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Probabilistic Databases and Reasoning

This 3-hour tutorial has two main parts:

1. Dan Olteanu: Probabilistic Databases
Now: 8.30am - 10am.

2. Thomas Lukasiewicz: Probabilistic Reasoning
Next: 10am - 10.30am, then a break, then 11lam - 12pm.

Further 1-hour lectures on advanced topics in probabilistic databases:

1. DL invited talk today at 12.10pm
Dan Suciu: Lifted Inference in Probabilistic Database

2. KR invited lecture tomorrow at 9.30am
Dan Suciu: Query compilation: the View from the Database Side

KR features several more papers on probabilistic data and knowledge bases!

~



Probabilistic Databases

For the purpose of the first half of this tutorial:

Probabilistic data =

= Relational data
+

m Probabilities that measure the degree of uncertainty in the data.

Long-term key challenges:

= Models for probabilistic data to capture data and its uncertainty.

= Query evaluation = Probabilistic inference
Query answers are annotated with output probabilities.
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Why Probabilistic Databases?



Research Development Map

We can unify logic and probability by defining distributions over possible worlds
that are first-order model structures (objects and relations). Gaifman’64

Early work (80s and 90s):
m Basic data models and query processing

Wong'82, Shoshani’'82, Cavallo & Pittarelli'87, Barbard'92,
Lakshmanan'97,'01, Fuhr& Ro&llke'97, Zimanyi'97, ..

Recent wave (2004 - now):

m Computational complexity of query evaluation
m Probabilistic database systems
Stanford (Trio), UW (MystiQ), Cornell & Oxford (MayBMS/SPROUT),

IBM Almaden & Rice (MCDB), LogicBlox & Technion & Oxford (PPDL),
Florida, Maryland, Purdue, Waterloo, Wisconsin, ..



Why This Interest in Probabilistic Databases?

Probabilistic relational data is commonplace. It accommodates several possible
interpretations of the data weighted by probabilities.

m Information extraction: Probabilistic data inferred from unstructured data
(e.g., web) text using statistical models
Google Knowledge Vault, DeepDive, NELL

m Manually entered data

Represent several possible readings with MayBMS [Antova’'07]
Infer missing data with meta-rule semi-lattices [Stoyanovich'11]
Manage OCR data with Staccato/Google OCRopus [Kumar'11]

m Data cleaning
Represent several possible data repairs [Beskales'09]

m Data integration
Google Squared and SPROUT? [Fink'11]

= Risk management (Decision support queries, hypothetical queries); ...



Information Extraction

Possible segmentations of unstructured text [Sarawagi'06]

52-A Goregaon West Mumbai 400 076

ID | HouseNo | Area City PinCode || P

1 52 Goregaon West | Mumbai 400 062 0.1
1 52-A Goregaon West Mumbai | 400 062 0.2
1 52 Goregaon West Mumbai | 400 062 0.2

= Probabilities obtained using probabilistic extraction models (e.g., CRF)

The probabilities correlate with the precision of the extraction.
m The output is a ranked list of possible extractions

m Several segmentations are required to cover most of the probabi

and improve recall

lity mass

Avoid empty answer to queries such as Find areas in 'West Mumbai’



Continuously-Improving Information Extraction

Never-Ending Language Learner (NELL) database [Mitchell’15]
Recently-Learned Facts Switter (Refresh)
biscutate swift is an animal 211 18-feb-2011 100.0 25 €
pedigree animals is a mammal 210 17-feb-2011 9.5 %5 &
poppy seed holiday bread is a baked good 212 20-feb-2011 100.0 28 &
manuel criado de val is a South American person 210 17-feb-2011 99.5 7n &
dillon_county airport is an airport 210 17-feb-2011 93.8 75 &
the sports team toronto blue jays was the winner of n1993 world series 212 20-feb-2011 96.9 i@ QF
mozart is a person who died at the age of 35 210 17-feb-2011 96.9 f@ i;
peoria and arizona are proxies for eachother 210 17-feb-2011 99.9 f@ QF
wutv tv is a TV affiliate of the network fox 210 17-feb-2011 96.9 & &

white stripes collaborates with jack white 210 17-feb-2011 93878 &



Manuj@ll 'y-enter d census data

MayBMS manages 101° possible readings of census data [Antova’'07]

Social Security Number: /) 8 5
Name: ; ; \N\l;‘t !

