Learning Models over Relational Databases

fdbresearch.github.io

relational.ai

Dan Olteanu Oxford & relationalAl

FG DB Symposium 2020 Darmstadt, March 2020

Acknowledgments

FDB team, in particular:

Max

Milos

Ahmet

Amir

relationalAI team, in particular:

Mahmoud

Hung

Long

Kaggle Survey: Most Data Scientists use Relational Data at Work!

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017 (based on 2017 Kaggle survey of 16,000 ML practitioners)

- Massive adoption of the Relational Model
 in last decades
- Many human hours invested in building relational models
- Relational databases are rich with knowledge of the underlying domains

Current State of Affairs in Analytics Workloads

- Carefully crafted by domain experts
- Comes with relational structure

- Throws away relational structure
- Can be order-of-magnitude larger

Conjecture

The learning time and accuracy of the model can be drastically improved by exploiting the structure and semantics of the underlying multi-relational database.

Current Landscape for ML over DB

The good:

- 1. Most DB+ML solutions operate in this space
- 2. Supports virtually any ML task
- 3. ML & DB distinct tools on the technology stack

The bad:

- 1. Materialisation of feature extraction query
- 2. DB exports data as one table, ML imports it in own format
- 3. One/multi-hot encoding of categorical variables

Examples:

PostgreSQL + R, Pandas + scikit-learn/TensorFlow, SparkS

SparkSQL + MLlib, etc.

- DB supports ML tasks as UDF
- Same running process for DB and ML
- DB computes one table, ML works directly on it \rightarrow No data export/import

Examples:

MadLib supports comprehensive library of ML UDFs

Bismark gives unified programming architecture for incremental gradient descent

Structure-Aware Learning vs. Structure-Agnostic Learning

- Exploit relational structure and semantics
- Exploit database optimisations, e.g., push parts of ML tasks past joins
- One evaluation plan for mixed DB and ML workload

Structure even than Feature Extraction Query!

Case in Point (1): A Retailer Use Case

Relation	Cardinality	Arity (Keys+Values)	File Size (CSV)
Inventory	84,055,817	3 + 1	2 GB
Items	5,618	1 + 4	129 KB
Stores	1,317	1 + 14	139 KB
Demographics	1,302	1 + 15	161 KB
Weather	1,159,457	2 + 6	33 MB
Join	84,055,817	3 + 41	23GB

Train a linear regression model to predict *inventory* given all features

PostgreSQL+TensorFlow		
	Time	Size (CSV)
Database	_	2.1 GB
Join	152.06 secs	23 GB
Export	351.76 secs	23 GB
Shuffling	5,488.73 secs	23 GB
Query batch	-	-
Grad Descent	7,249.58 secs	-
Total time	13,242.13 secs	

Train a linear regression model to predict *inventory* given all features

	PostgreSQL+TensorFlow		Our approach (SIGMOD'19)	
	Time	Size (CSV)	Time	Size (CSV)
Database	_	2.1 GB	_	2.1 GB
Join	152.06 secs	23 GB	_	-
Export	351.76 secs	23 GB	-	_
Shuffling	5,488.73 secs	23 GB	_	_
Query batch	-	-	6.08 secs	37 KB
Grad Descent	7,249.58 secs	-	0.05 secs	-
Total time	13,242.13 secs		6.13 secs	

2, 160 \times faster while being more accurate (RMSE on 2% test data)

Train a linear regression model to predict *inventory* given all features

	PostgreSQL+TensorFlow		Our approach (SIGMOD'19)	
	Time	Size (CSV)	Time	Size (CSV)
Database	_	2.1 GB	_	2.1 GB
Join	152.06 secs	23 GB	-	-
Export	351.76 secs	23 GB	-	_
Shuffling	5,488.73 secs	23 GB	-	_
Query batch	-	-	6.08 secs	37 KB
Grad Descent	7,249.58 secs	-	0.05 secs	-
Total time	13,242.13 secs		6.13 secs	

2, 160 \times faster while being more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for any extra model over a subset of the given feature set.

Similar behaviour (or outright failure) for more:

- datasets: Favorita, TPC-DS, Yelp, Housing
- systems:
 - used in industry: R, scikit-learn, Python StatsModels, mlpack, XGBoost, MADlib
 - academic prototypes: Morpheus, libFM
- models: decision trees, factorisation machines, k-means, ...

This is to be contrasted with the scalability of DBMSs!

How to achieve this performance improvement?

Idea 1: Turn the ML Problem into a DB Problem

Workload	Query Batch	# Queries
Linear Regression Covariance Matrix	$SUM(X_i * X_j)$ $SUM(X_i) \text{ GROUP BY } X_j$ $SUM(1) \text{ GROUP BY } X_i, X_j$	814
Decision Tree (Regression, 1 Node)	VARIANCE(Y) WHERE $X_j = c_j$	3,141
Rk-means	SUM(1) GROUP BY X_j SUM(1) GROUP BY Center ₁ ,, Center_k	41

(# Queries shown for Retailer dataset with 39 attributes)

Queries in a batch:

- Same aggregates but over different attributes
- · Expressed over the same join of the database relations

AMPLE opportunities for sharing computation in a batch.

