MAYBE

Fast and Simple Relational Processing of Uncertain Data

Lyublena Antova (Cornell), Thomas Jansen (SAP), Christoph Koch (Cornell), Dan Olteanu (Oxford)

Appl?cati0n Sc nar o: Census data

We want to enter the information from forms like these into a database.

- What is the marital status of the first resp. the second person?
- What are the social security numbers? 185? 186? 785?

Appl?catiOn Sc ${ }^{\text {e }}$ nar o: Census data

Much of the available information cannot be represented and is lost, e.g.

- Smith's SSN is either 185 or 785; Brown's SSN is either 185 or 186.
- Data cleaning: No two distinct persons can have the same SSN.

Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data

(1) Representation and storage mechanisms
(2) Uncertainty-aware query and data manipulation language
(3) Efficient processing techniques for queries and constraints

This talk will cover some aspects of (1) and (3).

Representation of uncertain data

Desiderata for a representation system

(1) Succinctness/Space-efficient storage

- Large number of independent local alternatives, which multiply up to a very large number of worlds.
(2) Efficient real-world query processing
- Tradeoff between succinctness and complexity of query evaluation. We want to do well in practice.
(3) Expressiveness/Representability
- Ability to represent all results of query and constraint processing.
- Constraints/queries enforce dependencies across alternatives!

Quest for well-behaved representation system (1)

Properties (ICDE'07, ICDT'07)

- Relational representation of uncertainty at attribute-level
- Complete in the case of finite sets of alternatives (worlds)
- Data independence naturally supported by relational product Decompositions via efficient prime factorization of relations

Quest for well-behaved representation system (2)

Equivalent column-oriented encoding with one relation per each attribute of R.

$U_{R[S S N]}$			$U_{R[N]}$			$U_{R[M]}$		
						$\mathrm{V} \mapsto \mathrm{D}$	TID	M
$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN				$v \mapsto 1$	t_{1}	1
$x \mapsto 1$	t_{1}	185	$\mathrm{V} \mapsto \mathrm{D}$	TID	N	$v \mapsto 2$	t_{1}	2
$x \mapsto 2$	t_{1}	785		t_{1}	Smith	$w \mapsto 1$	t_{2}	1
$y \mapsto 1$	t_{2}	185		t_{2}	Brown	$w \mapsto 2$	t_{2}	2
$y \mapsto 2$	t_{2}	186				$w \mapsto 3$	t_{2}	3
						$w \mapsto 4$	t_{2}	4

U-Relational Databases

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
	$y \mapsto 2$	t_{2}	186

$U_{R[N]}$	TID	N
	t_{1}	Smith
	t_{2}	Brown
W	$\mathrm{V} \mapsto \mathrm{D}$	P
	$x \mapsto 1$. 4
	$x \mapsto 2$. 6
	$y \mapsto 1$. 7
	$y \mapsto 2$. 3
	$v \mapsto 1$. 8
	$v \mapsto 2$. 2
	$w \mapsto 1$. 25
	$w \mapsto 2$. 25
	$w \mapsto 3$. 25
	$w \mapsto 4$. 25

- Discrete independent (random) variables (x, y, v, w).
- Representation: U-relations + table W representing distributions.
- The schema of each U-relation consists of
- a tuple id column,
- a set of column pairs $\left(V_{i}, D_{i}\right)$ representing variable assignments, and
- a set of value columns.

Semantics of U-Relational Databases

- Each possible world is identified by a valuation θ that assigns one of the possible values to each variable.
- The probability of the possible world is the product of weights of the values of the variables.
- The value-component of a tuple of a U-relation is in a given possible world if its variable assignments are consistent with θ.
- Attribute-level uncertainty through vertical decomposition.

Semantics of U-Relational Databases

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
	$y \mapsto 2$	t_{2}	186

$U_{R[N]}$	TID	N
	t_{1} t_{2}	Smith Brown
W	$\mathrm{V} \mapsto \mathrm{D}$	P
\rightarrow	$x \mapsto 1$	4
	$x \mapsto 2$. 6
	$y \mapsto 1$. 7
\rightarrow	$y \mapsto 2$. 3
\rightarrow	$v \mapsto 1$. 8
	$v \mapsto 2$. 2
\rightarrow	$w \mapsto 1$. 25
	$w \mapsto 2$. 25
	$w \mapsto 3$. 25
	$w \mapsto 4$. 25

- We choose possible world $\{x \mapsto 1, y \mapsto 2, v \mapsto 1, w \mapsto 1\}$.

