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Motivation: Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!

Overall By Industry

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017
(based on 2017 Kaggle survey of 16,000 ML practitioners)



Relational Model: Jewel in the Data Management Crown

• Massive adoption of the Relational Model
in last decades

• Many human hours invested in building
relational models

• Relational databases are rich with
knowledge of the underlying domains
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Current State of Affairs in Analytics Workloads
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• Carefully crafted by domain experts

• Comes with relational structure

• Throws away relational structure

• Can be order-of-magnitude larger



Conjecture

The learning time and accuracy of the model
can be drastically improved by exploiting the

structure and semantics of the underlying
multi-relational database.



Current Landscape for ML over DB



No integration

Feature Extraction
Query

DB
materialise export import

materialised output
= data matrix

ML Tool θ

Model
The good:

1. Most DB+ML solutions operate in this space
2. Supports virtually any ML task
3. ML & DB distinct tools on the technology stack

The bad:

1. Materialisation of feature extraction query
2. DB exports data as one table, ML imports it in own format
3. One/multi-hot encoding of categorical variables

Examples:
PostgreSQL + R, Pandas + scikit-learn/TensorFlow, SparkSQL + MLlib, etc.



Loose integration

Feature Extraction
Query

Query
Eval

Database System

materialised output = data matrix

Model
Learning

θ

Model

• DB supports ML tasks as UDF

• Same running process for DB and ML

• DB computes one table, ML works directly on it→ No data export/import

Examples:
MadLib supports comprehensive library of ML UDFs
Bismark gives unified programming architecture for incremental gradient descent



Tight integration

Feature Extraction
Query

DB

materialised output
= data matrix

ML Tool θ

Model

Model ReformulationBatch of Queries

Query Batch Evaluation
Optimisation

Structure-Aware Learning vs. Structure-Agnostic Learning

• Exploit relational structure and semantics
• Exploit database optimisations, e.g., push parts of ML tasks past joins
• One evaluation plan for mixed DB and ML workload



Structure-aware Learning FASTER even than

Feature Extraction Query!



Case in Point (1): A Retailer Use Case

Inventory WeatherStores

Demographics Items

Relation Cardinality Arity (Keys+Values) File Size (CSV)

Inventory 84,055,817 3 + 1 2 GB
Items 5,618 1 + 4 129 KB
Stores 1,317 1 + 14 139 KB
Demographics 1,302 1 + 15 161 KB
Weather 1,159,457 2 + 6 33 MB

Join 84,055,817 3 + 41 23GB



Structure-aware versus Structure-agnostic Learning

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow

Our approach (SIGMOD’19)

Time Size (CSV)

Time Size (CSV)

Database – 2.1 GB

– 2.1 GB

Join 152.06 secs 23 GB

– –

Export 351.76 secs 23 GB

– –

Shuffling 5,488.73 secs 23 GB

– –

Query batch – –

6.08 secs 37 KB

Grad Descent 7,249.58 secs –

0.05 secs –

Total time 13,242.13 secs

6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for any extra model
over a subset of the given feature set.
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TensorFlow’s Behaviour is the Rule, not the Exception!

Similar behaviour (or outright failure) for more:

• datasets: Favorita, TPC-DS, Yelp, Housing

• systems:
• used in industry: R, scikit-learn, Python StatsModels, mlpack, XGBoost, MADlib

• academic prototypes: Morpheus, libFM

• models: decision trees, factorisation machines, k -means, ..

This is to be contrasted with the scalability of DBMSs!



How to achieve this performance
improvement?



Idea 1: Turn the ML Problem into a DB Problem



Through DB Glasses, Everything is a Batch of Queries

Workload Query Batch # Queries

Linear Regression SUM(Xi*Xj ) 814
Covariance Matrix SUM(Xi ) GROUP BY Xj

SUM(1) GROUP BY Xi ,Xj

Decision Tree VARIANCE(Y ) WHERE Xj = cj 3,141
(Regression, 1 Node)

Rk -means SUM(1) GROUP BY Xj 41
SUM(1) GROUP BY Center1, . . . ,Centerk

(# Queries shown for Retailer dataset with 39 attributes)

Queries in a batch:

• Same aggregates but over different attributes
• Expressed over the same join of the database relations

AMPLE opportunities for sharing computation in a batch.



