AYBŽ

Fast and Simple Relational Processing of Uncertain Data

Lyublena Antova (Cornell), Thomas Jansen (SAP), Christoph Koch (Cornell), Dan Olteanu (Oxford)

Social Security Number:	185
Name:	Smith
Marital Status:	(1) single 🙇 (2) married 🛸 (3) divorced 🗆 (4) widowed 🗖
Social Security Number:	185
Name:	Brown
Marital Status:	(1) single □ (2) married □ (3) divorced □ (4) widowed □

We want to enter the information from forms like these into a database.

- What is the marital status of the first resp. the second person?
- What are the social security numbers? 185? 186? 785?

Social Sect	urity Number: Name:	28 Sv	5 nith	
N	larital Status:	(1) single (3) divorced	⊠ (2) ma □ (4) wid	rried 🔹
Social Sec	urity Number: Name:	l { Br	35 own	
N	larital Status:	(1) single(3) divorced	□ (2) mai	rried 🗆 owed 🗆
(TID)	SSN	ſ	N	Μ
t_1	NULL	_ Sm	nith	NULL
t_2	NULL	. Bro	own	NULL

Much of the available information cannot be represented and is lost, e.g.

- Smith's SSN is either 185 or 785; Brown's SSN is either 185 or 186.
- Data cleaning: No two distinct persons can have the same SSN.

Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data

- Representation and storage mechanisms
- Oncertainty-aware query and data manipulation language
- Sefficient processing techniques for queries and constraints

This talk will cover some aspects of (1) and (3).

Representation of uncertain data

Desiderata for a representation system

Succinctness/Space-efficient storage

 Large number of independent *local* alternatives, which multiply up to a very large number of worlds.

Efficient real-world query processing

 Tradeoff between succinctness and complexity of query evaluation. We want to do well in practice.

Expressiveness/Representability

- Ability to represent all results of query and constraint processing.
- Constraints/queries enforce dependencies across alternatives!

Quest for well-behaved representation system (1)

Properties (ICDE'07, ICDT'07)

- Relational representation of uncertainty at attribute-level
- Complete in the case of finite sets of alternatives (worlds)
- Data independence naturally supported by relational product Decompositions via efficient prime factorization of relations

Quest for well-behaved representation system (2)

Equivalent column-oriented encoding with one relation per each attribute of R.

$U_{R[SSN]}$			$U_{R[N]}$			$U_{R[M]}$			
							$V \mapsto D$	TID	М
$V\mapstoD$	TID	SSN					$v\mapsto 1$	t_1	1
$x\mapsto 1$	t_1	185		$V\mapstoD$	TID	N	$v \mapsto 2$	t_1	2
$x \mapsto 2$	t_1	785	-		t_1	Smith	$w\mapsto 1$	t_2	1
$y\mapsto 1$	t_2	185			t_2	Brown	$w \mapsto 2$	<i>t</i> ₂	2
$y \mapsto 2$	t_2	186					$w \mapsto 3$	t_2	3
	•						$w \mapsto 4$	t_2	4

U-Relational Databases

					$U_{R[N]}$	TID	N
$U_{R[SSN]}$	$V \mapsto D$	TID	SSN	l		t_1	Smith
	$x\mapsto 1$	t_1	185			t_2	Brown
	$x \mapsto 2$	t_1	785				
	$y\mapsto 1$	t_2	185		W	$V\mapstoD$	Р
	$y\mapsto 2$	t_2	186			$x \mapsto 1$.4
		-	-			$x \mapsto 2$.6
		TID				$v\mapsto 1$.7
$U_{R[M]}$	$V \mapsto D$	TID	M			$v \mapsto 2$.3
	$v \mapsto 1$	t_1	1				0
	$v \mapsto 2$	t_1	2			$V \mapsto 1$.8
	$w\mapsto 1$	t_2	1			$v \mapsto 2$.2
	$w \mapsto 2$	t_2	2			$w\mapsto 1$.25
	$w \mapsto 3$	t_2	3			$w \mapsto 2$.25
	$w \mapsto 4$	t_2	4			$w \mapsto 3$.25
		•				$w \mapsto 4$.25

- Discrete independent (random) variables (x, y, v, w).
- Representation: U-relations + table W representing distributions.
- The schema of each U-relation consists of
 - a tuple id column,
 - ▶ a set of column pairs (V_i, D_i) representing variable assignments, and
 - a set of value columns.