Semantics of U-Relational Databases

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$y \mapsto 2$	t_{2}	186

$\left.\begin{array}{l|l|l}U_{R[N]} & \mathrm{TID} & \mathrm{N} \\ \hline & t_{1} & \text { Smith } \\ & t_{2} & \text { Brown } \\ W & \mathrm{~V} \mapsto \mathrm{D} & \mathrm{P} \\ \hline \rightarrow & x \mapsto 1 & .4 \\ & x \mapsto 2 & .6 \\ \rightarrow & y \mapsto 1 & .7 \\ \rightarrow & y \mapsto 2 & .3 \\ \rightarrow & v \mapsto 1 & .8 \\ & v \mapsto 2 & .2 \\ & w \mapsto 1 & .25 \\ & w \mapsto 2 & .25 \\ & w \mapsto 3 & .25 \\ & w & w\end{array}\right) .25$

- We choose possible world $\{x \mapsto 1, y \mapsto 2, v \mapsto 1, w \mapsto 1\}$.
- Probability weight of this world: . $4^{*} .3^{*} .8^{*} .25=.024$.
- Now we have a vertically decomposed version of the chosen possible world.

Properties of U-Relational Databases

- Complete representation system for finite sets of possible worlds
- MystiQ: independent tuples/block-independent disjoint tables
- Often exponentially more succinct than WSDs, ULDBs, prob. databases
- A special case of c-tables
- like all other existing representation formalisms, BUT...
- Purely relational representation of uncertainty at attribute-level
- in contrast to probabilistic databases of MystiQ and ULDBs of Trio
- Efficient relational evaluation of many query operators (next topic)

Efficient query evaluation

Positive relational algebra

Query evaluation under possible world semantics:

For any positive relational algebra query q over any U-relational database T, there exists a positive relational algebra query \bar{q} of polynomial size such that

$$
\bar{q}(T)=\operatorname{rep}^{-1}\left(\left\{q\left(\mathcal{A}_{i}\right) \mid \mathcal{A}_{i} \in \operatorname{rep}(T)\right\}\right)
$$

Properties

- relational evaluation using the query plan of your choice
- PTIME data complexity
- preserves the provenance of answer tuples

Query Evaluation: Example

Names of possibly married persons: possible $\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }}=2(S)\right)\right)$

Evaluation steps:
(1) merge the U-relations storing the necessary columns:
$Q:=\operatorname{possible}\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}\left(\operatorname{merge}\left(\pi_{\text {Name }}(S), \pi_{\text {Status }}(S)\right)\right)\right)\right)$

Query Evaluation: Example

Names of possibly married persons: possible $\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }}=2(S)\right)\right.$)

$U_{\text {S[Name] }}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	Name	$U_{S[\text { Status] }}$	$\frac{V \mapsto D}{x_{3} \mapsto 1}$	$\frac{\text { TID }}{t_{1}}$	$\frac{\text { Status }}{1}$
	$x_{3} \mapsto 1$	t_{1}	Smith		$x_{3} \mapsto 2$	t_{1}	2
	$x_{5} \mapsto 1$	t_{2}	Brown		$x_{6} \mapsto 1$	t_{2}	1
					$x_{6} \mapsto 2$	t_{2}	2

Evaluation steps:
(1) merge the U-relations storing the necessary columns:
$Q:=\operatorname{possible}\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}\left(\right.\right.\right.$ merge $\left.\left.\left.\left(\pi_{\text {Name }}(S), \pi_{\text {Status }}(S)\right)\right)\right)\right)$
(3) rewrite Q on column-store:
$P:=\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}\left(U_{S[\text { Name }]} \bowtie_{\psi \wedge \phi} U_{S[\text { Status }]}\right)\right)$, where
ψ ensures that we only generate tuples that occur in some worlds:
$\psi:=\left(U_{S[\text { Name }]} \cdot V=U_{S[S t a t u s]} \cdot V \Rightarrow U_{S\left[N_{\text {ame }}\right]} \cdot D=U_{S[\text { Status }]} \cdot D\right)$,
ϕ ensures that we only merge valid tuples:
$\phi:=\left(U_{S[\text { Name }]} \cdot T I D=U_{S[S t a t u s]} . T I D\right)$