Models under Consideration

So far:

• Polynomial regression

• Factorisation machines

• Classification/regression trees

• Mutual information

• Chow Liu trees

• k -means clustering

• k -nearest neighbours

• (robust, ordinal) PCA

• SVM

On-going:

• Boosting regression trees

• AdaBoost

• Sum-product networks

• Random forests

• Logistic regression

• Linear algebra:
• QR decomposition
• SVD
• low-rank matrix factorisation

All these cases can benefit from structure-aware computation



Case in Point (2): Ridge Linear Regression

Ridge Linear Regression

⇓

Query Batch



Recap: Ridge Linear Regression

Linear regression model:

fθ(x) = 〈θ, x〉 = θ0x0 + θ1x1 + . . .

• Training dataset D defined by feature extraction query
• A tuple (x, y) ∈ D consists of feature vector x and response y

• Parameters θ obtained by minimising the objective function:

J(θ) =

least square loss︷ ︸︸ ︷
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +

`2−regulariser︷ ︸︸ ︷
λ

2
‖θ‖2

2



From Optimisation to Query Batch

We can solve θ∗ := arg minθ J(θ) with batch-gradient descent:

repeat until convergence:

θ := θ − α ·∇J(θ)

Model reformulation idea: Decouple

• data-dependent (x, y ) computation from

• data-independent (θ) computation

in the formulations of the objective J(θ) and its gradient ∇J(θ).



From Optimisation to Query Batch

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2

=
1

2|D|

(
θ>
( ∑

(x,y)∈D

xx>

︸ ︷︷ ︸
Σ

)
θ − 2

〈
θ,
∑

(x,y)∈D

y · x

︸ ︷︷ ︸
c

〉
+
( ∑

(x,y)∈D

y2

︸ ︷︷ ︸
sY

))
+
λ

2
‖θ‖2

2

=
1

2|D|

(
θ>Σθ − 2 〈θ, c〉+ sY

)
+
λ

2
‖θ‖2

2

∇J(θ) =
1
|D|

(
Σθ − c

)
+ λθ



Σ, c, sY can be Expressed as Batch of Queries

Compute one query for each entry
∑

(x,y)∈D xix>j in Σ:

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.
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Natural Attempt:

Use Existing DB System to Compute Query Batch



Existing DBMSs are NOT Designed for Query Batches

Relative Speedup for Our Approach over DBX and MonetDB

1

10

100

1000

C R C R C R C R
TPC-DSYelpFavoritaRetailer

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)



Idea 2: Exploit Problem Structure to Lower Complexity



Structure-aware Tools of a Database Researcher

Algebraic structure: (semi)rings (R,+, ∗, 0, 1)

• Distributivity law→ Factorisation

Factorised Databases [VLDB’12+’13,TODS’15,SIGREC’16]

Factorised Machine Learning [SIGMOD’16+’19,DEEM’18,PODS’18+’19, TODS’20]

• Additive inverse→ Uniform treatment of updates

Factorised Incremental Maintenance [SIGMOD’18+’20]

• Sum-Product abstraction→ Same processing for distinct tasks

DB queries, Covariance matrix, PGM inference, Matrix chain multiplication

[SIGMOD’18+’19]



Structure-aware Tools of a Database Researcher

Combinatorial structure: query width and data degree measures

• Width measure w for FEQ→ Low complexity Õ(Nw )

factorisation width ≥ fractional hypertree width ≥ sharp-submodular width
worst-case optimal size and time for factorised joins

[ICDT’12+’18,TODS’15,PODS’19,TODS’20]

• Degree→ Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance [ICDT’19a, PODS’20]

evaluation of queries with negated relations of bounded degree [ICDT’19b]

• Functional dependencies→ Learn simpler, equivalent models

reparameterisation of polynomial regression models and factorisation machines

[PODS’18,TODS’20]



Idea 3: Lower the Constant Factors

1
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1000
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12x
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Engineering Tools of a Database Researcher