Semantics of U-Relational Databases

- Each possible world is identified by a valuation θ that assigns one of the possible values to each variable.
- The probability of the possible world is the product of weights of the values of the variables.
- The value-component of a tuple of a U-relation is in a given possible world if its variable assignments are consistent with θ .
- Attribute-level uncertainty through vertical decomposition.

Semantics of U-Relational Databases

					$U_{R[\Lambda]}$	Ŋ	TID	N
$U_{R[SSN]}$	$V \mapsto D$	TID	SSN	J			t_1	Smith
	$x\mapsto 1$	t_1	185				t_2	Brown
	$x \mapsto 2$	t_1	785					
	$y \mapsto 1$	t_2	185		W	V	$' \mapsto D$	Р
	$y \mapsto 2$	t_2	186		\rightarrow	X	$H \mapsto 1$.4
	•		•			x	$i \mapsto 2$.6
		TID				v	$'\mapsto 1$.7
$U_{R[M]}$	$V \mapsto D$	TID	M		\rightarrow	y	$r \mapsto 2$.3
	$v \mapsto 1$	t_1	1		\rightarrow	v	$' \mapsto 1$	8
	$V \mapsto Z$	τ_1	2			v		2
	$w \mapsto 1$	t_2	1			v		.∠
	$w \mapsto 2$	t ₂	2		\rightarrow	И	$ u\mapsto 1$.25
	$w \mapsto 3$	t ₂	3			и	$v \mapsto 2$.25
	$w \mapsto 4$	t_2	4			и	v → 3	.25
						и	v	.25

. .

• We choose possible world $\{x \mapsto 1, y \mapsto 2, v \mapsto 1, w \mapsto 1\}$.

Semantics of U-Relational Databases

				$U_{R[N]}$	TID	N	
$U_{R[SSN]}$	$V \mapsto D$	TID	SSN		t_1	Smith	-
	$x \mapsto 1$	t_1	185		t_2	Brown	
				W	$V\mapstoD$	Р	
	$y \mapsto 2$	t_2	186	\rightarrow	$x \mapsto 1$.4	
					$x \mapsto 2$.6	
	V. D		N.4		$y\mapsto 1$.7	
$O_{R[M]}$	$V \mapsto D$	110		\rightarrow	$y \mapsto 2$.3	
	$v \mapsto 1$	ι1	1	\rightarrow	$v\mapsto 1$.8	
	$w\mapsto 1$	t ₂	1		$v \mapsto 2$.2	
		-2		\rightarrow	$w\mapsto 1$.25	
					$w \mapsto 2$.25	
					$w \mapsto 3$.25	
					$w \mapsto 4$.25	

- We choose possible world $\{x \mapsto 1, y \mapsto 2, v \mapsto 1, w \mapsto 1\}$.
- Probability weight of this world: .4 * .3 * .8 * .25 = .024.
- Now we have a vertically decomposed version of the chosen possible world.

Properties of U-Relational Databases

- Complete representation system for finite sets of possible worlds
 - MystiQ: independent tuples/block-independent disjoint tables
- Often exponentially more succinct than WSDs, ULDBs, prob. databases
- A special case of c-tables
 - like all other existing representation formalisms, BUT...
- Purely relational representation of uncertainty at attribute-level
 - in contrast to probabilistic databases of MystiQ and ULDBs of Trio
- Efficient relational evaluation of many query operators (next topic)

Efficient query evaluation

Positive relational algebra

Query evaluation under *possible world semantics*:

For any positive relational algebra query q over any U-relational database T, there exists a positive relational algebra query \overline{q} of polynomial size such that

$$\overline{q}(T) = rep^{-1}(\{q(\mathcal{A}_i) \mid \mathcal{A}_i \in rep(T)\}).$$

Properties

- relational evaluation using the query plan of your choice
- PTIME data complexity
- preserves the provenance of answer tuples

Names of possibly married persons: $possible(\pi_{Name}(\sigma_{Status=2}(S)))$

U _{S[Name]}	$V\mapstoD$	TID	Name
	$x_3 \mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

$U_{S[Status]}$	$V \mapsto D$	TID	Status
	$x_3\mapsto 1$	t_1	1
	$x_3 \mapsto 2$	t_1	2
	$x_6\mapsto 1$	t_2	1
	$x_6 \mapsto 2$	t_2	2

Evaluation steps:

merge the U-relations storing the necessary columns:

 $Q := possible(\pi_{Name}(\sigma_{Status=2}(\operatorname{merge}(\pi_{Name}(S), \pi_{Status}(S)))))$

Names of possibly married persons: $possible(\pi_{Name}(\sigma_{Status=2}(S)))$

U _{S[Name]}	$V\mapstoD$	TID	Name
	$x_3 \mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

$U_{S[Status]}$	$V \mapsto D$	TID	Status
	$x_3\mapsto 1$	t_1	1
	$x_3 \mapsto 2$	t_1	2
	$x_6\mapsto 1$	t_2	1
	$x_6 \mapsto 2$	t_2	2

Evaluation steps:

merge the U-relations storing the necessary columns:

 $Q := possible(\pi_{Name}(\sigma_{Status=2}(\operatorname{merge}(\pi_{Name}(S), \pi_{Status}(S)))))$

rewrite Q on column-store:

 $P := \pi_{Name}(\sigma_{Status=2}(U_{S[Name]} \bowtie_{\psi \land \phi} U_{S[Status]})), \text{ where }$

 ψ ensures that we only generate tuples that occur in some worlds: $\psi := (U_{S[Name]}.V = U_{S[Status]}.V \Rightarrow U_{S[Name]}.D = U_{S[Status]}.D),$

 ϕ ensures that we only merge valid tuples: $\phi := (U_{S[Name]}.TID = U_{S[Status]}.TID)$

Names of possibly married persons: $possible(\pi_{Name}(\sigma_{Status=2}(S)))$

U _{S[Name]}	$V\mapstoD$	TID	Name
	$x_3 \mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

$U_{S[Status]}$	$V \mapsto D$	TID	Status
	$x_3\mapsto 1$	t_1	1
	$x_3 \mapsto 2$	t_1	2
	$x_6\mapsto 1$	t_2	1
	$x_6 \mapsto 2$	t_2	2

Evaluation steps:

merge the U-relations storing the necessary columns:

 $Q := possible(\pi_{Name}(\sigma_{Status=2}(\text{merge}(\pi_{Name}(S), \pi_{Status}(S)))))$

rewrite Q on column-store:

 $P := \pi_{Name}(\sigma_{Status=2}(U_{S[Name]} \bowtie_{\psi \land \phi} U_{S[Status]})), \text{ where }$

 ψ ensures that we only generate tuples that occur in some worlds: $\psi := (U_{S[Name]}.V = U_{S[Status]}.V \Rightarrow U_{S[Name]}.D = U_{S[Status]}.D),$

 ϕ ensures that we only merge valid tuples: $\phi := (U_{S[Name]}, TID = U_{S[Status]}, TID)$ **3** feed *P* to *any* relational query optimizer

Names of possibly married persons: $possible(\pi_{Name}(\sigma_{Status=2}(S)))$

$U_{S[Name]}$	$V\mapstoD$	TID	Name
	$x_3\mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

$U_{S[Status]}$	$V \mapsto D$	TID	Status
	$x_3\mapsto 1$	t_1	1
	$x_3 \mapsto 2$	t_1	2
	$x_6\mapsto 1$	t_2	1
	$x_6 \mapsto 2$	t_2	2