So far:

- Polynomial regression
- Factorisation machines
- Classification/regression trees
- Mutual information
- Chow Liu trees
- k-means clustering
- k-nearest neighbours
- (robust, ordinal) PCA
- SVM

On-going:

- Boosting regression trees
- AdaBoost
- Sum-product networks
- Random forests
- Logistic regression
- Linear algebra:
 - QR decomposition
 - SVD
 - low-rank matrix factorisation

All these cases can benefit from structure-aware computation

Ridge Linear Regression

 \Downarrow

Query Batch

Linear regression model:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \langle \boldsymbol{\theta}, \mathbf{x} \rangle = \theta_0 x_0 + \theta_1 x_1 + \dots$$

- Training dataset *D* defined by *feature extraction query*
 - A tuple $(\mathbf{x}, y) \in D$ consists of feature vector \mathbf{x} and response y
- Parameters θ obtained by minimising the objective function:

$$J(\boldsymbol{\theta}) = \underbrace{\frac{1}{2|D|} \sum_{(\mathbf{x}, y) \in D} (\langle \boldsymbol{\theta}, \mathbf{x} \rangle - y)^2}_{\mathbf{x}, y \in D} + \underbrace{\frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2}_{\ell_2 - \text{regulariser}}$$

We can solve $\theta^* := \arg \min_{\theta} J(\theta)$ with batch-gradient descent:

repeat until convergence:

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\alpha} \cdot \boldsymbol{\nabla} \boldsymbol{J}(\boldsymbol{\theta})$$

Model reformulation idea: Decouple

- data-dependent (x, y) computation from
- data-independent (θ) computation

in the formulations of the objective $J(\theta)$ and its gradient $\nabla J(\theta)$.

From Optimisation to Query Batch

$$\begin{split} J(\boldsymbol{\theta}) &= \frac{1}{2|D|} \sum_{(\mathbf{x}, y) \in D} \left(\langle \boldsymbol{\theta}, \mathbf{x} \rangle - y \right)^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2 \\ &= \frac{1}{2|D|} \left(\boldsymbol{\theta}^\top \Big(\sum_{\substack{(\mathbf{x}, y) \in D \\ \boldsymbol{\Sigma}}} \mathbf{x} \mathbf{x}^\top \Big) \boldsymbol{\theta} - 2 \Big\langle \boldsymbol{\theta}, \sum_{\substack{(\mathbf{x}, y) \in D \\ \mathbf{c}}} y \cdot \mathbf{x} \Big\rangle + \Big(\sum_{\substack{(\mathbf{x}, y) \in D \\ \boldsymbol{s}_Y}} y^2 \Big) \Big) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2 \\ &= \frac{1}{2|D|} \Big(\boldsymbol{\theta}^\top \boldsymbol{\Sigma} \boldsymbol{\theta} - 2 \langle \boldsymbol{\theta}, \mathbf{c} \rangle + s_Y \Big) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2 \end{split}$$

 $oldsymbol{
abla} J(oldsymbol{ heta}) = rac{1}{|D|} \Big(\Sigma oldsymbol{ heta} - oldsymbol{ heta} \Big) + \lambda oldsymbol{ heta}$

Compute one query for each entry $\sum_{(\mathbf{x},y)\in D} \mathbf{x}_i \mathbf{x}_j^{\top}$ in $\boldsymbol{\Sigma}$:

Compute one query for each entry $\sum_{(\mathbf{x}, y) \in D} \mathbf{x}_i \mathbf{x}_j^{\top}$ in $\boldsymbol{\Sigma}$:

• *x_i*, *x_j* continuous

```
SELECT SUM (x_i * x_j) FROM D;
```

where *D* is the feature extraction query over the input DB.

Compute one query for each entry $\sum_{(\mathbf{x}, y) \in D} \mathbf{x}_i \mathbf{x}_j^{\top}$ in Σ :

• *x_i*, *x_j* continuous

```
SELECT SUM (x_i * x_j) FROM D;
```

• **x**_i categorical, x_i continuous

```
SELECT x_i, SUM(x_i) FROM D GROUP BY x_i;
```

where *D* is the feature extraction query over the input DB.

Compute one query for each entry $\sum_{(\mathbf{x}, y) \in D} \mathbf{x}_i \mathbf{x}_j^{\top}$ in Σ :

• *x_i*, *x_j* continuous

```
SELECT SUM (x_i * x_j) FROM D;
```

• **x**_i categorical, x_i continuous

SELECT x_i , SUM (x_i) FROM D GROUP BY x_i ;

• **x**_i, **x**_j categorical

SELECT x_i , x_j , SUM(1) FROM D GROUP BY x_i , x_j ;

where *D* is the feature extraction query over the input DB.

