
Incomplete and Probabilistic Data Management
FOX Training, October 2009, Dortmund

Dan Olteanu, Oxford University Computing Laboratory

Purpose of this tutorial

1 How to represent incomplete/probabilistic data?
1 Relational vs. XML data

The relational case has received much more attention
2 Incomplete vs. probabilistic data

Incompleteness modeled by sets of possible instances, instead of just one
complete instance
(Discrete) probability distributions over possible instances

3 Finite vs. infinite sets of possible instances

2 How to query such data?
1 Query language

Conjunctive queries, extensions with uncertainty-aware query constructs
2 Exact vs. approximate query evaluation

Complexity, dichotomy results, evaluation techniques
3 Query optimization

Left out in this tutorial: Uncertainty-aware query languages, constraint processing,
probabilistic streams, uncertain data mining, incomplete XML data, ...

Tutorial Outline

The plan: tutorial of 180 minutes (including exercises)

1 Incomplete relational data (70 min.)

2 Probabilistic relational data (90 min.)

3 Probabilistic XML data (20 min.)

1. Incomplete Relational Data

Outline of Part 1

Sources of incompleteness

Two approaches to deal with incompleteness

Representation systems for incomplete data
◮ Codd tables, v-tables, c-tables, or-sets, world-set decompositions

Query evaluation on representation systems

Expressiveness of world-set decompositions

Complexity of decision problems

Sources of Incompleteness

Single-source problems

schema level (lack of integrity constraints, poor schema design)
uniqueness, referential integrity

instance level (data entry errors)
misspellings, redundancy/duplicates, contradictory values

Multi-source problems

schema level (heterogeneous data models and schema design)
naming and structural conflicts

instance level (overlapping, contradicting, and inconsistent data)
inconsistent aggregating, inconsistent timing

Sources of Incompleteness

Single-source problems at schema level

Scope Problem Dirty Data Remarks
Attribute illegal bdate=30.13.70 out-of-range value
Record dependency age=22, bdate=12.02.70 age=now - bdate
Record type uniqueness emp1(SSN=1),emp2(SSN=1) SSN is unique
Source ref. integrity emp(SSN=007) 007 not defined

Sources of Incompleteness

Single-source problems at instance level

Scope Problem Dirty Data
Attribute missing value null

misspelling Lizpig
cryptic values DB Prog.
embedded values name=”Joe New York”
misfielded values city=Germany

Record dependencies city=SB, code=85764
Record type transpositions ”D.Olteanu”, ”Olteanu D.”

duplicates emp(”Dan Olteanu”), emp(”D.Olteanu”)
contradictions emp(Olteanu,Koch), emp(Olteanu,Bock)

How to Cope with Incompleteness? (Approach 1)

Remove all instances (= worlds) that do not satisfy particular criteria.
The hope is to get one (clean) instance.
Data Cleaning deals with detecting and removing errors and inconsistencies from
data in order to improve the quality of the data.
It usually consists of the following steps:

1 Data analysis (to detect the kind of occurring errors)
data mining

2 definition of transformation and mapping rules
declarative SQL-based languages

3 verification

4 transformation

5 backflow of cleaned data

Data cleaning is a complex semiautomatic approach to deal with incomplete data.

How to Cope with Incompleteness? (Approach 2)

Complementary approach: Provide support for

1 efficient (=succinct) representation of (possibly infinte) sets of worlds.

2 define processing (query evaluation, dependency chasing) on such succinct
representations.

We further discuss this approach.

Example of Incomplete Information

Persons Name Salary Room Phone
DAO 40K 228 ?
LRA 10K ? ?
CEK ? 226 57328

? usually represented as null value in existing RDBMSs

SQL supports NULL values with constructs like IS (NOT) NULL.

Compare the answers to the following two queries
Q1: SELECT FROM Persons WHERE Room > 226;
Q2: SELECT FROM Persons WHERE Room > 226 OR room IS NULL;

Example of Incomplete Information

There are different types of nulls (?).

1 existing unknown values, e.g., DAO’s phone or CEK’s salary

2 nonexisting values, e.g., LRA’s phone

3 no information is known about, e.g., LRA’s room number

Persons Name Salary Room Phone
DAO 40K 228 ?
LRA 10K ? ?
CEK ? 226 57328

We consider next nulls of the first kind.

Completeness versus Incompleteness

A relation with null values encodes a set of possible worlds.

Persons Name Salary Room Phone
DAO 40K 228 57332
LRA 10K MPIRS-1 ?
CEK 400K 226 57328

Persons Name Salary Room Phone
DAO 40K 228 57332
LRA 10K MPIRS-2 ?
CEK 500K 226 57328

.. and so on.

There is an infinite amount of possible worlds!!!

Represent intensionally the set of possible worlds

What is a representation system? [IL84,AHV95]

System to represent set of alternatives or possible worlds.

World = (complete) database.

Representation T (usually called Table)

Function rep mapping T to the set of possible worlds.

Query evaluation under possible world semantics

T q(T)

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep

q

q

rep

Strong Representation Systems [IL84,AHV95]

Language L (e.g., relational algebra) and table T with rep(T)

For a query q ∈ L, collect the set of possible answers

q(rep(T)) = {q(I) | I ∈ rep(T)}

represent! q(rep(T)) as a table q(T)

rep(q(T)) = q(rep(T))

If T is any table in a representation system τ and q any query in L, then

τ is a strong representation system for L

Weak Representation Systems [IL84,AHV95]

L-Equivalence ≡L of Incomplete Databases
Language L, two incomplete databases I and J .

I ≡L J ⇔ ∀q ∈ L :
⋂
{q(I) | I ∈ I} =

⋂
{q(J) | J ∈ J }

⋂
{q(J) | J ∈ J } is the certain answer (or the set of sure answer tuples)
I and J are equivalent if all we can ask for is the certain answer of L-queries.

If T is any table of a representation system τ and q any query in L, then

τ is a weak representation system for L ⇔ rep(q(T)) ≡L q(rep(T))

Corollary: If a system is strong for L, then it is also weak for L.

(Codd) Tables

Codd tables = Finite relations, where tuples can contain variables

A variable can occur at most once per entire table

A Codd table T represents the incomplete database (set of possible worlds)

rep(T) = {ν(T) | ν is a valuation of the variables in T}

R A B C
0 1 x

y z 1
2 0 v

contains

R A B C
0 1 2
2 0 1
2 0 0

R A B C
0 1 2
3 0 1
2 0 5

. . .

Querying Codd tables: Selection

R A B C
0 1 x

y z 1
2 0 v

σA=3(R)
−→

R A B C
3 z 1

R A B C

There is no Codd table representing the set of all possible answers!
But there is a (empty) Codd table representing the certain answer!

Codd tables form no strong representation system for selection

Querying Codd tables: Projection

R A B C
0 1 x

y z 1
2 0 v

πA(R)
−→

πA(R) A
0
y

2

Codd tables form a strong representation system for projection

Querying Codd tables: Product and Join

R A B C
0 1 x

y z 1
2 0 v

S D
0
1

R×S
−→

R × S A B C D
0 1 x 0
0 1 x 1
y z 1 0
y z 1 1
2 0 v 0
2 0 v 1

A variable can appear only once in a Codd table!

Codd tables form no strong representation system for product and join

Querying Codd tables: Union

R A B C
0 1 x

y z 1
2 0 v

S A B C
1 1 w

R∪S
−→

R ∪ S A B C
0 1 x

y z 1
2 0 v

1 1 w

A variable can appear only once in a Codd table!

