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ML: The Next Big Opportunity

ML is emerging as general purpose technology

• Just as computing became general purpose 70 years ago

A core ability of intelligence is the ability to predict

• Turn information you have into information you need

The quality of the prediction is increasing as

the cost per prediction is decreasing
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Most Enterprises Rely on Relational Data for Their ML Models

Retail: 86% relational

Insurance: 83% relational

Marketing: 82% relational

Financial: 77% relational

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017

(based on 2017 Kaggle survey of 16,000 ML practitioners)
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Relational Model: The Jewel in the Data Management Crown

Last decades have witnessed massive

adoption of the Relational Model

Many human hours invested in

building relational models

Relational databases are rich with

knowledge of the underlying domains

Availability of curated data made it

possible to learn from the past and to

predict the future for both

humans (BI) and machines (ML)
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Current State of Affairs in Building Predictive Models
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Learning over Relational Databases:

Revisit from First Principles
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Structure-aware versus Structure-agnostic Learning

Feature Extraction

Query
DB

materialise export import

materialised output

= data matrix

ML Tool θ

Model

Structure-agnostic learning requires:

1. Materialisation of the query result

(Recomputation in case of data updates)

2. Data export from DBMS and import into ML tool

3. One/multi-hot encoding of categorical variables

All these steps are very expensive and unnecessary!
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Structure-aware versus Structure-agnostic Learning

Feature Extraction

Query
DB

materialised output

= data matrix

ML Tool θ

Model

Model ReformulationBatch of Queries

Query Batch Evaluation
Optimisation

Structure-aware learning avoids the three expensive steps.
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Structure-aware Learning

FASTER even than

Feature Extraction Query!
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Example: A Retailer Use Case
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Relation Cardinality Arity (Keys+Values) File Size (CSV)

Inventory 84,055,817 3 + 1 2 GB

Items 5,618 1 + 4 129 KB

Stores 1,317 1 + 14 139 KB

Demographics 1,302 1 + 15 161 KB

Weather 1,159,457 2 + 6 33 MB

Join 84,055,817 3 + 41 23GB
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Structure-aware versus Structure-agnostic Learning

Train a linear regression model to predict inventory given all features

PostgreSQL+TensorFlow

Our approach (SIGMOD’19)

Time Size (CSV)

Time Size (CSV)

Database – 2.1 GB

– 2.1 GB

Join 152.06 secs 23 GB

– –

Export 351.76 secs 23 GB

– –

Shuffling 5,488.73 secs 23 GB

– –

Query batch – –

6.08 secs 37 KB

Grad Descent 7,249.58 secs –

0.05 secs –

Total time 13,242.13 secs

6.13 secs

2, 160× faster while 600× more accurate (RMSE on 2% test data)

TensorFlow trains one model. Our approach takes < 0.1 sec for

any extra model over a subset of the given feature set.
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TensorFlow’s Behaviour is the Rule, not the Exception!

Similar behaviour (or outright failure) for more:

• datasets: Favorita, TPC-DS, Yelp, Housing

• systems:

• used in industry: R, scikit-learn, Python StatsModels, mlpack,

XGBoost, MADlib

• academic prototypes: Morpheus, libFM

• models: decision trees, factorization machines, k-means, ..

This is to be contrasted with the scalability of DBMSs!
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How to Achieve

This Performance Improvement?
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Idea 1: Turn the Learning Problem into a Database Problem

10/44



Through DB Glasses, Everything is a Batch of Queries

Gradient Computation → Query Batch

Decision Tree Split Cost → Query Batch

k-means Clustering Assignment → Query Batch
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Models under Consideration

So far:

• Polynomial regression

• Factorization machines

• Classification/regression trees

• Mutual information

• Chow Liu trees

• k-means clustering

• k-nearest neighbours

• PCA

• SVM

On-going:

• Boosting regression trees

• AdaBoost

• Sum-product networks

• Random forests

• Logistic regression

• Linear algebra:

• QR decomposition

• SVD

• low-rank matrix

factorisation

All these cases can benefit from structure-aware computation
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Example: Ridge Linear Regression

Linear function: fθ(x) = 〈θ, x〉 = θ0x0 + θ1x1 + . . .

• Training dataset D defined by feature extraction query and

consists of tuples (x, y) of feature vector x and response y

• Parameters θ obtained by minimising the objective function:

J(θ) =

least square loss︷ ︸︸ ︷
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +

`2−regulariser︷ ︸︸ ︷
λ

2
‖θ‖22
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From Optimisation to Query Batch

We can solve θ∗ := arg minθ J(θ) by repeatedly updating θ in the

direction of the gradient until convergence:

θ := θ − α ·∇J(θ).

