matrices $\mathbf{X}^{\top} \mathbf{X}$ and $\mathbf{X}^{\top} \mathbf{Y}$ computed once for all iterations
- Compute $\operatorname{SUM}\left(X_{i} \cdot X_{j}\right)$ for each pair $\left(X_{i}, X_{j}\right)$ of variables
- We assume in this talk that all variables are continuous

Learning Linear Regression Models over Joins

Compute $\mathbf{X}^{\top} \mathbf{X}$ when \mathbf{X} is the join of input relations

- Naïve: compute the join, then $\mathcal{O}\left(m^{2}\right)$ sums over the join result ($m=$ \#query variables)
- Factorized: compute one optimized join-aggregate query
- Using our running query

$$
\begin{aligned}
& \mathrm{Q}=\bigoplus_{A} \oplus_{B} \bigoplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D] \\
& \Lambda_{A}[A] \otimes \Lambda_{B}[B] \otimes \Lambda_{C}[C] \otimes \Lambda_{D}[D] \otimes \Lambda_{E}[E]
\end{aligned}
$$

but a different payload ring and different lift factors!

Linear Regression Ring

Set of triples $\mathbf{D}=\left(\mathbb{Z}, \mathbb{R}^{m}, \mathbb{R}^{m \times m}\right)$
(COUNT, vector of $\operatorname{SUM}\left(X_{i}\right)$, matrix of $\operatorname{SUM}\left(X_{i} \cdot X_{j}\right)$)

$$
\begin{aligned}
a+{ }^{\mathbf{D}} b & =\left(c_{a}+c_{b}, \mathbf{s}_{a}+\mathbf{s}_{b}, \mathbf{Q}_{a}+\mathbf{Q}_{b}\right) \\
a *^{\mathbf{D}} b & =\left(c_{a} c_{b}, c_{b} \mathbf{s}_{a}+c_{a} \mathbf{s}_{b}, c_{b} \mathbf{Q}_{a}+c_{a} \mathbf{Q}_{b}+\mathbf{s}_{a} \mathbf{s}_{b}^{T}+\mathbf{s}_{b} \mathbf{s}_{a}^{T}\right) \\
\mathbf{0} & =\left(0, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m}\right) \\
\mathbf{1} & =\left(1, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m}\right)
\end{aligned}
$$

Lift factor for variable X_{j}
$\Lambda_{X_{j}}[x]=(1, \mathbf{s}, \mathbf{Q})$ where
s has all 0 s except $s_{j}=x$
\mathbf{Q} has all Os except $Q_{j, j}=x^{2}$

	$V^{@ A}[]$	Dense payloads
$V^{@ B}[A]$		

Performance: Learning Linear Regression Models over Joins

Streaming dataset with 5 relations

The natural join has 43 variables

Matrix with 946 distinct aggregates

Comparing IVM strategies on a common system

- F-IVM (9 views)
- SQL-OPT (9 views)
- DBToaster (3, 425 views)

- IVM (951 views)

Relational Data Ring

- Set of factors over \mathbf{D} with \uplus and \otimes forms a ring of factors
- Factor $\mathbf{0}$ maps every tuple to $\mathbf{0} \in \mathbf{D}$
- Factor $\mathbf{1}$ maps the empty tuple to $\mathbf{1} \in \mathbf{D}$, others to $\mathbf{0} \in \mathbf{D}$
- Payload: Factors over $\mathbf{D}=\mathbb{Z}$ with the same schema!

