Counting Triangles under Updates in Worst-Case Optimal Time

Ahmet Kara, Hung Q. Ngo, Milos Nikolic Dan Olteanu, and Haozhe Zhang

fdbresearch.github.io

ICDT 2019, Lisbon

relationalAI

Problem Setting

The triangle count Q returns the number of tuples in the join of R, S, and T.

Maintain the triangle count Qunder single-tuple updates to R, S, and T!

R		5		Т	
ΑB	#	ВC	#	C A	#
$a_1 b_1$	2	$b_1 c_1$	2	$c_1 a_1$	1
$a_2 b_1$	3	$b_1 c_2$	1	$c_2 a_1$	3
				$c_2 a_2$	3

R	S	T	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
<i>a</i> ₁ <i>b</i> ₁ 2	<i>b</i> ₁ <i>c</i> ₁ 2	$c_1 a_1 1$	$a_1 \ b_1 \ c_1 \ \Big \ 2 \cdot 2 \cdot 1 = 4$
$a_2 b_1 = 3$	$b_1 c_2 \mid 1$	$c_2 a_1 3$	
		$c_2 a_2 = 3$	

R	5	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 2$	$c_1 a_1 1$	$a_1 \ b_1 \ c_1 \ \left 2 \cdot 2 \cdot 1 = 4 \right $
$a_2 b_1 = 3$	$b_1 c_2 \mid 1$	$c_2 a_1 = 3$	$a_1 \ b_1 \ c_2 2 \cdot 1 \cdot 3 = 6$
		$c_2 a_2 3$	$a_2 \ b_1 \ c_2 \ \ 3 \cdot 1 \cdot 3 = 9$

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	Т	$R \cdot S \cdot T$	
A B #	B C #	<i>C A</i> #	A B C	#
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 2$	$c_1 a_1 1$	$a_1 b_1 c_1 2 \cdot 2 \cdot$	1 = 4
$a_2 b_1 = 3$	$b_1 c_2 \mid 1$	$c_2 a_1 = 3$	$a_1 b_1 c_2 = 2 \cdot 1 \cdot$	3 = 6
		$c_2 a_2 = 3$	$a_2 b_1 c_2 3 \cdot 1 \cdot$	3 = 9

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

$$\delta R = \{(a_2, b_1) \mapsto -2\}$$

$$A B \qquad \#$$

$$a_2 b_1 \qquad -2$$

$$Q()$$

$$\emptyset \mid \#$$

$$() \mid 4 + 6 + 9 = 19$$

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

$$\delta R = \{(a_2, b_1) \mapsto -2\}$$

$$A B \mid \#$$

$$a_2 b_1 \mid -2$$

$$Q()$$

$$0 | #$$

$$() | 4+6+9 = 19$$

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

$\delta R = \{(a$	$a_2, b_1) \mapsto -2\}$
A B	#
a ₂ b ₁	-2

$$Q()$$

$$\emptyset \mid \#$$

$$() \mid 4 + 6 + 9 = 19$$

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

 A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

1

$\delta R = \{(a$	$b_2, b_1) \mapsto -2\}$
A B	#
a ₂ b ₁	-2

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

Relations are functions mapping tuples to multiplicities.

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

Previous Results

Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]
- Randomized approximation in data streams [SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Intensive Investigation of Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
- Lower bounds [STOC 2015, ICM 2018]

So far:

No dynamic algorithm maintaining the exact triangle count in worst-case optimal time!

"Compute from scratch!"

"Compute from scratch!" $\delta R = \{(\alpha, \beta) \mapsto m\}$

"Compute from scratch!" $\delta R = \{(\alpha, \beta) \mapsto m\}$

- N is the database size
- Update time: $\mathcal{O}(N^{1.5})$ using worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013, ICDT 2014]
- Space: $\mathcal{O}(N)$ to store input relations

"Compute the difference!"

 $Q() = Q() + \delta Q()$

• Update time: $\mathcal{O}(N)$ to intersect C-values from S and T

Space: $\mathcal{O}(N)$ to store input relations

"Compute the difference by using pre-materialized views!"