Codd tables form a strong representation system for union

Querying Codd tables: Difference

R A B C
0 1 x

y z 1
2 0 v

S A B C
2 0 0

R−S
−→

R − S A B C
0 1 x

y z 1
2 0 ?

The value of ? can be anything but 0!

Codd tables form no strong representation system for difference

Certain Answers for Codd tables
For a table T and a query q, the certain answer is

sure(q, T) =
⋂
{q(I) | I ∈ rep(T)} .

Sure facts appear in the answer for every possible world.

Compute sure(q, T) by dropping all tuples with variables in q(rep(T)).

For our Codd table T , sure(σA=3(R), T) = ∅, thus representable as Codd
table!

Representing only the sure answer tuples is not sufficent!

R A B C
0 1 x

y z 1
2 0 v

Consider q = σA=2(R) and q′ = πAB (R)

Then, sure(q, T) = ∅ ⇒ q′(sure(q, T)) = ∅

But, sure(q′(q(rep(T)))) = {(2, 0)} 6= ∅

⇒ non-compositional query semantics!

How Weak are Codd tables?

R A B C
0 1 x

y z 1
2 0 v

Consider again q = σA=2(R) and q′ = πAB(R)

Choose projection q′ = q′ and selection qθ such that
qθ(T) = {t | t ∈ T , ∀ valuations of vars in t µ : θ(µ(t))}

Then, q(T) = {(2, 0, v)} and q′ ◦ q(T) = {(2, 0)}.

Codd tables form a weak representation system for selections and projections

Quiz: Are Codd tables weak for SPU/SPJ?

Answer

Codd tables form no weak representation system for SPU/SPJ

Idea: Joins require equalities on variables.

Or-set Relations

Codd tables, where each variable takes values from a finite domain.

Census SSN Name Marital Status
{ 185, 785 } Smith { 1, 2 }
{ 185, 186 } Brown { 1, 2, 3, 4 }

Number of represented worlds: 2 · 1 · 2 · 2 · 1 · 4 = 32.

C SSN Name MS
185 Smith 1
185 Brown 1

C SSN Name MS
185 Smith 1
185 Brown 2

C SSN Name MS
185 Smith 1
185 Brown 3

C SSN Name MS
185 Smith 1
185 Brown 4

and so on.

Näıve tables (v-tables)

v-tables are Codd tables, where a variable can occur several times.

R A B C
0 1 x

x z 1
2 0 v

v-tables form a weak representation system for positive relational algebra

Proof Idea

treat variables in v-tables as constants

perform standard query evaluation on the v-table

Querying v-tables

R1 A B C
0 1 x

x z 1
2 0 v

R2 A B C
1 1 x

x z 1

R3 C D
1 1
x z

πB(R1) B
1
z

0

R2 ⊲⊳ R3 A B C D
1 1 x z

x z 1 1

R1 ∪ R2 A B C
0 1 x

x z 1
2 0 v

1 1 x

σC=1(R3) C D
1 1

Conditional tables (c-tables) [IL84,Gra91]

A c-(multi)table over schema (R1[U1], . . . , Rk [Uk]) is a tuple

T = (RT
1 , . . . , RT

k , φT , λT)

where RT
i are v-tables, φT is a global condition , and λT maps each tuple to a

local condition .
Condition: Boolean combination of equalities and inequalities over variables from
a finite set and constants.

Semantics

rep(T) = {(R
ν(T)
1 , . . . , R

ν(T)
k) | ν : valuation, ν(φT) is true}

R
ν(T)
i = {ν(t) | t ∈ RT

i , ν(λT (t)) is true}

c-table Example

R Student Course
x 6= math ∧ x 6= CS

Sally math z = 0
Sally CS z 6= 0
Sally x

Alice bio z = 0
Alice math x = physics ∧ t = 0
Alice physics x = physics ∧ t 6= 0

global condition: x 6= math ∧ x 6= CS

local conditions: eg, x = physics ∧ t = 0

Example of a possible world:

R Student Course
Sally math

Sally physics

Alice bio

Alice math

How Strong are c-tables?

c-tables form a strong representation system for relational algebra

Proof Idea: all relational algebra operations are performed as usual with the
addition that the local conditions of the input tuples are copied in the output
tuples.

Consider a set of input tuples {(t, λ), (t1, λ1), . . . , (tn, λn)}. Then,

for selection φ, φ(ti , λi) = (ti , φ(ti) ∧ λi).

for projection πX , πX (ti , λi) = (πX (ti), λi).

for product, (ti , λi)× (tj , λj) = (ti ◦ tj , λi ∧ λj)

for difference, (t, λ) − {(ti , λi)} = (t, λ
∧
¬λi), if there is a valuation under

which all ti are equal to t; otherwise, the output is (t, λ).

How Strong are c-tables?

T1 B C
x c

T2 B C
y c y=b
z w

T3 A B
a y

πB(T2) B
y y = b
z

T1 ∪ T2 B C
x c
y c y = b
z w

T1 ⊲⊳ T3 A B C
a y c y = x

σB=b(T1 ⊲⊳ T3) A B C
a y c y = b ∧ y = x

T1 − T2 B C
x c y 6= b ∧x 6= z

x c y 6= b ∧w 6= c
x c y = b ∧x 6= b ∧x 6= z

x c y = b ∧x 6= b ∧w 6= c

Quiz: transitive closure queries on c-tables

Are c-tables strong for transitive closure queries?
Compute the transitive closre of the following binary relation:

T A B
a b
x c
c d

Answer

c-tables can represent answers of transitive closure queries

T A B
a b
x c
c d

tc(T) A B
a b
x c
c d
a c x = b
x d
c c x = d
a d x = b

World-set Decompositions (WSDs) [OKA08]

Idea: Exploit independence and mutual exclussiveness present in the data.

Properties of WSDs

As expressive as c-tables, but with better complexity results for standard
decision problems (to be discussed a bit later).

(Corollary) Form a strong representation system for any relational query
language.

Any finite world-set can be represented as a WSD.

Note: The slides on WSDs form extra material and were not used in the tutorial!

Census data scenario

Suppose we have to enter the information from forms like these into a database.

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

R SSN N M
t1 null Smith null
t2 null Brown null

Loss of information, e.g.

1 Smith’s SSN is either 185 or 785.

2 Data cleaning: SSN is unique: The case that Smith and Brown both have
SSN 185 is excluded.

World-set tables

Tabular representation of set of possible worlds.

Schema: The fields in a world. Rows: Alternative worlds.

R.t1.SSN R.t1.N R.t1.M R.t2.SSN R.t2.N R.t2.M

185 Smith 1 186 Brown 3
185 Smith 1 ⊥ ⊥ ⊥
185 Smith 2 186 Brown 1

Pad with ⊥-values to get uniform arity if not all worlds have the same number of
tuples in each relation.

This represents the world-set

World #1: World #2:

R SSN N M

t1 185 Smith 1
t2 186 Brown 3

R SSN N M

t1 185 Smith 1

World #3:

R SSN N M

t1 185 Smith 2
t2 186 Brown 1

World-set decompositions (WSDs)

World-set decomposition (WSD) : Product decomposition of the world-set table.

