
Fast and Simple Relational Processing of Uncertain Data

Lyublena Antova (Cornell), Thomas Jansen (SAP), Christoph Koch (Cornell),
Dan Olteanu (Oxford)

Appl?cati0n Sc
e

a
nar o: Census data

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

We want to enter the information from forms like these into a database.
What is the marital status of the first resp. the second person?

What are the social security numbers? 185? 186? 785?

Appl?cati0n Sc
e

a
nar o: Census data

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

(TID) SSN N M
t1 NULL Smith NULL
t2 NULL Brown NULL

Much of the available information cannot be represented and is lost, e.g.
Smith’s SSN is either 185 or 785; Brown’s SSN is either 185 or 186.

Data cleaning: No two distinct persons can have the same SSN.

Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data

1 Representation and storage mechanisms

2 Uncertainty-aware query and data manipulation language

3 Efficient processing techniques for queries and constraints

This talk will cover some aspects of (1) and (3).

Representation of uncertain data

Desiderata for a representation system

1 Succinctness/Space-efficient storage

◮ Large number of independent local alternatives, which multiply up to a very
large number of worlds.

2 Efficient real-world query processing

◮ Tradeoff between succinctness and complexity of query evaluation.
We want to do well in practice.

3 Expressiveness/Representability

◮ Ability to represent all results of query and constraint processing.
◮ Constraints/queries enforce dependencies across alternatives!

Quest for well-behaved representation system (1)

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

R.t1.SSN

185
785

×
R.t1.N

Smith
×

R.t1.M

1
2

R.t2.SSN

185
186

×
R.t2.N

Brown
×

R.t2.M

1
2
3
4

Properties (ICDE’07, ICDT’07)

Relational representation of uncertainty at attribute-level

Complete in the case of finite sets of alternatives (worlds)

Data independence naturally supported by relational product
Decompositions via efficient prime factorization of relations

Quest for well-behaved representation system (2)

x

R.t1.SSN

185
785

× R.t1.N

Smith
×

v

R.t1.M

1
2

×

y

R.t2.SSN

185
186

× R.t2.N

Brown
×

w

R.t2.M

1
2
3
4

Equivalent column-oriented encoding with one relation per each attribute of R .

UR[SSN] UR[N] UR[M]

V 7→ D TID SSN
x 7→ 1 t1 185
x 7→ 2 t1 785
y 7→ 1 t2 185
y 7→ 2 t2 186

V 7→ D TID N
t1 Smith
t2 Brown

V 7→ D TID M
v 7→ 1 t1 1
v 7→ 2 t1 2
w 7→ 1 t2 1
w 7→ 2 t2 2
w 7→ 3 t2 3
w 7→ 4 t2 4

U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185
x 7→ 2 t1 785
y 7→ 1 t2 185
y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1
v 7→ 2 t1 2
w 7→ 1 t2 1
w 7→ 2 t2 2
w 7→ 3 t2 3
w 7→ 4 t2 4

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
x 7→ 1 .4
x 7→ 2 .6

y 7→ 1 .7
y 7→ 2 .3

v 7→ 1 .8
v 7→ 2 .2

w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

Discrete independent (random) variables (x , y , v ,w).

Representation: U-relations + table W representing distributions.
The schema of each U-relation consists of

◮ a tuple id column,
◮ a set of column pairs (Vi , Di) representing variable assignments, and
◮ a set of value columns.

Semantics of U-Relational Databases

Each possible world is identified by a valuation θ that assigns one of the
possible values to each variable.

The probability of the possible world is the product of weights of the values
of the variables.

The value-component of a tuple of a U-relation is in a given possible world if
its variable assignments are consistent with θ.

Attribute-level uncertainty through vertical decomposition.

Semantics of U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185
x 7→ 2 t1 785
y 7→ 1 t2 185
y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1
v 7→ 2 t1 2
w 7→ 1 t2 1
w 7→ 2 t2 2
w 7→ 3 t2 3
w 7→ 4 t2 4

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
→ x 7→ 1 .4

x 7→ 2 .6

y 7→ 1 .7
→ y 7→ 2 .3

→ v 7→ 1 .8
v 7→ 2 .2

→ w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

We choose possible world {x 7→ 1, y 7→ 2, v 7→ 1,w 7→ 1}.