Model reformulation idea: Decouple

• data-dependent (x, y) computation from

• data-independent (θ) computation

in the formulations of the objective J(θ) and its gradient ∇J(θ).
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From Optimisation to Query Batch

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖22

=
1

2
θ>Σθ − 〈θ, c〉+

sY
2

∇J(θ) = Σθ − c + λθ, where

matrix Σ = (σij)i ,j∈[n], vector c = (ci )i∈[n], and scalar sY are:

σij =
1

|D|
∑

(x,y)∈D

xix
>
j ci =

1

|D|
∑

(x,y)∈D

y · xi sY =
1

|D|
∑

(x,y)∈D

y2
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Σ, c, sY can be Expressed as Batch of Queries

Queries for σij = 1
|D|

∑
(x,y)∈D xix

>
j (w/o factor 1

|D|):

• xi , xj continuous

SELECT SUM (xi * xj) FROM D;

• xi categorical, xj continuous

SELECT xi, SUM(xj) FROM D GROUP BY xi;

• xi , xj categorical

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the feature extraction query over the input DB.
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Aggregation is the Aspirin to All Problems

Query batch sizes in practice:

Application/Dataset Retailer Favorita Yelp TPC-DS

Covariance Matrix 937 157 730 3,299

Decision Tree (one node) 3,150 273 1,392 4,299

k-means 44 19 38 92

Queries in a batch:

• Same aggregates but over different attributes

• Expressed over the same join of the database relations

AMPLE opportunities for sharing computation in a batch.
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Natural Attempt:

Use Existing DB Technology

to Compute the Query Batch
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Existing DBMSs are NOT Designed for Query Batches

Relative Speedup for Our Approach over DBX and MonetDB

1x

10x

100x

1000x

C R C R C R C R
TPC-DSYelpFavoritaRetailer

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)
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Existing DSMSs are NOT Designed for Query Batches

Task: Maintain the covariance matrix over Retailer

• Round-robin insertions in all relations

• All maintenance strategies implemented in DBToaster

1E+03 
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Fraction	of	Retailer	Stream	Processed

Our	approach	(June'18) DBToaster Classical	IVM

Azure DS14, Intel Xeon, 2.40GHz, 112GB, 1 thread; one hour timeout
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Idea 2: Exploit the Problem Structure to Lower the Complexity

19/44



Structure-aware Tools of a Database Researcher

Algebraic structure: (semi)rings (R,+, ∗, 0, 1)

• Distributivity law → Factorisation

Factorised Databases [VLDB’12+’13]

Factorised Machine Learning

[SIGMOD’16,VLDB’16,SIGREC’16,DEEM’18,PODS’18+’19]

• Additive inverse → Uniform treatment of updates

Factorised Incremental Maintenance [SIGMOD’18]

• Sum-Product abstraction→ Same processing for distinct tasks

DB queries, Covariance matrix, PGM inference, Matrix chain multiplication

[SIGMOD’18]
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Structure-aware Tools of a Database Researcher

Combinatorial structure: query width and data degree measures

• Width measure w for FEQ → Low complexity Õ(Nw )

factorisation width ≥ fractional hypertree width ≥ sharp-submodular width

worst-case optimal size and time for factorised joins

[ICDT’12+’18,TODS’15,PODS’19]

• Degree → Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance for triangle count [ICDT’19a]

evaluation of queries with negated relations of bounded degree [ICDT’19b]

• Functional dependencies → Learn simpler, equivalent models

reparameterisation of polynomial regression models and factorisation machines

[PODS’18,TODS’19]
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Structure-aware Tools of a Database Researcher

Statistical structure: sampling for joins and models, coresets

• Sampling through joins: ripple/wander joins [SIGMOD’99+’16]

• Sampling specific to classes of models [SIGMOD’19]

• Succinct approximate data representations

coresets for k-means with constant-factor approximation [submission’19]
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Case in Point (1):

Factorised Query Computation

⇒

Exponential Time/Size Improvement

22/44



Example: Factorised Query Computation

Orders (O for short)

customer day dish

Elise Monday burger

Elise Friday burger

Steve Friday hotdog

Joe Friday hotdog

Dish (D for short)

dish item

burger patty

burger onion

burger bun

hotdog bun

hotdog onion

hotdog sausage

Items (I for short)

item price

patty 6

onion 2

bun 2

sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .
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Example: Factorised Query Computation

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6

Elise Monday burger onion 2

Elise Monday burger bun 2

Elise Friday burger patty 6

Elise Friday burger onion 2

Elise Friday burger bun 2

. . . . . . . . . . . . . . .