R.t1.SSN R.t1.N R.t1.M R.t2.SSN R.t2.N R.t2.M

185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

=

R.t1.SSN

185
785

×
R.t1.N

Smith
×

R.t1.M

1
2

×
R.t2.SSN

185
186

×
R.t2.N

Brown
×

R.t2.M

1
2
3
4

Tabsets: Sets of tables

g-(multi)table: a c-(multi)table where φ: conjunction of (in)equalities , λ: maps

all tuples to “true”

v-(multi)table: a g-(multi)table where φ: conjunction of equalities

c-(g-, v-)tabset T = {T1, . . . , Tn}: a finite set of c-(g-, v-)multitables.

rep(T) =
⋃

T ∈T

rep(T)

Inlining tabsets

g-tabset table (gTST) of a g-tabset A is a structure (W , λ):

Turn each multitable into a single tuple:

W = {inline(A) | A ∈ A}

inline(A) = inline(RA
1) ◦ . . . ◦ inline(RA

k)

inline(RA) = t1 ◦ · · · ◦ t|RA| ◦ (⊥, ,⊥
︸ ︷︷ ︸

(|R|max−|RA|)·ar(R)

)

λ: maps each tuple inline(A) to the global condition of A

rep(W , λ) =
⋃

{rep(inline−1(t), λ(t)) | t ∈W }

The gTSTs in which λ maps each tuple to a unique common global condition φ,
i.e. λ : · 7→ φ, capture the gTSTs.

Examples

g-tabset:

(TID) S N M

t1 x Smith 1
t2 y Brown 3

(TID) S N M

t1 185 z 2

gTST:

t1.S t1.N t1.M t2.S t2.N t2.M
x Smith 1 y Brown 3

185 z 2 ⊥ ⊥ ⊥

gWSDs: WSDs with global conditions

Let (W , φ) be a gTST. Then the pair

({C1, . . . , Cm}, φ)

where C1 × . . .× Cm = W is called an
attribute-level world-set m-decomposition (m-gWSD) of (W , φ).

An attribute-level gWSD is called a tuple-level gWSD if for any two attributes
A, B ∈ sch(R), and any tuple id t, R .t.A, R .t.B are in the same component
schema.

Attribute-level vs. tuple-level gWSDs

Trade-off between succinctness and efficiency

Any v-tabset representation of the gWSD

C1 R .t1.A
a1

b1

· · ·
Cn R .tn.A

an

bn

where the ai , bi are distinct domain values takes space exponential in n.

Given an attribute-level (g)WSD W , checking whether the empty world is in
rep(W) is NP-complete.

Tuple certainty is coNP-hard for attribute-level gWSDs.

gWSDs capture the c-tables: gWSDs ⇒ c-tables

Given a tuple-level gWSD W = ({C1, . . . , Cm}, φ) for a g-tabset over schema Σ

Define a c-multitable over Σ

Transform the component tuples into tuples of the c-multitable

Tuples defined in the same component tuple are assigned the same local
condition

gWSDs ⇒ c-tables

Input: W = ({C1, . . . , Cm}, φ): tuple-level m-gWSD for a g-tabset over schema
(R1[U1], . . . , Rk [Uk])

If |Ci | = 0, then rep(W) = ∅. The result is any c-multitable with
unsatisfiable global condition, e.g. (x 6= x).

If |Ci | > 0 for all i , construct a c-multitable T = (RT
1 , . . . , RT

k , φT , λT) over
schema (R1[U1], . . . , Rk [Uk]).

The global condition φ of the gWSD becomes global condition φT of the
c-multitable.

gWSDs ⇒ c-tables

Cj R.t1.A1 . . . R.t1.Ak R.t2.A1 . . . R.t2.Ak R.t3.A1 . . .
...

wi a11 . . . a1k a21 . . . a2k ⊥ . . .
...

Translate the ith tuple of Cj into tuples of the c-multitable

RT A1 . . . Ak λ

. . .
t1i a11 . . . a1k λ(t1i)
t2i a21 . . . a2k λ(t2i)

. . .

. . .

Local conditions (nj = |Cj |):

λ(t) =

true nj = 1

(xj = i) 1 ≤ i < nj and nj > 1

(xj 6= 1 ∧ . . . ∧ xj 6= nj − 1) i = nj and nj > 1.

gWSDs ⇒ c-multitables: Example

1-gWSD ({C1}, φ)

C1 R .t1.A R .t.B R .t2.A R .t2.B
w1 x y ⊥ ⊥
w2 1 z z 3
w3 1 2 ⊥ ⊥

φ = (x 6= 1) ∧ (x 6= y) ∧ (z 6= 2)

Equivalent c-table (T , φT , λT)

T A B λT

x y (x1 = 1)
1 z (x1 = 2)
z 3 (x1 = 2)
1 2 (x1 6= 1 ∧ x1 6= 2)

φT = (x 6= 1) ∧ (x 6= y) ∧ (z 6= 2)

gWSDs capture the c-tables: c-tables ⇒ gWSDs

Given a c-table T = (T T , φT , λT)

T T A1 . . . Ak cond

φT

t1 x1,1 . . . x1,k λT
1

...
...

...
...

tn xn,1 . . . xn,k λT
n

Construct a 1-gWSD C (t1.A1, . . . , t1.Ak , . . . , tn.A1, . . . , tn.Ak)

Inline the c-table

Get rid of the local conditions
◮ generate the possible valuations of the variables in the local conditions
◮ it is sufficient to consider only the consistent conjunctions of comparisons

between constants and variables from T

c-tables ⇒ gWSDs

Given a c-table T = (T T , φT , λT)

T T A1 . . . Ak cond

φT

t1 x1,1 . . . x1,k λT
1

...
...

...
...

tn xn,1 . . . xn,k λT
n

We define a corresponding 1-gWSD ({C}, φ′) with gTST C of schema

C (t1.A1, . . . , t1.Ak , . . . , tn.A1, . . . , tn.Ak)

c-tables ⇒ gWSDs

Given a c-table T = (T T , φT , λT)

T T A1 . . . Ak cond

φT

t1 x1,1 . . . x1,k λT
1

...
...

...
...

tn xn,1 . . . xn,k λT
n

We define a corresponding 1-gWSD ({C}, φ′) with gTST C of schema

C (t1.A1, . . . , t1.Ak , . . . , tn.A1, . . . , tn.Ak)

Let XT and DT be the set of all variables and the set of all constants in T ,
respectively.

We compute a set of consistent Θ =
∧
{τ θ τ ′ | τ, τ ′ ∈ XT ∪DT } where

θ ∈ {=, 6=} and Θ � φT .

c-tables ⇒ gWSDs

TT A1 . . . Ak cond

φT

...
...

...
...

ti xi,1 . . . xi,k λT
i

...
...

...
...

⇒

C . . . ti .A1 . . . ti .Ak . . .
...

. . . si,1 . . . si,k . . .
...

We have tuple 〈s1,1, . . . , s1,k , . . . , sn,1, . . . , sn,k〉 ∈ C if and only if for some
consistent Θ

si ,j =

⊥ . . . Θ 2 λT
i

c . . . c ∈ DT , Θ � λT
i , Θ � (xi ,j = c)

h([xi ,j]=) . . . Θ � λT
i , ∀c ∈ DT Θ � (xi ,j 6= c)

h([xi,j]=) is the representative element of the equivalent class of xi,j with respect to

the equalities given by Θ.

c-tables ⇒ gWSDs: Example

c-table T with global condition φ

T A B cond

φ = (x 6= 1) ∧ (x = z)
t1 x 1 (x 6= 2)
t2 z y (y 6= 2)

Equivalent 1-gWSD ({C}, φ′)

C t1.A t1.B t2.A t2.B Θ
⊥ ⊥ ⊥ ⊥ x = 2 ∧ y = 2 ∧ z = 2
⊥ ⊥ 2 y x = 2 ∧ z = 2 ∧ y 6= 2
x 1 ⊥ ⊥ x 6= 2 ∧ y = 2 ∧ x 6= 1 ∧ x = z

x 1 x y x 6= 2 ∧ y 6= 2 ∧ x 6= 1 ∧ x = z

global cond: φ′ = (x 6= 1) ∧ (x 6= 2) ∧ (y 6= 2)

Overview of Representation Systems

System Is Weak For.. Is Strong For..
Codd tables PSU PU
or-sets PSU PU
v-tables PS+UJ PU
c-tables PSUJD PSUJD
(g)WSDs PSUJD PSUJD

P = Projection, S = Selection, S+ = pos S, U = Union, J = Join, D = Difference.

