FDX

Incomplete and Probabilistic Data Management FOX Training, October 2009, Dortmund

Dan Olteanu, Oxford University Computing Laboratory

Purpose of this tutorial

(1) How to represent incomplete/probabilistic data?
(1) Relational vs. XML data

The relational case has received much more attention
(2) Incomplete vs. probabilistic data

Incompleteness modeled by sets of possible instances, instead of just one complete instance
(Discrete) probability distributions over possible instances
(3) Finite vs. infinite sets of possible instances
(2) How to query such data?
(1) Query language

Conjunctive queries, extensions with uncertainty-aware query constructs
(2) Exact vs. approximate query evaluation Complexity, dichotomy results, evaluation techniques
(3) Query optimization

Left out in this tutorial: Uncertainty-aware query languages, constraint processing, probabilistic streams, uncertain data mining, incomplete XML data, ...

Tutorial Outline

The plan: tutorial of 180 minutes (including exercises)
(3) Incomplete relational data (70 min .)
(2) Probabilistic relational data (90 min .)
(3) Probabilistic XML data (20 min.)

1. Incomplete Relational Data

Outline of Part 1

- Sources of incompleteness
- Two approaches to deal with incompleteness
- Representation systems for incomplete data
- Codd tables, v-tables, c-tables, or-sets, world-set decompositions
- Query evaluation on representation systems
- Expressiveness of world-set decompositions
- Complexity of decision problems

Sources of Incompleteness

Single-source problems

- schema level (lack of integrity constraints, poor schema design) uniqueness, referential integrity
- instance level (data entry errors) misspellings, redundancy/duplicates, contradictory values
Multi-source problems
- schema level (heterogeneous data models and schema design) naming and structural conflicts
- instance level (overlapping, contradicting, and inconsistent data) inconsistent aggregating, inconsistent timing

Sources of Incompleteness

Single-source problems at schema level

Scope	Problem	Dirty Data	Remarks
Attribute	illegal	bdate $=30.13 .70$	out-of-range value
Record	dependency	age $=22$, bdate $=12.02 .70$	age $=$ now - bdate
Record type	uniqueness	emp1(SSN=1),emp2(SSN=1)	SSN is unique
Source	ref. integrity	emp(SSN=007)	007 not defined

Sources of Incompleteness

Single-source problems at instance level

Scope	Problem	Dirty Data
Attribute	missing value misspelling	null
cryptic values	Lizpig	
embedded values	DB Prog.	
name="Joe New York"		
misfielded values	city=Germany	
Record	dependencies	city=SB, code=85764
Record type	transpositions duplicates contradictions	emp("Dan Olteanu", "Olteanu D." emp(Olteanu"), emp("D.Olteanu")

How to Cope with Incompleteness? (Approach 1)

Remove all instances (= worlds) that do not satisfy particular criteria.
The hope is to get one (clean) instance.
Data Cleaning deals with detecting and removing errors and inconsistencies from data in order to improve the quality of the data.
It usually consists of the following steps:
(3) Data analysis (to detect the kind of occurring errors) data mining
(3) definition of transformation and mapping rules declarative SQL-based languages
(3) verification

- transformation
(3) backflow of cleaned data

Data cleaning is a complex semiautomatic approach to deal with incomplete data.

How to Cope with Incompleteness? (Approach 2)

Complementary approach: Provide support for
(3) efficient (=succinct) representation of (possibly infinte) sets of worlds.
(2) define processing (query evaluation, dependency chasing) on such succinct representations.
We further discuss this approach.

Example of Incomplete Information

Persons	Name	Salary	Room	Phone
	DAO	40 K	228	$?$
	LRA	10 K	$?$	$?$
	CEK	$?$	226	57328

? usually represented as null value in existing RDBMSs

SQL supports NULL values with constructs like IS (NOT) NULL.
Compare the answers to the following two queries
Q_{1} : SELECT FROM Persons WHERE Room > 226;
Q_{2} : SELECT FROM Persons WHERE Room > 226 OR room IS NULL;

Example of Incomplete Information

There are different types of nulls (?).
(3) existing unknown values, e.g., DAO's phone or CEK's salary
(2) nonexisting values, e.g., LRA's phone
(3) no information is known about, e.g., LRA's room number

Persons	Name	Salary	Room	Phone
	DAO	40 K	228	$?$
	LRA	10 K	$?$	
	CEK	$?$	226	57328

We consider next nulls of the first kind.

Completeness versus Incompleteness

A relation with null values encodes a set of possible worlds.

Persons	Name	Salary	Room	Phone
	DAO	$40 K$	228	$\underline{57332}$
	LRA	10 K	MPIRS-1	
	CEK	$\underline{400 K}$	$\underline{226}$	57328
Persons	Name	Salary	Room	Phone
	DAO	$40 K$	228	$\underline{57332}$
	LRA	$10 K$	MPIRS-2	57328
	CEK	$\underline{500 K}$	226	57

There is an infinite amount of possible worlds!!!

> Represent intensionally the set of possible worlds

What is a representation system? [IL84,AHV95]

System to represent set of alternatives or possible worlds.

- World = (complete) database.
- Representation T (usually called Table)
- Function rep mapping T to the set of possible worlds.

Query evaluation under possible world semantics

Strong Representation Systems [IL84,AHV95]

Language \mathcal{L} (e.g., relational algebra) and table T with $\operatorname{rep}(T)$

- For a query $q \in \mathcal{L}$, collect the set of possible answers

$$
q(\operatorname{rep}(T))=\{q(I) \mid I \in \operatorname{rep}(T)\}
$$

- represent! $q(r e p(T))$ as a table $\bar{q}(T)$

$$
\operatorname{rep}(\bar{q}(T))=q(\operatorname{rep}(T))
$$

If T is any table in a representation system τ and q any query in \mathcal{L}, then

$$
\tau \text { is a strong representation system for } \mathcal{L}
$$

Weak Representation Systems [IL84,AHV95]

\mathcal{L}-Equivalence $\equiv_{\mathcal{L}}$ of Incomplete Databases
Language \mathcal{L}, two incomplete databases \mathcal{I} and \mathcal{J}.

$$
\mathcal{I} \equiv_{\mathcal{L}} \mathcal{J} \Leftrightarrow \forall q \in \mathcal{L}: \bigcap\{q(I) \mid I \in \mathcal{I}\}=\bigcap\{q(J) \mid J \in \mathcal{J}\}
$$

$\bigcap\{q(J) \mid J \in \mathcal{J}\}$ is the certain answer (or the set of sure answer tuples) \mathcal{I} and \mathcal{J} are equivalent if all we can ask for is the certain answer of \mathcal{L}-queries.

If T is any table of a representation system τ and q any query in \mathcal{L}, then
τ is a weak representation system for $\mathcal{L} \Leftrightarrow \operatorname{rep}(\bar{q}(T)) \equiv_{\mathcal{L}} q(\operatorname{rep}(T))$
Corollary: If a system is strong for \mathcal{L}, then it is also weak for \mathcal{L}.

(Codd) Tables

- Codd tables $=$ Finite relations, where tuples can contain variables
- A variable can occur at most once per entire table
- A Codd table T represents the incomplete database (set of possible worlds)

$$
\operatorname{rep}(T)=\{\nu(T) \mid \nu \text { is a valuation of the variables in } T\}
$$

R	A	B	C	
	0	1	x	
	y	z	1	
	2	0	v	

R	A	B	C	R	A	B	C
	0	1	2		0	1	2
	2	0	1		3	0	1
	2	0	0		2	0	5

Querying Codd tables: Selection

R	A	B	C
	0	1	x
	y	z	1
	2	0	v

There is no Codd table representing the set of all possible answers! But there is a (empty) Codd table representing the certain answer!

Codd tables form no strong representation system for selection

Querying Codd tables: Projection

Codd tables form a strong representation system for projection

Querying Codd tables: Product and Join

R	A	B	C	S	D
	0	1	x	S	D
	y	z	1		0
	2	0	v		1

$R \times S$	A	B	C	D
	0	1	x	0
	0	1	x	1
	y	z	1	0
	y	z	1	1
2	0	v	0	
	2	0	v	1

A variable can appear only once in a Codd table!

Codd tables form no strong representation system for product and join

Querying Codd tables: Union

R	A	B	C
	0	1	x
	y	z	1
	2	0	v

$R \cup S$	A	B	C
	0	1	x
	y	z	1
	2	0	v
	1	1	w

A variable can appear only once in a Codd table!

Codd tables form a strong representation system for union

Querying Codd tables: Difference

R	A	B	C
	0	1	x
	y	z	1
	2	0	v

The value of ? can be anything but 0 !
Codd tables form no strong representation system for difference

Certain Answers for Codd tables

For a table T and a query q, the certain answer is

$$
\operatorname{sure}(q, T)=\bigcap\{q(I) \mid I \in \operatorname{rep}(T)\}
$$

- Sure facts appear in the answer for every possible world.
- Compute sure (q, T) by dropping all tuples with variables in $q(r e p(T))$.
- For our Codd table T, sure $\left(\sigma_{A=3}(R), T\right)=\emptyset$, thus representable as Codd table!
- Representing only the sure answer tuples is not sufficent!

R	A	B	C
	0	1	x
	y	z	1
	2	0	v

- Consider $q=\sigma_{A=2}(R)$ and $q^{\prime}=\pi_{A B}(R)$
- Then, $\operatorname{sure}(q, T)=\emptyset \Rightarrow q^{\prime}(\operatorname{sure}(q, T))=\emptyset$
- But, $\operatorname{sure}\left(q^{\prime}(q(\operatorname{rep}(T)))\right)=\{(2,0)\} \neq \emptyset$
- \Rightarrow non-compositional query semantics!