Marital Status: (1) single . (2) married @
(3) divorced O (4) widowed O

Social Security Number: \ %i ;
Name: > QN‘

Marital Status: (1) single O (2) married O
(3) divorced O (4) widowed O

We want to enter the information from forms like these into a database.

® What is the marital status of the first resp. the second person?

® What are the social security numbers? 1857 1867 7857



Manuj@ll 'y-enter d census data

Social Security Number: /) 8 5
Name: ; ;\N\l;‘{: L

Marital Status: (1) single 1. (2) married @
(3) divorced O (4) widowed O

Social Security Number: \ %
Name: > QH‘ )
Marital Status: (1) single O (2) married O

(3) divorced O (4) widowed O

(TID) | SSN N M
ti | NULL Smith NULL
to NULL Brown NULL

Much of the available information cannot be represented and is lost, e.g.

m Smith’s SSN is either 185 or 785; Brown's SSN is either 185 or 186.

m Data cleaning: No two distinct persons can have the same SSN.
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OCR on manually-entered data

Staccato

[Kumar'12)

The make of the claim..
iFord: Fusion I6 SEL,..
Detroit, MI on the..
2011. The details of ..
have been verified by...
agent, and the parts..

SELECT DocId, Loss
FROM Claims

WHERE Year = 2010 AND
DocData LIKE '%Ford%';

[c

m Stochastic automaton constructed from text using Google OCRopus.

m String FO rd has the highest probability (0.21).
m String Ford has lower probability (0.12).

Staccato accommodates several possible readings of the text to increase recall.
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Web Data Integration with Google Squared

m Tables instead of page links as answers to Google queries
= Integration of data sources with contradicting information or different

schemas, degrees of trust, and degrees of completion

m Confidence values mapped to [0,1]

GO()g‘e Squared comedy movies
labs

Square it | Add

comedy movies

Item Name Language Director Release Date
The Mask English Chuck Russell 29 July 1994
Scary M| @) English @ Chuck Russell

Superbal

Music

Knockeg

language for the mask

www.infibeam.com - all 9 sources »

Other possible values

(O English Language Low confidence
language for Mask
www.freebase.com

O english, french Low confidence
languages for the mask
www.dvdreview.com

() Italian Language Low confidence
language for The Mask
www.freebase.com

Search for more values »

directed by for The Mask
www.infibeam.com - all 9 sources »

Other possible values

() John R. Dilworth Low confidence
director for The Mask
fr

() Fiorella Infascelli Low confidence
directed by for The Mask
www.freebase.com - all 2 sources »

() Charles Russell Low confidence
directed by for The Mask
www.freebase.com - all 2 sources »

Search for more values »

[Fink'11]
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Revisiting the Census Data Example

Social Security Number: /) 8 5
Name: ; ;\I‘N;J(. L

Marital Status: (1) single =, (2) married i
(3) divorced O (4) widowed O

Social Security Number: \ % E ;
Name: > QH‘

Marital Status: (1) single O (2) married O
(3) divorced O (4) widowed OO

RID| SSN N M
t NULL  Smith  NULL
t NULL Brown NULL

NULL values are too uninformative.
We could instead incorporate all available possibilities:

m Smith’s SSN is either 185 or 785; Brown's SSN is either 185 or 186.

m Smith's M is either 1 or 2; Brown's M is either 1, 2, 3, or 4.



Revisiting the Census Data Example

There are 2 X 2 x 2 x 4 = 32 possible readings of our two census entries.