Evaluating Conjunctive Queries using Relational Payloads

- Consider the conjunctive query:

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

- Compute Q using factors with relational payloads

$$
\begin{aligned}
& \mathrm{Q}=\oplus_{A} \oplus_{B} \oplus_{C} \bigoplus_{D} \bigoplus_{E}(\mathrm{R}[A, B] \otimes \mathrm{S}[A, C, E] \otimes \mathrm{T}[C, D] \\
&\left.\Lambda_{A}[A] \otimes \Lambda_{B}[B] \otimes \Lambda_{C}[C] \otimes \Lambda_{D}[D] \otimes \Lambda_{E}[E]\right)
\end{aligned}
$$

- Lift factors:

$$
\Lambda_{x}[x]= \begin{cases}\left\lvert\, \frac{x}{x \rightarrow 1}\right. & \text { if } X \text { is a free variable } \\ \mid() \rightarrow 1 & \text { otherwise }\end{cases}
$$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathrm{B}]$
a_{1}	$b_{1} \rightarrow \overline{() \rightarrow 1}$
a_{1}	$b_{2} \rightarrow() \rightarrow 1$
a_{2}	$b_{3} \rightarrow \overline{() \rightarrow 1}$
a_{3}	$b_{4} \rightarrow \overline{() \rightarrow 1}$

C \quad D \rightarrow T[C,D]
$c_{1} d_{1} \rightarrow() \rightarrow 1$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

$c _ { 3 } \quad d _ { 4 } \rightarrow \longdiv { () \rightarrow 1 }$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

A	B \rightarrow	[A, B]
a_{1}	$b_{1} \rightarrow$	()
a_{1}	$b_{2} \rightarrow$	()
2	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		() $\rightarrow 1$

C D \rightarrow T[C,D]
$c_{1} d_{1} \rightarrow \overline{() \rightarrow 1}$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

$\stackrel{A B \rightarrow R(A, B)}{a_{1} b_{1} \rightarrow \mid(0 \rightarrow 1}$			
$b_{2} \rightarrow 0 \rightarrow 1$	$A \rightarrow v^{\text {® }}$ [$\left.A\right]$		
as $b_{3} \rightarrow 0$	B	${ }^{\bullet 0}[]$	
${ }^{3} b_{4} \rightarrow \frac{0}{0 \rightarrow 1}$	$b^{b_{1} \rightarrow 1}$	1	
$A C E \rightarrow S[A, C, E]$	${ }_{B}^{b_{2}}$	$\mathrm{V}^{\circledR 8}[A] \quad \mathrm{VC}^{\circledR 1}[A]$	
$\xrightarrow{\text { A } C E \rightarrow S(A, C, E)}$	${ }_{\text {a }}{ }^{\text {a }}$	/	
	${ }_{3} \rightarrow \rightarrow \frac{b^{\prime}}{b_{4} \rightarrow 1}$	$\mathrm{R}[A, B]$	
al $c_{1} e_{2} e_{2} \rightarrow(0 \rightarrow 1$ $a_{1} c_{2} e_{3} \rightarrow(0 \rightarrow 1$			
		$\mathrm{V}^{\bullet 0}[C] \quad \mathrm{V}^{\oplus(}[A, C]$	
	D		
$\mathrm{c} \mathrm{D} \rightarrow \mathrm{T}[$ C, D$]$	${ }_{\text {cha }}^{c_{1} \rightarrow{ }_{\text {d }}^{d_{1} \rightarrow 1}}$	$\mathrm{T}[C, D] \quad \mathrm{S}[A, C, E]$	$\mathrm{AC} \rightarrow \mathrm{VE}^{\mathrm{O}}[\mathrm{A}, \mathrm{C}]$
$c_{1} d_{1} \rightarrow \overparen{(0 \rightarrow 1}$	$c_{2 \rightarrow} \rightarrow \substack{d \rightarrow 1 \\ d \rightarrow 1}$		${ }_{a_{1} c_{1} \rightarrow \dagger}^{(0) \rightarrow 2}$
$c_{2} d_{2} \rightarrow 0 \rightarrow 1$			$\mathrm{a}_{1} \mathrm{C}_{2} \rightarrow \frac{\text { () }}{(0 \rightarrow 1}$
$c_{2} d_{3} \rightarrow 0 \rightarrow 1$	$\xrightarrow{c^{3} \rightarrow \int_{\text {d }} \rightarrow 1}$		${ }_{22} \mathrm{Ca}_{2} \rightarrow{ }_{\text {(0) }}$
${ }^{\text {c3 }} \mathrm{d}_{4} \rightarrow 1(0 \rightarrow 1$			