	$V_1 \mapsto D_1$	$V_2 \mapsto D_2$	TID	Name	Status
wrong Status	$x_3\mapsto 1$	$x_3\mapsto 1$	$t_1 \stackrel{?}{=} t_1$	Smith	1
inconsistent	$x_3\mapsto 1$	$x_3 \mapsto 2$	$t_1 \stackrel{?}{=} t_1$	Smith	2
wrong TIDs	$x_3\mapsto 1$	$x_6\mapsto 1$	$t_1 \stackrel{?}{=} t_2$	Smith	1
wrong TIDs	$x_3\mapsto 1$	$x_6\mapsto 2$	$t_1 \stackrel{?}{=} t_2$	Smith	2
wrong TIDs	$x_5\mapsto 1$	$x_3\mapsto 1$	$t_1 \stackrel{?}{=} t_2$	Brown	1
wrong TIDs	$x_5\mapsto 1$	$x_3 \mapsto 2$	$t_1 \stackrel{?}{=} t_2$	Brown	2
wrong Status	$x_5\mapsto 1$	$x_6\mapsto 1$	$t_2 \stackrel{?}{=} t_2$	Brown	1
	$x_5\mapsto 1$	$x_6 \mapsto 2$	$t_2 \stackrel{?}{=} t_2$	Brown	2

Names of possibly married persons: $possible(\pi_{Name}(\sigma_{Status=2}(S)))$

U _{S[Name]}	$V\mapstoD$	TID	Name
	$x_3 \mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

$U_{S[Status]}$	$V \mapsto D$	TID	Status
	$x_3\mapsto 1$	t_1	1
	$x_3 \mapsto 2$	t_1	2
	$x_6\mapsto 1$	t_2	1
	$x_6 \mapsto 2$	t_2	2

$V_1 \mapsto D_1$	$V_2 \mapsto D_2$	TID	Name	Status
 $x_5\mapsto 1$	$x_6 \mapsto 2$	t_2	Brown	2

Beyond positive relational algebra

Difference

Tuple q-possibility is NP-hard even for normalized tuple-level U-relations and queries with difference. BUT this is already true for Codd tables.

World-set Algebra [SIGMOD'07,VLDB'07]

- Possible (*R*) Implemented using projection
- Certain (*R*)

Implemented using division for *normalized* tuple-level U-relations (normalization = at most one variable assignment per tuple)

repair-key_{d[@P]}(R)

Turns a possible world into the set of worlds consisting of all possible maximal repairs of key \vec{A} in R.

conf (R)

Computes the exact confidence of (distinct) tuples

• . . .

repair-key example

Tossing a biased coin twice.

Toss	Face	FProb	
1	Н	.4	
1	Т	.6	Pr = 1
2	Н	.4	
2	Т	.6	
	Toss 1 2 2	Toss Face 1 H 1 T 2 H 2 T	Toss Face FProb 1 H .4 1 T .6 2 H .4 2 T .6

 $S := \text{repair-key}_{\text{Toss}@FProb}(R)$ results in four worlds:

S^1	Toss	Face	FProb	S^2	Toss	Face	FProb
	1	Н	.4		1	Н	.4
	2	Н	.4		2	Т	.6
S ³	Torr	Face	EDroh	S ⁴	Tore	Face	EDroh
5	1055	I ace	FFIOD	5	1055	I ace	TETOD
	1	T	.6		1033	T	.6

$$\Pr(S^1) = 1 \cdot \frac{.4}{.4 + .6} \cdot \frac{.4}{.4 + .6} = .16, \ \Pr(S^2) = \Pr(S^3) = .24, \ \Pr(S^4) = .36$$

repair-key example

Tossing a biased coin twice.

R	Toss	Face	FProb	
	1	Н	.4	
	1	Т	.6	Pr = 1
	2	Н	.4	
	2	Т	.6	

 $S := \text{repair-key}_{\text{Toss}@FProb}(R)$ is just a projection/copying of columns (even though we may create an exponential number of possible worlds)!