SSN N M SSN N
185 Smith 1 185 Smith
185  Brown 1 185  Brown
Social Security Number: /) 8 5
f ‘ SSN N M SSN N
Name: vt 185 Smith 1 185  Smith
Marital Status: (1) single B (2) married & 185 Brown 3 185 Brown
(3) divorced OO (4) widowed O
SSN N M SSN N
Social Security Number: & 185 Smith 1 185 Smith
Name: > CQNN 186  Brown 1 186  Brown
Marital Status: (1) single O (2) married O
(3) divorced O (4) widowed O SSN N M SSN N
185 Smith 1 185 Smith
186  Brown 3 186  Brown




Incomplete Databases

’ An Incomplete Database is a finite set of database instances W = (W4, ..

L Wa). |

Wh Wsh
SSN N M SSN N
185 Smith 1 185 Smith
185 Brown 1 185 Brown

W3 Wy
SSN N M SSN N
185 Smith 1 185 Smith
185 Brown 185 Brown

Ws Ws
SSN N M SSN N
185 Smith 1 185 Smith
186 Brown 1 186 Brown

Each W, is a possible world.

16
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Incomplete Databases

’ An Incomplete Database is a finite set of database instances W = (W, ...

Wo). |

Wi Wsh
SSN N M SSN N
185 Smith 1 185 Smith
185 Brown 1 185 Brown

W3 Wy
SSN N M SSN N
185 Smith 1 185 Smith
185 Brown 185 Brown

Ws Ws
SSN N M SSN N
185 Smith 1 185 Smith
186 Brown 1 186 Brown

Each W, is a possible world.

Typical scenario: 200M people
(2/3 US census), 50 questions, 1
in 10000 ambiguous (2 options)
w21 possible worlds
m A world is a table with 50

columns and 200M rows!

[Antova'07]

— Key challenge: How to succinctly represent incomplete databases?



Probabilistic Databases

A Probabilistic Database is (W, P), where W is an incomplete database and
P :W — [0,1] is a probability distribution: ZW;EW P(W;)=1.

Wlip(Wl):O.l WZ:P(W2):0.1
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 1 185 Brown

Ws: P(W3) =0.1 Wy : P(Wy) =0.1
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 185 Brown 4
Ws : P(Ws) = 0.3 We : P(Ws) = 0.3
SSN N M SSN N M
185 Smith 1 185 Smith 1
186 Brown 1 186 Brown

For W = {Wl,...7W5},

Zvv,-ew P(W;) =1.
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Succinct Representations of Incomplete/Probabilistic Data

Social Security Number: /) 8 5
Name: ; ; \.N\lfl: !

Marital Status: (1) single . (2) married
(3) divorced O (4) widowed O

Social Security Number: \ %
Name: > QN‘
Marital Status: (1) single O (2) married O

(3) divorced O (4) widowed O

Succinct or-set representation: [Imielinski'91]
SSN N M
{185,785} Smith {12}
{185,186} Brown {1234}

It exploits independence of possible values for different fields:
m Choice for Smith’s SSN independent of choice of for Brown's SSN.
m Likewise, the probability distributions associated with these choices are
independent (not shown).



BID: Alternative Representation of Our Or-Set

RID | M P
RID | SSN P t 1 0.9
t1 185 0.7 RID N t 2 0.1
t 785 || 0.3 ty Smith t2 1 ]| 0.25
t 185 0.8 tr Brown [5) 2 0.25
t 186 0.2 t 3 0.25
4

0.25
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BID: Alternative Representation of Our Or-Set

RID | M P

RID | SSN P t 1 0.9
t 185 0.7 RID N P t 2 0.1
t 785 0.3 t Smith 1 t 1 0.25
t 185 0.8 t Brown 1 t 2 0.25
t 186 0.2 t 3 0.25
t 4 0.25

Interpretation:

m The tuples within each block with the same key RID are disjoint
Each world contains one tuple per block, so the tuples within a block are

mutually exclusive.
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BID: Alternative Representation of Our Or-Set

RID | M P

RID | SSN P t 1 0.9
t1 185 0.7 RID N P t 2 0.1
t 785 0.3 t Smith 1 t 1 0.25
t 185 0.8 t Brown 1 t 2 0.25
t 186 0.2 t 3 0.25
t 4 0.25