How Weak are Codd tables?

R	A	B	C
	0	1	x
	y	z	1
	2	0	v

- Consider again $q=\sigma_{A=2}(R)$ and $q^{\prime}=\pi_{A B}(R)$
- Choose projection $\bar{q}^{\prime}=q^{\prime}$ and selection \bar{q}_{θ} such that $\bar{q}_{\theta}(T)=\{t \mid t \in T, \forall$ valuations of vars in $\mathrm{t} \mu: \theta(\mu(t))\}$
- Then, $\bar{q}(T)=\{(2,0, v)\}$ and $\overline{q^{\prime} \circ q}(T)=\{(2,0)\}$.

Codd tables form a weak representation system for selections and projections

Quiz: Are Codd tables weak for SPU/SPJ?

Answer

Codd tables form no weak representation system for SPU/SPJ
Idea: Joins require equalities on variables.

Or-set Relations

Codd tables, where each variable takes values from a finite domain.

Census	SSN	Name	Marital Status
	$\{185,785\}$	Smith	$\{1,2\}$
	$\{185,186\}$	Brown	$\{1,2,3,4\}$

Number of represented worlds: $2 \cdot 1 \cdot 2 \cdot 2 \cdot 1 \cdot 4=32$.

Naïve tables (v-tables)

v-tables are Codd tables, where a variable can occur several times.

R	A	B	C
	0	1	x
	x	z	1
	2	0	v

v-tables form a weak representation system for positive relational algebra
Proof Idea

- treat variables in v-tables as constants
- perform standard query evaluation on the v-table

Querying v-tables

R_{1}	A	B	C
	0	1	x
	x	z	1
	2	0	v

R_{3}	C	D
	1	1
	x	z

$\overline{\pi_{B}\left(R_{1}\right)}$	B								
	1	$\overline{R_{2} \bowtie R_{3}}$	A	B	C	$\overline{\mathrm{D}}$	$\overline{R_{1} \cup R_{2}}$	A	B
C									
	z		1	1	x	z	0	1	x
	0		x	z	1	1	x	z	1
				0	v				
						1	1	x	

$\overline{\sigma_{C=1}\left(R_{3}\right)}$	C	D
	1	1

Conditional tables (c-tables) [IL84,Gra91]

A c-(multi)table over schema $\left(R_{1}\left[U_{1}\right], \ldots, R_{k}\left[U_{k}\right]\right)$ is a tuple

$$
\mathcal{T}=\left(R_{1}^{\mathcal{T}}, \ldots, R_{k}^{\mathcal{T}}, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}\right)
$$

where $R_{i}^{\mathcal{T}}$ are v-tables, $\phi^{\mathcal{T}}$ is a global condition, and $\lambda^{\mathcal{T}}$ maps each tuple to a local condition.
Condition: Boolean combination of equalities and inequalities over variables from a finite set and constants.

Semantics

$$
\begin{aligned}
\operatorname{rep}(\mathcal{T}) & =\left\{\left(R_{1}^{\nu(\mathcal{T})}, \ldots, R_{k}^{\nu(\mathcal{T})}\right) \mid \nu: \text { valuation, } \nu\left(\phi^{\mathcal{T}}\right) \text { is true }\right\} \\
R_{i}^{\nu(\mathcal{T})} & =\left\{\nu(t) \mid t \in R_{i}^{\mathcal{T}}, \nu\left(\lambda^{\mathcal{T}}(t)\right) \text { is true }\right\}
\end{aligned}
$$

c-table Example

R	Student	Course	
			$x \neq$ math $\wedge x \neq C S$
	Sally	math	$z=0$
	Sally	$C S$	$z \neq 0$
	Sally	x	
	Alice	bio	$z=0$
	Alice	math	$x=$ physics $\wedge t=0$
	Alice	physics	$x=$ physics $\wedge t \neq 0$

global condition: $x \neq$ math $\wedge x \neq C S$ local conditions: eg, $x=$ physics $\wedge t=0$

Example of a possible world:

R	Student	Course
	Sally	math
	Sally	physics
	Alice	bio
	Alice	math

How Strong are c-tables?

c-tables form a strong representation system for relational algebra
Proof Idea: all relational algebra operations are performed as usual with the addition that the local conditions of the input tuples are copied in the output tuples.

Consider a set of input tuples $\left\{(t, \lambda),\left(t_{1}, \lambda_{1}\right), \ldots,\left(t_{n}, \lambda_{n}\right)\right\}$. Then,

- for selection $\phi, \phi\left(t_{i}, \lambda_{i}\right)=\left(t_{i}, \phi\left(t_{i}\right) \wedge \lambda_{i}\right)$.
- for projection $\pi_{X}, \pi_{X}\left(t_{i}, \lambda_{i}\right)=\left(\pi_{X}\left(t_{i}\right), \lambda_{i}\right)$.
- for product, $\left(t_{i}, \lambda_{i}\right) \times\left(t_{j}, \lambda_{j}\right)=\left(t_{i} \circ t_{j}, \lambda_{i} \wedge \lambda_{j}\right)$
- for difference, $(t, \lambda)-\left\{\left(t_{i}, \lambda_{i}\right)\right\}=\left(t, \lambda \bigwedge \neg \lambda_{i}\right)$, if there is a valuation under which all t_{i} are equal to t; otherwise, the output is (t, λ).

How Strong are c-tables?

Quiz: transitive closure queries on c-tables

Are c-tables strong for transitive closure queries?
Compute the transitive closre of the following binary relation:

T	A	B
	a	b
	x	c
	c	d

Answer

c-tables can represent answers of transitive closure queries

T	A	B
	a	b
	x	c
	c	d

$\overline{t c}(T)$	A	B	
	a	b	
	x	c	
	c	d	
	a	c	$x=\mathrm{b}$
x	d		
	c	c	$x=\mathrm{d}$
a	d	$x=\mathrm{b}$	

World-set Decompositions (WSDs) [OKA08]

Idea: Exploit independence and mutual exclussiveness present in the data.
Properties of WSDs

- As expressive as c-tables, but with better complexity results for standard decision problems (to be discussed a bit later).
- (Corollary) Form a strong representation system for any relational query language.
- Any finite world-set can be represented as a WSD.

Note: The slides on WSDs form extra material and were not used in the tutorial!

Census data scenario

Suppose we have to enter the information from forms like these into a database.

R	SSN	N	M
t_{1}	null	Smith	null
t_{2}	null	Brown	null

Loss of information, e.g.
(1) Smith's SSN is either 185 or 785 .
(2) Data cleaning: SSN is unique: The case that Smith and Brown both have SSN 185 is excluded.

World-set tables

- Tabular representation of set of possible worlds.
- Schema: The fields in a world. Rows: Alternative worlds.

R.t. t_{1}.SSN	R.t. t_{1} N	R.t. $1 . M$	R.t. $t_{2} . S S N$	R.t2.N	R.t. t_{2} M
185	Smith	1	186	Brown	3
185	Smith	1	\perp	\perp	\perp
185	Smith	2	186	Brown	1

- Pad with \perp-values to get uniform arity if not all worlds have the same number of tuples in each relation.
- This represents the world-set
World \#1:

R	$S S N$	N	M
t_{1}	185	Smith	1
t_{2}	186	Brown	3

World \#2:

R	$S S N$	N	M
t_{1}	185	Smith	1

World \#3:

R	$S S N$	N	M
t_{1}	185	Smith	2
t_{2}	186	Brown	1

World-set decompositions (WSDs)

World-set decomposition (WSD) : Product decomposition of the world-set table.

R.t. $t_{1} S S N$	R. $t_{1} \cdot N$	R.t.M	R. $t_{2} . S S N$	R.t2.N	R. $t_{2} \cdot M$
185	Smith	1	186	Brown	1
185	Smith	1	186	Brown	2
185	Smith	1	186	Brown	3
185	Smith	1	186	Brown	4
185	Smith	2	186	Brown	1
			\vdots		
785	Smith	2	186	Brown	4

$R . t_{1} \cdot S S N$
185
785
:---:
Smith
1
2
$R . t_{1} \cdot M$
186
:---:
$R . t_{2} \cdot N$
Brown
:---:
2
3
4

Tabsets: Sets of tables

g-(multi)table: a c-(multi)table where ϕ : conjunction of (in)equalities, λ : maps all tuples to "true"
\mathbf{v}-(multi)table: a g-(multi)table where ϕ : conjunction of equalities
$\mathbf{c -}(\mathrm{g}-, \mathbf{v}-)$ tabset $\mathbf{T}=\left\{\mathcal{I}_{1}, \ldots, \mathcal{T}_{n}\right\}:$ a finite set of $\mathrm{c}-(\mathrm{g}-, \mathrm{v}$ - $)$ multitables.

$$
\operatorname{rep}(\mathbf{T})=\bigcup_{\mathcal{T} \in \mathbf{T}} \operatorname{rep}(\mathcal{T})
$$

Inlining tabsets

g-tabset table (gTST) of a g-tabset \mathbf{A} is a structure (W, λ) :

- Turn each multitable into a single tuple:

$$
\begin{aligned}
W & =\{\operatorname{inline}(\mathcal{A}) \mid \mathcal{A} \in \mathbf{A}\} \\
\operatorname{inline}(\mathcal{A}) & =\operatorname{inline}\left(R_{1}^{\mathcal{A}}\right) \circ \ldots \circ \operatorname{inline}\left(R_{k}^{\mathcal{A}}\right) \\
\operatorname{inline}\left(R^{\mathcal{A}}\right) & =t_{1} \circ \cdots \circ t_{\left|R^{\mathcal{A}}\right|} \circ(\underbrace{\perp, \ldots \ldots \ldots, \perp}_{\left(|R|_{\max }-\left|R^{\mathcal{A}}\right|\right) \cdot a r(R)})
\end{aligned}
$$

- λ : maps each tuple inline (\mathcal{A}) to the global condition of \mathcal{A}

$$
\operatorname{rep}(W, \lambda)=\bigcup\left\{\operatorname{rep}\left(\text { inline }^{-1}(t), \lambda(t)\right) \mid t \in W\right\}
$$

The gTSTs in which λ maps each tuple to a unique common global condition ϕ, i.e. $\lambda: \mapsto \phi$, capture the gTSTs.