Natural Attempt:

Use Existing DB System to Compute Query Batch

Relative Speedup for **Our Approach** over **DBX** and **MonetDB**

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

Idea 2: Exploit Problem Structure to Lower Complexity

Algebraic structure: (semi)rings $(\mathcal{R}, +, *, 0, 1)$

Distributivity law → Factorisation

Factorised Databases [VLDB'12+'13,TODS'15,SIGREC'16]

Factorised Machine Learning [SIGMOD'16+'19,DEEM'18,PODS'18+'19, TODS'20]

Factorised Incremental Maintenance

[SIGMOD'18+'20]

Sum-Product abstraction → Same processing for distinct tasks
 DB queries, Covariance matrix, PGM inference, Matrix chain multiplication
 [SIGMOD'18+'19]

Combinatorial structure: query width and data degree measures

• Width measure *w* for FEQ \rightarrow Low complexity $\tilde{O}(N^w)$

factorisation width \geq fractional hypertree width \geq sharp-submodular width worst-case optimal size and time for factorised joins

[ICDT'12+'18,TODS'15,PODS'19,TODS'20]

Degree

 Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance [ICDT'19a, PODS'20] evaluation of queries with negated relations of bounded degree [ICDT'19b]

 Functional dependencies → Learn simpler, equivalent models reparameterisation of polynomial regression models and factorisation machines [PODS'18,TODS'20]

Idea 3: Lower the Constant Factors

1. Specialisation for workload and data

Generate code specific to the query batch and dataset Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM'18,SIGMOD'19, CGO'20]

Code Optimisations ↓ Non-trivial Speedup

One DSL to Express both DB and ML Workloads!

Collections are Dictionaries or Sets

• Database relations are modeled as dictionaries

Relation R(A,B)		_	Relation R(A,B) in IFAQ			
А	В		Α	В	\rightarrow	R(A, B)
<i>a</i> 1	<i>b</i> ₁	-	<i>a</i> 1	b 1	\rightarrow	2
a 1	b_1		a 2	b 1	\rightarrow	2
a 2	b 1		a 2	b 2	\rightarrow	1
a 2	b 1					
a	b ₂					

Inspired by the FAQ framework [PODS'16]

[CGO'20]

• Σ for stateful computation over collection elements:

• λ for constructing dictionaries:

Supports while loops and conditionals

Dataset with three relations:

Sales(item, store, unit sales) Item(item, price) StoRe(store, city)

Learning Task:

Learn Linear Regression model to predict number of unit sales.

Training Dataset:

$$Q(x) = S(x_S) \bowtie R(x_R) \bowtie I(x_I)$$

(Simplified) Linear Regression in IFAQ

Batch Gradient Descent:

Update θ in direction of gradient of square loss

let
$$\mathbf{F} = [[i, s, p, c]]$$
 in
 $\theta \leftarrow \theta_0$
while(not converged) {
 $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \frac{\alpha}{|\mathbf{Q}|} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * \left(\sum_{f_2 \in \mathbf{F}} \theta(f_2) * x[f_2] - x[u] \right) * x[f_1] \right)$
Gradient of square loss
}

(Simplified) Linear Regression in IFAQ

Batch Gradient Descent:

Update θ in direction of gradient of square loss

let
$$\mathbf{F} = [[i, s, p, c]]$$
 in
 $\theta \leftarrow \theta_0$
while(not converged) {
 $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \frac{\alpha}{|\mathbf{Q}|} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * \left(\sum_{f_2 \in \mathbf{F}} \theta(f_2) * x[f_2] - x[u] \right) * x[f_1] \right)$
Gradient of square loss
}
 θ

For simplicity and WLOG, we

1. set
$$\frac{\alpha}{|\mathbf{Q}|} = 1$$

let
$$\mathbf{F} = [[i, s, p, c]]$$
 in
 $\theta \leftarrow \theta_0$
while(not converged) {
 $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * \left(\sum_{f_2 \in \mathbf{F}} \theta(f_2) * x[f_2] \right) * x[f_1] \right)$
}
 θ

Transformation Rule: Normalisation

$$\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * \sum_{f_2 \in \mathbf{F}} \left(\theta(f_2) * x[f_2] \right) * x[f_1] \right)$$

Transformation Rule: Normalisation

$$\theta = \lambda_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * \sum_{f_2 \in \mathbf{F}} \left(\theta(f_2) * x[f_2] \right) * x[f_1] \right)$$

Transformation Rule: Normalisation

$$\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{x \in \sup(\mathbf{Q})} \sum_{f_2 \in \mathbf{F}} \left(\mathbf{Q}(x) * \theta(f_2) * x[f_2] * x[f_1] \right) \right)$$