U_S	$V\mapstoD$	Toss	Face	FProb	W	$V\mapstoD$	Ρ
	$1 \mapsto H$	1	Н	.4		$1\mapsto H$.4
	$1 \mapsto T$	1	Т	.6		$1 \mapsto T$.6
	$2\mapsto \mathbf{H}$	2	Н	.4		$2 \mapsto \mathbf{H}$.4
	$2 \mapsto \mathbf{T}$	2	Т	.6		$2 \mapsto \mathbf{T}$.6

What about probabilities?

Given a tuple t with a set of valuations S, compute conf(t) by partitioning S

- (a) into independent subsets (*exploit contextual independence*)
- (b) by removing variables (modified Davis-Putnam)
- (c) by removing valuations (*compute equiv. set of pairwise mutex valuations*) Our current approach is a cost-based interplay of (a)-(c).

More in *Conditioning Probabilistic Databases* by Koch&Olteanu.

$$S = \{\{x \mapsto 1\}, \{x \mapsto 2, y \mapsto 1\}, \{x \mapsto 2, z \mapsto 1\}, \{u \mapsto 1, v \mapsto 1\}, \{u \mapsto 2\}\}$$

$$S = \{\{x \mapsto 1\}, \{x \mapsto 2, y \mapsto 1\}, \{x \mapsto 2, z \mapsto 1\}, \{u \mapsto 1, v \mapsto 1\}, \{u \mapsto 2\}\}$$

Experiments

Uncertain data generator

• extend TPC-H population generator 2.6 to generate U-relational databases

any generated world has the sizes of relations and join selectivities of the original TPC-H one-world case

- parameters: scale (s), uncertainty ratio (x), correlation ratio (z), max alternatives per field (8), drop after correlation (0.25)
- correlations follow a pattern obtained by chasing egds on uncertain data [ICDE'07]

Uncertainty and storage

Total number of worlds, max. number of domain values for a variable (Rng), and size in MB of the U-relational database for each of our settings.

s	z	TPC-H dbsize	#worlds	Rng	dbsize	#worlds	Rng	dbsize	#worlds	Rng	dbsize
0.01	0.1	17	10 ^{857.076}	21	82	10 ^{7955.30}	57	85	10 ^{79354.1}	57	114
0.01	0.5	17	10 ^{523.031}	71	82	10 ^{4724.56}	901	88	10 ^{46675.6}	662	139
0.05	0.1	85	10 ^{4287.23}	22	389	10 ^{39913.8}	33	403	10 ³⁹⁶¹³⁷	65	547
0.05	0.5	85	10 ^{2549.14}	178	390	10 ^{23515.5}	449	416	10 ²³²⁶⁵⁰	1155	672
0.10	0.1	170	10 ^{8606.77}	27	773	10 ^{79889.9}	49	802	10 ⁷⁹³⁶¹¹	53	1090
0.10	0.5	170	10 ^{5044.65}	181	776	10 ^{46901.8}	773	826	10 ⁴⁶⁶⁰³⁸	924	1339
0.50	0.1	853	10 ^{43368.0}	49	3843	10 ⁴⁰⁰¹⁸⁵	71	3987	10 ^{3.97e+06}	85	5427
0.50	0.5	853	10 ^{25528.9}	214	3856	10 ²³⁴⁸⁴⁰	1832	4012	10 ^{2.33e+06}	2586	6682
1.00	0.1	1706	10 ^{87203.0}	57	7683	10 ⁸⁰⁰⁹⁹⁷	99	7971	10 ^{7.94e+06}	113	11264
1.00	0.5	1706	10 ^{51290.9}	993	7712	10 ⁴⁷⁰⁴⁰¹	1675	8228	10 ^{4.66e+06}	3392	13312
		$\mathbf{x} = 0.0$	x =	= 0.00	1	x	= 0.01		x	= 0.1	