Decision Problems

Input: Representation system W , instance I = (R I), tuple t.

Decision problems:

Tuple Possibility: ∃A ∈ rep(W) : t ∈ RA

Tuple Certainty: ∀A ∈ rep(W) : t ∈ RA

Instance Possibility: ∃A ∈ rep(W) : R I = RA

Instance Certainty: ∀A ∈ rep(W) : R I = RA

Tuple Q-Possibility (query Q fixed): ∃A ∈ rep(W) : t ∈ Q(A)

Tuple Q-Certainty (query Q fixed): ∀A ∈ rep(W) : t ∈ Q(A)

Instance Q-Possibility (query Q fixed): ∃A ∈ rep(W) : R I = Q(A)

Instance Q-Certainty (query Q fixed): ∀A ∈ rep(W) : R I = Q(A)

Example

R1 Student Course
x 6= math ∧ x 6= CS

Sally math z = 0
Sally CS z 6= 0
Sally x

Alice bio z = 0
Alice math x = physics ∧ t = 0
Alice physics x = physics ∧ t 6= 0

Which of the following tuples is possible/certain?
(Alice,bio), (Sally,math), (Sally,bio), (Sally,agriculture), (Banana,bio)

Which of the following tuples is πStudent(R)-certain? (Sally), (Alice)

Which of the following instances is possible/certain?
∅, {(Alice,bio),(Sally,CS)}, {(Sally,CS),(Sally,math)}

Complexity results for decision problems

v-tables (g)WSDs c-tables

Tuple possibility PTIME PTIME NP-compl.

Tuple certainty PTIME PTIME coNP-compl.

Instance possibility NP-compl. NP-compl. NP-compl.

Instance certainty PTIME PTIME coNP-compl.

Tuple q-possibility NP-compl. NP-compl. NP-compl.
positive relational algebra PTIME PTIME NP-compl.

Tuple q-certainty coNP-compl. coNP-compl. coNP-compl.
positive relational algebra PTIME coNP-compl. coNP-compl.

Instance q-possibility NP-compl. NP-compl. NP-compl.

Instance q-certainty coNP-compl. coNP-compl. coNP-compl.
positive relational algebra PTIME coNP-compl. coNP-compl.

Results for tuple-level gWSDs from [OKA08], for v- and c-tables from
[AKG91,Gra91].

Quiz: Instance possibility for WSDs

Why is instance possibility for WSDs NP-hard?

Answer

Idea: Reduction from Exact Cover by 3-Sets.
Given a set X with |X | = 3q and a collection C of 3-element subsets of X , the
exact cover by 3-sets problem is to decide whether there exists a subset C ′ ⊆ C ,
such that every element of X occurs in exactly one member of C ′.
Construction

The set X is encoded as an instance consisting of a unary relation IX over
schema IX [A] with 3q tuples.

The collection C is represented as a WSD W = {C1, . . . , Cq} encoding a
relation R over schema R [A], where C1, . . . , Cq are component relations.

The schema of a component Ci is
Ci [R .tj+1.A, R .tj+2.A, R .tj+3.A], where j = ⌊ i

3⌋.

Each 3-element set c = {x , y , z} ∈ C is encoded as a tuple (x , y , z) in each
of the components Ci .

The problem of deciding whether there is an exact cover by 3-sets of X is
equivalent to deciding whether IX ∈ rep(W).

Example
Consider the set X and the collection of 3-element sets C defined as

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

C = {{1, 5, 9}, {2, 5, 8}, {3, 4, 6}, {2, 7, 8}, {1, 6, 9}}

IX A
1
2
3
4
5
6
7
8
9

C1 t1.A t2.A t3.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

C2 t4.A t5.A t6.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

C3 t7.A t8.A t9.A
w1 1 5 9
w2 2 5 8
w3 3 4 6
w4 2 7 8
w5 1 6 9

A possible cover of X , or equivalently, a world of rep(W) equivalent to IX , is the
world inline−1(w1 ◦ w3 ◦ w4) or, by resolving the record composition,

inline−1(t1.A : 1, t2.A : 5, t3.A : 9, t4.A : 3, t5.A : 4, t6 : A : 6, t7 : 2, t8 : 7, t9.A : 8).

Literature on Incomplete Relational Data

[AHV95] Abiteboul, Hull, and Vianu. The section on incomplete information
from Foundations of Databases. 1995.

[AKG91] Abiteboul, Kanellakis, Grahne. On the representation and querying of

sets of possible worlds. TCS 1991.

[Gra91] Grahne. The Problem of Incomplete Information in Relational Databases.
LNCS 554, 1991.

[IL84] Imielinski, Lipski. Incomplete information in relational databases. JACM
1984.

[OKA08] Olteanu, Koch, Antova. World-set Decompositions: Expressiveness and

Efficient Algorithms. TCS 2008.

2. Probabilistic Relational Data

Outline of Part 2

From incomplete to probabilistic data

Complexity of query evaluation

Dichotomy result for conjunctive queries without self-joins

Exact evaluation techniques
enhanced query plans for probability computation

Approximate evaluation techniques
Monte Carlo simulation, deterministic approximation algorithms

Where do probabilities come from?

Probabilistic extraction models used to populate probabilistic databases

OCR on manually filled census forms

Unreliable sensor readings, ...

Possible segmentations of unstructured text [Sarawagi VLDB’06]

52-A Goregaon West Mumbai 400 076

ID HouseNo Area City PinCode Event P
1 52 Goregaon West Mumbai 400 062 x = 1 0.1
1 52-A Goregaon West Mumbai 400 062 x = 2 0.2
1 52-A Goregaon West Mumbai 400 062 x = 3 0.4
1 52 Goregaon West Mumbai 400 062 x = 4 0.2
.

Sound confidence values obtained using probabilistic extraction models

Output a ranked list of possible extractions
Empty answer to query: Find movies filmed in ’West Mumbai’

Several segmentations are required to cover most of the probability mass and
improve recall

From Incomplete to Probabilistic Data

Syntax.
Probabilistic databases are c-(multi)tables for finite world-sets where

There is a finite set of independent random variables X = {x1, . . . , xn} with
finite domains Domx1 , . . . , Domxn

.

There is a probability distribution over the assignments of each variable.

Local conditions (called lineage) are conjunctions of atomic events of the
form xi = a or xi 6= a where xi ∈ X and a ∈ Domxi

.

Semantics.

Possible worlds defined (as for c-tables) by total assignments θ over X.

The world defined by assignment θ
◮ consists of all tuples with lineage φ such that θ(φ) = true.
◮ has probability defined by the product of probabilities of each assignment in θ.

A probabilistic database can represent any finite set of possible worlds.

Tuple-independent Probabilistic Databases

Tuple-independent: Tuples have independent lineage, or equivalently

Each tuple t is associated with a Boolean random variable xt .

Tuple t is in the world defined by θ if xt = true holds in θ.

Cust
ckey cname V P
1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord
okey ckey odate V P

1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item
okey disc ckey V P

1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Tuple-independent Probabilistic Databases

Consider the world A defined by a total assignment θ:

x1, y1, z1 are true, and

all other variables are false.