Transformation Rule: Loop Scheduling

$$\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{x \in \sup(\mathbf{Q})} \sum_{f_2 \in \mathbf{F}} \left(\mathbf{Q}(x) * \theta(f_2) * x[f_2] * x[f_1] \right) \right)$$

Order loops by size of support

Transformation Rule: Loop Scheduling

$$\theta = \sum_{f_1 \in \mathsf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathsf{F}} \sum_{x \in \sup(\mathsf{Q})} \left(\mathsf{Q}(x) * \theta(f_2) * x[f_2] * x[f_1] \right) \right)$$

Order loops by size of support

Transformation Rule: Factorisation

$$\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \left(\mathbf{Q}(x) * \theta(f_2) * x[f_2] * x[f_1] \right) \right)$$

Transformation Rule: Factorisation

$$\theta = \lambda_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \left(\mathbf{Q}(x) * \theta(f_2) * x[f_2] * x[f_1] \right) \right)$$

Less arithmetic operations

Transformation Rule: Factorisation

$$\boldsymbol{\theta} = \sum_{f_1 \in \mathbf{F}} \left(\boldsymbol{\theta}(f_1) - \sum_{f_2 \in \mathbf{F}} \boldsymbol{\theta}(f_2) * \sum_{x \in \sup(\mathbf{Q})} \left(\mathbf{Q}(x) * x[f_2] * x[f_1] \right) \right)$$

Less arithmetic operations

Transformation Rule: Static Memoisation

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta}_0$$

while(not converged){ $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \theta(f_2) * \sum_{x \in \sup(\mathbf{Q})} \left(\mathbf{Q}(x) * x[f_2] * x[f_1] \right) \right)$ }

Transformation Rule: Static Memoisation

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta}_0$$

while(not converged){ $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \theta(f_2) * \sum_{x \in \sup(\mathbf{Q})} \left(\mathbf{Q}(x) * x[f_2] * x[f_1] \right) \right)$ } θ

Transformation Rule: Code Motion

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta}_{\mathsf{0}}$$

while(not converged) $\{$

let
$$\mathbf{M} = \sum_{f_1 \in \mathbf{F}} \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[f_2] * x[f_1]$$
 in
 $\theta = \sum_{f_1 \in \mathbf{F}} \left(\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \theta(f_2) * \mathbf{M}(f_1)(f_2) \right)$

M defines the covariance matrix

θ

Transformation Rule: Code Motion

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta}_0$$

while(not converged) $\{$

$$\texttt{let} \ \mathbf{M} = \underset{f_1 \in \mathbf{F}}{\lambda} \underset{f_2 \in \mathbf{F}}{\sum} \underset{x \in \sup(\mathbf{Q})}{\sum} \mathbf{Q}(x) * x[f_2] * x[f_1] \texttt{ in } -$$

$$heta = \sum_{f_1 \in \mathbf{F}} \left(heta(f_1) - \sum_{f_2 \in \mathbf{F}} heta(f_2) * \mathbf{M}(f_1)(f_2) \right)$$

θ

Transformation Rule: Code Motion

let
$$\mathbf{M} = \sum_{f_1 \in \mathbf{F}} \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[f_1] * x[f_2]$$
 in

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta}_{0}$

while(not converged){

$$\boldsymbol{\theta} = \sum_{f_1 \in \mathbf{F}} (\boldsymbol{\theta}(f_1) - \sum_{f_2 \in \mathbf{F}} \boldsymbol{\theta}(f_2) * \mathbf{M}(f_1)(f_2))$$

} θ Expression after High-Level Optimisations:

let
$$\mathbf{M} = \sum_{f_1 \in \mathbf{F}} \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[f_1] * x[f_2]$$
 in
 $\theta \leftarrow \theta_0$

while(not converged){

$$\theta = \sum_{f_1 \in \mathbf{F}} (\theta(f_1) - \sum_{f_2 \in \mathbf{F}} \theta(f_2) * \mathbf{M}(f_1)(f_2))$$

} 0

Transformation Rule: Loop Unrolling

let
$$\mathbf{M} = \sum_{f_1 \in \mathsf{F}} \sum_{f_2 \in \mathsf{F}} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[f_1] * x[f_2]$$
 in

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta}_0$

} 0

while(not converged){

$$\boldsymbol{\theta} = \sum_{f_1 \in \mathbf{F}} (\boldsymbol{\theta}(f_1) - \sum_{f_2 \in \mathbf{F}} \boldsymbol{\theta}(f_2) * \mathbf{M}(f_1)(f_2))$$

Unroll Loops over statically known features ${\bf F}$

Transformation Rule: Loop Unrolling

let
$$\mathbf{M} = \sum_{f_1 \in \mathbf{F}} \sum_{f_2 \in \mathbf{F}} \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[f_1] * x[f_2]$$
 in