Interpretation:
m The tuples within each block with the same key RID are disjoint
Each world contains one tuple per block, so the tuples within a block are
mutually exclusive.
m Blocks are independent of each other.
The choices of tuples within different blocks are independent.
The aggregated probability of the worlds taking the first tuple of the first
block in each relation is 0.7 x 1 x 0.9 = 0.63.
These block-independent disjoint (BID) relations are sometimes called

x-relations or x-tables. Google squares are prime examples.
19/74



More on BID Databases

BIDs also allow blocks with probabilities less than 1:

RID | M P

RID | SSN P t 1 0.8
t1 185 0.6 RID N P t1 2 0.1
t 785 || 0.3 t Smith || 0.9 t 1 0.25
ts 185 0.8 ts Brown 1 tr 2 0.25
t 186 0.2 t 3 0.25
t 4 0.25

Interpretation:
m There are worlds where the first block of each of the three relations is

empty, e.g., the following world:

RID | SSN P RID N P RID | M P
t 186 0.2 t Brown 1 t 4 0.25

The probability of this world is
0.2x1%x025%x(1—-06-03)x(1-09)x(1-08-0.1)=5x10""°.



Clarification notes to come with the previous slide and to answer
questions posed during the tutorial:

* The two BIDs from the previous two slides are not equivalent
since they do not represent the same probabilistic database!
Furthermore, by allowing groups with empty instances, some tuples
are only partially defined in the column-oriented representation.

* See [Antova’08] for column-oriented representation of relations

with attribute-level uncertainty.

N

~



Tl: Tuple-Independent Databases

’ TI databases are BID databases where each block has exactly one tuple.

Tl databases are the simplest and most common probabilistic data model.

RID | SSN P RID N P RID | M P
t 185 0.7 t Smith 1 t 1 0.9
tr 185 0.8 to Brown 1 [ 2 0.25

Interpretation:
m Each tuple t is in a random world with its probability p(t).
m A relation with n tuples, whose probabilities are less than 1, has 2"
possible worlds, since each tuple may be in or out.
m Our Tl example has 2* worlds: Any subset of the first and third relation
and the entire second relation.



Are BID Databases Enough?

BIDs (and Tls) are good at capturing independence and local choice.
What about correlations across blocks?

m Enforce the key dependency on SSN in each world.

That is: Discard the worlds where both t; and t, have SSN = 185.

RID | SSN P
t1 185 0.6
t 785 0.3
t 185 0.8
t 186 || 0.2




Are BID Databases Enough?

BIDs (and Tls) are good at capturing independence and local choice.
What about correlations across blocks?

m Enforce the key dependency on SSN in each world.
That is: Discard the worlds where both t; and t, have SSN = 185.

RID | SSN P RID | SSN || ¢
t1 185 0.6 t 185 X=1
t 785 0.3 = t 785 X =2
t 185 0.8 t 185 Y=1AX#1
t 186 0.2 t 186 Y =2

This constraint is supported by a probabilistic version of conditional databases.
[Imielinski’84]
Idea: Use random variables to encode correlations between tuples.

m Exclude the world where t; and t, have the same SSN 185 by using
contradicting assignments for variable X.

m Transfer probabilities of tuples to probability distributions of variables.



PC: Probabilistic Conditional Databases

A PC database is (D, X, ®), where D is a relational database, X is a set of
independent random variables, and @ is a function mapping each tuple in D to
a propositional formula over X.

RID | SSN || ¢ VAR | Dom P
[51 185 X=1 X 1 0.6
t1 785 X=2 X 2 0.3
to 185 Y=1AX#1 Y 1 0.8
tr 186 Y =2 Y 2 0.2

Interpretation:

m The world table (right) lists the probability distribution for each
independent random variable in X.

m Each total valuation of variables in X defines a world whose probability is
the product of probabilities of the variable assignments.

m Each tuple t is conditional on the satisfiability of the formula ®(t) and is
contained in those worlds defined by valuations that satisfy ®(t).
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Clarification notes to come with the previous slide and to answer

questions posed during the tutorial:

* The PC table from the previous slide is not equivalent to the
BID table from two slides ago: While the PC table captures the
key dependency on SSN, the BID table does not.