Cust
ckey cname V P
1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord
okey ckey odate V P
1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item
okey disc ckey V P
1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Tuple-independent Probabilistic Databases

Consider the world A defined by a total assignment θ:

x1, y1, z1 are true, and

all other variables are false.

CustA

ckey cname
1 Joe

OrdA

okey ckey odate
1 1 1995-01-10

ItemA

okey disc ckey
1 0.1 1

Probability of A = the product of the probabilities of the assignments in θ:

Pr(A) = Pr(θ) =Pr(x1) · Pr(y1) · Pr(z1)·

Π{Pr(v̄) | v ∈ {x2, . . . , x4, y2, . . . , y6, z2, . . . , z6}}

Query Evaluation on Probabilistic Databases

Follows query evaluation on c-tables,

New challenge: Computation of probabilities of query answers.

Query asking for the dates of discounted orders shipped to customer ’Joe’:

Q(odate) :- Cust(ckey ,′ Joe′), Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0
odate Vc Pc Vo Po Vi Pi tuple probability

1995-01-10 x1 0.1 y1 0.1 z1 0.1 0.1 · 0.1 · 0.1
1995-01-10 x1 0.1 y1 0.1 z2 0.2 0.1 · 0.1 · 0.2

Probability of (1995-01-10) = Probability of associated lineage x1y1z1 + x1y1z2.

Challenge: Scalable probability computation for distinct answer tuples.

Complexity Class #P (Sharp P)

Class of functions f (x) for which there exists a PTIME non-deterministic Turing
machine M such that f (x) = number of accepting computations of M on input x .

Informally: #P is the class of counting problems associated with decision
problems in NP [Val79].

NP-complete problem: SAT = “given formula φ, is φ satisfiable?”

#P-complete problem: #SAT = “given formula φ, count # of satisfying
assignments”

A PTIME machine with a #P oracle (P#P) can solve any problem in PH
(polynomial hierarchy) with only one #P query [Toda91].

Our concern here:

#SAT is #P-complete already for bipartite positive 2DNFs! [Val79,PB83]

Probability computation for positive k-DNF formulas is thus #P-complete.

#P-hard Queries

The query Q : −R(x), S(x , y), T (y) is #P-hard [Graedel98].

Proof idea. Reduction from #SAT for bipartite positive 2-DNF.
Given 2-DNF φ over variable sets X and Y .

Tuple-independent tables R and T have one distinct tuple for each variable in
X and Y resp.

Certain table S encodes the clauses of φ.

For each variable, set its probability to 1/2.

Then, #φ = P(Q) · 2|Vars(φ)|.

Example: φ = x1y1 + x1y2 + x2y2 + x3y3.

R A V P
a1 x1 0.5
a2 x2 0.5
a3 x3 0.5

S A B
a1 b1

a1 b2

a2 b2

a3 b3

T B V P
b1 y1 0.5
b2 y2 0.5
b3 y3 0.5

Dichotomy Property

Discussed here [Dalvi&Suciu07]:

Conjunctive queries without self-joins (CQ1) on

Tuple-independent databases.

The data complexity of any CQ1 query is either FP or #P-hard.

FP is the class of functions that can be solved by a deterministic Turing
machine in PTIME.

Problems in FP can have any output that can be computed in PTIME, not
only true/false.

Further tractability results not covered here:

Dichotomy for queries with self-joins [Dalvi&Suciu07b]

Tractable queries with inequalities (<,≤, 6=) [O.&Huang08,O.&Huang09]

Tractable CQ1 queries are hierarchical

A query is hierarchical if for any two non-head variables, either their sets of
subgoals are disjoint, or one set is contained in the other.

Q(odate) :- Cust(ckey ,′ Joe′), Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0.

is hierarchical; also without odate as head variable.

subgoals(disc)={Item}, subgoals(okey)={Ord, Item}, subgoals(ckey)={Cust, Ord, Item}.

It holds that subgoals(disc)⊆ subgoals(okey)⊆ subgoals(ckey).

ckey

ckey,okey

Ord(okey,ckey,odate) Item(okey,disc,ckey)

Cust(ckey,’Joe’)

Q ′() :- Cust(ckey ,′ Joe′), Ord(okey , ckey , odate), Item′(okey , disc), disc > 0.

is not hierarchical: subgoals(okey)={Ord, Item′}, subgoals(ckey) = {Ord, Cust}.

Queries with subqueries R(. . . , X , . . .), S(. . . , X , . . . , Y , . . .), T (. . . , Y , . . .)

where X and Y are non-head query variables, are not hierarchical.

Quiz: Hierarchical Queries

Is Q : −R(x , y), S(y , a, u), T (y , y , v) hierarchical?

Is Q : −R(x , y), S(x , y , z), T (x , z) hierarchical?

Is Q(z) : −R(x , y), S(x , y , z), T (x , z) hierarchical?

Is Q : −R(x , a), S(y , u, x), T (u, y), U(x , y) hierarchical?

Is Q(x) : −R(x , a), S(y , u, x), T (u, y), U(x , y) hierarchical?

Is Q : −R(x , y , z), S(z, u, y), T (y , v , z, x), U(y) hierarchical?

Answer

Is Q : −R(x , y), S(y , a, u), T (y , y , v) hierarchical? YES

Is Q : −R(x , y), S(x , y , z), T (x , z) hierarchical?NO

Is Q(z) : −R(x , y), S(x , y , z), T (x , z) hierarchical?YES

Is Q : −R(x , a), S(y , u, x), T (u, y), U(x , y) hierarchical?NO

Is Q(x) : −R(x , a), S(y , u, x), T (u, y), U(x , y) hierarchical?YES

Is Q : −R(x , y , z), S(z, u, y), T (y , v , z, x), U(y) hierarchical?YES

Query Evaluation

Subsumed by general probabilistic inference! Move to next topic.

Query Evaluation

Subsumed by general probabilistic inference! Move to next topic.

Hold on! What about scalability?
Two fundamental aspects of databases are relevant here:

the separation of (very large) data and (small and fixed) query, and

the use of mature relational query engines.

A Toolbox of Query Evaluation Techniques [Excerpt]

Exact techniques

MystiQ (”restricted” safe plans), SPROUT (”unrestricted” query plans)
query plans for hierarchical queries and tractable queries with inequalities
probabilistic inference for hard queries

Inference algorithms in AI: variable elimination, junction trees, ...
Tractable cases for bounded treewidth [Zabiyaka&Darwiche’06],
[Huang&Darwiche’01]

Approximation techniques with error guarantees for arbitrary queries on
c-table-like probabilistic databases

MystiQ, MayBMS: Monte Carlo simulations using Karp-Luby FPTRAS

SPROUT: deterministic algorithm that incrementally refines lower & upper
bounds on the output probability using decomposition methods for DNF
formulas

Exact Query Evaluation using SPROUT

Cast the query evaluation problem as a decision diagram construction problem.

Given a query q and a probabilistic database D,
each distinct tuple t ∈ q(D) is associated with a DNF expression φt .

Probability of t is probability of lineage φt .

Compile φt into a propositional theory with efficient model counting.
We use (among others) binary decision diagrams (BDDs), for which
probability computation can be done in one traversal.

Probability of φt is then the probability of its BDD.

To achieve true scalability, SPROUT employs secondary-storage techniques for
BDD construction and probability computation.

the query structure and DB constraints are used to guide the search for good
BDD variable orders

the BDDs are not materialized, their probabilities are computed on the fly

BDDs

Commonly used to represent compactly large Boolean expressions.

Idea: Decompose Boolean expressions using variable elimination and avoid
redundancy in the representation.
Variable elimination by Shannon’s expansion: φ = x · φ |x +x̄ · φ |x̄ .