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_0$

θ

while(not converged) $\{$

$$\boldsymbol{\theta} = \left\{ \left\{ \boldsymbol{c} \rightarrow \left(\boldsymbol{\theta}(\boldsymbol{c}) - \left(\dots + \boldsymbol{\theta}(\boldsymbol{c}) * \mathsf{M}(\boldsymbol{c})(\boldsymbol{c}) + \boldsymbol{\theta}(\boldsymbol{p}) * \mathsf{M}(\boldsymbol{c})(\boldsymbol{p}) \dots \right) \right\}, \dots \right\} \right\}$$

Unroll Loops over statically known features F

Transformation Rule: Loop Unrolling

let
$$\mathbf{M} = \left\{ \left\{ c \to \left\{ \left\{ ..., p \to \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x[c] * x[p], ... \right\} \right\}, ... \right\} \right\}$$
 in

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_0$

while(not converged){

$$\boldsymbol{\theta} = \left\{ \left\{ \boldsymbol{c} \rightarrow \left(\boldsymbol{\theta}(\boldsymbol{c}) - \left(\dots + \boldsymbol{\theta}(\boldsymbol{c}) * \mathsf{M}(\boldsymbol{c})(\boldsymbol{c}) + \boldsymbol{\theta}(\boldsymbol{p}) * \mathsf{M}(\boldsymbol{c})(\boldsymbol{p}) \dots \right) \right\}, \dots \right\} \right\}$$

} θ

- Convert dictionaries over F into records
- Dynamic accesses into static accesses

Transformation Rule: Static Field Access

let
$$M = \left\{ c = \left\{ ..., p = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.p, ..., \right\}, ... \right\}$$
 in

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_0$

while(not converged){

$$\theta = \left\{ \boldsymbol{c} = \theta.\boldsymbol{c} - \left(\dots + \theta.\boldsymbol{c} * \boldsymbol{M}.\boldsymbol{c}.\boldsymbol{c} + \theta.\boldsymbol{p} * \boldsymbol{M}.\boldsymbol{c}.\boldsymbol{p}\dots \right), \dots \right\}$$

}

θ

- Convert dictionaries over F into records
- Dynamic accesses into static accesses

let
$$M = \{c = \{c = \{\dots, c = \sum_{x \in sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.c, p = \sum_{x \in sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.p, \dots \}$$

,...} in ...

let
$$M_{cc} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.c$$
 in

let $M_{cp} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.p$ in

let $M=\left\{ \qquad c=\left\{ ..., \quad c=M_{cc}, \quad p=M_{cp}, \quad ...
ight\}$ in ...

Recall:
$$\mathbf{Q}(x) = S(x_S) \bowtie I(x_I) \bowtie R(x_R)$$

let
$$M_{cc} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.c$$
 in

let $M_{cp} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.p$ in

let $M=\left\{ \qquad c=\left\{ ..., \quad c=M_{cc}, \quad p=M_{cp}, \quad ...
ight\}$ in ...

Recall:
$$\mathbf{Q}(x) = S(x_S) \bowtie I(x_I) \bowtie R(x_R)$$

let
$$M_{cc} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.c$$
 in

let $M_{cp} = \sum_{x \in \sup(\mathbf{Q})} \mathbf{Q}(x) * x.c * x.p$ in

let $M=\left\{ \qquad c=\left\{ ..., \quad c=M_{cc}, \quad p=M_{cp}, \quad ...
ight\}, ...
ight\}$ in ...

We can:

- avoid materialisation of $\mathbf{Q}(x)$
 - inline code for join computation

Fast Join Recap

To compute $\mathbf{S}(x_S) \bowtie \mathbf{R}(x_R)$ on variable *s*:

1. Construct nested dictionaries over R:

$$\mathbf{H}_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow \{\{x_{R} \rightarrow 1\}\}\}\}$$

For join value *s*, $H_R(s)$ maps to partition of **R** with $s = x_R \cdot s$

To compute $\mathbf{S}(x_S) \bowtie \mathbf{R}(x_R)$ on variable *s*:

1. Construct nested dictionaries over R:

$$\mathbf{H}_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow \{\{x_{R} \rightarrow 1\}\}\}\}$$

For join value *s*, $\mathbf{H}_{R}(s)$ maps to partition of **R** with $s = x_{R}.s$

2. Iterate over **S**, and probe H_R for joining tuples:

$$\begin{aligned} \mathbf{J}_{S\bowtie R} &= \sum_{x_S \in \sup\left(\mathbf{S}\right)} \sum_{\substack{x_R \in \sup\left(\mathbf{H}_R\left(\{s = x_S.s\}\right)\right) \\ \text{let } k &= \{s = x_S.s, \ i = x_S.i, \ u = x_S.u, \ c = x_R.c\} \text{ in } \\ \{\{k \rightarrow \mathbf{S}(x_S) * \mathbf{H}_R(\{s = x_S.s\})(x_R)\}\}\end{aligned}$$