1. Specialisation for workload and data

Generate code specific to the query batch and dataset

Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree
Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM’18,SIGMOD’19, CGO’20]



Case in Point (3)

Code Optimisations

⇓

Non-trivial Speedup



IFAQ: Iterative Functional Aggregate Queries

One DSL to Express both DB and ML Workloads! [CGO’20]

Collections are Dictionaries or Sets

• Database relations are modeled as dictionaries

Relation R(A,B)

A B

a1 b1

a1 b1

a2 b1

a2 b1

a2 b2

Relation R(A,B) in IFAQ

A B → R(A,B)

a1 b1 → 2
a2 b1 → 2
a2 b2 → 1

Inspired by the FAQ framework [PODS’16]



IFAQ: Iterative Functional Aggregate Queries

• Σ for stateful computation over collection elements:

IFAQ C++

Σ
e∈set

f (e)
Compile−−−−→ for(auto& e : set)

res += f(e);

• λ for constructing dictionaries:

IFAQ C++

λ
e∈set

f (e)
Compile−−−−→ for(auto& e : set)

res[e] = f(e);

• Supports while loops and conditionals



Transformation Steps for IFAQ Expressions

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion



Running Example

Dataset with three relations:

Sales(item,store,unit sales) Item(item, price) StoRe(store, city)

Learning Task:

Learn Linear Regression model to predict number of unit sales.

Training Dataset:
Q(x) = S(xS) ./ R(xR) ./ I(xI)



(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while( not converged ) {

θ =λ
f1∈F

(
θ(f1)− α

|Q| Σ
x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]− x[u]
)
∗ x[f1]

︸ ︷︷ ︸
Gradient of square loss

)

}

θ

Batch Gradient Descent:
Update θ in direction of gradient of square loss



(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while( not converged ) {

θ =λ
f1∈F

(
θ(f1)− α

|Q| Σ
x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]− x[u]
)
∗ x[f1]

︸ ︷︷ ︸
Gradient of square loss

)

}

θ

Batch Gradient Descent:
Update θ in direction of gradient of square loss

For simplicity and WLOG, we

1. set α
|Q| = 1

2. ignore x[u]



(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while( not converged ) {

θ =λ
f1∈F

(
θ(f1)− Σ

x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]
)
∗ x[f1]

)
}

θ



Next: High-Level Optimisations

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion



High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)

Q(x) ∗ Σ
f2∈F

(
θ(f2) ∗ x [f2]

)
∗ x [f1]

)



High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)

Q(x) ∗ Σ
f2∈F

(
θ(f2) ∗ x [f2]

)
∗ x [f1]

)



High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)
Σ

f2∈F

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))



High-Level Optimisations

Transformation Rule: Loop Scheduling

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)
Σ

f2∈F

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Order loops by size of support



High-Level Optimisations

Transformation Rule: Loop Scheduling

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Order loops by size of support



High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))



High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Less arithmetic operations



High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))

Less arithmetic operations



High-Level Optimisations

Transformation Rule: Static Memoisation

gp

θ ← θ0

while( not converged ){

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))
}

θ



High-Level Optimisations

Transformation Rule: Static Memoisation

gp

θ ← θ0

while( not converged ){

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))
}

θ



High-Level Optimisations

Transformation Rule: Code Motion

gp

θ ← θ0

while( not converged ){

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f2] ∗ x [f1] in

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗M(f1)(f2)

)
}

θ M defines the covariance matrix



High-Level Optimisations

Transformation Rule: Code Motion

gp

θ ← θ0

while( not converged ){

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f2] ∗ x [f1] in

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗M(f1)(f2)

)
}

θ



High-Level Optimisations

Transformation Rule: Code Motion

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f1] ∗ x [f2] in

θ ← θ0

while( not converged ){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ



High-Level Optimisations

Expression after High-Level Optimisations:

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f1] ∗ x [f2] in

θ ← θ0

while( not converged ){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ



Next: Schema Specialisation
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Fusion
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Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x[f1] ∗ x[f2] in

θ ← θ0

while( not converged ){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ Unroll Loops over statically known features F



Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x[f1] ∗ x[f2] in

θ ← θ0

while( not converged ){

θ =
{{

c →
(
θ(c)−

(
...+ θ(c) ∗M(c)(c) + θ(p) ∗M(c)(p)...