Query Evaluation: Example

Names of possibly married persons: possible $\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}(S)\right)\right)$

$U_{\text {S[Name] }}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	Name	$U_{S[\text { Status] }}$	$\frac{V \mapsto D}{x_{3} \mapsto 1}$	$\frac{\text { TID }}{t_{1}}$	$\frac{\text { Status }}{1}$
	$x_{3} \mapsto 1$	t_{1}	Smith		$x_{3} \mapsto 2$	t_{1}	2
	$x_{5} \mapsto 1$	t_{2}	Brown		$x_{6} \mapsto 1$	t_{2}	1
					$x_{6} \mapsto 2$	t_{2}	2

Evaluation steps:
(1) merge the U-relations storing the necessary columns:
$Q:=\operatorname{possible}\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}\left(\right.\right.\right.$ merge $\left.\left.\left.\left(\pi_{\text {Name }}(S), \pi_{\text {Status }}(S)\right)\right)\right)\right)$
(3) rewrite Q on column-store:
$P:=\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}\left(U_{S[\text { Name }]} \bowtie_{\psi \wedge \phi} U_{S[\text { Status }]}\right)\right)$, where
ψ ensures that we only generate tuples that occur in some worlds:
$\psi:=\left(U_{S[\text { Name }]} \cdot V=U_{S[S t a t u s]} \cdot V \Rightarrow U_{S\left[N_{\text {ame }}\right]} \cdot D=U_{S[\text { Status }]} \cdot D\right)$,
ϕ ensures that we only merge valid tuples:
$\phi:=\left(U_{S[\text { Name }]} \cdot T I D=U_{S[S t a t u s]}\right.$. TID $)$
(3) feed P to any relational query optimizer

Query Evaluation: Example

Names of possibly married persons: possible $\left(\pi_{\text {Name }}\left(\sigma_{S_{t a t u s=2}}(S)\right)\right)$

$U_{\text {S[Name] }}$				$U_{\text {[} \text { Status] }}$	$\frac{\mathrm{V} \mapsto \mathrm{D}}{x_{3} \mapsto 1}$	$\frac{\text { TID }}{t_{1}}$	$\frac{\text { Status }}{1}$
	$\mathrm{V} \mapsto \mathrm{D}$	TID	Name				
	$x_{3} \mapsto 1$	t_{1}	Smith		$x_{3} \mapsto 2$	t_{1}	2
	$x_{5} \mapsto 1$	t_{2}	Brown		$x_{6} \mapsto 1$	t_{2}	1
					$x_{6} \mapsto 2$	t_{2}	2

	$V_{1} \mapsto D_{1}$	$V_{2} \mapsto D_{2}$	TID	Name	Status
wrong Status	$x_{3} \mapsto 1$	$x_{3} \mapsto 1$	$t_{1} \stackrel{?}{=} t_{1}$	Smith	1
inconsistent	$x_{3} \mapsto 1$	$x_{3} \mapsto 2$	$t_{1} \stackrel{?}{=} t_{1}$	Smith	2
wrong TIDs	$x_{3} \mapsto 1$	$x_{6} \mapsto 1$	$t_{1} \stackrel{?}{=} t_{2}$	Smith	1
wrong TIDs	$x_{3} \mapsto 1$	$x_{6} \mapsto 2$	$t_{1} \stackrel{?}{=} t_{2}$	Smith	2
wrong TIDs	$x_{5} \mapsto 1$	$x_{3} \mapsto 1$	$t_{1} \stackrel{?}{=} t_{2}$	Brown	1
wrong TIDs	$x_{5} \mapsto 1$	$x_{3} \mapsto 2$	$t_{1} \stackrel{?}{=} t_{2}$	Brown	2
wrong Status	$x_{5} \mapsto 1$	$x_{6} \mapsto 1$	$t_{2} \stackrel{?}{=} t_{2}$	Brown	1
	$x_{5} \mapsto 1$	$x_{6} \mapsto 2$	$t_{2} \stackrel{?}{=} t_{2}$	Brown	2