* However, the PC table is not the BID table where the key
dependency is enforced: This is because we did not adjust the
probabilities of the remaining worlds that satisfy the key
dependency.

* The mechanism for this adjustment is called conditioning, see
[Koch’08] .



Tls and BIDs are Special Cases of PCs

Recall our previous T| database example:

RID | SSN P RID N RID | M P
t1 185 0.7 t1 Smith t1 1 0.9
tr 185 0.8 tr Brown ts 2 0.25

Here is a PC encoding of the above Tl database:

RID | SSN || ¢ | P RID N d RID | M o) P
t1 185 S1 0.7 t1 Smith n t1 1 my 0.9
ts 185 s | 0.8 tr Brown n tr 2 my | 0.25

Idea:

m Consider a set of Boolean random variables

m Associate each tuple in the T| database with exactly one of them

m For instance, s; annotates (t1,185) and P(s1) = 0.7

m World table with variable assignments may be stored explicitly

26
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Takeaways
Various representations for probabilistic databases of increasing expressiveness.

= Most complex: probabilistic conditioned databases. [Imielinski’84]

> Trio's ULDBs [Benjelloun’06] and MayBMS’ U-relations [Antova’07].
> Completeness: They can represent any probabilistic database.

m Mid-level: block-independent disjoint databases. [Barbard'92]
> MystiQ, Trio, MayBMS, SPROUT?.
> Prime examples of BIDs: Google squares.

> Not complete, but achieve completeness via conjunctive queries over BIDs.
[Poole'93]

m Simplest: tuple-independent databases.
> The norm in real-world repositories like Google's, DeepDive, and NELL.
> Most theoretical work on complexity of query evaluation done for them.
> Not complete even via unions of conjunctive queries.
> However, inference in Markov Logic Networks is captured by
relational queries on TI databases! See Dan Suciu’s invited
DL’16 talk. Also work by Guy van den Broeck. [Jha'12]
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The Query Evaluation Problem



Possible Worlds Semantics

The underlying semantics of query evaluation in probabilistic databases:

Q, the query answer is Q(W) = {Q(WA),..., Q(W,)}.

Possible worlds semantics. Given a database W = {W4,..

., Wy} and a query




Possible Worlds Semantics

The underlying semantics of query evaluation in probabilistic databases:

Possible worlds semantics: Given a database W = {W4,..., W,} and a query
Q, the query answer is QW) = {Q(W4), ..., Q(W,)}.

Investigations so far followed three main directions:

1. Possible and certain query answers for incomplete databases.
2. Probabilities of query answers for probabilistic databases.

3. Succinct representation of Q(W) for query languages and data models.

Approaches 1 & 2 close the possible worlds semantics: They compute one
relation with answer tuples and possibly their probabilities.

29

74



Queries on Incomplete Databases

Given query @ and incomplete database W:
m An answer t is certain, if V: W, € W, t € Q(W))
= An answer t is possible if AW; € W, t € Q(W;)

Wa Wsh
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 1 185 Brown

W3 Wy
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 185 Brown

Ws Ws
SSN N M SSN N M
185 Smith 1 185 Smith 1
186 Brown 1 186 Brown




Queries on Incomplete Databases

Given query @ and incomplete database W:
m An answer t is certain, if V: W, € W, t € Q(W))
= An answer t is possible if AW; € W, t € Q(W;)

Wy Wa LetW:{W1,...,W6}.
SSN N M SSN N M
185 Smith 1 185 Smith 1 m Query
185 Brown 1 185 Brown HNHMCensus(S, N, M) has

W Wi certa.ln answer (185) and
SSN N M SSN N M possible answers (185) and
185  Smith 1 185  Smith 1 (186).
185  Brown 185  Brown

= Query

Ws We ds3m Census(S, N, M) has
SSN N M SSN N M th bl d
185  Smith 1 185  Smith 1 € same possible an
186 Brown 1 186 Brown certain answers (Smith)

and (Brown).
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Queries on Incomplete Databases

Several studies on this started back in the 90s for various models, in particular
conditional databases. [Abiteboul’91, O.'08a]

Hard tasks already for positive relational algebra:

m Tuple possibility is NP-complete

m Tuple certainty is coNP-complete

We next focus on probabilistic databases.