Examples

- g-tabset:

(TID)	S	N	M					
t_{1}	x	Smith	1					
t_{2}	y	Brown	3	\quad	(TID)	S	N	M
:---:	:---:	:---:	:---:	:---:				
t_{1}	185	z	2					

- gTST:

$t_{1} . S$	$t_{1} \cdot N$	$t_{1} \cdot M$	$t_{2} . S$	$t_{2} . N$	$t_{2} . M$
x	Smith	1	y	Brown	3
185	z	2	\perp	\perp	\perp

gWSDs: WSDs with global conditions

Let (W, ϕ) be a gTST. Then the pair

$$
\left(\left\{C_{1}, \ldots, C_{m}\right\}, \phi\right)
$$

where $C_{1} \times \ldots \times C_{m}=W$ is called an
attribute-level world-set m-decomposition (m-gWSD) of (W, ϕ).
An attribute-level gWSD is called a tuple-level gWSD if for any two attributes $A, B \in \operatorname{sch}(R)$, and any tuple id t, R.t.A, R.t. B are in the same component schema.

Attribute-level vs. tuple-level gWSDs

Trade-off between succinctness and efficiency

- Any v-tabset representation of the gWSD

$$
\left\{\begin{array}{c|ccc|c}
C_{1} & R \cdot t_{1} \cdot A & & C_{n} & R \cdot t_{n} \cdot A \\
\hline & a_{1} & \ldots & & a_{n} \\
& b_{1} & & & b_{n}
\end{array}\right\}
$$

where the a_{i}, b_{i} are distinct domain values takes space exponential in n.

- Given an attribute-level (g)WSD \mathcal{W}, checking whether the empty world is in $\operatorname{rep}(\mathcal{W})$ is NP-complete.
- Tuple certainty is coNP-hard for attribute-level gWSDs.

gWSDs capture the c-tables: gWSDs \Rightarrow c-tables

Given a tuple-level gWSD $\mathcal{W}=\left(\left\{C_{1}, \ldots, C_{m}\right\}, \phi\right)$ for a g-tabset over schema Σ

- Define a c-multitable over Σ
- Transform the component tuples into tuples of the c-multitable
- Tuples defined in the same component tuple are assigned the same local condition

gWSDs \Rightarrow c-tables

Input: $\mathcal{W}=\left(\left\{C_{1}, \ldots, C_{m}\right\}, \phi\right)$: tuple-level m-gWSD for a g-tabset over schema $\left(R_{1}\left[U_{1}\right], \ldots, R_{k}\left[U_{k}\right]\right)$

- If $\left|C_{i}\right|=0$, then $\operatorname{rep}(\mathcal{W})=\emptyset$. The result is any c-multitable with unsatisfiable global condition, e.g. $(x \neq x)$.
- If $\left|C_{i}\right|>0$ for all i, construct a c-multitable $\mathcal{T}=\left(R_{1}^{\mathcal{T}}, \ldots, R_{k}^{\mathcal{T}}, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}\right)$ over schema $\left(R_{1}\left[U_{1}\right], \ldots, R_{k}\left[U_{k}\right]\right)$.
- The global condition ϕ of the gWSD becomes global condition $\phi^{\mathcal{T}}$ of the c-multitable.

gWSDs \Rightarrow c-tables

- Translate the i th tuple of C_{j} into tuples of the c-multitable

$R^{\mathcal{T}}$	A_{1}	\ldots	A_{k}	λ
		\ldots		
$t_{1 i}$	a_{11}	\ldots	$a_{1 k}$	$\lambda\left(t_{1 i}\right)$
$t_{2 i}$	a_{21}	\ldots	$a_{2 k}$	$\lambda\left(t_{2 i}\right)$
		\ldots		
		\ldots		

- Local conditions $\left(n_{j}=\left|C_{j}\right|\right)$:

$$
\lambda(t)= \begin{cases}\text { true } & n_{j}=1 \\ \left(x_{j}=i\right) & 1 \leq i<n_{j} \text { and } n_{j}>1 \\ \left(x_{j} \neq 1 \wedge \ldots \wedge x_{j} \neq n_{j}-1\right) & i=n_{j} \text { and } n_{j}>1 .\end{cases}
$$

gWSDs \Rightarrow c-multitables: Example

- 1-gWSD $\left(\left\{C_{1}\right\}, \phi\right)$

C_{1}	R.t. $t_{1} \cdot A$	R.t. B	R.t $t_{2} \cdot A$	R.t.t. $\cdot B$
w_{1}	x	y	\perp	\perp
w_{2}	1	z	z	3
w_{3}	1	2	\perp	\perp
$\phi=(x \neq 1) \wedge(x \neq y) \wedge(z \neq 2)$				

- Equivalent c-table ($T, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}$)

T	A	B	$\lambda^{\mathcal{T}}$
	x	y	$\left(x_{1}=1\right)$
	1	z	$\left(x_{1}=2\right)$
	z	3	$\left(x_{1}=2\right)$
	1	2	$\left(x_{1} \neq 1 \wedge x_{1} \neq 2\right)$
$\phi^{\mathcal{T}}=(x \neq 1) \wedge(x \neq y) \wedge(z \neq 2)$			

gWSDs capture the c-tables: c-tables \Rightarrow gWSDs

Given a c-table $\mathcal{T}=\left(T^{\mathcal{T}}, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}\right)$

$T^{\mathcal{T}}$	A_{1}	\ldots	A_{k}	cond
				ϕ^{T}
t_{1}	$x_{1,1}$	\ldots	$x_{1, k}$	λ_{1}^{T}
\vdots	\vdots		\vdots	\vdots
t_{n}	$x_{n, 1}$	\ldots	$x_{n, k}$	$\lambda_{n}^{\mathcal{T}}$

Construct a 1-gWSD $C\left(t_{1} \cdot A_{1}, \ldots, t_{1} . A_{k}, \ldots, t_{n} \cdot A_{1}, \ldots, t_{n} \cdot A_{k}\right)$

- Inline the c-table
- Get rid of the local conditions
- generate the possible valuations of the variables in the local conditions
- it is sufficient to consider only the consistent conjunctions of comparisons between constants and variables from \mathcal{T}

c-tables $\Rightarrow \mathrm{gWSDs}$

- Given a c-table $\mathcal{T}=\left(T^{\mathcal{T}}, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}\right)$

$T^{\mathcal{T}}$	A_{1}	\ldots	A_{k}	cond
				$\phi^{\mathcal{T}}$
t_{1}	$x_{1,1}$	\ldots	$x_{1, k}$	$\lambda_{1}^{\mathcal{T}}$
\vdots	\vdots		\vdots	\vdots
t_{n}	$x_{n, 1}$	\ldots	$x_{n, k}$	$\lambda_{n}^{\mathcal{T}}$

- We define a corresponding 1-gWSD $\left(\{C\}, \phi^{\prime}\right)$ with gTST C of schema

$$
C\left(t_{1} \cdot A_{1}, \ldots, t_{1} \cdot A_{k}, \ldots, t_{n} \cdot A_{1}, \ldots, t_{n} \cdot A_{k}\right)
$$

c-tables $\Rightarrow \mathrm{gWSDs}$

- Given a c-table $\mathcal{T}=\left(T^{\mathcal{T}}, \phi^{\mathcal{T}}, \lambda^{\mathcal{T}}\right)$

$T^{\mathcal{T}}$	A_{1}	\ldots	A_{k}	cond
				$\phi^{\mathcal{T}}$
t_{1}	$x_{1,1}$	\ldots	$x_{1, k}$	$\lambda_{1}^{\mathcal{T}}$
\vdots	\vdots		\vdots	\vdots
t_{n}	$x_{n, 1}$	\ldots	$x_{n, k}$	$\lambda_{n}^{\mathcal{T}}$

- We define a corresponding 1-gWSD $\left(\{C\}, \phi^{\prime}\right)$ with gTST C of schema

$$
C\left(t_{1} \cdot A_{1}, \ldots, t_{1} \cdot A_{k}, \ldots, t_{n} \cdot A_{1}, \ldots, t_{n} \cdot A_{k}\right)
$$

- Let $\mathbf{X}_{\mathcal{T}}$ and $\mathbf{D}_{\mathcal{T}}$ be the set of all variables and the set of all constants in \mathcal{T}, respectively.
- We compute a set of consistent $\Theta=\bigwedge\left\{\tau \theta \tau^{\prime} \mid \tau, \tau^{\prime} \in \mathbf{X}_{\mathcal{T}} \cup \mathbf{D}_{\mathcal{T}}\right\} \quad$ where $\theta \in\{=, \neq\}$ and $\Theta \vDash \phi^{\mathcal{T}}$.

