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Why Can Information Be Incomplete? (1)

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed



Why Can Information Be Incomplete? (2)

Single-source problems

schema level (lack of integrity constraints, poor schema design)
uniqueness, referential integrity

instance level (data entry errors)
misspellings, redundancy/duplicates, contradictory values

Multi-source problems

schema level (heterogeneous data models and schema design)
naming and structural conflicts

instance level (overlapping, contradicting, and inconsistent data)
inconsistent aggregating, inconsistent timing



Why Can Information Be Incomplete? (3)

Single-source problems at schema level

Scope Problem Dirty Data Remarks
Attribute illegal bdate=30.13.70 out-of-range value
Record dependency age=22, bdate=12.02.70 age=now - bdate
Record type uniqueness emp1(SSN=1),emp2(SSN=1) SSN is unique
Source ref. integrity emp(SSN=007) 007 not defined



Why Can Information Be Incomplete? (4)

Single-source problems at instance level

Scope Problem Dirty Data
Attribute missing value null

misspelling Lizpig
cryptic values DB Prog.
embedded values name=”Joe New York”
misfielded values city=Germany

Record dependencies city=SB, code=85764
Record type transpositions ”D.Olteanu”, ”Olteanu D.”

duplicates emp(”Dan Olteanu”), emp(”D.Olteanu”)
contradictions emp(Olteanu,Koch), emp(Olteanu,Bock)



How to Cope with Incompleteness? (Approach 1)

Remove all instances (= worlds) that do not satisfy particular criteria.
The hope is to get one (clean) instance in the end.
Data Cleaning deals with detecting and removing errors and inconsistencies from
data in order to improve the quality of the data.
It usually consists of the following steps:

1 Data analysis (to detect the kind of occurring errors)
data mining

2 definition of transformation and mapping rules
declarative SQL-based languages

3 verification

4 transformation

5 backflow of cleaned data

Data cleaning is a complex semiautomatic approach to deal with incomplete data.



How to Cope with Incompleteness? (Approach 2)

Complementary approach: Provide support for

1 efficient (=succinct) representation of (possibly infinte) sets of worlds.

2 define processing (query evaluation, dependency chasing) on such succinct
representations.

We further discuss this approach.



Example of Incomplete Information

Persons Name Salary Room Phone
DAO 40K 228 ?
LRA 10K ? ?
CEK ? 226 57328

? usually represented as null value in existing RDBMSs

SQL supports NULL values with constructs like IS (NOT) NULL.

Compare the answers to the following two queries
Q1: SELECT FROM Persons WHERE Room > 226;
Q2: SELECT FROM Persons WHERE Room > 226 OR room IS NULL;



Example of Incomplete Information (cont’d)

There are different types of nulls (?).

1 existing unknown values, e.g., DAO’s phone or CEK’s salary

2 nonexisting values, e.g., LRA’s phone

3 no information is known about, e.g., LRA’s room number

Persons Name Salary Room Phone
DAO 40K 228 ?
LRA 10K ? ?
CEK ? 226 57328

We consider next nulls of the first two kinds.



Completeness versus Incompleteness (1)

A relation with null values encodes a set of possible worlds.

Persons Name Salary Room Phone
DAO 40K 228 57332
LRA 10K MPIRS-1 ?
CEK 400K 226 57328

Persons Name Salary Room Phone
DAO 40K 228 57332
LRA 10K MPIRS-2 ?
CEK 500K 226 57328

.. and so on.

There is an infinite amount of possible worlds!!!

Represent intensionally the set of possible worlds



Representation Systems for Incomplete Information



What is a representation system?

System to represent set of alternatives or possible worlds.

World = (complete) database.

Representation T (usually called Table)

Function rep mapping T to the set of possible worlds.

Query evaluation under possible world semantics

T q(T )

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep

q

q

rep



Strong Representation Systems

Language L (e.g., relational algebra) and table T with rep(T )

For a query q ∈ L, collect the set of possible answers

q(rep(T )) = {q(I ) | I ∈ rep(T )}

represent! q(rep(T )) as a table q(T )

rep(q(T )) = q(rep(T ))

If T is any table in a representation system τ and q any query in L, then

τ is a strong representation system for L



Weak Representation Systems

L-Equivalence ≡L of Incomplete Databases
Language L, two incomplete databases I and J .