Query Evaluation: Example

Names of possibly married persons: possible $\left(\pi_{\text {Name }}\left(\sigma_{\text {Status }=2}(S)\right)\right)$

$U_{\text {S[Name }]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	Name	$U_{\text {S[Status }]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	Status
	$x_{3} \mapsto 1$	t_{1}	Smith			$x_{3} \mapsto 1$	t_{1}
	$x_{5} \mapsto 1$	t_{2}	Brown		$x_{3} \mapsto 2$	t_{1}	2
				$x_{6} \mapsto 1$	t_{2}	1	
				$x_{6} \mapsto 2$	t_{2}	2	

	$V_{1} \mapsto D_{1}$	$V_{2} \mapsto D_{2}$	TID	Name	Status
	$x_{5} \mapsto 1$	$x_{6} \mapsto 2$	t_{2}	Brown	2

Beyond positive relational algebra

Difference

Tuple q-possibility is NP-hard even for normalized tuple-level U-relations and queries with difference. BUT this is already true for Codd tables.

World-set Algebra [SIGMOD'07,VLDB'07]

- Possible (R)

Implemented using projection

- Certain (R)

Implemented using division for normalized tuple-level U-relations (normalization $=$ at most one variable assignment per tuple)

- repair-key ${ }_{\vec{A}[@ P]}(R)$

Turns a possible world into the set of worlds consisting of all possible maximal repairs of key \vec{A} in R.

- conf (R)

Computes the exact confidence of (distinct) tuples

- ...

repair-key example

Tossing a biased coin twice.

R	Toss	Face	FProb	
	1	H	.4	
	1	T	.6	$\operatorname{Pr}=1$
	2	H	.4	
	2	T	.6	

$S:=$ repair-key $_{\text {TossefProb }}(R) \quad$ results in four worlds:

S^{1}	Toss	Face	FProb		S^{2}	Toss	Face	FProb
	1	H	.4			1	H	.4
	2	H	.4			2	T	.6
S^{3}	Toss	Face	FProb		S^{4}	Toss	Face	FProb
	1	T	.6					
	2	H	.4			1	T	.6
						T	.6	

$$
\operatorname{Pr}\left(S^{1}\right)=1 \cdot \frac{.4}{.4+.6} \cdot \frac{.4}{.4+.6}=.16, \quad \operatorname{Pr}\left(S^{2}\right)=\operatorname{Pr}\left(S^{3}\right)=.24, \operatorname{Pr}\left(S^{4}\right)=.36
$$

repair-key example

Tossing a biased coin twice.

R	Toss	Face	FProb	
	1	H	.4	
	1	T	.6	$\operatorname{Pr}=1$
	2	H	.4	
	2	T	.6	

$S:=$ repair-key $_{\text {Toss@FProb }}(R) \quad$ is just a projection/copying of columns (even though we may create an exponential number of possible worlds)!

U_{S}	$\mathrm{~V} \mapsto \mathrm{D}$	Toss	Face	FProb
	$1 \mapsto \mathrm{H}$	1	H	.4
	$1 \mapsto \mathrm{~T}$	1	T	.6
	$2 \mapsto \mathrm{H}$	2	H	.4
	$2 \mapsto \mathrm{~T}$	2	T	.6

W	$\mathrm{~V} \mapsto \mathrm{D}$	P
	$1 \mapsto \mathrm{H}$.4
	$1 \mapsto \mathrm{~T}$.6
	$2 \mapsto \mathrm{H}$.4
	$2 \mapsto \mathrm{~T}$.6

What about probabilities?

Given a tuple t with a set of valuations S, compute $\operatorname{conf}(t)$ by partitioning S
(a) into independent subsets (exploit contextual independence)
(b) by removing variables (modified Davis-Putnam)
(c) by removing valuations (compute equiv. set of pairwise mutex valuations) Our current approach is a cost-based interplay of (a)-(c).

More in Conditioning Probabilistic Databases by Koch\&Olteanu.