Variable order π = order of variable eliminations;
the same variable order on all root-to-leaf paths ⇒ ordered BDDs or OBDDs

An OBDD for φ is uniquely identified by the pair (φ, π).

Supports linear-time probability computation.

Pr(φ) = Pr(x · φ |x +x̄ · φ |x̄)

= Pr(x · φ |x) + Pr(x̄ · φ |x̄)

= Pr(x) · Pr(φ |x) + Pr(x̄) · Pr(φ |x̄)

Compilation example

R A B Vr

a1 b1 x1

a2 b1 x2

a2 b2 x3

a3 b3 x4

S A C Vs

a1 c1 y1

a1 c2 y2

a2 c1 y3

a4 c2 y4

q :- R(A, B), S(A, C)
Vr Vs

x1 y1

x1 y2

x2 y3

x3 y3

Query q has lineage φ = x1y1 + x1y2 + x2y3 + x3y3.
Assume variable order: π = x1y1y2x2x3y3.
Task: Construct the OBDD (φ, π).

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 1: Eliminate variable x1 in φ.

x1

x2y3 + x3y3 y1 + y2 + x2y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 2: Eliminate variable y1.

x1

x2y3 + x3y3 y1

y2 + x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 3: Eliminate variable y2.

x1

x2y3 + x3y3 y1

y2 1

x2y3 + x3y3 1

Some leaves have the same expressions ⇒ Represent them only once!

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 4: Merge leaves with the same expressions.

x1

y1

y2

x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 5: Eliminate variable x2.

x1

y1

y2

x2 1

x3y3 y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 6: Replace y3 + x3y3 by y3.

x1

y1

y2

x2 1

x3y3 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 7: Eliminate variable x3.

x1

y1

y2

x2 1

x3 y3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 8: Merge leaves with the same expression y3.

x1

y1

y2

x2 1

x3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 9: Eliminate variable y3.

x1

y1

y2

x2 1

x3

0 y3

0 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 10 (final): Merge leaves with the same expression (0 or 1).

x1

y1

y2

x2

x3

y3

0 1

Compilation example: Summing Up

OBDD (φ, π) has size bounded in the number of literals in φ.
(exactly one node per variable in φ in our example)

Questions

1 Is this property shared by the BDDs of many queries?

2 Can we directly and efficiently construct such succinct BDDs?

3 Can we efficiently find such good variable orders?

Compilation example: Summing Up

OBDD (φ, π) has size bounded in the number of literals in φ.
(exactly one node per variable in φ in our example)

Questions

1 Is this property shared by the BDDs of many queries?

2 Can we directly and efficiently construct such succinct BDDs?

3 Can we efficiently find such good variable orders?

The answer is in the affirmative for all of the three questions!

Quiz: BDDs

Task: Construct OBDD (φ, π′), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π′ is a suboptimal order for φ (and find such an order)

Answer

Task: Construct OBDD (φ, π′), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π′ is a suboptimal order for φ (and find such an order)

π′ = x1x2y1y3x3y2 is suboptimal since, eg, the decision on x2 does not constrain
the values for y1 and y2, and hence both true/false cases have to be considered
under each branch of x2. See below (the trivial nodes 0 and 1 are ommitted):

x1

x2 x2

y1 y1

y3 y3 y3 y3

x3 x3

y2 y2 y2

Tractable Queries and Succinct BDDs

O&Huang08: For any CQ1 query q and database D, ∀t ∈ q(D), and lineage φt ,

There is a variable order π computable in time O(|φt | · log2 |φt |) such that

The OBDD (φt , π) has size O(|φt |) and can be computed in time
O(|φt | · log |φt |).

O&Huang09: BDD construction in polynomial time for a large class of tractable
conjunctive queries with inequalities.

Good variable orders can be statically derived from the query structure!

Static Query Analysis: Query Signatures

Query signatures for TQ queries capture

the structures of queries and

the one/many-to-one/many relationships between the query tables;

variable orders for succinct BDDs representing compiled lineage!

A

R(A,B) S(A,C)

Query q :- R(A, B), S(A, C) has signature (R∗S∗)∗ .

There may be several R-tuples with the same A-value, hence R∗

There may be several S-tuples with the same A-value, hence S∗

R and S join on A, hence R∗S∗

There may be several A-values in R and S , hence (R∗S∗)∗

Variable orders captured by (R∗S∗)∗ (xi ’s are from R , yj ’s are from S):

{[x1(y1y2)][(x2x3)y3]}, {[(x2x3)y3][x1(y1y2)]}, {[y3(x3x2)][x1(y2y1)]}, etc.

Deriving Better Query Signatures

Q :- Cust(ckey ,′ Joe ′), Ord(okey , ckey , odate), Item(okey , disc , ckey), disc > 0

ckey

ckey,okey

Ord(okey,ckey,odate) Item(okey,disc,ckey)

Cust(ckey,’Joe’)

Query Q has signature (Cust∗(Ord∗Item∗)∗)∗.

Database constraints can make the signature more precise

If ckey is key in Cust, we obtain the signature (Cust(Ord∗Item∗)∗)∗.
The many-to-many relationship between Cust and Ord is now one-to-many

If in addition okey is key in Ord, we obtain the signature (Cust(Ord Item∗)∗)∗.

Query Rewriting under Functional Dependencies (FDs)

FDs on tuple-independent databases can help deriving better query signatures.

Given a set of FDs Σ and a conjunctive query of the form

Q = πA0
(σφ(R1(A1) ⊲⊳ . . . ⊲⊳ Rn(An))

where φ is a conjunction of unary predicates. Let Σ0 = CLOSUREΣ(A0).
Then, the Boolean query

π∅(σφ(R1(CLOSUREΣ(A1)− Σ0) ⊲⊳ . . . ⊲⊳ Rn(CLOSUREΣ(An)− Σ0)))

is called the FD-reduct of Q under Σ.

If there is a sequence of chase steps under Σ that turns Q into a hierarchical
query, then the fixpoint of the chase (the FD-reduct) is hierarchical.

Importance of FD-reducts

The signature of Q’s FD-reduct captures the structure of Q’s lineage.

Two relevant cases
1 Intractable queries may admit tractable FD-reducts.

Under X → Y , the hard query Q :- R(X), S(X , Y), T (Y) admits the
hierarchical FD-reduct Q ′ :- R(X , Y), S(X , Y), T (Y) with signature
((RS)∗T)∗.

2 FD-reducts have more precise query signatures.

In the presence of keys ckey and okey, the query
Q(odate) :- Cust(ckey , cname), Ord(okey , ckey , odate), Item(okey , disc, ckey)

with signature (Cust∗(Ord∗Item∗)∗)∗ rewrites into

Q ′ :- Cust(ckey , cname), Ord(okey , ckey , cname), Item(okey , disc, ckey , cname)

with signature (Cust(Ord Item∗)∗)∗.

Case Study: TPC-H Queries

Considered the conjunctive part of each of the 22 TPC-H queries

Boolean versions (B)

with original selection attributes, but without aggregates (O)

Hierarchical in the absence of key constraints

8 queries (B)

13 queries (O)

Hierarchical in the presence of key constraints

8+4 queries (B)

13+4 queries (O)

In-depth study at
http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

Secondary-storage Query Evaluation

Query evaluation in two logically-independent steps

1 Compute query answer using a good relational query plan of your choice

2 Compute probabilities of each distinct answer (or temporary) tuple

Probability computation supported by a new aggregation operator that can

blend itself in any relational query plan

be placed on top of the query plan, or partially pushed down past joins

compute in parallel different fragments of the BDD for the lineage
without materializing the BDD.