I ≡L J ⇔ ∀q ∈ L :
⋂
{q(I ) | I ∈ I} =

⋂
{q(J) | J ∈ J }

⋂
{q(J) | J ∈ J } is the certain answer (or the set of sure answer tuples)

I and J are equivalent if all we can ask for is the certain answer of L-queries.

If T is any table of a representation system τ and q any query in L, then

τ is a weak representation system for L ⇔ rep(q(T )) ≡L q(rep(T ))

Corollary: If a system is strong for L, then it is also weak for L.



(Codd) Tables

Codd tables = Finite relations, where tuples can contain variables

A variable can occur at most once per entire table

A Codd table T represents the incomplete database (set of possible worlds)

rep(T ) = {ν(T ) | ν is a valuation of the variables in T}

R A B C
0 1 x

y z 1
2 0 v

contains

R A B C
0 1 2
2 0 1
2 0 0

R A B C
0 1 2
3 0 1
2 0 5

. . .



Querying Codd tables: Selection

R A B C
0 1 x

y z 1
2 0 v

σA=3(R)
−→

R A B C
3 z 1

R A B C

There is no Codd table representing the set of all possible answers!
But there is a (empty) Codd table representing the certain answer!

Codd tables form no strong representation system for selection



Querying Codd tables: Projection

R A B C
0 1 x

y z 1
2 0 v

πA(R)
−→

πA(R) A
0
y

2

Codd tables form a strong representation system for projection



Querying Codd tables: Product and Join

R A B C
0 1 x

y z 1
2 0 v

S D
0
1

R×S
−→

R × S A B C D
0 1 x 0
0 1 x 1
y z 1 0
y z 1 1
2 0 v 0
2 0 v 1

A variable can appear only once in a Codd table!

Codd tables form no strong representation system for product and join



Querying Codd tables: Union

R A B C
0 1 x

y z 1
2 0 v

S A B C
1 1 x

R∪S
−→

R ∪ S A B C
0 1 x

y z 1
2 0 v

1 1 x

A variable can appear only once in a Codd table!

Codd tables form no strong representation system for union



Querying Codd tables: Difference

R A B C
0 1 x

y z 1
2 0 v

S A B C
2 0 0

R−S
−→

R − S A B C
0 1 x

y z 1
2 0 ?

The value of ? can be anything but 0!

Codd tables form no strong representation system for difference



Certain Answers for Codd tables
For a table T and a query q, the certain answer is

sure(q, T ) =
⋂
{q(I ) | I ∈ rep(T )} .

Sure facts appear in the answer for every possible world.

Compute sure(q, T ) by dropping all tuples with variables in q(rep(T )).

For our Codd table T , sure(σA=3(R), T ) = ∅, thus representable as Codd
table!

Representing only the sure answer tuples is not sufficent!

R A B C
0 1 x

y z 1
2 0 v

Consider q = σA=2(R) and q′ = πAB (R)

Then, sure(q, T ) = ∅ ⇒ q′(sure(q, T )) = ∅

But, sure(q′(q(rep(T )))) = {(2, 0)} 6= ∅

⇒ non-compositional query semantics!



How Weak are Codd tables? (1)

R A B C
0 1 x

y z 1
2 0 v

Consider again q = σA=2(R) and q′ = πAB(R)

Choose projection q′ = q′ and selection q
θ

such that
qθ(T ) = {t | t ∈ T , ∀ valuations of vars in t µ : θ(µ(t))}

Then, q(T ) = {(2, 0, v)} and q′ ◦ q(T ) = {(2, 0)}.

Codd tables form a weak representation system for selections and projections



How Weak are Codd tables? (2)

Consider q = πAC (R) ⊲⊳ πB(R)

Suppose there is a table W such that rep(W ) ≡SPJ q(rep(T ))

Consider q′ = πAC (πAB(R) ⊲⊳ πBC (R)); q ◦ q′ = πA(R) × πC (R)

Show that rep(q′(W )) 6≡SPJ q′(rep(W ))

Equivalently, show that sure(q′, W ) 6= sure(q ◦ q′, T )

Idea: for each valuation of vars in W , (a′, c) ∈ sure(q ◦ q′, T ) but
there are valuations such that (a′, c) 6∈ sure(q′, W ).

R A B C
a x c
a’ x ′ c’

sure(q ◦ q′, T ) A C
a c
a’ c
a c’
a’ c’

Codd tables form no weak representation system for SPU/SPJ



Or-set Relations

Codd tables, where each variable takes values from a finite domain.

