
Learning Models over Relational Databases
fdbresearch.github.io relational.ai

Dan Olteanu
Oxford & relationalAI

FG DB Symposium 2020
Darmstadt, March 2020

fdbresearch.github.io
relational.ai

Acknowledgments

FDB team, in particular:

Jakub Max Milos Ahmet Amir

relationalAI team, in particular:

Mahmoud Hung Long

Motivation: Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!

Overall By Industry

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017
(based on 2017 Kaggle survey of 16,000 ML practitioners)

Relational Model: Jewel in the Data Management Crown

• Massive adoption of the Relational Model
in last decades

• Many human hours invested in building
relational models

• Relational databases are rich with
knowledge of the underlying domains

Sales

Weather

Inventory
Stores

Demographic
Items

Customers

Current State of Affairs in Analytics Workloads

Sales

Weather

Inventory
Stores

Demographic
Items

Customers

Features

S
am

pl
es

• Carefully crafted by domain experts

• Comes with relational structure

• Throws away relational structure

• Can be order-of-magnitude larger

Conjecture

The learning time and accuracy of the model
can be drastically improved by exploiting the

structure and semantics of the underlying
multi-relational database.

Current Landscape for ML over DB

No integration

Feature Extraction
Query

DB
materialise export import

materialised output
= data matrix

ML Tool θ

Model
The good:

1. Most DB+ML solutions operate in this space
2. Supports virtually any ML task
3. ML & DB distinct tools on the technology stack

The bad:

1. Materialisation of feature extraction query
2. DB exports data as one table, ML imports it in own format
3. One/multi-hot encoding of categorical variables

Examples:
PostgreSQL + R, Pandas + scikit-learn/TensorFlow, SparkSQL + MLlib, etc.

Loose integration

Feature Extraction
Query

Query
Eval

Database System

materialised output = data matrix

Model
Learning

θ

Model

• DB supports ML tasks as UDF

• Same running process for DB and ML

• DB computes one table, ML works directly on it→ No data export/import

Examples:
MadLib supports comprehensive library of ML UDFs
Bismark gives unified programming architecture for incremental gradient descent

Tight integration

Feature Extraction
Query

DB

materialised output
= data matrix

ML Tool θ

Model

Model ReformulationBatch of Queries

Query Batch Evaluation
Optimisation

Structure-Aware Learning vs. Structure-Agnostic Learning

• Exploit relational structure and semantics
• Exploit database optimisations, e.g., push parts of ML tasks past joins
• One evaluation plan for mixed DB and ML workload

Structure-aware Learning FASTER even than

Feature Extraction Query!

Case in Point (1): A Retailer Use Case

Inventory WeatherStores

Demographics Items

Relation Cardinality Arity (Keys+Values) File Size (CSV)

Inventory 84,055,817 3 + 1 2 GB
Items 5,618 1 + 4 129 KB
Stores 1,317 1 + 14 139 KB
Demographics 1,302 1 + 15 161 KB
Weather 1,159,457 2 + 6 33 MB

Join 84,055,817 3 + 41 23GB

Structure-aware versus Structure-agnostic Learning

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow

Our approach (SIGMOD’19)

Time Size (CSV)

Time Size (CSV)

Database – 2.1 GB

– 2.1 GB

Join 152.06 secs 23 GB

– –

Export 351.76 secs 23 GB

– –

Shuffling 5,488.73 secs 23 GB

– –

Query batch – –

6.08 secs 37 KB

Grad Descent 7,249.58 secs –

0.05 secs –

Total time 13,242.13 secs

6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for any extra model
over a subset of the given feature set.

Structure-aware versus Structure-agnostic Learning

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow Our approach (SIGMOD’19)
Time Size (CSV) Time Size (CSV)

Database – 2.1 GB – 2.1 GB
Join 152.06 secs 23 GB – –
Export 351.76 secs 23 GB – –
Shuffling 5,488.73 secs 23 GB – –
Query batch – – 6.08 secs 37 KB
Grad Descent 7,249.58 secs – 0.05 secs –

Total time 13,242.13 secs 6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for any extra model
over a subset of the given feature set.