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

$$
\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\}\}
$$

$$
\{\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Confidence computation example

$$
S=\{\{x \mapsto 1\},\{x \mapsto 2, y \mapsto 1\},\{x \mapsto 2, z \mapsto 1\},\{u \mapsto 1, v \mapsto 1\},\{u \mapsto 2\}\}
$$

Experiments

Uncertain data generator

- extend TPC-H population generator 2.6 to generate U-relational databases any generated world has the sizes of relations and join selectivities of the original TPC-H one-world case
- parameters: scale (s), uncertainty ratio (x), correlation ratio (z), max alternatives per field (8), drop after correlation (0.25)
- correlations follow a pattern obtained by chasing egds on uncertain data [ICDE'07]

Uncertainty and storage

Total number of worlds, max. number of domain values for a variable (Rng), and size in MB of the U-relational database for each of our settings.

s	z	$\begin{gathered} \text { TPC-H } \\ \text { dbsize } \\ \hline \end{gathered}$	\#worlds	Rng	dbsize	\#worlds	Rng	dbsize	\#worlds	Rng	dbsize
$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	0.1 0.5	17 17	$\begin{aligned} & 10^{857.076} \\ & 10^{523.031} \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 71 \\ & \hline \end{aligned}$	82 82	$\begin{aligned} & 10^{7955.30} \\ & 10^{4724.56} \\ & \hline \end{aligned}$		85 88	$\begin{aligned} & 10^{79354.1} \\ & 10^{46675.6} \\ & \hline \end{aligned}$	57 662	114 139
$\begin{aligned} & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	0.1 0.5	85 85	$\begin{aligned} & 10^{4287.23} \\ & 10^{2549.14} \end{aligned}$			$\begin{aligned} & 10^{39913.8} \\ & 10^{23515.5} \end{aligned}$			$\begin{aligned} & 10^{396137} \\ & 10^{232650} \end{aligned}$		
0.10 0.10	0.1 0.5	170 170	$\begin{array}{r} 10^{8606.77} \\ 10^{5044.65} \\ \hline \end{array}$			$\begin{aligned} & 10^{79889.9} \\ & 10^{46901.8} \\ & \hline \end{aligned}$		802 826	$\begin{aligned} & 10^{793611} \\ & 10^{466038} \\ & \hline \end{aligned}$	$\begin{array}{r}53 \\ 924 \\ \hline\end{array}$	1090 1339
0.50 0.50	0.1 0.5	853 853	$\begin{aligned} & 10^{43368.0} \\ & 10^{25528.9} \end{aligned}$	$\begin{array}{r} 49 \\ 214 \\ \hline \end{array}$		$\begin{aligned} & 10^{400185} \\ & 10^{234840} \end{aligned}$		3987 4012	$\begin{aligned} & 10^{3.97 e+06} \\ & 10^{2.33 e+06} \end{aligned}$		
1.00 1.00	0.1 0.5	1706 1706	$\begin{aligned} & 10^{87203.0} \\ & 10^{51290.9} \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 993 \\ \hline \end{array}$	7683 7712	$\begin{aligned} & 10^{800997} \\ & 10^{470401} \\ & \hline \end{aligned}$		7971 8228	$\begin{aligned} & 10^{7.94 e+06} \\ & 10^{4.66 e+06} \\ & \hline \end{aligned}$		11264 13312
		$\mathrm{x}=0.0$	$\mathrm{x}=0.001$			$\mathrm{x}=0.01$			$\mathrm{x}=0.1$		

- exponentially more succinct than representing worlds individually
- $10^{8 \cdot 10^{6}}$ worlds need $13 \mathrm{GBs} \approx 8$ times the size of one world (1.4 GBs)
- case $x=0$ is the DB generated by the original TPC-H (without uncertainty)

Evaluation of positive relational algebra queries

Q_{1} : possible (select o.orderkey, o.orderdate, o.shippriority from customer c, orders o, lineitem I where c.mktsegment $=$ 'BUILDING' and c.custkey $=0$. custkey and o.orderkey $=$ I.orderkey and o.orderdate > '1995-03-15' and I.shipdate $<$ '1995-03-17')

Query 1 z 0.1

Query 1 z 0.5

- uncertainty varies from 0.001 to $0.1 \rightarrow$ evaluation time up to 6 times slower
- correlation varies from 0.1 to $0.5 \rightarrow$ evaluation time up to 3 times slower
- scale varies from 0.01 to $1 \rightarrow$ evaluation time up to 400 times slower scale $=1$: the answer size ranges from tens of thousands to tens of millions.