Transformation Rule: Aggregate Pushdown

$$\mathbf{H}_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow \{\{x_{R} \rightarrow 1\}\}\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup\{1\}} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow \{\{x_{l} \rightarrow 1\}\}\}\}$$

$$M_{cp} = \sum_{x_{\mathcal{S}} \in \sup(\mathbf{S})} \sum_{x_{\mathcal{R}} \in \sup(\mathbf{H}_{\mathcal{R}}(\{s=x_{\mathcal{S}}.s\}))} \sum_{x_{l} \in \sup(\mathbf{H}_{l}(\{i=x_{\mathcal{S}}.i\}))}$$

 $S(x_{S}) * H_{R}(\{s = x_{S}.s\})(x_{R}) * H_{I}(\{i = x_{S}.i\})(x_{I}) * x_{R}.c * x_{I}.p$

$$H_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow \{\{x_{R} \rightarrow 1\}\}\}\}$$

$$H_{I} = \sum_{x_{I} \in \sup(\mathbf{I})} \mathbf{I}(x_{I}) * \{\{\{i = x_{I}.i\} \rightarrow \{\{x_{I} \rightarrow 1\}\}\}\}$$

$$M_{cp} = \sum_{x_{S} \in \sup(\mathbf{S})} \sum_{x_{R} \in \sup(\mathbf{H}_{R}(\{s = x_{S}.s\}))} \sum_{x_{I} \in \sup(\mathbf{H}_{I}(\{i = x_{S}.i\}))} \sum_{x_{I} \in \sup(\mathbf{H}_{I}(\{i = x_{S}.i\}))} \mathbf{S}(x_{S}) * \mathbf{H}_{R}(\{s = x_{S}.s\})(x_{R}) * \mathbf{H}_{I}(\{i = x_{S}.i\})(x_{I}) * x_{R}.c * x_{I}.p$$

Push aggregate $\sum_{x_R} x_R.c$ into \mathbf{H}_R

$$\mathbf{H}_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow \{\{x_{l} \rightarrow 1\}\}\}\}$$

$$M_{cp} = \sum_{x_{\mathcal{S}} \in \sup(\mathbf{S})} \sum_{x_{\mathcal{H}} \in \sup(\mathbf{H}_{\mathcal{H}}(\{\mathbf{s} = x_{\mathcal{S}}.s\}))} \sum_{x_{l} \in \sup(\mathbf{H}_{l}(\{i = x_{\mathcal{S}}.i\}))}$$

 $\mathbf{S}(x_S) * \mathbf{H}_R(\{s = x_S.s\}) \not\searrow_R * \mathbf{H}_I(\{i = x_S.i\})(x_I) * x_I.p$

$$\mathbf{H}_{R} = \sum_{x_{R} \in \operatorname{sup}(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow \{\{x_{l} \rightarrow 1\}\}\}\}$$

$$M_{cp} = \sum_{x_S \in \sup(\mathbf{S})} \sum_{x_l \in \sup(\mathbf{H}_l(\{i=x_S.i\}))}$$

 $S(x_{S}) * H_{R}(\{s = x_{S}.s\}) * H_{I}(\{i = x_{S}.i\})(x_{I}) * x_{I}.p$

$$H_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$H_{I} = \sum_{x_{I} \in \sup(\mathbf{I})} \mathbf{I}(x_{I}) * \{\{\{i = x_{I}.i\} \rightarrow \{\{x_{I} \rightarrow 1\}\}\}\}$$

$$M_{cp} = \sum_{x_{S} \in \sup(\mathbf{S})} \sum_{x_{I} \in \sup(\mathbf{H}_{I}(\{i = x_{S}.i\}))}$$

$$\mathbf{S}(x_{S}) * \mathbf{H}_{R}(\{s = x_{S}.s\}) * \mathbf{H}_{I}(\{i = x_{S}.i\})(x_{I}) * x_{I}.p$$

Push aggregate $\sum_{x_l} x_l p$ into \mathbf{H}_l

$$\mathbf{H}_{R} = \sum_{x_{R} \in \operatorname{sup}(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow x_{l}.p\}\}$$

$$M_{cp} = \sum_{x_{S} \in \sup(\mathbf{S})} \sum_{x_{I} \in \sup(\mathbf{b}(\{\{i = x_{S}, i\}))}$$