Structure-aware versus Structure-agnostic Learning

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow Our approach (SIGMOD’19)
Time Size (CSV) Time Size (CSV)

Database – 2.1 GB – 2.1 GB
Join 152.06 secs 23 GB – –
Export 351.76 secs 23 GB – –
Shuffling 5,488.73 secs 23 GB – –
Query batch – – 6.08 secs 37 KB
Grad Descent 7,249.58 secs – 0.05 secs –

Total time 13,242.13 secs 6.13 secs

2, 160× faster while being more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for any extra model
over a subset of the given feature set.

TensorFlow’s Behaviour is the Rule, not the Exception!

Similar behaviour (or outright failure) for more:

• datasets: Favorita, TPC-DS, Yelp, Housing

• systems:
• used in industry: R, scikit-learn, Python StatsModels, mlpack, XGBoost, MADlib

• academic prototypes: Morpheus, libFM

• models: decision trees, factorisation machines, k -means, ..

This is to be contrasted with the scalability of DBMSs!

How to achieve this performance
improvement?

Idea 1: Turn the ML Problem into a DB Problem

Through DB Glasses, Everything is a Batch of Queries

Workload Query Batch # Queries

Linear Regression SUM(Xi*Xj) 814
Covariance Matrix SUM(Xi) GROUP BY Xj

SUM(1) GROUP BY Xi ,Xj

Decision Tree VARIANCE(Y) WHERE Xj = cj 3,141
(Regression, 1 Node)

Rk -means SUM(1) GROUP BY Xj 41
SUM(1) GROUP BY Center1, . . . ,Centerk

(# Queries shown for Retailer dataset with 39 attributes)

Queries in a batch:

• Same aggregates but over different attributes
• Expressed over the same join of the database relations

AMPLE opportunities for sharing computation in a batch.

Models under Consideration

So far:

• Polynomial regression

• Factorisation machines

• Classification/regression trees

• Mutual information

• Chow Liu trees

• k -means clustering

• k -nearest neighbours

• (robust, ordinal) PCA

• SVM

On-going:

• Boosting regression trees

• AdaBoost

• Sum-product networks

• Random forests

• Logistic regression

• Linear algebra:
• QR decomposition
• SVD
• low-rank matrix factorisation

All these cases can benefit from structure-aware computation

Case in Point (2): Ridge Linear Regression

Ridge Linear Regression

⇓

Query Batch

Recap: Ridge Linear Regression

Linear regression model:

fθ(x) = 〈θ, x〉 = θ0x0 + θ1x1 + . . .

• Training dataset D defined by feature extraction query
• A tuple (x, y) ∈ D consists of feature vector x and response y

• Parameters θ obtained by minimising the objective function:

J(θ) =

least square loss︷ ︸︸ ︷
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +

`2−regulariser︷ ︸︸ ︷
λ

2
‖θ‖2

2

From Optimisation to Query Batch

We can solve θ∗ := arg minθ J(θ) with batch-gradient descent:

repeat until convergence:

θ := θ − α ·∇J(θ)

Model reformulation idea: Decouple

• data-dependent (x, y) computation from

• data-independent (θ) computation

in the formulations of the objective J(θ) and its gradient ∇J(θ).

From Optimisation to Query Batch

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2

=
1

2|D|

(
θ>
(∑

(x,y)∈D

xx>

︸ ︷︷ ︸
Σ

)
θ − 2

〈
θ,
∑

(x,y)∈D

y · x

︸ ︷︷ ︸
c

〉
+
(∑

(x,y)∈D

y2

︸ ︷︷ ︸
sY

))
+
λ

2
‖θ‖2

2

=
1

2|D|

(
θ>Σθ − 2 〈θ, c〉+ sY

)
+
λ

2
‖θ‖2

2

∇J(θ) =
1
|D|

(
Σθ − c

)
+ λθ

Σ, c, sY can be Expressed as Batch of Queries

Compute one query for each entry
∑

(x,y)∈D xix>j in Σ:

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.