c-tables $\Rightarrow \mathrm{gWSDs}$

- We have tuple $\left\langle s_{1,1}, \ldots, s_{1, k}, \ldots, s_{n, 1}, \ldots, s_{n, k}\right\rangle \in C$ if and only if for some consistent Θ

$$
s_{i, j}=\left\{\begin{array}{lll}
\perp & \ldots & \Theta \not \vDash \lambda_{i}^{\mathcal{T}} \\
c & \ldots & c \in \mathbf{D}_{T}, \Theta \vDash \lambda_{i}^{\mathcal{T}}, \Theta \vDash\left(x_{i, j}=c\right) \\
h\left(\left[x_{i, j}\right]_{=}\right) & \ldots & \Theta \vDash \lambda_{i}^{\mathcal{T}}, \forall c \in \mathbf{D}_{T} \Theta \vDash\left(x_{i, j} \neq c\right)
\end{array}\right.
$$

$h\left(\left[x_{i, j}\right]=\right)$ is the representative element of the equivalent class of $x_{i, j}$ with respect to the equalities given by Θ.

c-tables \Rightarrow gWSDs: Example

- c-table T with global condition ϕ

T	A	B	cond
			$\phi=(x \neq 1) \wedge(x=z)$
t_{1}	x	1	$(x \neq 2)$
t_{2}	z	y	$(y \neq 2)$

- Equivalent 1-gWSD $\left(\{C\}, \phi^{\prime}\right)$

C	$t_{1} \cdot A$	$t_{1} \cdot B$	$t_{2} \cdot A$	$t_{2} \cdot B$	Θ
	\perp	\perp	\perp	\perp	$x=2 \wedge y=2 \wedge z=2$
	\perp	\perp	2	y	$x=2 \wedge z=2 \wedge y \neq 2$
	x	1	\perp	\perp	$x \neq 2 \wedge y=2 \wedge x \neq 1 \wedge x=z$
	x	1	x	y	$x \neq 2 \wedge y \neq 2 \wedge x \neq 1 \wedge x=z$
global cond: $\phi^{\prime}=(x \neq 1) \wedge(x \neq 2) \wedge(y \neq 2)$					

Overview of Representation Systems

System	Is Weak For..	Is Strong For..
Codd tables	PSU	PU
or-sets	PSU	PU
v-tables	PS + UJ	PU
c-tables	PSUJD	PSUJD
(g)WSDs	PSUJD	PSUJD

$\mathrm{P}=$ Projection, $\mathrm{S}=$ Selection, $\mathrm{S}^{+}=\operatorname{pos} \mathrm{S}, \mathrm{U}=$ Union, $\mathrm{J}=$ Join, $\mathrm{D}=$ Difference.

Decision Problems

Input: Representation system \mathcal{W}, instance $I=\left(R^{\prime}\right)$, tuple t.
Decision problems:
Tuple Possibility:
Tuple Certainty:
Instance Possibility:
Instance Certainty:
Tuple Q-Possibility (query Q fixed):
Tuple Q-Certainty (query Q fixed):
Instance Q-Possibility (query Q fixed): $\exists \mathcal{A} \in \operatorname{rep}(\mathcal{W}): R^{\prime}=Q(\mathcal{A})$
Instance Q-Certainty (query Q fixed): $\quad \forall \mathcal{A} \in \operatorname{rep}(\mathcal{W}): R^{\prime}=Q(\mathcal{A})$

Example

R_{1}	Student	Course	
			$x \neq$ math $\wedge x \neq C S$
	Sally	math	$z=0$
	Sally	$C S$	$z \neq 0$
	Sally	x	
	Alice	bio	$z=0$
	Alice	math	$x=$ physics $\wedge t=0$
	Alice	physics	$x=$ physics $\wedge t \neq 0$

- Which of the following tuples is possible/certain? (Alice, bio), (Sally, math), (Sally, bio), (Sally, agriculture), (Banana,bio)
- Which of the following tuples is $\pi_{\text {Student }}(R)$-certain? (Sally), (Alice)
- Which of the following instances is possible/certain? $\emptyset,\{($ Alice,bio $),($ Sally, CS $)\},\{($ Sally, CS $),($ Sally,math $)\}$

Complexity results for decision problems

	v-tables	(g) WSDs	c-tables
Tuple possibility	PTIME	PTIME	NP-compl.
Tuple certainty	PTIME	PTIME	coNP-compl.
Instance possibility	NP-compl.	NP-compl.	NP-compl.
Instance certainty	PTIME	PTIME	coNP-compl.
Tuple q-possibility positive relational algebra	NP-compl.	PTIME	NP-compl.
Tuple q-certainty positive relational algebra	coNP-compl.	PTIME	coNP-compl.
coNP-compl.	coNP-compl.		
Instance q-possibility	NP-compl.	NP-compl.	NP-compl.
Instance q-certainty positive relational algebra	PTIME	PTIMEI.	coNP-compl. coNP-compl.

Results for tuple-level gWSDs from [OKA08], for v- and c-tables from [AKG91,Gra91].

Quiz: Instance possibility for WSDs

Why is instance possibility for WSDs NP-hard?

Answer

Idea: Reduction from Exact Cover by 3-Sets.
Given a set X with $|X|=3 q$ and a collection C of 3 -element subsets of X, the exact cover by 3 -sets problem is to decide whether there exists a subset $C^{\prime} \subseteq C$, such that every element of X occurs in exactly one member of C^{\prime}.

Construction

- The set X is encoded as an instance consisting of a unary relation I_{X} over schema $I_{X}[A]$ with $3 q$ tuples.
- The collection C is represented as a WSD $\mathcal{W}=\left\{C_{1}, \ldots, C_{q}\right\}$ encoding a relation R over schema $R[A]$, where C_{1}, \ldots, C_{q} are component relations.
- The schema of a component C_{i} is $C_{i}\left[R . t_{j+1} \cdot A, R \cdot t_{j+2} \cdot A, R \cdot t_{j+3} \cdot A\right]$, where $j=\left\lfloor\frac{i}{3}\right\rfloor$.
- Each 3-element set $c=\{x, y, z\} \in C$ is encoded as a tuple (x, y, z) in each of the components C_{i}.
The problem of deciding whether there is an exact cover by 3 -sets of X is equivalent to deciding whether $I_{X} \in \operatorname{rep}(\mathcal{W})$.

Example

Consider the set X and the collection of 3-element sets C defined as

$X=\{1,2,3,4,5,6,7,8,9\}$									
C		$\{\{1,5,9\},\{2,5,8\},\{3,4,6\},\{2,7,8\},\{1,6,9\}\}$							
I_{X}	A								
	1								
	2	C_{1}	t_{1}. A	t_{2}. A	t_{3}. A	C_{2}	t_{4}. A	t_{5}. A	t_{6}. A
	3	w_{1}	1	5	9	w_{1}	1	5	9
	4	w_{2}	2	5	8	w_{2}	2	5	8
	5	w_{3}	3	4	6	w_{3}	3	4	6
	6	w_{4}	2	7	8	w_{4}	2	7	8
	7	w_{5}	1	6	9	w_{5}	1	6	9
	8								
	9		C_{3}	t_{7}. A	t_{8}. A	$t 9 . \mathrm{A}$			
			w_{1}	1	5	9			
			w_{2}	2	5	8			
			w_{3}	3	4	6			
			w_{4}	2	7	8			
			w_{5}	1	6	9			

A possible cover of X, or equivalently, a world of $\operatorname{rep}(\mathcal{W})$ equivalent to I_{X}, is the world inline ${ }^{-1}\left(w_{1} \circ w_{3} \circ w_{4}\right)$ or, by resolving the record composition, inline $^{-1}\left(t_{1} \cdot A: 1, t_{2} \cdot A: 5, t_{3} \cdot A: 9, t_{4} \cdot A: 3, t_{5} \cdot A: 4, t_{6}: A: 6, t_{7}: 2, t_{8}: 7, t_{9} \cdot A: 8\right)$.

Literature on Incomplete Relational Data

[AHV95] Abiteboul, Hull, and Vianu. The section on incomplete information from Foundations of Databases. 1995.
[AKG91] Abiteboul, Kanellakis, Grahne. On the representation and querying of sets of possible worlds. TCS 1991.
[Gra91] Grahne. The Problem of Incomplete Information in Relational Databases. LNCS 554, 1991.
[IL84] Imielinski, Lipski. Incomplete information in relational databases. JACM 1984.
[OKA08] Olteanu, Koch, Antova. World-set Decompositions: Expressiveness and Efficient Algorithms. TCS 2008.

2. Probabilistic Relational Data

Outline of Part 2

- From incomplete to probabilistic data
- Complexity of query evaluation
- Dichotomy result for conjunctive queries without self-joins
- Exact evaluation techniques enhanced query plans for probability computation
- Approximate evaluation techniques Monte Carlo simulation, deterministic approximation algorithms

Where do probabilities come from?

- Probabilistic extraction models used to populate probabilistic databases
- OCR on manually filled census forms
- Unreliable sensor readings, ...