 $\mathbf{S}(x_{\mathcal{S}}) * \mathbf{H}_{R}(\{s = x_{\mathcal{S}}, s\}) * \mathbf{H}_{I}(\{i = x_{\mathcal{S}}, i\})) \bigotimes$

$$\mathbf{H}_{R} = \sum_{x_{R} \in \operatorname{sup}(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow x_{l}.p\}\}$$

$$M_{cp} = \sum_{x_{S} \in \sup(\mathbf{S})} \mathbf{S}(x_{S}) * \mathbf{H}_{R}(\{s = x_{S}.s\}) * \mathbf{H}_{I}(\{i = x_{S}.i\})$$

$$\mathbf{H}_{R} = \sum_{x_{R} \in \operatorname{sup}(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\}$$

$$\mathbf{H}_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow x_{l}.p\}\}$$

$$M_{cp} = \sum_{x_S \in \sup(\mathbf{S})} \mathbf{S}(x_S) * \mathbf{H}_R(\{s = x_S.s\}) * \mathbf{H}_I(\{i = x_S.i\})$$

$$\mathbf{H}'_{R} = \sum_{x_{R} \in \sup\{\mathbf{R}\}} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c * x_{R}.c\}\}$$

Similarly for M_{cc}

$$\mathbf{H}'_{l} = \sum_{x_{l} \in \sup(\mathbf{I})} \mathbf{I}(x_{l}) * \{\{\{i = x_{l}.i\} \rightarrow 1\}\}$$

$$M_{cc} = \sum_{x_S \in \sup(\mathbf{S})} \mathbf{S}(x_S) * \mathbf{H'}_R(\{s = x_S.s\}) * \mathbf{H'}_l(\{i = x_S.i\})$$

$$\mathbf{H}_{R} = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c\}\} \leftarrow$$
$$\mathbf{H}_{R}' = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{\{\{s = x_{R}.s\} \rightarrow x_{R}.c * x_{R}.c\}\} \leftarrow$$

Fuse \mathbf{H}_{R} and \mathbf{H}_{R}'

$$\mathbf{H}_{R}'' = \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{ \{ \{ s = x_{R}.s \} \rightarrow \{ v_{R} = x_{R}.c, v_{R}' = x_{R}.c * x_{R}.c \} \} \}$$

 $H_{R}^{\prime\prime}$ computes two aggregates

$$\begin{aligned} \mathbf{H}_{R}^{\prime\prime} &= \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{ \{ s = x_{R}.s \} \rightarrow \{ v_{R} = x_{R}.c, \ v_{R}^{\prime} = x_{R}.c * x_{R}.c \} \} \} \\ \mathbf{H}_{I}^{\prime\prime} &= \sum_{x_{I} \in \sup(\mathbf{I})} \mathbf{I}(x_{I}) * \{ \{ \{ i = x_{I}.i \} \rightarrow \{ v_{I} = x_{I}.p, \ v_{I}^{\prime} = 1 \} \} \} \end{aligned}$$

Fuse H_{l} and H'_{l}

$$\begin{aligned} \mathbf{H}_{R}'' &= \sum_{x_{R} \in \sup(\mathbf{R})} \mathbf{R}(x_{R}) * \{ \{ s = x_{R}.s \} \rightarrow \{ v_{R} = x_{R}.c, v_{R}' = x_{R}.c * x_{R}.c \} \} \\ \mathbf{H}_{I}'' &= \sum_{x_{I} \in \sup(\mathbf{I})} \mathbf{I}(x_{I}) * \{ \{ i = x_{I}.i \} \rightarrow \{ v_{I} = x_{I}.p, v_{I}' = 1 \} \} \} \\ M_{cc,cp} &= \sum_{x_{S} \in \sup(\mathbf{S})} \mathbf{S}(x_{S}) * \left(\\ & \text{let } w_{R} = H_{R}''(\{ s = x_{S}.s \}) \text{ in} \\ & \text{let } w_{I} = H_{I}''(\{ i = x_{S}.i \}) \text{ in} \\ & \{ m_{cp} = w_{R}.v_{R} * w_{I}.v_{I}, m_{cc} = w_{R}.v_{R}' * w_{I}.v_{I}' \} \\ \end{aligned}$$

Transformation Rule: Trie Conversion

$$\begin{aligned} \mathbf{H}_{R}^{\prime\prime} &= \sum_{x_{r} \in \sup(\mathbf{R})} \mathbf{R}(x_{r}) * \{\{\{s = x_{r}.s\} \rightarrow \{v_{R} = x_{r}.c, v_{R}^{\prime} = x_{r}.c * x_{r}.c\}\}\} \\ \mathbf{H}_{l}^{\prime\prime} &= \sum_{x_{i} \in \sup(\mathbf{I})} \mathbf{I}(x_{i}) * \{\{\{i = x_{i}.i\} \rightarrow \{v_{l} = x_{i}.p, v_{R}^{\prime} = 1\}\}\} \\ \\ \mathbf{M}_{cc,cp} &= \sum_{x_{S} \in \sup(\mathbf{S})} \mathbf{S}(x_{S}) * \left(\\ & \text{let } w_{R} = \mathbf{H}_{R}^{\prime\prime}(\{s = x_{S}.s\}) \text{ in} \\ & \text{let } w_{l} = \mathbf{H}_{l}^{\prime\prime}(\{i = x_{S}.i\}) \text{ in} \\ & \{m_{cp} = w_{R}.v_{R} * w_{l}.v_{l}, m_{cc} = w_{R}.v_{R}^{\prime} * w_{l}.v_{l}^{\prime}\} \right) \end{aligned}$$