Σ, c, sY can be Expressed as Batch of Queries

Compute one query for each entry
∑

(x,y)∈D xix>j in Σ:

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.

Σ, c, sY can be Expressed as Batch of Queries

Compute one query for each entry
∑

(x,y)∈D xix>j in Σ:

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.

Σ, c, sY can be Expressed as Batch of Queries

Compute one query for each entry
∑

(x,y)∈D xix>j in Σ:

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.

Natural Attempt:

Use Existing DB System to Compute Query Batch

Existing DBMSs are NOT Designed for Query Batches

Relative Speedup for Our Approach over DBX and MonetDB

1

10

100

1000

C R C R C R C R
TPC-DSYelpFavoritaRetailer

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

Idea 2: Exploit Problem Structure to Lower Complexity

Structure-aware Tools of a Database Researcher

Algebraic structure: (semi)rings (R,+, ∗, 0, 1)

• Distributivity law→ Factorisation

Factorised Databases [VLDB’12+’13,TODS’15,SIGREC’16]

Factorised Machine Learning [SIGMOD’16+’19,DEEM’18,PODS’18+’19, TODS’20]

• Additive inverse→ Uniform treatment of updates

Factorised Incremental Maintenance [SIGMOD’18+’20]

• Sum-Product abstraction→ Same processing for distinct tasks

DB queries, Covariance matrix, PGM inference, Matrix chain multiplication

[SIGMOD’18+’19]

Structure-aware Tools of a Database Researcher

Combinatorial structure: query width and data degree measures

• Width measure w for FEQ→ Low complexity Õ(Nw)

factorisation width ≥ fractional hypertree width ≥ sharp-submodular width
worst-case optimal size and time for factorised joins

[ICDT’12+’18,TODS’15,PODS’19,TODS’20]

• Degree→ Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance [ICDT’19a, PODS’20]

evaluation of queries with negated relations of bounded degree [ICDT’19b]

• Functional dependencies→ Learn simpler, equivalent models

reparameterisation of polynomial regression models and factorisation machines

[PODS’18,TODS’20]

Idea 3: Lower the Constant Factors

1

10

100

1000

10000

12x

3x

2x

Engineering Tools of a Database Researcher

1. Specialisation for workload and data

Generate code specific to the query batch and dataset

Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree
Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM’18,SIGMOD’19, CGO’20]

Case in Point (3)

Code Optimisations

⇓

Non-trivial Speedup

IFAQ: Iterative Functional Aggregate Queries

One DSL to Express both DB and ML Workloads! [CGO’20]

Collections are Dictionaries or Sets

• Database relations are modeled as dictionaries

Relation R(A,B)

A B

a1 b1

a1 b1

a2 b1

a2 b1

a2 b2

Relation R(A,B) in IFAQ

A B → R(A,B)

a1 b1 → 2
a2 b1 → 2
a2 b2 → 1

Inspired by the FAQ framework [PODS’16]

IFAQ: Iterative Functional Aggregate Queries

• Σ for stateful computation over collection elements:

IFAQ C++

Σ
e∈set

f (e)
Compile−−−−→ for(auto& e : set)

res += f(e);

• λ for constructing dictionaries:

IFAQ C++

λ
e∈set

f (e)
Compile−−−−→ for(auto& e : set)

res[e] = f(e);

• Supports while loops and conditionals

Transformation Steps for IFAQ Expressions

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion

Running Example

Dataset with three relations:

Sales(item,store,unit sales) Item(item, price) StoRe(store, city)

Learning Task:

Learn Linear Regression model to predict number of unit sales.