• exponentially more succinct than representing worlds individually

• $10^{8\cdot10^6}$ worlds need 13 GBs pprox 8 times the size of one world (1.4 GBs)

• case x = 0 is the DB generated by the original TPC-H (without uncertainty)

Evaluation of positive relational algebra queries

 $\begin{array}{l} Q_1: \mbox{ possible (select o.orderkey, o.orderdate, o.shippriority from customer c, orders o, lineitem I where c.mktsegment = 'BUILDING' \\ \mbox{and c.custkey} = o.custkey and o.orderkey = I.orderkey \\ \mbox{and o.orderdate} > '1995-03-15' \mbox{ and l.shipdate } < '1995-03-17') \end{array}$

• uncertainty varies from 0.001 to $0.1 \rightarrow$ evaluation time up to 6 times slower

- correlation varies from 0.1 to 0.5 \rightarrow evaluation time up to 3 times slower
- scale varies from 0.01 to 1 → evaluation time up to 400 times slower scale=1: the answer size ranges from tens of thousands to tens of millions.

Attribute-level vs. tuple-level

SPJ query on six relations represented by equivalent

- attribute-level U-relational databases
- tuple-level U-relational databases
- Trio's ULDBs (are tuple-level only)

Skipped the exponential time task of removing erroneous tuples

• Experiment only possible for small scenarios: 1% uncertainty, lowest correlation factor 0.1, and scale up to 0.1.

• an increase in any of our parameters would create prohibitively large (exponential in the arity of relations) tuple-level representations.

Papers on MayBMS

- L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information and Back. In *Proc. SIGMOD 2007*.
- ———. World-Set Decompositions: Expressiveness and Efficient Algorithms. In *Proc. ICDT 2007*. Extended version conditionally accepted for *TCS*.
- ——. 10^{10⁶} Worlds and Beyond: Efficient Representation and Processing of Incomplete Information. In *Proc. ICDE 2007*.
- ——. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions. In *Proc. ICDE 2007*. (Demo Paper.)
- Query Language Support for Incomplete Information in the MayBMS System. In *Proc. VLDB 2007*. (Demo Paper.)
- Approximating Predicates and Expressive Queries on Probabilistic Databases. Christoph Koch. In *Proc. PODS 2008*.
- C. Koch, and D. Olteanu. Conditioning Probabilistic Databases. Available online.

Experiments: Confidence computation

Excellent behaviour (within seconds) for

- few variables (100), many ws-descriptors (5K 50K)
- many variables (100K), few ws-descriptors (01.K 5K)

Heuristics for variable elimination: good variable choices are extremely valuable even if they require polynomial time

Competitive even when compared with Monte Carlo simulation based on Karp-Luby FPRAS (fully polynomial randomized approx. scheme) for #DNF.

Karp-Luby (KL): with at least 90% probability, the estimated error is within 1%, and 10% resp., from the exact value.

Violated SSN keys: $possible(\pi_{r_1.SSN}((R r_1) \bowtie_{r_1.SSN=r_2.SSN \land r_1.N <> r_2.N} (R r_2)))$

$U_{S[SSN]}$	$V\mapstoD$	TID	SSN
	$x_1 \mapsto 1$	t_1	185
	$x_1 \mapsto 2$	t_1	785
	$x_4\mapsto 1$	t_2	185
	$x_4 \mapsto 2$	t_2	186

$U_{S[Name]}$	$V\mapstoD$	TID	Name
	$x_2\mapsto 1$	t_1	Smith
	$x_5\mapsto 1$	t_2	Brown

Rewritten query on column-store:

$$\begin{array}{l} S := U_{S[SSN]} \bowtie_{\psi \land \phi} U_{S[Name]} \\ P := \pi_{s_1.SSN \ as \ SSN}((S \ s_1) \bowtie_{s_1.SSN=s_2.SSN \land s_1.Name <> s_2.Name} \ (S \ s_2)) \end{array}$$