Possible segmentations of unstructured text [Sarawagi VLDB'06]
52-A Goregaon West Mumbai 400076

ID	HouseNo	Area	City	PinCode	Event	\mathbf{P}
1	52	Goregaon West	Mumbai	400062	$x=1$	$\mathbf{0 . 1}$
1	$52-\mathrm{A}$	Goregaon	West Mumbai	400062	$x=2$	$\mathbf{0 . 2}$
1	$52-$ A	Goregaon West	Mumbai	400062	$x=3$	$\mathbf{0 . 4}$
1	52	Goregaon	West Mumbai	400062	$x=4$	$\mathbf{0 . 2}$
\ldots	\ldots	\ldots	\ldots	\ldots		\ldots

- Sound confidence values obtained using probabilistic extraction models
- Output a ranked list of possible extractions Empty answer to query: Find movies filmed in 'West Mumbai'
- Several segmentations are required to cover most of the probability mass and improve recall

From Incomplete to Probabilistic Data

Syntax.

Probabilistic databases are c-(multi)tables for finite world-sets where

- There is a finite set of independent random variables $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ with finite domains $\operatorname{Dom}_{x_{1}}, \ldots$, Dom $_{x_{n}}$.
- There is a probability distribution over the assignments of each variable.
- Local conditions (called lineage) are conjunctions of atomic events of the form $x_{i}=a$ or $x_{i} \neq a$ where $x_{i} \in \mathbf{X}$ and $a \in \operatorname{Dom}_{x_{i}}$.

Semantics.

- Possible worlds defined (as for c-tables) by total assignments θ over \mathbf{X}.
- The world defined by assignment θ
- consists of all tuples with lineage ϕ such that $\theta(\phi)=$ true.
- has probability defined by the product of probabilities of each assignment in θ.

A probabilistic database can represent any finite set of possible worlds.

Tuple-independent Probabilistic Databases

Tuple-independent: Tuples have independent lineage, or equivalently

- Each tuple t is associated with a Boolean random variable x_{t}.
- Tuple t is in the world defined by θ if $x_{t}=$ true holds in θ.

Cust			
ckey	cname	V	P
1	Joe	x_{1}	0.1
2	Dan	x_{2}	0.2
3	Li	x_{3}	0.3
4	Mo	x_{4}	0.4

Ord				
okey	ckey	odate	V	P
1	1	$1995-01-10$	y_{1}	0.1
2	1	$1996-01-09$	y_{2}	0.2
3	2	$1994-11-11$	y_{3}	0.3
4	2	$1993-01-08$	y_{4}	0.4
5	3	$1995-08-15$	y_{5}	0.5
6	3	$1996-12-25$	y_{6}	0.6

Item				
okey	disc	ckey	V	P
1	0.1	1	z_{1}	0.1
1	0.2	1	z_{2}	0.2
3	0.4	2	z_{3}	0.3
3	0.1	2	z_{4}	0.4
4	0.4	2	z_{5}	0.5
5	0.1	3	z_{6}	0.6

Tuple-independent Probabilistic Databases

Consider the world \mathcal{A} defined by a total assignment θ :

- x_{1}, y_{1}, z_{1} are true, and
- all other variables are false.

Cust			
ckey	cname	V	P
$\mathbf{1}$	Joe	x_{1}	$\mathbf{0 . 1}$
$\mathbf{2}$	Dan	x_{2}	0.2
$\mathbf{3}$	Li	x_{3}	0.3
$\mathbf{4}$	Mo	x_{4}	0.4

Ord				
okey	ckey	odate	V	P
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1 9 9 5 - 0 1 - 1 0}$	y_{1}	$\mathbf{0 . 1}$
$\mathbf{2}$	1	$1996-01-09$	y_{2}	0.2
3	2	$1994-11-11$	y_{3}	0.3
4	2	$1993-01-08$	y_{4}	0.4
5	3	$1995-08-15$	y_{5}	0.5
6	3	$1996-12-25$	y_{6}	0.6

Item				
okey	disc	ckey	V	P
$\mathbf{1}$	$\mathbf{0 . 1}$	$\mathbf{1}$	z_{1}	$\mathbf{0 . 1}$
$\mathbf{1}$	0.2	1	z_{2}	0.2
3	0.4	2	z_{3}	0.3
3	0.1	2	z_{4}	0.4
4	0.4	2	z_{5}	0.5
5	0.1	3	z_{6}	0.6

Tuple-independent Probabilistic Databases

Consider the world \mathcal{A} defined by a total assignment θ :

- x_{1}, y_{1}, z_{1} are true, and
- all other variables are false.

Probability of $\mathcal{A}=$ the product of the probabilities of the assignments in θ :

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{A})=\operatorname{Pr}(\theta)= & \operatorname{Pr}\left(x_{1}\right) \cdot \operatorname{Pr}\left(y_{1}\right) \cdot \operatorname{Pr}\left(z_{1}\right) . \\
& \Pi\left\{\operatorname{Pr}(\bar{v}) \mid v \in\left\{x_{2}, \ldots, x_{4}, y_{2}, \ldots, y_{6}, z_{2}, \ldots, z_{6}\right\}\right\}
\end{aligned}
$$

Query Evaluation on Probabilistic Databases

- Follows query evaluation on c-tables,
- New challenge: Computation of probabilities of query answers.

Query asking for the dates of discounted orders shipped to customer 'Joe':

Q (odate) :- Cust(ckey,' Joe'), Ord(okey, ckey, odate), Item(okey, disc, ckey), disc >0							
odate	V_{c}	P_{c}	V_{o}	P_{o}	V_{i}	P_{i}	tuple probability
$1995-01-10$	x_{1}	0.1	y_{1}	0.1	z_{1}	0.1	$0.1 \cdot 0.1 \cdot 0.1$
1995-01-10	x_{1}	0.1	y_{1}	0.1	z_{2}	0.2	$0.1 \cdot 0.1 \cdot 0.2$

Probability of (1995-01-10) $=$ Probability of associated lineage $x_{1} y_{1} z_{1}+x_{1} y_{1} z_{2}$.

Challenge: Scalable probability computation for distinct answer tuples.

Complexity Class \#P (Sharp P)

Class of functions $f(x)$ for which there exists a PTIME non-deterministic Turing machine M such that $f(x)=$ number of accepting computations of M on input x.

Informally: \#P is the class of counting problems associated with decision problems in NP [Val79].

- NP-complete problem: SAT $=$ "given formula ϕ, is ϕ satisfiable?"
- \#P-complete problem: \#SAT = "given formula ϕ, count \# of satisfying assignments"

A PTIME machine with a \#P oracle $\left(P^{\# P}\right)$ can solve any problem in PH (polynomial hierarchy) with only one \#P query [Toda91].

Our concern here:

- \#SAT is \#P-complete already for bipartite positive 2DNFs! [Val79,PB83]

Probability computation for positive k-DNF formulas is thus \#P-complete.

\#P-hard Queries

$$
\text { The query } Q:-R(x), S(x, y), T(y) \text { is \#P-hard [Graedel98]. }
$$

Proof idea. Reduction from \#SAT for bipartite positive 2-DNF.

- Given 2-DNF ϕ over variable sets X and Y.
- Tuple-independent tables R and T have one distinct tuple for each variable in X and Y resp.
- Certain table S encodes the clauses of ϕ.
- For each variable, set its probability to $1 / 2$.
- Then, $\# \phi=P(Q) \cdot 2^{|\operatorname{Vars}(\phi)|}$.

Example: $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3}$.

R	A	V	P	S	A	B	T	B	V	P	
	a_{1}	${ }^{1}$	0.5			b_{1}		b_{1}	y_{1}	0.5	
	a_{2}	x_{2}	0.5		a_{1}	b_{2}		b_{2}	y_{2}	0.	
	a_{3}	x_{3}	0.5		a_{2} a_{3}	b_{2} b_{3}		b_{3}	y_{3}	0.	

Dichotomy Property

Discussed here [Dalvi\&Suciu07]:

- Conjunctive queries without self-joins (CQ^{1}) on
- Tuple-independent databases.

$$
\text { The data complexity of any } \mathrm{CQ}^{1} \text { query is either } \mathrm{FP} \text { or \#P-hard. }
$$

- FP is the class of functions that can be solved by a deterministic Turing machine in PTIME.
- Problems in FP can have any output that can be computed in PTIME, not only true/false.

Further tractability results not covered here:

- Dichotomy for queries with self-joins [Dalvi\&Suciu07b]
- Tractable queries with inequalities $(<, \leq, \neq)$ [O.\&Huang08,O.\&Huang09]

Tractable $C Q^{1}$ queries are hierarchical

A query is hierarchical if for any two non-head variables, either their sets of subgoals are disjoint, or one set is contained in the other.

Q(odate) :- Cust(ckey,' Joe'), Ord(okey, ckey, odate), Item(okey, disc, ckey), disc > 0 . is hierarchical; also without odate as head variable.
subgoals(disc) $=\{$ Item $\}$, subgoals(okey) $=\{$ Ord, Item $\}$, subgoals(ckey) $=\{$ Cust, Ord, Item $\}$. It holds that subgoals(disc) \subseteq subgoals(okey) \subseteq subgoals(ckey).

$Q^{\prime}()$:- Cust(ckey,' Joe'), Ord(okey, ckey, odate), Item'(okey, disc), disc > 0 . is not hierarchical: subgoals(okey) $=\left\{\right.$ Ord, $\left.\underline{\underline{\text { Item}}}{ }^{\prime}\right\}$, subgoals(ckey) $=\{$ Ord, Cust $\}$.

Queries with subqueries $R(\ldots, X, \ldots), S(\ldots, X, \ldots, Y, \ldots), T(\ldots, Y, \ldots)$ where X and Y are non-head query variables, are not hierarchical.