Training Dataset:
Q(x) = S(xS) ./ R(xR) ./ I(xI)

(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while(not converged) {

θ =λ
f1∈F

(
θ(f1)− α

|Q| Σ
x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]− x[u]
)
∗ x[f1]

︸ ︷︷ ︸
Gradient of square loss

)

}

θ

Batch Gradient Descent:
Update θ in direction of gradient of square loss

(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while(not converged) {

θ =λ
f1∈F

(
θ(f1)− α

|Q| Σ
x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]− x[u]
)
∗ x[f1]

︸ ︷︷ ︸
Gradient of square loss

)

}

θ

Batch Gradient Descent:
Update θ in direction of gradient of square loss

For simplicity and WLOG, we

1. set α
|Q| = 1

2. ignore x[u]

(Simplified) Linear Regression in IFAQ

let F = [[i, s, p, c]] in

θ ← θ0

while(not converged) {

θ =λ
f1∈F

(
θ(f1)− Σ

x∈sup(Q)

Q(x) ∗
(
Σ
f2∈F

θ(f2) ∗ x[f2]
)
∗ x[f1]

)
}

θ

Next: High-Level Optimisations

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion

High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)

Q(x) ∗ Σ
f2∈F

(
θ(f2) ∗ x [f2]

)
∗ x [f1]

)

High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)

Q(x) ∗ Σ
f2∈F

(
θ(f2) ∗ x [f2]

)
∗ x [f1]

)

High-Level Optimisations

Transformation Rule: Normalisation

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)
Σ

f2∈F

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

High-Level Optimisations

Transformation Rule: Loop Scheduling

gp

θ = λ
f1∈F

(
θ(f1) − Σ

x∈sup(Q)
Σ

f2∈F

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Order loops by size of support

High-Level Optimisations

Transformation Rule: Loop Scheduling

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Order loops by size of support

High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
Σ

x∈sup(Q)

(
Q(x) ∗ θ(f2) ∗ x [f2] ∗ x [f1]

))

Less arithmetic operations

High-Level Optimisations

Transformation Rule: Factorisation

gp

θ = λ
f1∈F

(
θ(f1) −Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))

Less arithmetic operations

High-Level Optimisations

Transformation Rule: Static Memoisation

gp

θ ← θ0

while(not converged){

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))
}

θ

High-Level Optimisations

Transformation Rule: Static Memoisation

gp

θ ← θ0

while(not converged){

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗ Σ

x∈sup(Q)

(
Q(x) ∗ x [f2] ∗ x [f1]

))
}

θ

High-Level Optimisations

Transformation Rule: Code Motion

gp

θ ← θ0

while(not converged){

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f2] ∗ x [f1] in

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗M(f1)(f2)

)
}

θ M defines the covariance matrix

High-Level Optimisations

Transformation Rule: Code Motion

gp

θ ← θ0

while(not converged){

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f2] ∗ x [f1] in

θ = λ
f1∈F

(
θ(f1)− Σ

f2∈F
θ(f2) ∗M(f1)(f2)

)
}

θ

High-Level Optimisations

Transformation Rule: Code Motion

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f1] ∗ x [f2] in

θ ← θ0

while(not converged){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ

High-Level Optimisations

Expression after High-Level Optimisations:

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x [f1] ∗ x [f2] in

θ ← θ0

while(not converged){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ

Next: Schema Specialisation

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion

Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x[f1] ∗ x[f2] in

θ ← θ0

while(not converged){

θ = λ
f1∈F

(θ(f1)− Σ
f2∈F

θ(f2) ∗M(f1)(f2))

}

θ Unroll Loops over statically known features F

Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M = λ
f1∈F
λ

f2∈F
Σ

x∈sup(Q)

Q(x) ∗ x[f1] ∗ x[f2] in

θ ← θ0

while(not converged){

θ =
{{

c →
(
θ(c)−

(
...+ θ(c) ∗M(c)(c) + θ(p) ∗M(c)(p)...