Ρ	$V_1 \mapsto D_1$	$V_2\mapsto D_2$	$V_3\mapsto D_3$	$V_4\mapsto D_4$	T_{s_1}	T_{s_2}	SSN
	$x_1\mapsto 1$	$x_2\mapsto 1$	$x_4\mapsto 1$	$x_5\mapsto 1$	t_1	t_2	185
	$x_5\mapsto 1$	$x_4\mapsto 1$	$x_1\mapsto 1$	$x_2\mapsto 1$	t_2	t_1	185

Uncertainty-aware query language

Desiderata for a Query Language for Uncertain Data

genericity – declarative queries, independent from representation details

- Trio's TriQL is not generic
- ability to transform data
 - beyond the filtering of world-sets as in MystiQ
- ability to introduce additional uncertainty (!!!)
 - To make it a natural query language for the possible worlds model: compositionality
 - Decision support queries/hypothetical queries
 - Probabilistic databases: extending the hypothesis space to use evidence
- right degree of expressive power not too strong and not too weak
- efficient query evaluation

World-set Algebra

- The operations of relational algebra .
 - Evaluated individually, in "parallel" in all possible worlds.
- An operation conf(R) for computing tuple confidence values.
 - Computes, for each tuple that occurs in R in at least one world, the sum of the probabilities of the worlds in which it occurs.
- An operation assert_{ϕ}(*R*) that conditions the database using a constraint ϕ .
 - Removes those worlds that violate ϕ .
- An operation repair-key $\overline{A[QP]}(R)$ for introducing uncertainty.
 - Turns a possible world into the set of worlds consisting of all possible maximal repairs of key \vec{A} in R.
 - We will also look at a special case of repair-key called choice-of.
- An operation for grouping worlds based on common properties
 - property = answer to a given query
 - (we will not discuss this one here)

Operation choice-of

• Introducing uncertainty using the choice-of operation allows to extend the hypothesis space.

$$S:=\mathsf{choice-of}_{A@B}(R)$$

There must be a functional dependency $R : A \rightarrow B$. • Necessary if we want to introduce evidence.

Operation repair-key

Example: Tossing a biased coin twice.

R	Toss	Face	FProb	
	1	Н	.4	
	1	Т	.6	Pr = 1
	2	Н	.4	
	2	Т	.6	

 $S := \text{repair-key}_{\text{Toss} @ \operatorname{FProb}}(R)$ results in four worlds:

S^1	Toss	Face	FProb	S^2	Toss	Face	FProb
	1	Н	.4		1	Н	.4
	2	Н	.4		2	Т	.6
S^3	Toss	Face	FProb	<i>S</i> ⁴	Toss	Face	FProb
<i>S</i> ³	Toss 1	Face T	FProb .6	<u>S</u> ⁴	Toss 1	Face T	FProb .6

$$\Pr(S^1) = 1 \cdot \frac{.4}{.4 + .6} \cdot \frac{.4}{.4 + .6} = .16, \ \Pr(S^2) = \Pr(S^3) = .24, \ \Pr(S^4) = .36$$

Operation conf

conf(R) gives the probability of each tuple across all worlds:

For a Boolean query Q and a world-set \mathbf{W} , conf(Q) gives us one number, the probability of the event $\{I \in \mathbf{W} \mid I \vDash Q\}$, which is the confidence of tuple $\langle \rangle$.

Conditioning using assert

Example: enforcing a key constraint on SSN.

$U_{R[SSN]}$	V	D	TID	SSN
	X	1	t_1	185
	x	2	t_1	785
	у	1	t ₂	185
	у	2	t_2	186

 $T := assert_{fd:SSN \to TID}(R).$

We drop the worlds where both tuples t_1 and t_2 occur with SSN = 185.

_	$U_{T[SSN]}$	V_1	D_1	V_2	D_2	TID	SSN
		х	1	у	2	t_1	185
		x	1	у	2	t_2	186
		x	2	y	1	t_1	785
		x	2	y	1	t_2	185
		x	2	y	2	t_1	785
		x	2	у	2	t_2	186