Semantics of U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185

y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1

w 7→ 1 t2 1

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
→ x 7→ 1 .4

x 7→ 2 .6

y 7→ 1 .7
→ y 7→ 2 .3

→ v 7→ 1 .8
v 7→ 2 .2

→ w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

We choose possible world {x 7→ 1, y 7→ 2, v 7→ 1,w 7→ 1}.

Probability weight of this world: .4 * .3 * .8 * .25 = .024.

Now we have a vertically decomposed version of the chosen possible world.

Properties of U-Relational Databases

Complete representation system for finite sets of possible worlds
◮ MystiQ: independent tuples/block-independent disjoint tables

Often exponentially more succinct than WSDs, ULDBs, prob. databases

A special case of c-tables
◮ like all other existing representation formalisms, BUT...

Purely relational representation of uncertainty at attribute-level
◮ in contrast to probabilistic databases of MystiQ and ULDBs of Trio

Efficient relational evaluation of many query operators (next topic)

Efficient query evaluation

Positive relational algebra
Query evaluation under possible world semantics:

T q(T)

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep

q

q

rep−1

For any positive relational algebra query q over any U-relational database T,
there exists a positive relational algebra query q of polynomial size such that

q(T) = rep−1({q(Ai) | Ai ∈ rep(T)}).

Properties

relational evaluation using the query plan of your choice
PTIME data complexity
preserves the provenance of answer tuples

Query Evaluation: Example

Names of possibly married persons: possible(πName (σStatus=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[Status] V 7→ D TID Status

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

Evaluation steps:
1 merge the U-relations storing the necessary columns:

Q := possible(πName(σStatus=2(merge (πName(S), πStatus(S)))))

Query Evaluation: Example

Names of possibly married persons: possible(πName (σStatus=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[Status] V 7→ D TID Status

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

Evaluation steps:
1 merge the U-relations storing the necessary columns:

Q := possible(πName(σStatus=2(merge (πName(S), πStatus(S)))))
2 rewrite Q on column-store:

P := πName(σStatus=2(US[Name] 1ψ∧φ US[Status])), where

ψ ensures that we only generate tuples that occur in some worlds:
ψ := (US[Name].V = US[Status].V ⇒ US[Name].D = US[Status].D),

φ ensures that we only merge valid tuples:
φ := (US[Name].TID = US[Status].TID)

Query Evaluation: Example

Names of possibly married persons: possible(πName (σStatus=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[Status] V 7→ D TID Status

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

Evaluation steps:
1 merge the U-relations storing the necessary columns:

Q := possible(πName(σStatus=2(merge (πName(S), πStatus(S)))))
2 rewrite Q on column-store:

P := πName(σStatus=2(US[Name] 1ψ∧φ US[Status])), where

ψ ensures that we only generate tuples that occur in some worlds:
ψ := (US[Name].V = US[Status].V ⇒ US[Name].D = US[Status].D),

φ ensures that we only merge valid tuples:
φ := (US[Name].TID = US[Status].TID)

3 feed P to any relational query optimizer

Query Evaluation: Example

Names of possibly married persons: possible(πName (σStatus=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[Status] V 7→ D TID Status

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

V1 7→ D1 V2 7→ D2 TID Name Status

wrong Status x3 7→ 1 x3 7→ 1 t1
?
= t1 Smith 1

inconsistent x3 7→ 1 x3 7→ 2 t1
?
= t1 Smith 2

wrong TIDs x3 7→ 1 x6 7→ 1 t1
?
= t2 Smith 1

wrong TIDs x3 7→ 1 x6 7→ 2 t1
?
= t2 Smith 2

wrong TIDs x5 7→ 1 x3 7→ 1 t1
?
= t2 Brown 1

wrong TIDs x5 7→ 1 x3 7→ 2 t1
?
= t2 Brown 2

wrong Status x5 7→ 1 x6 7→ 1 t2
?
= t2 Brown 1

x5 7→ 1 x6 7→ 2 t2
?
= t2 Brown 2

Query Evaluation: Example

Names of possibly married persons: possible(πName (σStatus=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[Status] V 7→ D TID Status

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

V1 7→ D1 V2 7→ D2 TID Name Status

x5 7→ 1 x6 7→ 2 t2 Brown 2

Beyond positive relational algebra

Difference
Tuple q-possibility is NP-hard even for normalized tuple-level U-relations and
queries with difference. BUT this is already true for Codd tables.

