Counting Triangles under Updates

Ahmet Kara, Hung Q. Ngo, Milos Nikolic Dan Olteanu, and Haozhe Zhang

fdbresearch.github.io

AMW 2018, Cali

Relational^{AI}

Problem Setting

Maintain the triangle count Qunder single-tuple updates to R, S, and T!

Q counts the number of tuples in the join of R, S, and T. $Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$

R	5	Т
A B	BC	C A
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$b_1 c_1 2$	$c_1 a_1 1$
a2 b1 3	$b_1 c_2 = 1$	$c_2 a_1 = 3$
		$c_2 a_2 = 3$

R	5	<i>T</i>	$R \cdot S \cdot T$
A B	BC	CA	A B C
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_1 b_2 c_2 2 \cdot 2 \cdot 1 = 4$
$a_2 b_1 3$	$b_1 c_2 1$		
		$c_2 a_2 3$	

R	5	T	$R \cdot S \cdot T$
A B	BC	CA	ABC
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$b_1 c_1 2$	$c_1 a_1 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$a_2 b_1 3$	$b_1 c_2 1$	$c_2 a_1 3$	$a_1 \ b_1 \ c_2 2 \cdot 1 \cdot 3 = 6$
		$c_2 a_2 3$	$a_2 \ b_1 \ c_3 \ 3 \cdot 1 \cdot 3 = 9$

R	S	Т	$R \cdot S \cdot T$
A B	BC	CA	A B C
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$\begin{array}{c c} b_1 \ c_1 & 2 \\ b_1 \ c_2 & 1 \end{array}$	$\begin{array}{c c} c_1 & a_1 & 1 \\ c_2 & a_1 & 3 \\ c_2 & a_2 & 3 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			\downarrow
			$Q(\mathbf{D})$
			Ø
			() 4+6+9=19

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

- Relations are functions mapping tuples to multiplicities.
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

The Maintenance Problem

Given a current database **D** and a single-tuple update, what are the time and space complexities for maintaining $Q(\mathbf{D})$?

Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]
- Randomized approximation in data streams [SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Intensive Investigation of Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
- Lower bounds [STOC 2015, ICM 2018]

So far:

No dynamic algorithm maintaining the exact triangle count in worst-case optimal time!

Naïve Maintenance

"Compute from scratch!"

$$\sum_{a,b,c} \left[\underbrace{R(a,b) + \delta R(a',b')}_{newR} \right] \cdot S(b,c) \cdot T(c,a) = \sum_{a,b,c} \frac{newR(a,b) \cdot S(b,c) \cdot T(c,a)}{newR(a,b) \cdot S(b,c) \cdot T(c,a)}$$

Maintenance Complexity

- Time: $\mathcal{O}(|\mathbf{D}|^{1.5})$ using worst-case optimal join algorithms
- Space: $\mathcal{O}(|\mathbf{D}|)$ to store input relations

Classical Incremental View Maintenance (IVM)

"Compute the difference!"

$$\sum_{a,b,c} \left[R(a,b) + \delta R(a',b') \right] \cdot S(b,c) \cdot T(c,a) = \\ \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) + \\ \delta R(a',b') \cdot \sum_{c} S(b',c) \cdot T(c,a') \right]$$

Maintenance Complexity

- Time: $\mathcal{O}(|\mathbf{D}|)$ to intersect *C*-values from *S* and *T*
- Space: $O(|\mathbf{D}|)$ to store input relations

Factorized Incremental View Maintenance (F-IVM)

"Compute the difference by using pre-materialized views!"