Quiz: Hierarchical Queries

- Is $Q:-R(x, y), S(y, a, u), T(y, y, v)$ hierarchical?
- Is $Q:-R(x, y), S(x, y, z), T(x, z)$ hierarchical?
- Is $Q(z):-R(x, y), S(x, y, z), T(x, z)$ hierarchical?
- Is $Q:-R(x, a), S(y, u, x), T(u, y), U(x, y)$ hierarchical?
- Is $Q(x):-R(x, a), S(y, u, x), T(u, y), U(x, y)$ hierarchical?
- Is $Q:-R(x, y, z), S(z, u, y), T(y, v, z, x), U(y)$ hierarchical?

Answer

- Is $Q:-R(x, y), S(y, a, u), T(y, y, v)$ hierarchical? YES
- Is $Q:-R(x, y), S(x, y, z), T(x, z)$ hierarchical?NO
- Is $Q(z):-R(x, y), S(x, y, z), T(x, z)$ hierarchical?YES
- Is $Q:-R(x, a), S(y, u, x), T(u, y), U(x, y)$ hierarchical?NO
- Is $Q(x):-R(x, a), S(y, u, x), T(u, y), U(x, y)$ hierarchical?YES
- Is $Q:-R(x, y, z), S(z, u, y), T(y, v, z, x), U(y)$ hierarchical?YES

Query Evaluation

Subsumed by general probabilistic inference! Move to next topic.

Query Evaluation

Subsumed by general probabilistic inference! Move to next topic.
Hold on! What about scalability?
Two fundamental aspects of databases are relevant here:

- the separation of (very large) data and (small and fixed) query, and
- the use of mature relational query engines.

A Toolbox of Query Evaluation Techniques [Excerpt]

Exact techniques

- MystiQ ("restricted" safe plans), SPROUT ("unrestricted" query plans) query plans for hierarchical queries and tractable queries with inequalities probabilistic inference for hard queries
- Inference algorithms in AI: variable elimination, junction trees, ... Tractable cases for bounded treewidth [Zabiyaka\&Darwiche'06], [Huang\&Darwiche'01]

Approximation techniques with error guarantees for arbitrary queries on c-table-like probabilistic databases

- MystiQ, MayBMS: Monte Carlo simulations using Karp-Luby FPTRAS
- SPROUT: deterministic algorithm that incrementally refines lower \& upper bounds on the output probability using decomposition methods for DNF formulas

Exact Query Evaluation using SPROUT

Cast the query evaluation problem as a decision diagram construction problem.

- Given a query q and a probabilistic database D, each distinct tuple $t \in q(D)$ is associated with a DNF expression ϕ_{t}.
- Probability of t is probability of lineage ϕ_{t}.
- Compile ϕ_{t} into a propositional theory with efficient model counting. We use (among others) binary decision diagrams (BDDs), for which probability computation can be done in one traversal.
- Probability of ϕ_{t} is then the probability of its BDD.

To achieve true scalability, SPROUT employs secondary-storage techniques for BDD construction and probability computation.

- the query structure and DB constraints are used to guide the search for good BDD variable orders
- the BDDs are not materialized, their probabilities are computed on the fly

BDDs

－Commonly used to represent compactly large Boolean expressions．
－Idea：Decompose Boolean expressions using variable elimination and avoid redundancy in the representation．
Variable elimination by Shannon＇s expansion：$\phi=\left.x \cdot \phi\right|_{x}+\left.\bar{x} \cdot \phi\right|_{\bar{x}}$ ．
－Variable order $\pi=$ order of variable eliminations； the same variable order on all root－to－leaf paths \Rightarrow ordered BDDs or OBDDs
－An OBDD for ϕ is uniquely identified by the pair (ϕ, π) ．
－Supports linear－time probability computation．

$$
\begin{aligned}
\operatorname{Pr}(\phi) & =\operatorname{Pr}\left(\left.x \cdot \phi\right|_{x}+\left.\bar{x} \cdot \phi\right|_{\bar{x}}\right) \\
& =\operatorname{Pr}\left(\left.x \cdot \phi\right|_{x}\right)+\operatorname{Pr}\left(\left.\bar{x} \cdot \phi\right|_{\bar{x}}\right) \\
& =\operatorname{Pr}(x) \cdot \operatorname{Pr}\left(\left.\phi\right|_{x}\right)+\operatorname{Pr}(\bar{x}) \cdot \operatorname{Pr}\left(\left.\phi\right|_{\bar{x}}\right)
\end{aligned}
$$

Compilation example

R	A	B	V_{r}
	a_{1}	b_{1}	x_{1}
	a_{2}	b_{1}	x_{2}
	a_{2}	b_{2}	x_{3}
	a_{3}	b_{3}	x_{4}

S	A	C	V_{s}
	a_{1}	c_{1}	y_{1}
	a_{1}	c_{2}	y_{2}
	a_{2}	c_{1}	y_{3}
	a_{4}	c_{2}	y_{4}

$q:-R(A, B), S(A, C)$		
	V_{r}	V_{s}
	x_{1}	y_{1}
	x_{1}	y_{2}
	x_{2}	y_{3}
	x_{3}	y_{3}

Query q has lineage $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$.
Assume variable order: $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.
Task: Construct the $\operatorname{OBDD}(\phi, \pi)$.

Compilation example

Task: Construct $\operatorname{OBDD}(\phi, \pi)$, where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 1: Eliminate variable x_{1} in ϕ.

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 2: Eliminate variable y_{1}.

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 3: Eliminate variable y_{2}.

Some leaves have the same expressions \Rightarrow Represent them only once!

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 4: Merge leaves with the same expressions.

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 5: Eliminate variable x_{2}.

Compilation example

Task：Construct OBDD (ϕ, π) ，where
－$\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
－$\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$ ．
Step 6：Replace $y_{3}+x_{3} y_{3}$ by y_{3} ．

Compilation example

Task：Construct OBDD (ϕ, π) ，where
－$\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
－$\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$ ．
Step 7：Eliminate variable x_{3} ．

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 8: Merge leaves with the same expression y_{3}.

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 9: Eliminate variable y_{3}.

Compilation example

Task: Construct OBDD (ϕ, π), where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- $\pi=x_{1} y_{1} y_{2} x_{2} x_{3} y_{3}$.

Step 10 (final): Merge leaves with the same expression (0 or 1).

Compilation example：Summing Up

OBDD (ϕ, π) has size bounded in the number of literals in ϕ ． （exactly one node per variable in ϕ in our example）

Questions
（1）Is this property shared by the BDDs of many queries？
（2）Can we directly and efficiently construct such succinct BDDs？
© Can we efficiently find such good variable orders？

Compilation example: Summing Up

OBDD (ϕ, π) has size bounded in the number of literals in ϕ. (exactly one node per variable in ϕ in our example)

Questions
(1) Is this property shared by the BDDs of many queries?
(2) Can we directly and efficiently construct such succinct BDDs?

- Can we efficiently find such good variable orders?

The answer is in the affirmative for all of the three questions!

Quiz: BDDs

Task: Construct OBDD $\left(\phi, \pi^{\prime}\right)$, where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- π^{\prime} is a suboptimal order for ϕ (and find such an order)

Answer

Task: Construct OBDD $\left(\phi, \pi^{\prime}\right)$, where

- $\phi=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}$ and
- π^{\prime} is a suboptimal order for ϕ (and find such an order)
$\pi^{\prime}=x_{1} x_{2} y_{1} y_{3} x_{3} y_{2}$ is suboptimal since, eg, the decision on x_{2} does not constrain the values for y_{1} and y_{2}, and hence both true/false cases have to be considered under each branch of x_{2}. See below (the trivial nodes 0 and 1 are ommitted):

Tractable Queries and Succinct BDDs

O\＆Huang08：For any CQ^{1} query q and database $D, \forall t \in q(D)$ ，and lineage ϕ_{t} ，
－There is a variable order π computable in time $O\left(\left|\phi_{t}\right| \cdot \log ^{2}\left|\phi_{t}\right|\right)$ such that
－The OBDD $\left(\phi_{t}, \pi\right)$ has size $O\left(\left|\phi_{t}\right|\right)$ and can be computed in time $O\left(\left|\phi_{t}\right| \cdot \log \left|\phi_{t}\right|\right)$ ．

O\＆Huang09：BDD construction in polynomial time for a large class of tractable conjunctive queries with inequalities．

Good variable orders can be statically derived from the query structure！

Static Query Analysis: Query Signatures

Query signatures for $T Q$ queries capture

- the structures of queries and
- the one/many-to-one/many relationships between the query tables;
- variable orders for succinct BDDs representing compiled lineage!

Query q :- $R(A, B), S(A, C)$ has signature $\left(R^{*} S^{*}\right)^{*}$.

- There may be several R-tuples with the same A-value, hence R^{*}
- There may be several S-tuples with the same A-value, hence S^{*}
- R and S join on A, hence $R^{*} S^{*}$
- There may be several A-values in R and S, hence $\left(R^{*} S^{*}\right)^{*}$

Variable orders captured by $\left(R^{*} S^{*}\right)^{*}\left(x_{i}^{\prime}\right.$'s are from R, y_{j} 's are from $\left.S\right)$: $\left\{\left[x_{1}\left(y_{1} y_{2}\right)\right]\left[\left(x_{2} x_{3}\right) y_{3}\right]\right\},\left\{\left[\left(x_{2} x_{3}\right) y_{3}\right]\left[x_{1}\left(y_{1} y_{2}\right)\right]\right\},\left\{\left[y_{3}\left(x_{3} x_{2}\right)\right]\left[x_{1}\left(y_{2} y_{1}\right)\right]\right\}$, etc.