Our aggregation operator is a sequence of

aggregation steps. Effect on query signature: α∗ → α

propagation steps. Effect on query signature: αβ → α

Example of Probability Computation
x1

y1

y2

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y1

x1 y2

x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y1

y2

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y1 + y2

x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′
1

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′
1

x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′
1

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′
1

x2 + x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′
1

x ′
2

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′
1

x ′
2 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′
1

x ′
2

y3

0 1

q :- R(A, B), S(A, C)
Vr

x1y
′
1

x ′
2y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′
1

x ′′
2

0 1

q :- R(A, B), S(A, C)
Vr

x ′′
1

x ′′
2

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′
1

x ′′
2

0 1

q :- R(A, B), S(A, C)
Vr

x ′′
1 + x ′′

2

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′′

0 1

q :- R(A, B), S(A, C)
Vr

x ′′′

Return the probability of x ′′′.

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Grouping Aggregations and Propagations

Groups of aggregations/propagations can be computed in one scan.

Definition: A signature has the 1scan property if each of its composite
expressions is made up by concatenating signatures with the 1scan property and
at least one table without (*).

Examples of 1scan signatures:

(RS∗)∗ (last 3 steps in the previous example)

R∗S∗ (relational product)

Nation1Supp(Nation2(Cust(Ord Item∗)∗)∗)∗ (conj. part of TPC-H query 7)

For signature α: #scans(α) = one plus the number of its starred (*)
subexpressions, including itself, without the 1scan property.

Proposition: An operator with signature α needs #scans(α) scans.

Examples:

#scans((R∗S∗)∗) = 2

#scans((Cust∗(Ord∗Item∗)∗)∗) = 3, BUT #scans((Cust(Ord Item∗)∗)∗) = 1

Can we leverage existing results on BDD construction?

Generic AI compilation techniques construct BDDs whose sizes are
exponential in the treewidth of the lineage [Huang&Darwiche01]

Conjunctive queries do generate lineage of unbounded treewidth.
◮ The product query Q :- R(X), S(Y) generates lineage that has a clause for

each pair of random variables of R and S ⇒ unbounded treewidth.

Reconciling the two techniques [Jha&O&Suciu10]:
◮ Partition input query+data into a tractable subinstance and a (usually much

smaller) hard subinstance.
◮ Apply scalable database-specific techniques to the tractable part and generic

compilation techniques to the hard part.

Query Optimization: Types of Query Plans

Our previous examples considered lazy plans

probability computation done after the computation of answer tuples

unrestricted search space for good query plans

especially desirable when join conditions are selective (eg, TPC-H)!

(Cust∗(Ord∗Item∗)∗)∗

πodate

1ckey,okey

1ckey

σcname=′Joe′

Cust

Ord

σdisc>0

Item

BUT, we can push down probability computation!

Query Optimization: Types of Query Plans

Eager plans discard duplicates and compute probabilities on each temporary table.

(Cust Ord)∗

πodate

1ckey

(Ord Item)∗

πodate,ckey

1ckey,okey

Ord∗

πodate,ckey,okey

Ord

Item∗

πckey,okey

σdisc>0

Item

Cust∗

πckey

σcname=′Joe′

Cust

MystiQ’s safe plans are special cases of eager plans!

mirror the hierarchical structure of the query signature

probability computation restricts join ordering!

suboptimal join ordering, which is more costly than probability computation

Quiz: Query Optimization

Is the following a valid query plan?

(Cust∗Ord)∗

πodate

1ckey

(Ord∗Item∗)∗

πodate,ckey

1ckey,okey

Ord σdisc>0

Item

σcname=′Joe′

Cust

Answer

YES! It is a hybrid plan

useful when selectivities of different joins differ significantly

push down probability computation below unselective joins

keep probability computation on top of selective joins

(Cust∗Ord)∗

πodate

1ckey

(Ord∗Item∗)∗

πodate,ckey

1ckey,okey

Ord σdisc>0

Item

σcname=′Joe′

Cust

Approximation Algorithms

Randomized
◮ Näıve Monte Carlo simulation
◮ Improved Monte Carlo

Deterministic
◮ Algorithmic guarantees (polynomial time, but with prohibitively large

constants) [Trevisan’04], [Luby&Velickovic’91]
◮ Incremental compilation scheme with polynomial time guaranteess for known

tractable queries [O.,Huang,Koch’10]

Näıve Monte Carlo

Input: Boolean formula φ with variables V (φ)

Cnt ← 0

repeat N times

randomly choose a total valuation λ over V (φ)

if λ(φ) = true then Cnt = Cnt + 1

P = Cnt/N

return P/* ≈ Pr(φ)*/

If N ≥ (1/Pr(φ))× (4ln(2/δ)/ǫ2) then Pr [| P/Pr(φ)− 1 |> ǫ] < δ.

Improved Monte Carlo

[KL83], [Graedel,Gurevitch, Hirsch98]

Input: Boolean formula in DNF φ = C1 + · · ·+ Cm with variables V (φ)

Cnt ← 0; S ← Pr(C1) + · · ·+ Pr(Cm)

repeat N times

randomly choose 1 ≤ i ≤ m with probability Pr(Ci)/S

randomly choose a total valuation λ over V (φ) such that λ(Ci) = true

if ∀1 ≤ j < i : λ(Cj) = false then Cnt = Cnt + 1

P = Cnt/N × S/2|V (φ)|

return P/* ≈ Pr(φ)*/

If N ≥ (1/m)× (4ln(2/δ)/ǫ2) then Pr [| P/Pr(φ)− 1 |> ǫ] < δ.

Slightly modified algorithms are used in MayBMS, MystiQ, and MCDB.

Veeeery sloooow in practice: SPROUT query plans for tractable queries are
about two orders of magnitude faster that the improved (and optimized!)
Monte Carlo.

Approximate Evaluation with SPROUT

Monte Carlo simulations are very powerful and generic
only require sampling the formula, no knowledge of its structure

Why not exploit the structure of the input formula?

◮ compile it into an equivalent decomposed form that allows for efficient
probability computation

◮ in practice, good approximations are obtained after a few decomposition steps

D-trees: Decomposition Trees of DNF Formulas

Given DNF formula Φ.

Independent-or ⊗: Partition Φ into independent DNFs Φ1, Φ2 ⊂ Φ such that
Φ is equivalent to Φ1 ∨Φ2.

Independent-and ⊙: Partition Φ into independent DNFs Φ1, Φ2 ⊂ Φ such
that Φ is equivalent to Φ1 ∧ Φ2.

Exclusive-or ⊕: Choose a variable x in Φ. Replace Φ by

⊕

a∈Domx ,Φ|x=a 6=∅

(
{{x = a}} ⊙ Φ |x=a

)

The decompositions preserve equivalence and are efficient for query lineage.

A d-tree is a formula constructed from ⊗, ⊕, ⊙ and nonempty DNFs (as
“leaves”). If each leaf holds one clause, the d-tree is complete.

D-tree Example

D-tree for DNF
Φ = {{x = 1}, {x = 2, y = 1}, {x = 2, z = 1}, {u = 1, v = 1}, {u = 2}}

⊗

⊕

{{x = 1}} ⊙

{{x = 2}} ⊗

{{y = 1}} {{z = 1}}

⊕

⊙

{{u = 1}} {{v = 1}}

{{u = 2}}

Approximation with error guarantees

Underlying ideas [O&Huang&Koch10]:

Incremental refinement of the leaves of a d-tree for a DNF Φ
◮ stop when desired approximation is reached

Fast approximation of probabilities at d-tree leaves
◮ Choose a maximal subset S of pairwise independent clauses in leaf Ψ
◮ P(S) is a lower bound for P(Ψ)
◮ min(1, P(S) + Σ

c∈(Ψ−S)
(P(c))) is an upper bound for P(Ψ)

Once lower and upper bounds are known at each leaf, the bounds of the
entire d-tree can be computed very efficiently

Additional property of d-tree compilation:
Lineage of CQ1 queries can be compiled efficiently into complete d-trees.