An algebraic encoding uses product (×), union (∪), and values:

Elise × Monday × burger × patty × 6 ∪

Elise × Monday × burger × onion × 2 ∪

Elise × Monday × burger × bun × 2 ∪

Elise × Friday × burger × patty × 6 ∪

Elise × Friday × burger × onion × 2 ∪

Elise × Friday × burger × bun × 2 ∪ . . . 24/44



Factorised Join

∪

burger hotdog

× ×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

Variable order Instantiation of the variable order over the input database

There are several algebraically equivalent factorised joins defined

by distributivity of product over union and their commutativity.
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.. Now with Further Compression

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

Observation:

• price is under item, which is under dish, but only depends on item,

• .. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!
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Factorising the Computation of Aggregates (1/2)

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.
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Factorising the Computation of Aggregates (1/2)

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

12

66

2 3

1 1 1

1 1

3 2

1 2

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.
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Factorising the Computation of Aggregates (2/2)

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

SUM(dish * price) computed in one pass over the factorisation:

• Assume there is a function f that turns dish into numbers.

• All values except for dish & price 7→ 1,

• ∪ 7→ +, × 7→ ∗.
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Factorising the Computation of Aggregates (2/2)

+

f (burger) f (hotdog)

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

20∗f (burger)+16∗f (hotdog)

1620

2 10

1 1 6

2 2

8
2

4 2

SUM(dish * price) computed in one pass over the factorisation:

• Assume there is a function f that turns dish into numbers.

• All values except for dish & price 7→ 1,

• ∪ 7→ +, × 7→ ∗.
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Case in Point (2):

Sum-Product Ring Abstraction

⇒

Sharing Aggregate Computation
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Shared Computation of Several Aggregates (1/2)

burger

×

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

Ring for computing SUM(1), SUM(price), SUM(price * dish):

• Elements = triples of numbers, one per aggregate

• Sum (+) and product (*) now defined over triples

They enable shared computation across the aggregates
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Shared Computation of Several Aggregates (2/2)

(1, 0, f (burger))

∗

+

(1, 0, 0) (1, 0, 0) (1, 0, 0)

∗ ∗ ∗

+ + +

(1, 6, 0) (1, 2, 0) (1, 2, 0)

+

(1, 0, 0)

∗

+

(1, 0, 0)

(1, 0, 0)

∗

+

(1, 0, 0)

(2, 0, 0) (3, 10, 0)
(2 · 3, 2 · 10, 0)

(6, 20, 20 · f (burger))

(1, 0, 0)(1, 0, 0) (1, 6, 0) (1, 2, 0) (1, 2, 0)

Ring for computing SUM(1), SUM(price), SUM(price * dish):

• Elements = triples of numbers, one per aggregate

• Sum (+) and product (*) now defined over triples

They enable shared computation across the aggregates
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Ring Generalisation for the Entire Covariance Matrix

Ring (R,+, ∗, 0, 1) over triples of aggregates (c , s,Q) ∈ R:

( ), ,

SUM(1) SUM(xi) SUM(xi*xj)

(c1, s1,Q1) + (c2, s2,Q2) = (c1 + c2, s1 + s2,Q1 + Q2)

(c1, s1,Q1) ∗ (c2, s2,Q2) = (c1 · c2, c2 · s1 + c1 · s2,
c2 ·Q1 + c1 ·Q2 + s1sT2 + s2sT1 )

0 = (0, 0n×1, 0n×n)

1 = (1, 0n×1, 0n×n)

• SUM(1) reused for all SUM(xi ) and SUM(xi ∗ xj)
• SUM(xi ) reused for all SUM(xi ∗ xj) 33/44



Idea 3: Lower the Constant Factors
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Engineering Tools of a Database Researcher

1. Specialisation for workload and data

Generate code specific to the query batch and dataset

Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree

Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM’18,SIGMOD’19]
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Engineering Tools of a Database Researcher

Relative Speedup of Code Optimisations

1x

2x

4x

8x

16x

32x

64x

128x

Retailer Favorita Yelp TPC-DS
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p
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p
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2)

Added optimisations for covariance matrix computation:

specialisation → + sharing → + parallelization

AWS d2.xlarge (4 vCPUs, 32GB)
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Case in Point (3):

Code Optimisations

⇒

Non-trivial Speedup
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Sharing Computation for a Query Batch in Favorita

Sales: date, store, item, units, promo

Holidays: date, htype, locale, transferred

Stores: store, city, state, stype, cluster

Items: item, family, class, perishable

Transactions: date, store, txns

Oil: date, price

Sales

Transactions

Stores Oil

Items

Holidays

Aggregates to compute over the join of relations:

Q1: SUM (f (units))

Q2: SUM (g(item) · h(date, family)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY family
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Sales

Transactions

Stores Oil

Items
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Aggregates to compute over the join of relations:
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Shared Execution Plan for a Query Batch

Sales

Transactions

Stores Oil

Items

Holidays

V T
→
S

V R
→
T

V
O
→
T

V
H→

S

V (1)
I→S V (2)

I→S

VS→I

Q1Q2

Q3

• For each query, decide its output (root) node in the join tree

• Break down each query into directional views over the join tree

• Merge/share/group views for different queries

• Computational unit: group of views 37/44



Parallelisation: Dependency Graph of View Groups

Q1,Q2,VS→I

VT→S

V
(1)
R→T

VO→T

V
(1)
I→S ,V

(2)
I→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 2

Group 3

Group 7

Sales

Transactions

Stores Oil

Items

Holidays

V
T
→
S

V
(1
)

R
→
T

V
O
→
T

V
H
→
S

V (1)
I→S V (2)

I→S

VS→I

Q1Q2

Q3

• Task parallelism: Evaluate independent groups in parallel

• Domain parallelism: Partition the large relation used for each group
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Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i)

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d);

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0;

foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q5(s) then Q5(s) += α7 · α8 · αT else Q5(s) = α7 · α8 · αT ;
α3 += α2 · αH ;

α4 += α3 · α(1)
I

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

Traverse Sales as a trie following an order of its join variables 39/44



Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i)

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d);

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0;

foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q5(s) then Q5(s) += α7 · α8 · αT else Q5(s) = α7 · α8 · αT ;
α3 += α2 · αH ;

α4 += α3 · α(1)
I

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

Lookup into incoming views, e.g., V
(1)
I , as early as possible 39/44



Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i)

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d);

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0;

foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q5(s) then Q5(s) += α7 · α8 · αT else Q5(s) = α7 · α8 · αT ;
α3 += α2 · αH ;

α4 += α3 · α(1)
I

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

Insert code for partial aggregates as early as possible 39/44



Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i);

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d);

α6 = 0;

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0;

α7 = α6 · α5 · αH ;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0;

α8 = |σitem=i ,date=d ,store=sS |;

foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q2(s) then Q2(s) += α7 · α8 · αT else Q2(s) = α7 · α8 · αT ;

α3 += α2 · αH ;

α4 += α3 · α(1)
I ;

VS→I (i) = α3 · α5;

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

Q1: SUM (f (units))
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Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i);

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d);

α6 = 0;

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0;

α7 = α6 · α5 · αH ;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0;

α8 = |σitem=i ,date=d ,store=sS |;

foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q2(s) then Q2(s) += α7 · α8 · αT else Q2(s) = α7 · α8 · αT ;

α3 += α2 · αH ;

α4 += α3 · α(1)
I ; VS→I (i) = α3 · α5;

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

VS→I : SUM (f (units) · g(item)) GROUP BY item
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Code Generation for Executing View Group 6 over Sales

foreach i ∈ πitem(S onitem V
(1)
I onitem V

(2)
I )

α4 = 0;

α
(1)
I = V

(1)
I (i);

α5 = g(i);

α3 = 0;

foreach d ∈ πdate(σitem=iS ondate VH ondate VT )

αH = VH(d); α6 = 0;

foreach y ∈ πfamilyσitem=iV
(2)
I : α6 += h(d , y) · V (2)

I (i , y);

α2 = 0; α7 = α6 · α5 · αH ;

foreach s ∈ πstore(σitem=i ,date=dS onstore σdate=dVT )

αT = VT (d , s); α1 = 0; α8 = |σitem=i ,date=d ,store=sS |;
foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α1 += f (u);
α2 += α1 · αT ;

if Q2(s) then Q2(s) += α7 · α8 · αT else Q2(s) = α7 · α8 · αT ;
α3 += α2 · αH ;

α4 += α3 · α(1)
I ; VS→I (i) = α3 · α5;

Q1 = α4;

item

date

store

V
(1)
I

V
(2)
I

VH

VT

Q2: SUM (g(item) · h(date, family)) GROUP BY store
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Conclusion

Three-step recipe for efficient machine learning over databases:

1. Turn the learning problem into a database problem

2. Exploit the problem structure to lower the complexity

3. Specialise and optimise the code to lower the constant factors

Q.E.D.
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Call to arms

We need more sustained work on

theory and systems for

Structure-aware Approaches to Data Analytics
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