World-set Algebra [SIGMOD’07,VLDB’07]

Possible (R)

Implemented using projection

Certain (R)

Implemented using division for normalized tuple-level U-relations
(normalization = at most one variable assignment per tuple)

repair-key~A[@P](R)

Turns a possible world into the set of worlds consisting of all possible
maximal repairs of key ~A in R .

conf (R)

Computes the exact confidence of (distinct) tuples

. . .

repair-key example

Tossing a biased coin twice.

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

Pr = 1

S := repair-keyToss@FProb(R) results in four worlds:

S1 Toss Face FProb

1 H .4
2 H .4

S2 Toss Face FProb

1 H .4
2 T .6

S3 Toss Face FProb

1 T .6
2 H .4

S4 Toss Face FProb

1 T .6
2 T .6

Pr(S1) = 1 ·
.4

.4 + .6
·

.4

.4 + .6
= .16, Pr(S2) = Pr(S3) = .24, Pr(S4) = .36

repair-key example

Tossing a biased coin twice.

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

Pr = 1

S := repair-keyToss@FProb(R) is just a projection/copying of columns (even
though we may create an exponential number of possible worlds)!

US V 7→ D Toss Face FProb

1 7→ H 1 H .4
1 7→ T 1 T .6
2 7→ H 2 H .4
2 7→ T 2 T .6

W V 7→ D P

1 7→ H .4
1 7→ T .6
2 7→ H .4
2 7→ T .6

What about probabilities?

Given a tuple t with a set of valuations S , compute conf(t) by partitioning S

(a) into independent subsets (exploit contextual independence)

(b) by removing variables (modified Davis-Putnam)

(c) by removing valuations (compute equiv. set of pairwise mutex valuations)

Our current approach is a cost-based interplay of (a)-(c).

More in Conditioning Probabilistic Databases by Koch&Olteanu.

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

{{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}} {{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

{x 7→ 1} {{x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

{{x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

{y 7→ 1} {z 7→ 1}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

{u 7→ 1, v 7→ 1} {u 7→ 2}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

⊕

u
.7
7→ 1

{v 7→ 1}

{u 7→ 2}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

⊕

u
.7
7→ 1

∅

v
.5
7→ 1

∅

u
.3
7→ 2

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗ 0.7578

⊕ 0.308

∅ 1.0

x
.1
7→ 1

⊗ 0.52

x
.4
7→ 2

⊕ 0.2

∅ 1.0

y
.2
7→ 1

⊕ 0.4

∅ 1.0

z
.4
7→ 1

⊕ 0.65

⊕ 0.5

u
.7
7→ 1

∅ 1.0

v
.5
7→ 1

∅ 1.0

u
.3
7→ 2

P(S) = 0.7578.

Experiments

Uncertain data generator

extend TPC-H population generator 2.6 to generate U-relational databases

any generated world has the sizes of relations and join selectivities of the
original TPC-H one-world case

parameters: scale (s), uncertainty ratio (x), correlation ratio (z),
max alternatives per field (8), drop after correlation (0.25)

correlations follow a pattern obtained by chasing egds on uncertain data
[ICDE’07]

Uncertainty and storage

Total number of worlds, max. number of domain values for a variable (Rng), and
size in MB of the U-relational database for each of our settings.