Pre-materialize
$$V_{ST}(b, a) = \sum_{c} S(b, c) \cdot T(c, a)!$$

$$\sum_{a,b,c} \left[R(a, b) + \delta R(a', b') \right] \cdot S(b, c) \cdot T(c, a)$$

$$=$$

$$\sum_{a,b,c} R(a, b) \cdot S(b, c) \cdot T(c, a)$$

$$+$$

$$\delta R(a', b') \cdot V_{ST}(b', a')$$

Maintenance Complexity

- Time for updates to R: $\mathcal{O}(1)$ to look up in V_{ST}
- Time for updates to S and T: $\mathcal{O}(|\mathbf{D}|)$ to maintain V_{ST}
- Space: $\mathcal{O}(|\mathbf{D}|^2)$ to store input relations and V_{ST}

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound		
Maintenance Time:	$\mathcal{O}(D)$	
Space:	$\mathcal{O}(D)$	

Known Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound		
Maintenance Time:	$\mathcal{O}(D)$	
Space:	$\mathcal{O}(D)$	

Can the triangle count be maintained in sublinear time?

Known Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound		
Maintenance Time:	$\mathcal{O}(D)$	
Space:	$\mathcal{O}(D)$	

Yes!

Can the triangle count be maintained in sublinear time? We propose: IVM^{ε} Amortized maintenance time: $\mathcal{O}(|\mathbf{D}|^{0.5})$ This is worst-case optimal!

Known Lower Bound

Amortized maintenance time: not $\mathcal{O}(|\mathbf{D}|^{0.5-\gamma})$ for any $\gamma > 0$ (under reasonable complexity theoretic assumptions)

IVM^{ε} Exhibits a Time-Space Tradeoff

Given $\varepsilon \in [0,1], \, \mathsf{IVM}^{\varepsilon}$ maintains the triangle count with

• $\mathcal{O}(|\mathbf{D}|^{\max\{\varepsilon,1-\varepsilon\}})$ amortized time and

Known maintenance approaches are recovered by IVM^ε.

Main Ideas in IVM $^{\varepsilon}$

- Compute the difference like in classical IVM!
- Materialize views like in Factorized IVM!
- New ingredient: Use adaptive processing based on data skew! ⇒ Treat *heavy* values differently from *light* values!

Quo Vadis IVM $^{\varepsilon}$?

Generalization of IVM^{ε}

 IVM^ε variants obtain sublinear maintenance time for counting versions of Loomis-Whitney, 4-cycle, and 4-path.

Ongoing Work

- Characterization of the class of conjunctive count queries that admit sublinear maintenance time
- Implementation of IVM^ε on top of DB-Toaster

Details in arxiv.org:

Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting triangles under updates in worst-case optimal time.

http://arxiv.org/abs/1804.02780.

Quick Look inside IVM $^{\varepsilon}$

Quick Look inside IVM^ε

Partition R into

Quick Look inside IVM^ε

Partition R into

- a light part $R_L = \{t \in R \mid |\sigma_{A=t,A}| < |\mathbf{D}|^{\varepsilon}\},\$
- a heavy part $R_H = R \setminus R_L$.

Derived Bounds

for all A-values a: |σ_{A=a}R_L| < |**D**|^ε

$$|\pi_A R_H| \le |\mathbf{D}|^{1-\varepsilon}$$

Likewise, partition

- $S = S_L \cup S_H$ based on B,
- $T = T_L \cup T_H$ based on C.

Adaptive Maintenance Strategy

Rewrite the triangle count query into a sum of skew-aware queries:

$$\sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) = \sum_{U,V,W \in \{L,H\}} \sum_{a,b,c} R_U(a,b) \cdot S_V(b,c) \cdot T_W(c,a)$$

Maintain different skew-aware queries using different strategies

Computation of the difference Computation time

$$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$$

$$\delta R_*(a',b') \cdot \sum_c S_L(b',c) \cdot T_L(c,a') \qquad \mathcal{O}(|\mathbf{D}|^{\varepsilon})$$

$$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$$

$$\delta R_*(a',b') \cdot \sum_c S_H(b',c) \cdot T_L(c,a)$$

$$\delta R_*(a',b') \cdot \underbrace{S_H(b',c) \cdot T_L(c,a)}_{V_{ST}(b',a')} \qquad \mathcal{O}(1)$$