Literature on Probabilistic Relational Data

[AJKO08] Antova, Jansen, Koch, Olteanu. Fast and Simple Relational

Processing of Uncertain Data. ICDE 2008.

[DS07] Dalvi, Suciu Efficient Query Evaluation on Probabilistic Databases.
VLDBJ 2007.

[DS07b] Dalvi, Suciu. The Dichotomy of Conjunctive Queries on Probabilistic

Structures. PODS 2007.

[DS07c] Dalvi, Suciu. Management of Probabilistic Data: Foundations and

Challenges. PODS 2007.

[KLM89] Karp, Luby, Madras. Monte-Carlo Approximation Algorithms for

Enumeration Problems. J. Algorithms 1989.

[OH08] Olteanu, Huang. Using OBDDs for Efficient Query Evaluation on

Probabilistic Databases. SUM 2008.

Literature on Probabilistic Relational Data

[OH09] Olteanu, Huang. Secondary-Storage Confidence Computation for

Conjunctive Queries with Inequalities. SIGMOD 2009.

[OHK09] Olteanu, Huang, Koch. SPROUT: Lazy vs. Eager Query Plans for

Tuple-Independent Probabilistic Databases. ICDE 2009.

[OHK10] Olteanu, Huang, Koch. Approximate Confidence Computation in

Probabilistic Databases. ICDE 2010.

[RDS07] Ré, Dalvi, Suciu. Efficient Top-k Query Evaluation on Probabilistic

Data. ICDE 2007.

[SD07] Sen, Deshpande. Representing and Querying Correlated Tuples in

Probabilistic Databases. ICDE 2007.

[Val79] Valiant. The Complexity of Enumeration and Reliability Problems. SIAM
J. Comput. 1979.

3. Probabilistic XML Data

Outline of Part 3

Same topics as in the relational case

Plethora of data models
Uncertainty constructs of these models very much resemble those from the
relational case.

Expressiveness and succinctness of these models

Query Evaluation
Tractability for twig queries over various models

Probabilistic XML Data Models

P-document = unordered tree with two types of nodes

1 ordinary nodes (like in standard XML trees)

2 distributional nodes
only used to define probability distributions over subsets of their children.

How to generate a random document?

(a1) Each distributional node randomly chooses a subset of its children
(for some nodes, the choices are not necessarily independent)

(a2) All of the unchosen nodes and their descendants are deleted

(b) Remove all distributional nodes and connect ordinary nodes to their closest
ordinary ancestor

Types of Distributional Nodes

1 det : always (nondeterministically) choose all children

2 ind : independent choice of children

3 mux : mutual exclusive choice of children

4 exp : explicit specification of the probability distribution over subsets of
children

Underlying assumption for all types above: Choices of different distributional
nodes are probabilistically independent.

5 cie : each node can be associated with a conjunction of (possibly negated)
independent event variables.

How to compute the probability of a possible world in a p-document?

without cie nodes: Product of probabilities of choices made at each
distributional node (P).

with cie nodes: P× probability of a total valuation over cie variables that
defines that world.

Example of a p-document [AKSS09]

company

division

sales

mux

S
0.1

M
0.5

L
0.4

departments

ind

ind
0.8

dept.

0.7

manager

mux

Emma

0.4

Mary

0.45

size

L

dept.

0.65

manager

mux

Emma

0.5

John

0.25

ind

size
0.8

L

Choosing a world defined by our p-document

company

division

sales

mux

S M L
0.4

departments

ind

ind
0.8

dept.

0.7

manager

mux

Emma

0.4

Mary

size

L

dept.

0.65

manager

mux

Emma John

0.25

ind

size

L

Choosing a world defined by our p-document

company

division

sales

L

departments

dept.

manager

Emma

size

L

dept.

manager

John

Expressiveness and Succinctness [AKSS09]

Plethora of families of p-documents:

PrXMLt1,...,tn = those p-documents with distributional nodes t1, . . . , tn only.

(dis)allow hierarchies of distributional nodes.

Some results

PrXMLmux is complete

PrXMLind,mux(non-hier) can be translated efficiently to PrXMLmux

PrXMLind,mux can be translated efficiently to PrXMLmux,det

. . .

Open: Is PrXMLexp efficiently translatable into PrXMLmux,det?

Query Evaluation

Considered queries:

Syntax: Twig patterns with child/descendant edges and unary conditions at
nodes.

Semantics: Evaluate the twig in each world and return the set of all possible
answers

Matches of twigs in trees = mappings that

are root-preserving,

are structure-preserving (from pattern to p-document nodes), and

satisfy all node conditions.

Query evaluation task now also computes probabilities of query answers!

Compute a function p over all the mappings µ such that p(µ) is the
probability that µ is a match of the input twig in a random world.

Set of answers includes all µ such that p(µ) > 0.

Major challenge: Handling queries with projection!

Complexity Results for Query Evaluation [KS08]

Query& data complexity: NP-hard to determine whether a twig (without
projection) evaluates to a nonempty result in PrXMLmux.

Data complexity

Every nontrivial Boolean twig over PrXMLcie is #P-complete.

Efficient evaluation of
◮ Every Boolean twig over PrXMLexp or PrXMLind,mux.
◮ Twigs nested with count (or min, max) aggregates.

Open issues:

Are there natural restrictions of PrXMLcie beyond PrXMLmux,ind with
efficient query evaluation?

What happens beyond twigs extended with count aggregates?

Last Quiz: Stochastic Context-free Grammars (SCFGs)

A SCFG is a CFG where there is a probability distribution over the choices in the
rhs of each rule. Example:

S → aSa(0.6) | bSb(0.3) | ǫ(0.1)

Consider the problem of computing the probability that a word is in the generated
language (can be casted as a trivial query evaluation problem on SCFGs).

Questions:

How many bits can such probabilities require?

Can these probabilities be irrational numbers?

K. Etessami and M. Yannakakis. “Recursive Markov Chains, Stochastic
Grammars, and Monotone Systems of Nonlinear Equations”. JACM: 56(1), 2009.

Answer (1)

The probabilities may require an exponential number of bits (in the size of the
SCFG).

Si → Si−1Si−1, 1 ≤ i ≤ n

S0 → ǫ(1/2) | a(1/2)

The probability of producing the empty string from nonterminal Si is 2−2i

.

Answer (2)

The probabilities can be irrational numbers.

S → ǫ(1/2) | b(2/6) | SSSSS(1/6)

The probability of producing the empty string from nonterminal S is x with
x = 1/2 + 1/6x5. This polynomial has no rational roots.

Literature on Probabilistic XML Data

[AKSS09] Abiteboul, Kimelfeld, Senellart, Sagiv. On the Expressiveness of

Probabilistic XML Models. VLDBJ 2009.

[KS07] Kimelfeld, Sagiv. Matching Twigs in Probabilistic XML. VLDB 2007.

[KSS08] Kimelfeld, Kosharovsky, Sagiv. Query Efficiency in Probabilistic XML

Models. SIGMOD 2008.

[SA07] Senellart, Abiteboul. On the Complexity of Managing Probabilistic XML

Data. PODS 2007.