Deriving Better Query Signatures

Q :- Cust(ckey,' Joe'), Ord(okey, ckey, odate), Item(okey, disc, ckey), disc > 0

Query Q has signature (Cust* $\left.\left(\text { Ord }^{*} \text { Item }{ }^{*}\right)^{*}\right)^{*}$.
Database constraints can make the signature more precise

- If ckey is key in Cust, we obtain the signature (Cust(Ord*Item*)*)*. The many-to-many relationship between Cust and Ord is now one-to-many
- If in addition okey is key in Ord, we obtain the signature (Cust(Ord Item*)*)*.

Query Rewriting under Functional Dependencies (FDs)

FDs on tuple-independent databases can help deriving better query signatures.
Given a set of FDs Σ and a conjunctive query of the form

$$
Q=\pi_{\overline{A_{0}}}\left(\sigma_{\phi}\left(R_{1}\left(\overline{A_{1}}\right) \bowtie \ldots \bowtie R_{n}\left(\overline{A_{n}}\right)\right)\right.
$$

where ϕ is a conjunction of unary predicates. Let $\Sigma_{0}=\operatorname{CLOSURE} E_{\Sigma}\left(\overline{A_{0}}\right)$.
Then, the Boolean query

$$
\pi_{\emptyset}\left(\sigma_{\phi}\left(R_{1}\left(\operatorname{CLOSURE} E_{\Sigma}\left(\overline{A_{1}}\right)-\Sigma_{0}\right) \bowtie \ldots \bowtie R_{n}\left(\operatorname{CLOSURE}_{\Sigma}\left(\overline{A_{n}}\right)-\Sigma_{0}\right)\right)\right)
$$

is called the FD-reduct of Q under Σ.
If there is a sequence of chase steps under Σ that turns Q into a hierarchical query, then the fixpoint of the chase (the FD-reduct) is hierarchical.

Importance of FD-reducts

The signature of Q's FD-reduct captures the structure of Q's lineage.

Two relevant cases
(3) Intractable queries may admit tractable FD-reducts.

Under $X \rightarrow Y$, the hard query Q :- $R(X), S(X, Y), T(Y)$ admits the hierarchical FD-reduct Q^{\prime} :- $R(X, Y), S(X, Y), T(Y)$ with signature $\left((R S)^{*} T\right)^{*}$.
(2) FD-reducts have more precise query signatures.

In the presence of keys ckey and okey, the query
Q(odate) :- Cust(ckey, cname), Ord(okey, ckey, odate), Item(okey, disc, ckey) with signature (Cust $\left.{ }^{*}\left(\mathrm{Ord}^{*} \text { Item }\right)^{*}\right)^{*}$ rewrites into

Q' :- Cust(ckey, cname), Ord(okey, ckey, cname), Item(okey, disc, ckey, cname) with signature (Cust(Ord Item*)*).

Case Study: TPC-H Queries

Considered the conjunctive part of each of the 22 TPC-H queries

- Boolean versions (B)
- with original selection attributes, but without aggregates (O)

Hierarchical in the absence of key constraints

- 8 queries (B)
- 13 queries (O)

Hierarchical in the presence of key constraints

- $8+4$ queries (B)
- $13+4$ queries (O)

In-depth study at
http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

Secondary-storage Query Evaluation

Query evaluation in two logically-independent steps
(1) Compute query answer using a good relational query plan of your choice
(2) Compute probabilities of each distinct answer (or temporary) tuple

Probability computation supported by a new aggregation operator that can

- blend itself in any relational query plan
- be placed on top of the query plan, or partially pushed down past joins
- compute in parallel different fragments of the BDD for the lineage without materializing the BDD.

Our aggregation operator is a sequence of

- aggregation steps. Effect on query signature: $\alpha^{*} \rightarrow \alpha$
- propagation steps. Effect on query signature: $\alpha \beta \rightarrow \alpha$

Example of Probability Computation

$q:-R(A, B), S(A, C)$		
	V_{r}	V_{s}
	x_{1}	y_{1}
	x_{1}	y_{2}
	x_{2}	y_{3}
	x_{3}	y_{3}

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(5) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(5) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

$q:-R(A, B), S(A, C)$		
	V_{r}	V_{s}
	x_{1}	$y_{1}+y_{2}$
	x_{2}	y_{3}
	x_{3}	y_{3}

Example of Probability Computation

$q:-R(A, B), S(A, C)$		
	V_{r}	V_{s}
	x_{1}	y_{1}^{\prime}
	x_{2}	y_{3}
	x_{3}	y_{3}

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(A Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(a) Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

$q:-R(A, B), S(A, C)$	
	V_{r}
	$x_{1} y_{1}^{\prime}$
	$x_{2}^{\prime} y_{3}$

How to proceed?
(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(a) Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?

(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(a) Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(5) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?

(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(a) Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Example of Probability Computation

How to proceed?

(1) Sort query answer by $\left(V_{r}, V_{s}\right)$. Initial signature: $\left(R^{*} S^{*}\right)^{*}$
(2) Apply aggregation step $S^{*} \rightarrow S$. New signature: $\left(R^{*} S\right)^{*}$
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: $(R S)^{*}$
(${ }^{\text {a }}$ Apply propagation step $R S \rightarrow R$. New signature: R^{*}
(3) Apply aggregation step $R^{*} \rightarrow R$. New signature: R

Grouping Aggregations and Propagations

Groups of aggregations/propagations can be computed in one scan.
Definition: A signature has the 1scan property if each of its composite expressions is made up by concatenating signatures with the 1scan property and at least one table without (*).

Examples of 1scan signatures:

- $\left(R S^{*}\right)^{*}$ (last 3 steps in the previous example)
- $R^{*} S^{*}$ (relational product)
- Nation ${ }_{1} \operatorname{Supp}\left(\right.$ Nation $_{2}($ Cust(Ord Item*)*)*)* (conj. part of TPC-H query 7)

For signature α : \#scans $(\alpha)=$ one plus the number of its starred $\left(^{*}\right)$ subexpressions, including itself, without the 1scan property.

Proposition: An operator with signature α needs $\# \operatorname{scans}(\alpha)$ scans.
Examples:

- \#scans $\left(\left(R^{*} S^{*}\right)^{*}\right)=2$
- \#scans $\left(\left(\text { Cust }^{*}\left(\text { Ord }^{*} \text { Item }^{*}\right)^{*}\right)^{*}\right)=3$ BUT \#scans $\left(\left(\text { Cust }\left(\text { Ord Item }{ }^{*}\right)^{*}\right)^{*}\right)=1$

Can we leverage existing results on BDD construction?

- Generic AI compilation techniques construct BDDs whose sizes are exponential in the treewidth of the lineage [Huang\&Darwiche01]
- Conjunctive queries do generate lineage of unbounded treewidth.
- The product query Q :- $R(X), S(Y)$ generates lineage that has a clause for each pair of random variables of R and $S \Rightarrow$ unbounded treewidth.
- Reconciling the two techniques [Jha\&O\&Suciu10]:
- Partition input query+data into a tractable subinstance and a (usually much smaller) hard subinstance.
- Apply scalable database-specific techniques to the tractable part and generic compilation techniques to the hard part.

Query Optimization：Types of Query Plans

Our previous examples considered lazy plans
－probability computation done after the computation of answer tuples
－unrestricted search space for good query plans
－especially desirable when join conditions are selective（eg，TPC－H）！

BUT，we can push down probability computation！

Query Optimization: Types of Query Plans

Eager plans discard duplicates and compute probabilities on each temporary table.

MystiQ's safe plans are special cases of eager plans!

- mirror the hierarchical structure of the query signature
- probability computation restricts join ordering!
- suboptimal join ordering, which is more costly than probability computation

Quiz: Query Optimization

Is the following a valid query plan?

Answer

YES! It is a hybrid plan

- useful when selectivities of different joins differ significantly
- push down probability computation below unselective joins
- keep probability computation on top of selective joins

Approximation Algorithms

－Randomized
－Naïve Monte Carlo simulation
－Improved Monte Carlo
－Deterministic
－Algorithmic guarantees（polynomial time，but with prohibitively large constants）［Trevisan＇04］，［Luby\＆Velickovic＇91］
－Incremental compilation scheme with polynomial time guaranteess for known tractable queries［O．，Huang，Koch＇10］

Naïve Monte Carlo

Input: Boolean formula ϕ with variables $V(\phi)$
Cnt $\leftarrow 0$
repeat N times
randomly choose a total valuation λ over $V(\phi)$
if $\lambda(\phi)=$ true then $C n t=C n t+1$
$P=C n t / N$
return $P /^{*} \approx \operatorname{Pr}(\phi)^{*} /$

$$
\text { If } N \geq(1 / \operatorname{Pr}(\phi)) \times\left(4 \ln (2 / \delta) / \epsilon^{2}\right) \text { then } \operatorname{Pr}[|\operatorname{Pr} \operatorname{Pr}(\phi)-1|>\epsilon]<\delta
$$

Improved Monte Carlo

[KL83], [Graedel, Gurevitch, Hirsch98]
Input: Boolean formula in DNF $\phi=C_{1}+\cdots+C_{m}$ with variables $V(\phi)$
Cnt $\leftarrow 0 ; S \leftarrow \operatorname{Pr}\left(C_{1}\right)+\cdots+\operatorname{Pr}\left(C_{m}\right)$
repeat N times
randomly choose $1 \leq i \leq m$ with probability $\operatorname{Pr}\left(C_{i}\right) / S$
randomly choose a total valuation λ over $V(\phi)$ such that $\lambda\left(C_{i}\right)=$ true
if $\forall 1 \leq j<i: \lambda\left(C_{j}\right)=$ false then $C n t=C n t+1$
$P=C n t / N \times S / 2^{|V(\phi)|}$
return $P / * \approx \operatorname{Pr}(\phi)^{*} /$

$$
\text { If } N \geq(1 / m) \times\left(4 \ln (2 / \delta) / \epsilon^{2}\right) \text { then } \operatorname{Pr}[|P / \operatorname{Pr}(\phi)-1|>\epsilon]<\delta \text {. }
$$

- Slightly modified algorithms are used in MayBMS, MystiQ, and MCDB.
- Veeeery sloooow in practice: SPROUT query plans for tractable queries are about two orders of magnitude faster that the improved (and optimized!) Monte Carlo.