Queries on Probabilistic Databases

Given query Q and probabilistic database (W, P): The Marginal Probability of
an answer tis: P(t) =Y {P(W;) | W, e W, t € Q(W;)}.

W1P(W1):01 WQP(W2):01
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 1 185 Brown

Wz : P(W3) =0.1 Wy : P(W;) =0.1
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 185 Brown 4
Ws : P(Ws) = 0.3 We : P(Ws) = 0.3
SSN N M SSN N M
185 Smith 1 185 Smith 1
186 Brown 1 186 Brown




Queries on Probabilistic Databases

Given query Q and probabilistic database (W, P): The Marginal Probability of
an answer tis: P(t) =Y {P(W;) | W, e W, t € Q(W;)}.

W1P(W1):01 WQP(Wg):Ol
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 1 185 Brown

Wz : P(W3) =0.1 Wy : P(W;) =0.1
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 185 Brown 4
Ws : P(Ws) = 0.3 We : P(Ws) = 0.3
SSN N M SSN N M
185 Smith 1 185 Smith 1
186 Brown 1 186 Brown

LetW:{W1,...,W6}.

m JyImCensus(S, N, M):
P(185) =1 and
P(186) = 0.6.

= 353y Census(S, N, M):
P(Smith) = P(Brown) = 1.

These are trivial queries!
Computing the marginal
probability is hard in general!



Queries on Probabilistic Databases

Given query Q and probabilistic database (W, P): The Marginal Probability of
an answer tis: P(t) =Y {P(W;) | W, e W, t € Q(W;)}.

W1P(W1):01 WQP(Wg):Ol
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 1 185 Brown

Wz : P(W3) =0.1 Wy : P(W;) =0.1
SSN N M SSN N M
185 Smith 1 185 Smith 1
185 Brown 185 Brown 4
Ws : P(Ws) = 0.3 We : P(Ws) = 0.3
SSN N M SSN N M
185 Smith 1 185 Smith 1
186 Brown 1 186 Brown

— Key challenge: Which queries admit efficient (polynomial time) computation

of marginal probabilities for their answers?

LetW:{W1,...,W6}.

m JyImCensus(S, N, M):
P(185) =1 and
P(186) = 0.6.

= 353y Census(S, N, M):
P(Smith) = P(Brown) = 1.

These are trivial queries!
Computing the marginal
probability is hard in general!



Representability of Query Answers

For a given query language Q and data model W:
For any query Q@ € Q and database W € W, is there Q € Q such that Q(W) =
{Q(W;) | W; € W} and can be represented in W?

Q|
\

W Q(W)

rep rep

Wy W} — 2 {Q(W), ..., QWL

m This holds for relational algebra and PC databases: [Imielinski’84]
Q(T) is an extension of Q to also compute the query lineage.

m This does not hold for BIDs and Tls, but query lineage still useful for
computing marginal probabilities of query answers on BIDs and Tls.

m This idea is also used by Trio and MayBMS.  [Das Sarma’'06, Antova'08]



Query Lineage by Example

Orders Lineitem
Cust i
ustomer okey | ckey date > okley c(l)lslc ckley 0]
1 1 [1995-01-10 || y1 A I e ?
2 1 [1996-01-09 | y» 3 | oal 2 22
. 3
3 2 1994-11-11 || y; 3 o1 | 2 ||z

Query asking for the dates of discounted orders shipped to customer 'Joe':
J¢cJoIpCustomer(C, Joe), Orders(O, C, D), Lineitem(0, S, C),S > 0

Query answer and lineage
odate U]
1995-01-10 X1y121 + X1y122

Q does Q and propagates the input conditions ® to the answers:
m join of tuples leads to conjunction of their conditions
= union/disjunction of tuples leads to disjunction of their conditions.

Query lineage traces the computation of an answer back to its input.
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Marginal Probabilities via Query Lineage

’ The marginal probability of a query answer is the probability of its lineage.