TPC-H
s z dbsize #worlds Rng dbsize #worlds Rng dbsize #worlds Rng dbsize

0.01 0.1 17 10857.076 21 82 107955.30 57 85 1079354.1 57 114

0.01 0.5 17 10523.031 71 82 104724.56 901 88 1046675.6 662 139

0.05 0.1 85 104287.23 22 389 1039913.8 33 403 10396137 65 547

0.05 0.5 85 102549.14 178 390 1023515.5 449 416 10232650 1155 672

0.10 0.1 170 108606.77 27 773 1079889.9 49 802 10793611 53 1090

0.10 0.5 170 105044.65 181 776 1046901.8 773 826 10466038 924 1339

0.50 0.1 853 1043368.0 49 3843 10400185 71 3987 103.97e+06 85 5427

0.50 0.5 853 1025528.9 214 3856 10234840 1832 4012 102.33e+06 2586 6682

1.00 0.1 1706 1087203.0 57 7683 10800997 99 7971 107.94e+06 113 11264

1.00 0.5 1706 1051290.9 993 7712 10470401 1675 8228 104.66e+06 3392 13312

x = 0.0 x = 0.001 x = 0.01 x = 0.1

exponentially more succinct than representing worlds individually

108·106

worlds need 13 GBs ≈ 8 times the size of one world (1.4 GBs)

case x = 0 is the DB generated by the original TPC-H (without uncertainty)

Evaluation of positive relational algebra queries

Q1: possible (select o.orderkey, o.orderdate, o.shippriority from customer c, or-
ders o, lineitem l where c.mktsegment = ’BUILDING’
and c.custkey = o.custkey and o.orderkey = l.orderkey
and o.orderdate > ’1995-03-15’ and l.shipdate < ’1995-03-17’)

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 1 z 0.1

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.05 0.05 0.01

tim
e

in
 s

ec
 (

ln
 s

ca
le

)
TPC-H scale factor (ln scale)

Query 1 z 0.5

x: 0.1
x: 0.01

x: 0.001

uncertainty varies from 0.001 to 0.1 → evaluation time up to 6 times slower

correlation varies from 0.1 to 0.5 → evaluation time up to 3 times slower

scale varies from 0.01 to 1 → evaluation time up to 400 times slower
scale=1: the answer size ranges from tens of thousands to tens of millions.

Attribute-level vs. tuple-level
SPJ query on six relations represented by equivalent

attribute-level U-relational databases
tuple-level U-relational databases
Trio’s ULDBs (are tuple-level only)
Skipped the exponential time task of removing erroneous tuples

Query 3 z 0.1

0

5

10

15

20

25

30

35

40

45

50

s0.01,x0.001 s0.05,x0.001 s0.1,x0.001 s0.01,x0.01 s0.05,x0.01 s0.1,x0.01

ti
m

e
 i
n

 s
e

c

MayBMS (attr level)
MayBMS (tuple level)
Trio

Experiment only possible for small scenarios:
1% uncertainty, lowest correlation factor 0.1, and scale up to 0.1.
an increase in any of our parameters would create prohibitively large
(exponential in the arity of relations) tuple-level representations.

Papers on MayBMS

L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information
and Back. In Proc. SIGMOD 2007 .

———. World-Set Decompositions: Expressiveness and Efficient Algorithms. In
Proc. ICDT 2007 . Extended version conditionally accepted for TCS.

———. 10106

Worlds and Beyond: Efficient Representation and Processing of
Incomplete Information. In Proc. ICDE 2007 .

———. MayBMS: Managing Incomplete Information with Probabilistic World-Set
Decompositions. In Proc. ICDE 2007 . (Demo Paper.)

———. Query Language Support for Incomplete Information in the MayBMS
System. In Proc. VLDB 2007 . (Demo Paper.)

Approximating Predicates and Expressive Queries on Probabilistic Databases.
Christoph Koch. In Proc. PODS 2008 .

C. Koch, and D. Olteanu. Conditioning Probabilistic Databases. Available online.

Experiments: Confidence computation
Excellent behaviour (within seconds) for

few variables (100), many ws-descriptors (5K - 50K)

many variables (100K), few ws-descriptors (01.K - 5K)

Heuristics for variable elimination: good variable choices are extremely valuable
even if they require polynomial time
Competitive even when compared with Monte Carlo simulation based on
Karp-Luby FPRAS (fully polynomial randomized approx. scheme) for #DNF.

 0.001

 0.01

 0.1

 1

 10

 100

 100 50 20 10

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

Size of ws-set (ln scale)

KL versus INDVE (50 variables, r=2, s=4)

kl(e.01)
kl(e.10)
indve

Karp-Luby (KL): with at least 90% probability, the estimated error is within 1%,
and 10% resp., from the exact value.