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

${ }_{a_{1} b_{1} \rightarrow{ }_{\text {a }}(0 \rightarrow 1}$				
$a_{1} b_{2} \rightarrow 0_{0 \rightarrow 1}$	$A \rightarrow \mathrm{~V}^{\text {®8 }}$ [${ }^{\text {a }}$			
as $b_{3} \rightarrow 0$	B	${ }^{\text {VA }}[]$		
${ }^{3} b_{4} \rightarrow \frac{0}{0 \rightarrow 1}$	${ }^{b_{1} \rightarrow 1}$			
$A C E \rightarrow S[A, C, E]$	${ }_{B}$	$\mathrm{V}^{\bullet B}[A] \quad \mathrm{VC}^{\bullet c}[A]$	$\mathrm{A} \rightarrow \mathrm{vac}_{[A]}$	
$a_{1} c_{1} e_{1} \rightarrow(0 \rightarrow 1$		$/$	CD	
	$b_{4}+1$	$\mathrm{R}[4, B]$	$\mathrm{c}_{1} \mathrm{~d}_{1} \rightarrow 2$	
$a_{1} c_{2} e_{3} \rightarrow(0) \rightarrow 1$				
$3_{2} c_{2}$ e4 $\left.\rightarrow \frac{0}{0}\right) \rightarrow 1$	$\mathrm{c} \rightarrow \mathrm{veon}^{\text {on }}$ []	$\mathrm{V}^{\oplus 0}[C] \quad \mathrm{V}^{\text {® }}[\mathrm{L}, \mathrm{Cl}]$		
-	$\square^{\text {d }}$	\|		
$\mathrm{c} \mathrm{D} \rightarrow \mathrm{T}[$ c, D$]$	${ }_{\text {d }}^{d_{1}}$	T[C, D] S[A, C, E]		
$c_{1} d_{1} \rightarrow \overparen{(0 \rightarrow 1}$	$c_{2 \rightarrow} \rightarrow d_{2 \rightarrow 1}$		$\mathrm{a}_{1} c_{1} \rightarrow{ }_{0}$	
$c_{2} d_{2} \rightarrow 0 \rightarrow 1$			$\mathrm{a}_{1} \mathrm{C}_{2} \rightarrow \frac{(0)}{(0)}$	
$c_{2} d_{3} \rightarrow 0 \rightarrow 1$	$\xrightarrow{c_{\rightarrow} \rightarrow{ }_{\text {d }} \rightarrow 1}$		${ }_{22} \mathrm{Ca}_{2} \rightarrow{ }_{0}(0 \rightarrow 1$	
${ }^{\text {c3 }} \mathrm{d}_{4} \rightarrow 1(0 \rightarrow 1$				

Listing Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

	B \rightarrow	R[A,
a_{1}	b_{1}	
a_{1}	$b_{2} \rightarrow$	()
a_{2}	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		()

A C E \rightarrow S[A,C,E]
$\begin{array}{lll}a_{1} & c_{1} & e_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{2} & c_{2} & e_{4} \rightarrow \overline{() \rightarrow 1}\end{array}$

C	$\mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}]$
c_{1}	$d_{1} \rightarrow \overline{() \rightarrow 1}$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow \overline{() \rightarrow 1}$

$() \rightarrow \left\lvert\, \begin{aligned} & A \\ & a_{1} \\ & a_{2} \\ & a_{2} \end{aligned}\right.$	B C D
	crell
$\mathrm{A} \rightarrow \mathrm{V}^{\text {® }}$ [A]	
	C D
	$\begin{aligned} & \begin{array}{l} c_{1} d_{1} \rightarrow 2 \\ c_{2} d_{2} \rightarrow 1 \\ c_{2} d_{3} \rightarrow 1 \\ \text { C D } \end{array} \end{aligned}$
$a_{2} \rightarrow$	$c_{2} d_{2} \rightarrow 1$ $c_{2} d_{3} \rightarrow 1$
$\mathrm{AC} \rightarrow \mathrm{V}^{\text {®E }}[\mathrm{A}, \mathrm{C}]$	
$a_{1} c_{1} \rightarrow$	()$\rightarrow 2$
$a_{1} c_{2} \rightarrow$	() $\rightarrow 1$
$a_{2} c_{2} \rightarrow$	() $\rightarrow 1$