Approximate Evaluation with SPROUT

- Monte Carlo simulations are very powerful and generic only require sampling the formula, no knowledge of its structure
- Why not exploit the structure of the input formula?
- compile it into an equivalent decomposed form that allows for efficient probability computation
- in practice, good approximations are obtained after a few decomposition steps

D-trees: Decomposition Trees of DNF Formulas

Given DNF formula Φ.

- Independent-or \otimes : Partition Φ into independent DNFs $\Phi_{1}, \Phi_{2} \subset \Phi$ such that Φ is equivalent to $\Phi_{1} \vee \Phi_{2}$.
- Independent-and \odot : Partition Φ into independent DNFs $\Phi_{1}, \Phi_{2} \subset \Phi$ such that Φ is equivalent to $\Phi_{1} \wedge \Phi_{2}$.
- Exclusive-or \oplus : Choose a variable x in Φ. Replace Φ by

$$
\bigoplus_{a \in \operatorname{Dom}_{x},\left.\Phi\right|_{x=a} \neq \emptyset}\left(\left.\{\{x=a\}\} \odot \Phi\right|_{x=a}\right)
$$

The decompositions preserve equivalence and are efficient for query lineage.
A d-tree is a formula constructed from \otimes, \oplus, \odot and nonempty DNFs (as "leaves"). If each leaf holds one clause, the d-tree is complete.

D-tree Example

D-tree for DNF

$\Phi=\{\{x=1\},\{x=2, y=1\},\{x=2, z=1\},\{u=1, v=1\},\{u=2\}\}$

Approximation with error guarantees

Underlying ideas [O\&Huang\&Koch10]:

- Incremental refinement of the leaves of a d-tree for a DNF Φ
- stop when desired approximation is reached
- Fast approximation of probabilities at d-tree leaves
- Choose a maximal subset S of pairwise independent clauses in leaf Ψ
- $P(S)$ is a lower bound for $P(\Psi)$
- $\min \left(1, P(S)+\sum_{c \in(\Psi-S)}(P(c))\right)$ is an upper bound for $P(\Psi)$
- Once lower and upper bounds are known at each leaf, the bounds of the entire d-tree can be computed very efficiently
- Additional property of d-tree compilation: Lineage of CQ^{1} queries can be compiled efficiently into complete d -trees.

Literature on Probabilistic Relational Data

[AJKO08] Antova, Jansen, Koch, Olteanu. Fast and Simple Relational Processing of Uncertain Data. ICDE 2008.
[DS07] Dalvi, Suciu Efficient Query Evaluation on Probabilistic Databases. VLDBJ 2007.
[DS07b] Dalvi, Suciu. The Dichotomy of Conjunctive Queries on Probabilistic Structures. PODS 2007.
[DS07c] Dalvi, Suciu. Management of Probabilistic Data: Foundations and Challenges. PODS 2007.
[KLM89] Karp, Luby, Madras. Monte-Carlo Approximation Algorithms for Enumeration Problems. J. Algorithms 1989.
[OH08] Olteanu, Huang. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases. SUM 2008.

Literature on Probabilistic Relational Data

[OH09] OIteanu, Huang. Secondary-Storage Confidence Computation for Conjunctive Queries with Inequalities. SIGMOD 2009.
[OHK09] Olteanu, Huang, Koch. SPROUT: Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic Databases. ICDE 2009.
[OHK10] Olteanu, Huang, Koch. Approximate Confidence Computation in Probabilistic Databases. ICDE 2010.
[RDS07] Ré, Dalvi, Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. ICDE 2007.
[SD07] Sen, Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. ICDE 2007.
[Val79] Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 1979.

3. Probabilistic XML Data

Outline of Part 3

Same topics as in the relational case

- Plethora of data models

Uncertainty constructs of these models very much resemble those from the relational case.

- Expressiveness and succinctness of these models
- Query Evaluation

Tractability for twig queries over various models

Probabilistic XML Data Models

P-document $=$ unordered tree with two types of nodes
(3) ordinary nodes (like in standard XML trees)
(2) distributional nodes
only used to define probability distributions over subsets of their children.
How to generate a random document?
(a1) Each distributional node randomly chooses a subset of its children (for some nodes, the choices are not necessarily independent)
(a2) All of the unchosen nodes and their descendants are deleted
(b) Remove all distributional nodes and connect ordinary nodes to their closest ordinary ancestor

Types of Distributional Nodes

1 det: always (nondeterministically) choose all children
2 ind: independent choice of children
3 mux: mutual exclusive choice of children
4 exp : explicit specification of the probability distribution over subsets of children

Underlying assumption for all types above: Choices of different distributional nodes are probabilistically independent.

5 cie : each node can be associated with a conjunction of (possibly negated) independent event variables.

How to compute the probability of a possible world in a p-document?

- without cie nodes: Product of probabilities of choices made at each distributional node (P).
- with cie nodes: $P \times$ probability of a total valuation over cie variables that defines that world.

Example of a p-document [AKSS09]

Choosing a world defined by our p-document

Choosing a world defined by our p－document

Expressiveness and Succinctness [AKSS09]

Plethora of families of p-documents:

- $\operatorname{PrXML}{ }^{t_{1}, \ldots, t_{n}}=$ those p -documents with distributional nodes t_{1}, \ldots, t_{n} only.
- (dis)allow hierarchies of distributional nodes.

Some results

- PrXML mux is complete
- PrXML ind,mux (non-hier) can be translated efficiently to PrXML mux
- PrXML ind,mux can be translated efficiently to PrXML mux, det - ...

Open: Is PrXML ${ }^{\exp }$ efficiently translatable into PrXML ${ }^{\text {mux, det }}$?

Query Evaluation

Considered queries:

- Syntax: Twig patterns with child/descendant edges and unary conditions at nodes.
- Semantics: Evaluate the twig in each world and return the set of all possible answers

Matches of twigs in trees $=$ mappings that

- are root-preserving,
- are structure-preserving (from pattern to p-document nodes), and
- satisfy all node conditions.

Query evaluation task now also computes probabilities of query answers!

- Compute a function p over all the mappings μ such that $p(\mu)$ is the probability that μ is a match of the input twig in a random world.
- Set of answers includes all μ such that $p(\mu)>0$.

Major challenge: Handling queries with projection!

Complexity Results for Query Evaluation [KS08]

Query\& data complexity: NP-hard to determine whether a twig (without projection) evaluates to a nonempty result in PrXML mux.

Data complexity

- Every nontrivial Boolean twig over PrXMLcie is \#P-complete.
- Efficient evaluation of
- Every Boolean twig over PrXML ${ }^{\text {exp }}$ or PrXML ${ }^{\text {ind, mux. }}$.
- Twigs nested with count (or min, max) aggregates.

Open issues:

- Are there natural restrictions of PrXML cie beyond PrXML mux, ind with efficient query evaluation?
- What happens beyond twigs extended with count aggregates?

Last Quiz: Stochastic Context-free Grammars (SCFGs)

A SCFG is a CFG where there is a probability distribution over the choices in the rhs of each rule. Example:

$$
S \rightarrow a S a(0.6)|b S b(0.3)| \epsilon(0.1)
$$

Consider the problem of computing the probability that a word is in the generated language (can be casted as a trivial query evaluation problem on SCFGs).

Questions:

- How many bits can such probabilities require?
- Can these probabilities be irrational numbers?
K. Etessami and M. Yannakakis. "Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of Nonlinear Equations". JACM: 56(1), 2009.

Answer (1)

The probabilities may require an exponential number of bits (in the size of the SCFG).

$$
\begin{aligned}
& S_{i} \rightarrow S_{i-1} S_{i-1}, \quad 1 \leq i \leq n \\
& S_{0} \rightarrow \epsilon(1 / 2) \mid a(1 / 2)
\end{aligned}
$$

The probability of producing the empty string from nonterminal S_{i} is $2^{-2^{i}}$.

Answer (2)

The probabilities can be irrational numbers.

$$
S \rightarrow \epsilon(1 / 2)|b(2 / 6)| \operatorname{SSSSS}(1 / 6)
$$

The probability of producing the empty string from nonterminal S is x with $x=1 / 2+1 / 6 x^{5}$. This polynomial has no rational roots.

Literature on Probabilistic XML Data

[AKSS09] Abiteboul, Kimelfeld, Senellart, Sagiv. On the Expressiveness of Probabilistic XML Models. VLDBJ 2009.
[KS07] Kimelfeld, Sagiv. Matching Twigs in Probabilistic XML. VLDB 2007.
[KSS08] Kimelfeld, Kosharovsky, Sagiv. Query Efficiency in Probabilistic XML Models. SIGMOD 2008.
[SA07] Senellart, Abiteboul. On the Complexity of Managing Probabilistic XML Data. PODS 2007.