Attribute-level vs. tuple-level

SPJ query on six relations represented by equivalent

- attribute-level U-relational databases
- tuple-level U-relational databases
- Trio's ULDBs (are tuple-level only)

Skipped the exponential time task of removing erroneous tuples
Query 3 z 0.1

- Experiment only possible for small scenarios:
1% uncertainty, lowest correlation factor 0.1, and scale up to 0.1 .
- an increase in any of our parameters would create prohibitively large (exponential in the arity of relations) tuple-level representations.

Papers on MayBMS

- L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information and Back. In Proc. SIGMOD 2007.
- World-Set Decompositions: Expressiveness and Efficient Algorithms. In Proc. ICDT 2007. Extended version conditionally accepted for TCS.
- —. $10^{10^{6}}$ Worlds and Beyond: Efficient Representation and Processing of Incomplete Information. In Proc. ICDE 2007.
- —. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions. In Proc. ICDE 2007. (Demo Paper.)
- - Query Language Support for Incomplete Information in the MayBMS System. In Proc. VLDB 2007. (Demo Paper.)
- Approximating Predicates and Expressive Queries on Probabilistic Databases. Christoph Koch. In Proc. PODS 2008.
- C. Koch, and D. Olteanu. Conditioning Probabilistic Databases. Available online.

Experiments: Confidence computation

Excellent behaviour (within seconds) for

- few variables (100), many ws-descriptors (5K - 50K)
- many variables (100K), few ws-descriptors (01.K - 5K)

Heuristics for variable elimination: good variable choices are extremely valuable even if they require polynomial time
Competitive even when compared with Monte Carlo simulation based on Karp-Luby FPRAS (fully polynomial randomized approx. scheme) for \#DNF.

KL versus INDVE (50 variables, $r=2, s=4$)

Karp-Luby (KL): with at least 90% probability, the estimated error is within 1%, and 10% resp., from the exact value.

Query evaluation: Example 2

Violated SSN keys: possible $\left(\pi_{r_{1}} . S S N\left(\left(R r_{1}\right) \bowtie_{r_{1} . S S N=r_{2} . S S N \wedge r_{1} . N<>r_{2} . N}\left(R r_{2}\right)\right)\right)$

$U_{S[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x_{1} \mapsto 1$	t_{1}	185
	$x_{1} \mapsto 2$	t_{1}	785
	$x_{4} \mapsto 1$	t_{2}	185
	$x_{4} \mapsto 2$	t_{2}	186

$U_{\text {S[Name] }}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	Name
	$x_{2} \mapsto 1$	t_{1}	Smith
	$x_{5} \mapsto 1$	t_{2}	Brown

Rewritten query on column-store:
$S:=U_{S[S S N]} \bowtie_{\psi \wedge \phi} U_{S[\text { Name }]}$
$P:=\pi_{s_{1} . S S N}$ as $\operatorname{SSN}\left(\left(S s_{1}\right) \bowtie_{s_{1} . S S N=s_{2} . S S N \wedge s_{1} . N a m e<>s_{2} . N a m e}\left(S s_{2}\right)\right)$

P	$\mathrm{~V}_{1} \mapsto \mathrm{D}_{1}$	$\mathrm{~V}_{2} \mapsto \mathrm{D}_{2}$	$\mathrm{~V}_{3} \mapsto \mathrm{D}_{3}$	$\mathrm{~V}_{4} \mapsto \mathrm{D}_{4}$	$T_{s_{1}}$	$T_{s_{2}}$	$S S N$
	$x_{1} \mapsto 1$	$x_{2} \mapsto 1$	$x_{4} \mapsto 1$	$x_{5} \mapsto 1$	t_{1}	t_{2}	185
	$x_{5} \mapsto 1$	$x_{4} \mapsto 1$	$x_{1} \mapsto 1$	$x_{2} \mapsto 1$	t_{2}	t_{1}	185

Uncertainty-aware query language

Desiderata for a Query Language for Uncertain Data

- genericity - declarative queries, independent from representation details
- Trio's TriQL is not generic
- ability to transform data
- beyond the filtering of world-sets as in MystiQ
- ability to introduce additional uncertainty (!!!)
- To make it a natural query language for the possible worlds model: compositionality
- Decision support queries/hypothetical queries
- Probabilistic databases: extending the hypothesis space to use evidence
- right degree of expressive power - not too strong and not too weak
- efficient query evaluation