$31 / 40$

Factorized Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

A	B \rightarrow	[A,B]
a_{1}	b_{1}	() $\rightarrow 1$
a_{1}	$b_{2} \rightarrow$	() $\rightarrow 1$
2	$b_{3} \rightarrow$	() $\rightarrow 1$
3	b_{4}	() \rightarrow

$A \quad \mathrm{C} \quad \mathrm{E} \rightarrow \mathrm{S}[\mathrm{A}, \mathrm{C}, \mathrm{E}]$
$a_{1} \quad c_{1} \quad e_{1} \rightarrow \overline{() \rightarrow 1}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow \overline{() \rightarrow 1}\end{array}$
$\begin{array}{lll}a_{2} & c_{2} & e_{4} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{ll}\mathrm{C} & \mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}] \\ c_{1} & d_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

$\mathbf{A C} \rightarrow \mathbf{V}^{@ E}[\mathbf{A}, \mathbf{C}]$
$a_{1} c_{1} \rightarrow \overline{() \rightarrow 2}$
$a_{1} c_{2} \rightarrow$
$a_{2} c_{2} \rightarrow$

Factorized Representation of Conjunctive Query Results

$$
Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)
$$

\mathbf{A}	$\mathbf{B} \rightarrow \mathbf{R}[\mathbf{A}, \mathrm{B}]$
a_{1}	$b_{1} \rightarrow \overline{() \rightarrow 1}$
a_{1}	$b_{2} \rightarrow \frac{() \rightarrow 1}{}$
a_{2}	$b_{3} \rightarrow \frac{() \rightarrow 1}{}$
a_{3}	$b_{4} \rightarrow \overline{() \rightarrow 1}$

A	C E \rightarrow	S[A,C,E]
a_{1}	$c_{1} \quad e_{1} \rightarrow$	() $\rightarrow 1$
a_{1}	$c_{1} \quad e_{2} \rightarrow$	() $\rightarrow 1$
a_{1}	$c_{2} \quad e_{3} \rightarrow$	() $\rightarrow 1$
a_{2}	$c_{2} e_{4}$	() $\rightarrow 1$

$\begin{array}{ll}\mathrm{C} & \mathrm{D} \rightarrow \mathrm{T}[\mathrm{C}, \mathrm{D}] \\ c_{1} & d_{1} \rightarrow \overline{() \rightarrow 1}\end{array}$
$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$

Factorized Representation of Conjunctive Query Results

$Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)$

	B \rightarrow	$\mathrm{R}[\mathrm{A}, \mathrm{B}]$
a_{1}	b_{1}	() $\rightarrow 1$
a_{1}	$b_{2} \rightarrow$	() $\rightarrow 1$
a_{2}	$b_{3} \rightarrow$	() $\rightarrow 1$
a_{3}		() $\rightarrow 1$

A C E \rightarrow S[A,C,E]
$\begin{array}{lll}a_{1} & c_{1} & e_{1} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{1} & e_{2} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{1} & c_{2} & e_{3} \rightarrow() \rightarrow 1\end{array}$
$\begin{array}{lll}a_{2} & c_{2} & e_{4} \rightarrow \overline{() \rightarrow 1}\end{array}$

C \quad D \rightarrow T[C,D]
$c_{1} d_{1} \rightarrow() \rightarrow 1$

$c_{2} \quad d_{2} \rightarrow() \rightarrow 1$
$c_{2} \quad d_{3} \rightarrow() \rightarrow 1$
$c _ { 3 } \quad d _ { 4 } \rightarrow \longdiv { () \rightarrow 1 }$
$\mathbf{A} \rightarrow \mathbf{V}^{\text {®B }}[\mathrm{A}]$
$\mathrm{a}_{1} \rightarrow \left\lvert\, \begin{aligned} & \mathrm{B} \\ & b_{1} \rightarrow 1 \\ & b_{2} \rightarrow 1\end{aligned}\right.$