Query evaluation: Example 2

Violated SSN keys: possible(πr1 .SSN((R r1) 1r1.SSN=r2 .SSN∧r1.N<>r2.N (R r2)))

US[SSN] V 7→ D TID SSN

x1 7→ 1 t1 185
x1 7→ 2 t1 785
x4 7→ 1 t2 185
x4 7→ 2 t2 186

US[Name] V 7→ D TID Name

x2 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

Rewritten query on column-store:
S := US[SSN] 1ψ∧φ US[Name]

P := πs1.SSN as SSN((S s1) 1s1.SSN=s2.SSN∧s1.Name<>s2.Name (S s2))

P V1 7→ D1 V2 7→ D2 V3 7→ D3 V4 7→ D4 Ts1 Ts2 SSN

x1 7→ 1 x2 7→ 1 x4 7→ 1 x5 7→ 1 t1 t2 185
x5 7→ 1 x4 7→ 1 x1 7→ 1 x2 7→ 1 t2 t1 185

Uncertainty-aware query language

Desiderata for a Query Language for Uncertain Data

genericity – declarative queries, independent from representation details

◮ Trio’s TriQL is not generic

ability to transform data
◮ beyond the filtering of world-sets as in MystiQ

ability to introduce additional uncertainty (!!!)

◮ To make it a natural query language for the possible worlds model:
compositionality

◮ Decision support queries/hypothetical queries
◮ Probabilistic databases: extending the hypothesis space to use evidence

right degree of expressive power – not too strong and not too weak

efficient query evaluation

World-set Algebra

The operations of relational algebra .

◮ Evaluated individually, in “parallel” in all possible worlds.

An operation conf(R) for computing tuple confidence values.

◮ Computes, for each tuple that occurs in R in at least one world, the sum of
the probabilities of the worlds in which it occurs.

An operation assertφ(R) that conditions the database using a constraint φ.

◮ Removes those worlds that violate φ.

An operation repair-key~A[@P](R) for introducing uncertainty.

◮ Turns a possible world into the set of worlds consisting of all possible maximal
repairs of key ~A in R.

◮ We will also look at a special case of repair-key called choice-of .

An operation for grouping worlds based on common properties
◮ property = answer to a given query
◮ (we will not discuss this one here)

Operation choice-of

Introducing uncertainty using the choice-of operation allows to extend the
hypothesis space.

R1 A B C
a 1 c
a 1 d
b 3 e

Pr = .5 ... (further worlds)

S := choice-ofA@B(R)

S1.1 A B C
a 1 c
a 1 d

Pr = .5 * 1/4 = 1/8

S1.2 A B C
b 3 e

Pr = .5 * 3/4 = 3/8

... (further worlds)

There must be a functional dependency R : A → B.

Necessary if we want to introduce evidence.

Operation repair-key
Example: Tossing a biased coin twice.

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

Pr = 1

S := repair-key
Toss@FProb

(R) results in four worlds:

S1 Toss Face FProb

1 H .4
2 H .4

S2 Toss Face FProb

1 H .4
2 T .6

S3 Toss Face FProb

1 T .6
2 H .4

S4 Toss Face FProb

1 T .6
2 T .6

Pr(S1) = 1 ·
.4

.4 + .6
·

.4

.4 + .6
= .16, Pr(S2) = Pr(S3) = .24, Pr(S4) = .36

Operation conf

RA A B

a b
b c

.3
RB A B

a b
c d

.2
RC A B

a c
c d

.5

conf(R) gives the probability of each tuple across all worlds:

conf (R) x z P

a b .5
a c .5
b c .3
c d .7

For a Boolean query Q and a world-set W, conf (Q) gives us one number, the
probability of the event {I ∈ W | I � Q}, which is the confidence of tuple 〈〉.

Conditioning using assert

Example: enforcing a key constraint on SSN.

UR[SSN] V D TID SSN

x 1 t1 185
x 2 t1 785
y 1 t2 185
y 2 t2 186

T := assertfd:SSN→TID(R).
We drop the worlds where both tuples t1 and t2 occur with SSN = 185.

UT [SSN] V1 D1 V2 D2 TID SSN

x 1 y 2 t1 185
x 1 y 2 t2 186
x 2 y 1 t1 785
x 2 y 1 t2 185
x 2 y 2 t1 785
x 2 y 2 t2 186