))
, ...
}}

}

θ
Unroll Loops over statically known features F

Schema Specialisation

Transformation Rule: Loop Unrolling

gp

let M =
{{

c →
{{
..., p → Σ

x∈sup(Q)

Q(x) ∗ x[c] ∗ x[p], ...
}}
, ...
}}

in

θ ← θ0

while(not converged){

θ =
{{

c →
(
θ(c)−

(
...+ θ(c) ∗M(c)(c) + θ(p) ∗M(c)(p)...

))
, ...
}}

}

θ
• Convert dictionaries over F into records

• Dynamic accesses into static accesses

Schema Specialisation

Transformation Rule: Static Field Access

gp

let M =
{

c =
{
..., p = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...,
}
, ...
}
in

θ ← θ0

while(not converged){

θ =
{

c = θ.c −
(
...+ θ.c ∗M.c.c + θ.p ∗M.c.p...

)
, ...
}

}

θ
• Convert dictionaries over F into records

• Dynamic accesses into static accesses

Next: Aggregate Optimisations

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation

Trie Conversion

Data
Layout

C++
Code

Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let M ={
c ={
..., c = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .c, p = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...
}

, ...
}
in ...

Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let M ={
c ={
..., c = Σ

x∈sup(Q)

Q(x) ∗ x .c ∗ x .c, p = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p, ...
}

, ...
}
in ...

Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...

Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...

Recall: Q(x) = S(xS) ./ I(xI) ./ R(xR)

Aggregate Query Optimisations

Transformation Rule: Aggregate Extraction

gp

let Mcc = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .c in

let Mcp = Σ
x∈sup(Q)

Q(x) ∗ x .c ∗ x .p in

let M =
{

c =
{
..., c = Mcc , p = Mcp, ...

}
, ...
}
in ...

Recall: Q(x) = S(xS) ./ I(xI) ./ R(xR)

We can:

• avoid materialisation of Q(x)

• inline code for join computation

Fast Join Recap

To compute S(xS) ./ R(xR) on variable s:

1. Construct nested dictionaries over R:

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

For join value s, HR(s) maps to partition of R with s = xR .s

2. Iterate over S, and probe HR for joining tuples:

JS./R = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

let k = {s = xS.s, i = xS.i, u = xS.u, c = xR .c} in

{{k → S(xS) ∗ HR({s = xS.s})(xR)}}

Fast Join Recap

To compute S(xS) ./ R(xR) on variable s:

1. Construct nested dictionaries over R:

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

For join value s, HR(s) maps to partition of R with s = xR .s

2. Iterate over S, and probe HR for joining tuples:

JS./R = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

let k = {s = xS.s, i = xS.i, u = xS.u, c = xR .c} in

{{k → S(xS) ∗ HR({s = xS.s})(xR)}}

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s})(xR) ∗ HI({i = xS.i})(xI) ∗ xR .c ∗ xI .p

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→{{xR→1}}}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s})(xR) ∗ HI({i = xS.i})(xI) ∗ xR .c ∗ xI .p

Push aggregate Σ
xR

xR .c into HR

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xR∈sup(HR({s=xS .s}))

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s})(xR) ∗ HI({i = xS.i})(xI) ∗ xI .p

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})(xI) ∗ xI .p

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{{xI→1}}}}

Mcp = Σ
xS∈sup(S)

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})(xI) ∗ xI .p

Push aggregate Σ
xI

xI .p into HI

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

Σ
xI∈sup(HI ({i=xS .i}))

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})(xI)

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

Aggregate Query Optimisations

Transformation Rule: Aggregate Pushdown

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}

H′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Similarly for Mcc

Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

HR = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}

H′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Fuse HR and H′R

Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

H′′R = Σ
xR∈sup(R)

R(xR)∗{{{s = xR .s}→{vR = xR .c, v ′R = xR .c ∗ xR .c}}}

HI = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→xI .p}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}