Turn relations into tries (i.e., nested dictionaries)

Transformation Rule: Trie Conversion

$$\begin{split} M_{cc,cp} &= \sum_{x_{S} \in \sup{(\mathbf{S})}} \mathbf{S}(x_{S}) * \Big(\\ & \text{let } w_{R} = \mathbf{H}_{R}''(\{s = x_{S}.s\}) \text{ in} \\ & \text{let } w_{I} = \mathbf{H}_{I}''(\{i = x_{S}.i\}) \text{ in} \\ & \{m_{cp} = w_{R}.v_{R} * w_{I}.v_{I}, \quad m_{cc} = w_{R}.v_{R}' * w_{I}.v_{I}'\} \Big) \end{split}$$

Turn relation S into trie S'

Transformation Rule: Trie Conversion

One loop for each join variable

 $M_{cc,cp} = \sum$ $x_S \in \sup(\mathbf{S}')$ $\sum S'(x_s)(x_i) * \Big($ $x_i \in \sup(\mathbf{S}'(x_s))$ let $W_B = \mathbf{H}_B''(\{s = x_S.s\})$ in let $W_i = \mathbf{H}_i''(\{i = x_S.i\})$ in $\{m_{cp} = w_R.v_R * w_I.v_I, m_{cc} = w_R.v_R' * w_I.v_I'\}$

Transformation Rule: Code Motion

Move up the look-up into \mathbf{H}_{R}

 $M_{cc,cp} = \sum_{x_{S} \in \sup(\mathbf{S}')} S'(x_{s})(x_{i}) * \left(\\ \text{let } w_{R} = \mathbf{H}_{R}''(\{s = x_{S}.s\}) \text{ in} \\ \text{let } w_{l} = \mathbf{H}_{l}''(\{i = x_{S}.i\}) \text{ in} \\ \{m_{cp} = w_{R}.v_{R} * w_{l}.v_{l}, m_{cc} = w_{R}.v_{R}' * w_{l}.v_{l}'\}\right)$

Transformation Rule: Code Motion

Move up the look-up into H_R

 $M_{cc,cp} = \sum_{x_{S} \in \sup(S')} \\ let \ w_{R} = H_{R}''(\{s = x_{S}.s\}) in \\ \sum_{x_{I} \in \sup(S'(x_{S}))} S'(x_{S})(x_{I}) * (\\ let \ w_{I} = H_{I}''(\{i = x_{S}.i\}) in \\ \{m_{cp} = w_{R}.v_{R} * w_{I}.v_{I}, \quad m_{cc} = w_{R}.v_{R}' * w_{I}.v_{I}'\}) \end{cases}$

Transformation Rule: Factorisation

Less arithmetic operations

 $M_{cc,cp} = \sum_{x_{S} \in \sup(\mathbf{S}')} \\ \text{let } w_{R} = \mathbf{H}_{R}''(\{s = x_{S}.s\}) \text{ in} \\ \sum_{x_{j} \in \sup(\mathbf{S}'(x_{s}))} S'(x_{s})(x_{i}) * (\\ \\ \text{let } w_{l} = \mathbf{H}_{l}''(\{i = x_{S}.i\}) \text{ in} \\ \{m_{cp} = w_{R}.v_{R} * w_{l}.v_{l}, \quad m_{cc} = w_{R}.v_{R}' * w_{l}.v_{l}'\})$

Transformation Rule: Factorisation

Less arithmetic operations

$$\begin{split} M_{cc,cp} &= \sum_{x_{S} \in \sup(\mathbf{S}')} \\ & \text{let } w_{R} = \mathbf{H}_{R}''(\{s = x_{S}.s\}) \text{ in} \\ & \{m_{cp} = w_{R}.v_{R}, \quad m_{cc} = w_{R}.v_{R}'\} \ast \\ & \sum_{x_{i} \in \sup(\mathbf{S}'(x_{s}))} S'(x_{s})(x_{i}) \ast \left(\\ & \text{let } w_{l} = \mathbf{H}_{l}''(\{i = x_{S}.i\}) \text{ in} \\ & \{m_{cp} = w_{l}.v_{l}, \quad m_{cc} = w_{l}.v_{l}'\} \end{split}$$

Engineering Tools of a Database Researcher

Added optimisations for covariance matrix computation:

specialisation \rightarrow + sharing \rightarrow + parallelisation

AWS d2.xlarge (4 vCPUs, 32GB)

Three-step recipe for efficient machine learning over databases:

- 1. Turn the learning problem into a database problem
- 2. Exploit the problem structure to lower the complexity
- 3. Specialise and optimise the code to lower the constant factors

Q.E.D.