()$\rightarrow \mathbf{V}^{@ A}[]$
()$\rightarrow \begin{array}{l}\mathrm{A} \\ a_{1} \rightarrow 8 \\ a_{2} \rightarrow 2\end{array}$

$\mathbf{A} \rightarrow \mathbf{V}^{\text {©C }}[\mathbf{A}]$
$a_{1} \rightarrow \left\lvert\, \begin{array}{l}\mathrm{C} \\ \mathrm{c}_{1} \rightarrow 2 \\ c_{2} \rightarrow 2\end{array}\right.$
$\mathrm{a}_{2} \rightarrow \|$C $\mathrm{c}_{2} \rightarrow 2$

$\mathbf{A C} \rightarrow \mathbf{V}^{@ E}[\mathbf{A}, \mathbf{C}]$
$a_{1} c_{1} \rightarrow$
$a_{1} c_{2} \rightarrow \overline{() \rightarrow 2}$
$a_{2} c_{2} \rightarrow$

Factorized Representation of Conjunctive Query Results

$Q(A, B, C, D)=R(A, B), S(A, C, E), T(C, D)$

Performance: Maintenance of Conjunctive Query Results

Star schema

Snowflake schema

Matrix Chain Multiplication

Input: Matrices \boldsymbol{A}_{i} of size of $p_{i} \times p_{i+1}$ over some ring $\mathbf{D}(i \in[n])$

- Modeled as factors $\mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]$ with payloads carrying matrix values in D

Problem: Compute their product matrix of size $p_{1} \times p_{n+1}$

$$
\mathrm{A}\left[X_{1}, X_{n+1}\right]=\bigoplus_{X_{2}} \cdots \bigoplus_{x_{n}} \otimes_{i \in[n]} \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right] \otimes_{j \in[2, n]} \wedge_{X_{j}}\left[X_{j}\right]
$$

where each lift view $\Lambda_{X_{j}}\left[X_{j}\right]$ maps any key to payload $\mathbf{1} \in \mathbf{D}$.

Factorized Matrix Updates

Matrix changes

- Single-value change \Rightarrow vector outer product $\delta \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]=\mathrm{u}\left[X_{i}\right] \otimes \mathrm{v}\left[X_{i+1}\right]$
- Several-values change \Rightarrow sum of vector outer products $\delta \mathrm{A}_{\mathrm{i}}\left[X_{i}, X_{i+1}\right]=\uplus_{k \in[r]} \mathrm{u}_{\mathrm{k}}\left[X_{i}\right] \otimes \mathrm{v}_{\mathrm{k}}\left[X_{i+1}\right]$

Time complexity for multiplication of n matrices of size $p \times p$:

- Evaluation or IVM: $O\left(p^{3}\right)$
- IVM with factorized updates: $O\left(p^{2}\right)$

Performance: Matrix Chain Multiplication

Update to A_{2}
expressed as vector
outer product

Summary: Factorized Incremental View Maintenance

- Framework for unified IVM of in-database analytics
- Captures many application scenarios
- Based on 3 shades of factorization
- Factorized query evaluation
- Exploits conditional independence among query variables
- Factorized representation of query results
- Enables succinct result representation
- Factorized updates
- Exploits low-rank tensor decomposition of updates
- Performance: Up to 2 OOM faster and 4 OOM less memory than state-of-the-art IVM techniques
- Our IVM framework can accommodate any ring

As My Girl Beyoncé Would Say..

Thank you!

The Triangle Query

$$
Q_{\Delta}[]=\oplus_{A} \oplus_{B} \oplus_{C} \mathrm{R}[A, B] \otimes \mathrm{S}[B, C] \otimes \mathrm{T}[C, A]
$$