Census SSN Name Marital Status
{ 185, 785 } Smith { 1, 2 }
{ 185, 186 } Brown { 1, 2, 3, 4 }

Number of represented worlds: 2 · 1 · 2 · 2 · 1 · 4 = 32.

C SSN Name MS
185 Smith 1
185 Brown 1

C SSN Name MS
185 Smith 1
185 Brown 2

C SSN Name MS
185 Smith 1
185 Brown 3

C SSN Name MS
185 Smith 1
185 Brown 4

and so on.



(Naive) v-tables

v-tables are Codd tables, where a variable can occur several times.

R A B C
0 1 x

x z 1
2 0 v

v-tables form a weak representation system for positive relational algebra

Proof Idea

treat variables in v-tables as constants

perform standard evaluation on the table



Querying v-tables

R1 A B C
0 1 x

x z 1
2 0 v

R2 A B C
1 1 x

x z 1

R3 C D
1 1
x z

πB(R1) B
1
z

0

R2 ⊲⊳ R3 A B C D
1 1 x z

x z 1 1

R1 ∪ R2 A B C
0 1 x

x z 1
2 0 v

1 1 x

σC=1(R3) C D
1 1



(Conditional) c-tables

c-tables are triples (T , ΦT , φ), where

T is a v-table,

ΦT is a global condition,

φ associates a local condition φt to each tuple t of T .

rep(T ) = {A | ∃ valuation ν: ν(ΦT ), A = {ν(t) | t ∈ T , ν(φt)}}.

Condition = conjunct of (in-)equality atoms, e.g., x = c, x = y , x 6= c, x 6= y .

true represented as x = x (or simply omitted), false represented as x 6= x



c-table Example (1)

R1 Student Course
x 6= math ∧ x 6= CS

Sally math z = 0
Sally CS z 6= 0
Sally x

Alice bio z = 0
Alice math x = physics ∧ t = 0
Alice physics x = physics ∧ t 6= 0



c-table Example (2)

R2 Student Course
true

Sally math z = 0
Sally CS z 6= 0
Sally x x 6= math ∧ x 6= CS

Alice bio z = 0
Alice math x = physics ∧ t = 0
Alice physics x = physics ∧ t 6= 0

R2 is R1, where the global condition becomes local to the third tuple.

R1 6= R2



How Strong are c-tables? (1)

c-tables form a strong representation system for relational algebra

Proof Idea

projection is standard

selection adds new conjuncts to the local condition

union is standard

difference adds a huge conjunct Ct to the local condition of each tuple from
the first table
Ct states that t does not match any tuple from the second table

. . .



How Strong are c-tables? (2)

T1 B C
x c

T2 B C
y c y=b
z w

T3 A B
a y

πB(T2) B
y y = b
z

T1 ∪ T2 B C
x c
y c y = b
z w

T1 ⊲⊳ T3 A B C
a y c y = x

σB=b(T1 ⊲⊳ T3) A B C
a y c y = b ∧ y = x

T1 − T2 B C
x c y 6= b ∧x 6= z

x c y 6= b ∧w 6= c
x c y = b ∧x 6= b ∧x 6= z

x c y = b ∧x 6= b ∧w 6= c



How Strong are c-tables? (3)

c-tables can represent answers of transitive closure queries

T A B
a b
x c
c d

tc(T ) A B
a b
x c
c d
a c x = b
x d
c c x = d
a d x = b



Overview of Representation Systems

System Is Weak For.. Is Strong For..
Codd tables PS P
v-tables PS+UJ PU
c-tables PSUJD PSUJD

P = Projection, S = Selection, S+ = pos S, U = Union, J = Join, D = Difference.



Decision Problems for Representation Systems



Decision Problems

Input Representation system W , instance I = (R I ), tuple t

Problems Tuple Possibility: ∃A ∈ rep(W) : t ∈ RA

Tuple Certainty: ∀A ∈ rep(W) : t ∈ RA

Instance Possibility: ∃A ∈ rep(W) : R I = RA

Instance Certainty: ∀A ∈ rep(W) : R I = RA

Tuple Q-Possibility (query Q fixed): ∃A ∈ rep(W) : t ∈ Q(A)
Tuple Q-Certainty (query Q fixed): ∀A ∈ rep(W) : t ∈ Q(A)
Instance Q-Possibility (query Q fixed): ∃A ∈ rep(W) : R I = Q(A)
Instance Q-Certainty (query Q fixed): ∀A ∈ rep(W) : R I = Q(A)