Time for updates to R: $\mathcal{O}(1)$ to look up in V_{ST}

Maintain V_{ST} under updates

$$S(b,c) \qquad T(c,a)$$

$$V_{ST}(b,a) = \sum_{c} \qquad \bullet \qquad \bullet$$

Maintain V_{ST} under updates $\delta S = \{(\beta, \gamma) \mapsto m\}$ S(b,c)T(c, a) $V_{ST}(b,a) = \sum_{a}$ $\delta S(\beta, c)$ T(c, a) $\delta V_{ST}(\beta, a) = \sum_{\alpha} \beta \gamma$ •

Factorized Incremental View Maintenance

 $V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)$

Factorized Incremental View Maintenance

 $V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)$

• Time for updates to S and T: $\mathcal{O}(N)$ to maintain V_{ST}

• Space: $\mathcal{O}(N^2)$ to store input relations and V_{ST}

Our Contribution

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper	Bound
Update Time:	0(N)
Space:	0(N)

Known Lower Bound

Amortized update time: not $\mathcal{O}(N^{0.5-\gamma})$ for any $\gamma > 0$ under the Online Matrix-Vector Multiplication Conjecture (follows from [PODS 2017])

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper	Bound
Update Time:	0(N)
Space:	0(N)

Can the triangle count be maintained with sublinear update time?

Known Lower Bound

Amortized update time: not $\mathcal{O}(N^{0.5-\gamma})$ for any $\gamma > 0$ under the Online Matrix-Vector Multiplication Conjecture (follows from [PODS 2017])

Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper	Bound
Update Time:	0(N)
Space:	0(N)

Can the triangle count be maintained with sublinear update time?

Yes!

We propose: IVM^{ε} Amortized update time: $\mathcal{O}(N^{0.5})$ This is worst-case optimal!

Known Lower Bound

Amortized update time: not $\mathcal{O}(N^{0.5-\gamma})$ for any $\gamma > 0$ under the Online Matrix-Vector Multiplication Conjecture (follows from [PODS 2017])

IVM^{ε} Exhibits a Time-Space Tradeoff

Given $\varepsilon \in [0, 1]$, IVM $^{\varepsilon}$ maintains the triangle count with

- $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$ amortized update time
- $\mathcal{O}(N^{1+\min\{\varepsilon,1-\varepsilon\}})$ space
- $\mathcal{O}(N^{3/2})$ preprocessing time
- $\mathcal{O}(1)$ answer time.

Known maintenance approaches are recovered by $\mathrm{IVM}^{\varepsilon}.$

Main Ideas in IVM $^{\varepsilon}$

- Compute the difference like in classical IVM!
- Materialize views like in Factorized IVM!
- New ingredient: Use adaptive processing based on data skew! ⇒ Treat *heavy* values differently from *light* values!

Quick Look inside IVM $^{\varepsilon}$

Quick Look inside IVM $^{\varepsilon}$

Partition R based on A into

- a light part $R_L = \{t \in R \mid |\sigma_{A=t.A}| < N^{\varepsilon}\},\$
- a heavy part $R_H = R \setminus R_L!$

Quick Look inside IVM^{ε}

Partition R based on A into

- a light part $R_L = \{t \in R \mid |\sigma_{A=t,A}| < N^{\varepsilon}\},\$
- a heavy part $R_H = R \setminus R_I$!

Derived Bounds

from light part: for all A-values a, $|\sigma_{A=a}R_L| < N^{\varepsilon}$

Quick Look inside IVM $^{\varepsilon}$

Likewise, partition

- $S = S_L \cup S_H$ based on B, and
- $T = T_L \cup T_H$ based on C!