How to compute the lineage probability?

X1 1 oz 2 X1Y12Z1 + X1y122 Probability

0 * * * 0 0

1 0 * * 0 0

1 1 0 0 0 0

1 1 0 1 1 P(x1) - P(y1) - (1 = P(21)) - P(z2)
1 1 1 0 1 P(x1) - P(y1) - P(z1) - (1 — P(z))
1 1 1 1 1 P(x1) - P(y1) - P(z1) - P(22)

Playizi + xainz) = P(xa) - P(y1) - [1 = (1 = P(z1)(1 = P(2))]-

m Going over its truth table is exponential in the number of variables.

Two ideas:

m Read-once lineage factorization

xiyzi + xize = xay(z + z2)

[0."08b]

m Lineage compilation into polysize decision diagrams.



Where Are We Now?

= We know how to compute the query answers using a simple query
extension that also computes the query lineage.

= We do not know yet how to compute the marginal probabilities of query
answers efficiently.

Next part of the tutorial:

= Analyze the complexity of computing marginal probabilities as a function
of database size and query structure.
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Outline

Dichotomies for Query Evaluation
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Short Recap on Complexity Class #P (Sharp P)

#P = Class of functions f(x) for which there exists a PTIME non-deterministic
Turing machine M such that f(x) = number of accepting computations of M
on input x. [Valiant'79]

Class of counting problems associated with decision problems in NP:
m SAT (given formula ¢, is ¢ satisfiable?) is NP-complete

m #SAT (given formula ¢, count # of satisfying assignments) is
#P-complete

A PTIME machine with a #P oracle can solve any problem in polynomial
hierarchy with one #P query. [Toda'91]

#SAT is #P-complete already for bipartite positive DNFs! [Provan’83]
m .. yet SAT is trivially PTIME for DNFs.



Dichotomies for Queries on Probabilistic Databases

The following property has been observed for several classes Q of relational
queries on Tl databases:

The data complexity of every query in Q is either polynomial time or #P-hard. ‘
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Dichotomies for Queries on Probabilistic Databases

The following property has been observed for several classes Q of relational
queries on Tl databases:

The data complexity of every query in Q is either polynomial time or #P-hard. ‘

Examples of such classes Q of relational queries:

= NCQ: non-repeating conjunctive queries [Dalvi'07]
= NCQs under functional dependencies [0.09]
= Quantified queries (division, set comparisons) [Fink'11]
m UCQ: unions of conjunctive queries [Dalvi'12]
m RNCQ: ranking NCQ [0.12]

= 1RA™: NCQ's relational algebra counterpart extended with negation
[Fink'16]
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Syntactic Characterizations of Tractable Queries

The tractable queries in (R)NCQ and 1RA™ admit an efficient syntactic
characterization via the hierarchical property.

A (Boolean) NCQ or 1RA™ query Q is hierarchical if:

For every pair of distinct variables A and B in Q,
there is no triple of relation symbols R, S, and T in Q such that:

m R*78 has query variable A and not B,
m S”% has both query variables A and B, and

m T 7% has query variable B and not in A.
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Examples

Non-hierarchical queries:
® 3,3p[R(A) A S(A, B) A T(B)]

= 35[34(R(A) A S(A, B)) A= T(B)]

= 3 [T(B) A=34(R(A) A S(A, B))]
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Examples

Non-hierarchical queries:
m 3435 [R(A) A S(A,B) A T(B)]

= 35[3(R(A) A S(A,B)) A=T(B)]

= 35[T(B) A=3a(R(A) A S(A, B))|
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Examples
Hierarchical queries:
® 3.3[(R(A) A S(A, B)) A=T(A, B)]
m 3,35[(R(A) A T(B)) A—(U(A) A V(B))]

= 3,38 [(M(A) AN(B)) A =[(R(A) A T(B)) A=(U(A) A V(B))]]
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Examples
Hierarchical queries:
m 3435 [(R(A) A S(A,B)) A—T(A,B)]
= 3,35[(R(A) A T(B)) A=(U(A) A V(B))]
= 3,35 [(M(A) AN(B)) A=[(R(A) A T(B)) A ~(U(A) A V(B))]]
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Hardness Proof Idea

Reduction from #P-hard model counting problem for positive bipartite DNF:

m Given a non-hierarchical 1IRA™ query Q and

= Any positive bipartite DNF formula W over disjoint sets X and Y of
random variables.

m #WV can be computed using linearly (in most cases constantly) many calls
to an oracle for P(Q), where Q is evaluated on tuple-independent
databases with sizes polynomial in the size of W.