World-set Algebra

- The operations of relational algebra.
- Evaluated individually, in "parallel" in all possible worlds.
- An operation $\operatorname{conf}(R)$ for computing tuple confidence values.
- Computes, for each tuple that occurs in R in at least one world, the sum of the probabilities of the worlds in which it occurs.
- An operation $\operatorname{assert}_{\phi}(R)$ that conditions the database using a constraint ϕ.
- Removes those worlds that violate ϕ.
- An operation repair-key $\vec{A}[@ P](R)$ for introducing uncertainty.
- Turns a possible world into the set of worlds consisting of all possible maximal repairs of key \vec{A} in R.
- We will also look at a special case of repair-key called choice-of.
- An operation for grouping worlds based on common properties
- property = answer to a given query
- (we will not discuss this one here)

Operation choice-of

- Introducing uncertainty using the choice-of operation allows to extend the hypothesis space.

$$
\begin{array}{l|ccc}
R^{1} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline & \mathrm{a} & 1 & \mathrm{c} \\
& \mathrm{a} & 1 & \mathrm{~d}
\end{array} \operatorname{Pr}=.5 \quad \ldots \text { (further worlds) }
$$

$S:=$ choice-of $_{A \varrho B}(R)$

$S^{1.1}$	A	B	C
	a	1	c
	a	1	d

$$
\operatorname{Pr}=.5 * 1 / 4=1 / 8
$$

$$
\operatorname{Pr}=.5 * 3 / 4=3 / 8
$$

There must be a functional dependency $R: A \rightarrow B$.

- Necessary if we want to introduce evidence.

Operation repair-key

Example: Tossing a biased coin twice.

R	Toss	Face	FProb	
	1	H	.4	
	1	T	.6	$\operatorname{Pr}=1$
	2	H	.4	
	2	T	.6	

$S:=$ repair-key $_{\text {Toss@FProb }}(R) \quad$ results in four worlds:

| S^{1} | Toss | Face | FProb | | S^{2} | Toss | Face | FProb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | H | .4 | | | 1 | H | .4 |
| | 2 | H | .4 | | | 2 | T | .6 |
| | | | | | | | | |
| S^{3} | Toss | Face | FProb | | S^{4} | Toss | Face | FProb |
| | 1 | T | .6 | | | | | |
| | 2 | H | .4 | | | 1 | T | .6 |
| | | | | | | T | .6 | |

$$
\operatorname{Pr}\left(S^{1}\right)=1 \cdot \frac{.4}{.4+.6} \cdot \frac{.4}{.4+.6}=.16, \quad \operatorname{Pr}\left(S^{2}\right)=\operatorname{Pr}\left(S^{3}\right)=.24, \operatorname{Pr}\left(S^{4}\right)=.36
$$

Operation conf

$\operatorname{conf}(R)$ gives the probability of each tuple across all worlds:

$\operatorname{conf}(R)$	x	z	P
	a	b	.5
	a	c	.5
	b	c	.3
	c	d	.7

For a Boolean query Q and a world-set $\mathbf{W}, \operatorname{conf}(Q)$ gives us one number, the probability of the event $\{I \in \mathbf{W} \mid I \vDash Q\}$, which is the confidence of tuple \rangle.

Conditioning using assert

Example: enforcing a key constraint on SSN.

$U_{R[S S N]}$	V	D	TID	SSN
	x	1	t_{1}	185
	x	2	t_{1}	785
	y	1	t_{2}	185
	y	2	t_{2}	186

$T:=\operatorname{assert}_{f d: S S N \rightarrow T I D}(R)$.
We drop the worlds where both tuples t_{1} and t_{2} occur with $\mathrm{SSN}=185$.

$U_{T[S S N]}$	V_{1}	D_{1}	V_{2}	D_{2}	TID	SSN
	x	1	y	2	t_{1}	185
	x	1	y	2	t_{2}	186
	x	2	y	1	t_{1}	785
	x	2	y	1	t_{2}	185
	x	2	y	2	t_{1}	785
	x	2	y	2	t_{2}	186