Q is the sum of skew-aware views

$$\sum_{a,b,c} R_U(a,b) \cdot S_V(b,c) \cdot T_W(c,a) \text{ with } U,V,W \in \{L,H\}.$$

Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the difference for each of the following skew-aware views using a different strategy:

$$Q_{*LL}() = \sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$$
$$Q_{*HH}() = \sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$$
$$Q_{*LH}() = \sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$$
$$Q_{*HL}() = \sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a)$$

Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the difference for each of the following skew-aware views using a different strategy:

$$\delta Q_{*LL}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{*HH}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_H(c, \alpha)$$

$$\delta Q_{*LH}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha)$$

$$\delta Q_{*HL}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{*LL}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{*LL}() = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_L(c,\alpha)$$

Update time: $\mathcal{O}(N^{\varepsilon})$ to intersect C-values from S_L and T_L

$$\delta Q_{*HH}() = \delta R_{*}(\alpha,\beta) \cdot \sum_{c} S_{H}(\beta,c) \cdot T_{H}(c,\alpha)$$

$$\delta Q_{*HH}() = \delta R_{*}(\alpha, \beta) \cdot \sum_{c} S_{H}(\beta, c) \cdot T_{H}(c, \alpha)$$

$$\delta Q_{*HH}() = \delta R_{*}(\alpha, \beta) \cdot \sum_{c} S_{H}(\beta, c) \cdot T_{H}(c, \alpha)$$

Update time: $\mathcal{O}(N^{1-\varepsilon})$ to intersect *C*-values from S_H and T_H

$$\delta Q_{*LH}() = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_H(c,\alpha)$$

	$\delta R_*(lpha,eta)$			$S_L(\beta, c)$		$T_H(a$	ε, <mark>α</mark>)
50 ()	- 0	\sum	\sum	β c		с 	a a
0 Q *LH() —	$\alpha \rho$	•	c		•	с	а а
						с	α <u>α</u>

$$\delta Q_{*LH}() = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_H(c,\alpha)$$

	$\delta R_*(lpha, eta)$			$S_L(\boldsymbol{\beta}, \boldsymbol{c})$		$T_H(a$	ε, <mark>α</mark>)
50 () -			Σ	ς β c	$\Big\} < N^{\varepsilon}$	с 	a a
0 Q ∗LH() —	αρ	•	C c		•	с	а а
						с	α <u>α</u>

$$\delta Q_{*LH}() = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_H(c,\alpha)$$

	$\delta R_*(lpha,eta)$	$S_L(\boldsymbol{\beta}, \boldsymbol{c})$		$T_H($	с, <mark>а</mark>)
δ Ο () =	α β . Σ	$\beta \stackrel{c}{\underset{c}{\cdots}}$	$\Big\} < N^{\varepsilon}$	с.	a a
0 Q *LH() —			$N^{1-\varepsilon} > \langle$	с	а а
			(с	a <mark>X</mark> a

$$\delta Q_{*LH}() = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_H(c,\alpha)$$

Update time: $\mathcal{O}(N^{\min\{\varepsilon,1-\varepsilon\}})$ to intersect *C*-values from S_L and T_H

$$\delta Q_{*HL}() = \delta R_{*}(\alpha, \beta) \cdot \sum_{c} S_{H}(\beta, c) \cdot T_{L}(c, \alpha)$$

$$\delta R_{*}(a, b) \qquad S_{H}(b, c) \qquad T_{L}(c, a)$$

$$\delta Q_{*HL}() = \sum_{a,b} \alpha \beta \cdot$$

$$\delta Q_{*HL}() = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta R_*(a, b) \qquad S_H(b, c) \qquad T_L(c, a)$$

$$\delta Q_{*HL}() = \sum_{a,b} \alpha \beta \qquad \cdot \qquad \cdot$$

$$V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$$

$$\delta Q_{*HL}() = \delta R_{*}(\alpha, \beta) \cdot \sum_{c} S_{H}(\beta, c) \cdot T_{L}(c, \alpha)$$
$$\delta R_{*}(a, b) \qquad V_{ST}(b, a)$$
$$\delta Q_{*HL}() = \sum_{a, b} \alpha \beta \cdot$$

Update time: $\mathcal{O}(1)$ to look up in V_{ST}

Summary of Adaptive Maintenance Strategies

Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the difference for each skewaware view using a different strategy:

Skew-aware View	Evaluation from left to right	Time
$\sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$	$\delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_L(c,\alpha)$	$\mathcal{O}(N^{\varepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$	$\delta R_*(\alpha,\beta) \cdot \sum_c T_H(c,\alpha) \cdot S_H(\beta,c)$	$\mathcal{O}(N^{1-\varepsilon})$
$\sum R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$	$\frac{\delta R_*(\alpha,\beta)}{c} \cdot \sum_c S_L(\beta,c) \cdot T_H(c,\alpha)$ or	$\mathcal{O}(N^{\varepsilon})$
a,b,c	$\delta R_*(\alpha,\beta) \cdot \sum_c T_H(c,\alpha) \cdot S_L(\beta,c)$	$\mathcal{O}(N^{1-\varepsilon})$
$\sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a)$	$\delta R_*(\alpha,\beta) \cdot V_{ST}(\beta,\alpha)$	$\mathcal{O}(1)$

Overall update time: $\mathcal{O}(N^{\max(\varepsilon,1-\varepsilon)})$

$$V_{RS}(a, c) = \sum_{b} R_{H}(a, b) \cdot S_{L}(b, c)$$
$$V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$$
$$V_{TR}(a, c) = \sum_{a} T_{H}(c, a) \cdot R_{L}(a, b)$$

Update time: $\mathcal{O}(N^{\varepsilon})$ to iterate over A-values paired with γ from T_L

Update time: $\mathcal{O}(N^{1-\varepsilon})$ to iterate over *B*-values paired with γ from S_H

$$V_{RS}(a, c) = \sum_{b} R_{H}(a, b) \cdot S_{L}(b, c)$$
$$V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$$
$$V_{TR}(a, c) = \sum_{a} T_{H}(c, a) \cdot R_{L}(a, b)$$

Maintenance Complexity

- Time: $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$ Space: $\mathcal{O}(N^{1+\min\{\varepsilon,1-\varepsilon\}})$

Rebalancing Partitions

Updates can change the frequencies of values in the relation parts!

Minor Rebalancing

- Transfer $\mathcal{O}(N^{\varepsilon})$ tuples from one to the other part of the same relation!
- Time complexity: $\mathcal{O}(N^{\varepsilon + \max{\{\varepsilon, 1 \varepsilon\}}})$

Rebalancing Partitions

Updates can change the heavy-light threshold!

Major Rebalancing

Recompute partitions and views from scratch!

Amortization of Rebalancing Times

Both forms of rebalancing require superlinear time.

Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time.
- The rebalancing times amortize over sequences of updates.
 - Amortized minor rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon, 1-\varepsilon\}}})$
 - Amortized major rebalancing time: $\mathcal{O}(N^{\min{\{\varepsilon,1-\varepsilon\}}})$

$$\begin{array}{c} \mathcal{O}(N^{\varepsilon + \max \{\varepsilon, 1 - \varepsilon\}}) \\ \dots \ update \\ \hline minor \\ \mathcal{O}(N^{\varepsilon}) \\ \end{array} \begin{array}{c} \mathcal{O}(N^{\varepsilon + \max \{\varepsilon, 1 - \varepsilon\}}) \\ \mu pdate \\ \dots \\ \mathcal{O}(N^{\varepsilon}) \\ \hline \mathcal{O}(N^{1 + \min \{\varepsilon, 1 - \varepsilon\}}) \\ \mu pdate \\ \hline major \\ \mu pdate \\ \hline \mathcal{O}(N) \\ \hline \end{array} \begin{array}{c} \mathcal{O}(N^{1 + \min \{\varepsilon, 1 - \varepsilon\}}) \\ \mu pdate \\ \dots \\ \mu pdate \\ \hline major \\ \mu pdate \\ \dots \\ \mu pdate \\ \hline \end{array} \right)$$

Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time.
- The rebalancing times amortize over sequences of updates.
 - Amortized minor rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon, 1-\varepsilon\}}})$
 - Amortized major rebalancing time: $\mathcal{O}(N^{\min{\{\varepsilon,1-\varepsilon\}}})$
- Overall amortized rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon,1-\varepsilon\}}})$

$$\dots \text{ update } \underset{\Omega(N^{\varepsilon})}{\overset{\mathcal{O}(N^{\varepsilon+\max\{\varepsilon,1-\varepsilon\}})}{\underset{\Omega(N^{\varepsilon})}{\overset{\mathcal{O}(N^{\varepsilon+\max\{\varepsilon,1-\varepsilon\}})}{\underset{\mathcal{O}(N^{\varepsilon})}{\overset{\mathcal{O}(N^{\varepsilon+\max\{\varepsilon,1-\varepsilon\}})}{\underset{\mathcal{O}(N^{\varepsilon})}{\overset{\mathcal{O}(N^{\varepsilon+\max\{\varepsilon,1-\varepsilon\}})}}}}$$

$$\dots \quad update \qquad \underbrace{\begin{array}{c} \mathcal{O}(N^{1+\min\{\varepsilon,1-\varepsilon\}}) \\ major \\ \Omega(N) \end{array}}_{\Omega(N)} \underbrace{\begin{array}{c} \mathcal{O}(N^{1+\min\{\varepsilon,1-\varepsilon\}}) \\ major \\ major \\ update \\ \dots \\ update \\$$

Quo Vadis IVM^ε?

Quo Vadis IVM $^{\varepsilon}$?

Generalization of IVM^ε

- \blacksquare IVM $^{\varepsilon}$ variants admit sublinear update time for counting versions of
 - Loomis-Whitney
 - Queries built from 3 relations
 - 4-cycle
 - 🕨 4-path
- IVM^e variants admit sublinear update time and constant-delay enumeration for the full triangle query.

Ongoing Work

- Characterization of the class of conjunctive count queries that admit sublinear maintenance time
- Implementation of IVM^{ε} on top of DBToaster

References I

[Algorithmica 1997] Noga Alon, Raphael Yuster, and Uri Zwick. *Finding and counting given length cycles*. In Algorithmica 1997

[SODA 2002] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in Streaming Algorithms, with an Application to Counting Triangles in Graphs. In SODA 2002

[COCOON 2005] Hossein Jowhari and Mohammad Ghodsi. *New Streaming Algorithms for Counting Triangles in Graphs*. In COCOON 2005

[PODS 2006] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian Sohler. *Counting Triangles in Data Streams*. In PODS 2006

[Found. & Trends DB 2012] Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB 2012

[SIGMOD R. 2013] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the theory of join algorithms. In SIGMOD R. 2013

References II

[ICDT 2014] Todd L. Veldhuizen. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In ICDT 2014

[VLDB J. 2014] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, and Amir Shaikhha. *DBToaster: Higher-Order Delta Processing for Dynamic, Frequently Fresh Views.* In VLDB J. 2014

[FOCS 2015] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear Time. In FOCS 2015

[STOC 2015] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In STOC 2015

[PODS 2016] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better Algorithms for Counting Triangles in Data Streams. In PODS 2016

[PODS 2017] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. *Answering Conjunctive Queries Under Updates*. In PODS 2017

References III

[SIGMOD 2017] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. *The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates*. In SIGMOD 2017

[Theor. Comput. Sci. 2017] Graham Cormode and Hossein Jowhari. A Second Look at Counting Triangles in Graph Streams (Corrected). Theor. Comput. Sci. 2017

[Found. & Trends DB 2018] Paraschos Koutris, Semih Salihoglu, and Dan Suciu. *Algorithmic Aspects of Parallel Data Processing*. In Found. & Trends DB 2018

[ICDT 2018] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs Under Updates and in the Presence of Integrity Constraints. In ICDT 2018

[ICM 2018] Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algorithms and Complexity. In ICM 2018

[SIGMOD 2018] Nikolic, Milos, and Dan Olteanu. Incremental view maintenance with triple lock factorization benefits. In SIGMOD 2018