))
, ...
}}

}

θ
Unroll Loops over statically known features F



Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M =
{{

c →
{{
..., p → Σ

x∈sup(Q)

Q(x) ∗ x[c] ∗ x[p], ...
}}
, ...
}}

in

θ ← θ0

while( not converged ){

θ =
{{

c →
(
θ(c)−

(
...+ θ(c) ∗M(c)(c) + θ(p) ∗M(c)(p)...

))
, ...
}}

}

θ
• Convert dictionaries over F into records

• Dynamic accesses into static accesses



Schema Specialisation

Transformation Rule: Static Field Access

gp

let M =
{

c =
{
..., p = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...,
}
, ...
}
in

θ ← θ0

while( not converged ){

θ =
{

c = θ.c −
(
...+ θ.c ∗M.c.c + θ.p ∗M.c.p...

)
, ...
}

}

θ
• Convert dictionaries over F into records

• Dynamic accesses into static accesses



Next: Aggregate Optimisations
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Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let M ={
c ={
..., c = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .c, p = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...
}

, ...
}
in ...
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Transformation Rule: Aggregate Extraction

gp

let M ={
c ={
..., c = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .c, p = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...
}

, ...
}
in ...



Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...



Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...

Recall: Q(x) = S(xS) ./ I(xI) ./ R(xR)



Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...

Recall: Q(x) = S(xS) ./ I(xI) ./ R(xR)

We can:

• avoid materialisation of Q(x)

• inline code for join computation



Fast Join Recap

To compute S(xS) ./ R(xR) on variable s:

1. Construct nested dictionaries over R:

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

For join value s, HR(s) maps to partition of R with s = xR .s

2. Iterate over S, and probe HR for joining tuples:

JS./R = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

let k = {s = xS.s, i = xS.i, u = xS.u, c = xR .c} in

{{k → S(xS) ∗ HR({s = xS.s})(xR)}}
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Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s})(xR) ∗ HI({i = xS.i})(xI) ∗ xR .c ∗ xI .p
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Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
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R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}

H′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Similarly for Mcc



Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}
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xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})
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Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Fuse HR and H′R



Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion
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xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

H′′R computes two aggregates



Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

H′′R = Σ
xR∈sup(R)

R(xR)∗{{{s = xR .s}→{vR = xR .c, v ′R = xR .c ∗ xR .c}}}

H′′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{vI = xI .p, v ′I = 1}}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
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R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}
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xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Fuse HI and H′I



Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

H′′R = Σ
xR∈sup(R)

R(xR)∗{{{s = xR .s}→{vR = xR .c, v ′R = xR .c ∗ xR .c}}}

H′′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{vI = xI .p, v ′I = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H ′′R ({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v ′R∗wI .v ′I }
)
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Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi )∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Turn relations into tries (i.e., nested dictionaries)



Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
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H ′′I = Σ
xi∈sup(I)

I(xi )∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Turn relation S into trie S’



Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi )∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

Σ
xi∈sup(S’(xs))

S′(xs)(xi ) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

One loop for each join variable



Trie Conversion

Transformation Rule: Code Motion

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi )∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

Σ
xi∈sup(S’(xs))

S′(xs)(xi ) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Move up the look-up into HR



Trie Conversion

Transformation Rule: Code Motion

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi )∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

let wR = H′′R({s = xS.s}) in

Σ
xi∈sup(S’(xs))

S′(xs)(xi ) ∗
(

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Move up the look-up into HR



Trie Conversion

Transformation Rule: Factorisation

H ′′R = Σ
xr∈sup(R)

R(xr )∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}
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′
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′
I }
)

Less arithmetic operations
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Engineering Tools of a Database Researcher

Relative Speedup of Code Optimisations
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Conclusion

Three-step recipe for efficient machine learning over databases:

1. Turn the learning problem into a database problem

2. Exploit the problem structure to lower the complexity

3. Specialise and optimise the code to lower the constant factors

Q.E.D.