Decisions for c-tables

R1 Student Course
x 6= math ∧ x 6= CS

Sally math z = 0
Sally CS z 6= 0
Sally x

Alice bio z = 0
Alice math x = physics ∧ t = 0
Alice physics x = physics ∧ t 6= 0

Which of the following tuples is possible/certain?
(Alice,bio), (Sally,math), (Sally,bio), (Sally,agriculture), (Banana,bio)

Which of the following tuples is πStudent(R)-certain? (Sally), (Alice)

Which of the following instances is possible/certain?
∅, {(Alice,bio),(Sally,CS)}, {(Sally,CS),(Sally,math)}



Complexity of Decision Problems

v-tables c-tables

Tuple Possibility PTIME NP-compl1.
Tuple Certainty PTIME coNP-compl2.
Instance Possibility NP-compl. NP-compl.
Instance Certainty PTIME coNP-compl.
Tuple Q-Possibility NP-compl. NP-compl.

positive relational algebra PTIME NP-compl.
Tuple Q-Certainty coNP-compl. coNP-compl.

positive relational algebra PTIME coNP-compl.
Instance Q-Possibility NP-compl. NP-compl.
Instance Q-Certainty coNP-compl. coNP-compl.

positive relational algebra PTIME coNP-compl.

Footnotes: Simple reductions of SAT (for 1) and 3DNF-tautology (for 2).



Chasing Dependencies on Representation Systems



A Short Reminder on Dependencies

Consider a schema U = (ABC ) and a relation R over U.
R satisfies the functional dependency (FD) A → B if
∀x , y , z, y1, z1(R(x , y , z) ∧ R(x , y1, z1) ⇒ y = y1).

R satisfies the multivalued dependency (MVD) A ։ B if
∀x , y , z, y1, z1(R(x , y1, z) ∧ R(x , y , z1) ⇒ R(x , y , z)).
In other words, A ։ B ensures the new R becomes πAC (R) ⊲⊳ πAB (R).



Chasing Dependencies on World-Sets

Dependencies can be used to

1 eliminate inconsistent worlds. This leads to less worlds thus more information.

2 change inconsistent worlds such that they become consistent. This preserves
the number of worlds, yet new tuples can be added or existing tuples can be
dropped in the inconsistent worlds.

For FDs (and equality-generating dependencies in general):

we consider here the first semantics, thus drop the inconsistent worlds.

the second semantics leads to the notion of repairs wrt FDs:
We replace an inconsistent world by a set of (minimal) consistent repairs.

For MVDs (and tuple-generating dependencies in general):

we consider here the second semantics, thus add tuples to make the
world consistent.

the first semantics would eliminate the inconsistent worlds.



Example of Chasing Dependencies on World-Sets

Dependencies may help to eliminate inconsistent worlds from the set of possible
worlds. An incomplete database I with a set Σ of dependencies represents

{chase(I , Σ) | I ∈ I and the chase of I by Σ succeeds}

Chasing Σ = {A ։ B, B → A} on I = {I1, I2, I3} leads to I = {J1, J2}.

I1 A B C

a b c

a b’ c’

I2 A B C

e f g

e f’ g’

e f g’

e f’ g

I3 A B C

a b c

g b h

J1 A B C

a b c

a b’ c’

a b c’

a b’ c

J2 A B C

e f g

e f’ g’

e f g’

e f’ g



Chasing Dependencies on v-tables

A v-table can be seen as the core (without the head) of a tableau query!

R A B C
0 1 x

x z 1
2 1 2

Chase B → C on R

R’ A B C
0 1 2
2 z 1
2 1 2



Chasing Dependencies on c-tables

Σ = {A ։ B, C → D}, c-tables T1 and T2. Then, chaseΣ(rep(T1)) = rep(T2) .

T1 A B C D
a b c d
x e y g
a b c z

T2 A B C D
c=c ⇒ z = d

a b c d
x e y g
a b y g x = a
a e c z x = a

FDs add Horn formulas to the global condition
A Horn formula is a conjunction of (

∧
vi = vj) ⇒ vk = vl ,

where vi , vj , vk , and vl are variables or constants
Example: c=c ⇒ z = d above (equivalent to z = d)

MVDs add equalities to local conditions
Example: x = a above
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