H′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

H′′R computes two aggregates

Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

H′′R = Σ
xR∈sup(R)

R(xR)∗{{{s = xR .s}→{vR = xR .c, v ′R = xR .c ∗ xR .c}}}

H′′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{vI = xI .p, v ′I = 1}}}

Mcp = Σ
xS∈sup(S)

S(xS) ∗ HR({s = xS.s}) ∗ HI({i = xS.i})

H′R = Σ
xR∈sup(R)

R(xR) ∗ {{{s = xR .s}→xR .c ∗ xR .c}}

H′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→1}}

Mcc = Σ
xS∈sup(S)

S(xS) ∗ H’R({s = xS.s}) ∗ H’I({i = xS.i})

Fuse HI and H′I

Aggregate Query Optimisations

Transformation Rule: Aggregate Fusion

H′′R = Σ
xR∈sup(R)

R(xR)∗{{{s = xR .s}→{vR = xR .c, v ′R = xR .c ∗ xR .c}}}

H′′I = Σ
xI∈sup(I)

I(xI) ∗ {{{i = xI .i}→{vI = xI .p, v ′I = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H ′′R ({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v ′R∗wI .v ′I }
)

Next: Trie Conversion

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation

Trie Conversion

Data
Layout

C++
Code

Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Turn relations into tries (i.e., nested dictionaries)

Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S)

S(xS) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Turn relation S into trie S’

Trie Conversion

Transformation Rule: Trie Conversion

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

Σ
xi∈sup(S’(xs))

S′(xs)(xi) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

One loop for each join variable

Trie Conversion

Transformation Rule: Code Motion

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

Σ
xi∈sup(S’(xs))

S′(xs)(xi) ∗
(

let wR = H′′R({s = xS.s}) in

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Move up the look-up into HR

Trie Conversion

Transformation Rule: Code Motion

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

let wR = H′′R({s = xS.s}) in

Σ
xi∈sup(S’(xs))

S′(xs)(xi) ∗
(

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Move up the look-up into HR

Trie Conversion

Transformation Rule: Factorisation

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

let wR = H′′R({s = xS.s}) in

Σ
xi∈sup(S’(xs))

S′(xs)(xi) ∗
(

let wI = H′′I ({i = xS.i}) in

{mcp = wR .vR∗wI .vI , mcc = wR .v
′
R∗wI .v

′
I }
)

Less arithmetic operations

Trie Conversion

Transformation Rule: Factorisation

H ′′R = Σ
xr∈sup(R)

R(xr)∗{{{s = xr .s}→{vR = xr .c, v
′
R = xr .c ∗ xr .c}}}

H ′′I = Σ
xi∈sup(I)

I(xi)∗{{{i = xi .i}→{vI = xi .p, v
′
R = 1}}}

Mcc,cp = Σ
xS∈sup(S’)

let wR = H′′R({s = xS.s}) in

{mcp = wR .vR , mcc = wR .v
′
R}∗

Σ
xi∈sup(S’(xs))

S′(xs)(xi) ∗
(

let wI = H′′I ({i = xS.i}) in

{mcp = wI .vI , mcc = wI .v
′
I }
)

Less arithmetic operations

Engineering Tools of a Database Researcher

Relative Speedup of Code Optimisations

1x

2x

4x

8x

16x

32x

64x

128x

Retailer Favorita Yelp TPC-DS

R
el

at
iv

e
S

pe
ed

up
(lo

gs
ca

le
2)

Added optimisations for covariance matrix computation:

specialisation→ + sharing→ + parallelisation

AWS d2.xlarge (4 vCPUs, 32GB)

Conclusion

Three-step recipe for efficient machine learning over databases:

1. Turn the learning problem into a database problem

2. Exploit the problem structure to lower the complexity

3. Specialise and optimise the code to lower the constant factors

Q.E.D.