Simplest Example of Hardness Reduction

[Gradel’98, Dalvi'07]
Input formula and query:
BV =x1y1 Vxiy2 V xy over sets X = {x1,%},Y = {y1,y2}
" Q=33 [R(A) A S(A, B) A T(B)]
Construct a Tl database D such that W annotates Q(D):

m Column @ holds random variables in W.
> Notation: T (true)

m Variables also used as constants for A and B.
m S(xi,y;, T): xiyj is a clause in W.
m R(xi,xi) and T(yj,y;): xi is a variable in X and y; is a variable in Y.

R T S RASAT Q
A b B ¢ AB® AB o [}
X1 X1 y1y1 xiy1 T X1 Y1 X1¥1 Ow
X2 X2 y2¥2 x1y2 T X1 Y2 X1Y2

x2y T X2 y1 X2y1



Simplest Example of Hardness Reduction

[Gradel’98, Dalvi'07]
Input formula and query:
BV =x1y1 Vxiy2 V xy over sets X = {x1,%},Y = {y1,y2}
" Q=33 [R(A) A S(A, B) A T(B)]
Construct a Tl database D such that W annotates Q(D):

m Column @ holds random variables in W.
> Notation: T (true)

m Variables also used as constants for A and B.
m S(xi,y;, T): xiyj is a clause in W.
m R(xi,xi) and T(yj,y;): xi is a variable in X and y; is a variable in Y.

R T S RASAT Q
A b B ¢ AB® AB o [}
X1 X1 y1y1 xiy1 T X1 Y1 X1¥1 Ow
X2 X2 y2¥2 x1y2 T X1 Y2 X1Y2

x2y T X2 y1 X2y1

Query Q is the only minimal hard pattern in case of queries without negation!



A Surprising Example of Hardness Reduction

Input formula and query: [Fink'16]

BV =x1y; Vxiy, oversets X = {x1}, Y = {y1, y»}
= Q=34[R(A) A -35(T(B) A S(A, B)) |

Construct a Tl database D such that W annotates Q(D):
m S(i,b, T): Clause i in W has variable b.
m R(i,T) and T(b,—b): iis a clause and b is a variable in V.

R T S TAS 35(TAS) RA-35(TAS)
Ao B ¢ AB o AB o A [0} A [0}
1T X1 X1 1x T 1 x1 —x1 1 —x1V -y 1 X1Y1
2T y1 Y1 1y T 1y1—y 2 =x1 V y2 2 X1Y2
y2 7y2 2x T 2 x3 —x1

2y, T 2 y2 7y2
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A Surprising Example of Hardness Reduction

Input formula and query:

BV =x1y; Vxiy, oversets X = {x1}, Y = {y1, y»}
= Q=34[R(A) A -35(T(B) A S(A, B)) |

Construct a Tl database D such that W annotates Q(D):

m S(i,b, T): Clause i in W has variable b.
m R(i,T) and T(b,—b): iis a clause and b is a variable in V.

[Fink'16]

R T S TAS 35(TAS) RA-35(TAS)
Ao B ¢ AB o AB o A [0} A [0}
1T X1 X1 1x T 1 x3 X1 1 —x1V -y 1 X1Y1
2T y1 Y1 1y T 1y1—y 2 =x1 VY2 2 X1y2
y2 7y2 2x T 2 x1 X1
2y, T 2 y2 7y2

Query Q is already hard when T is the only uncertain input relation!
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Evaluation of Hierarchical 1IRA™ Queries

Approach based on knowledge compilation

m For any Tl database D, the probability Popy of a IRA™ query Q is the
probability Py of the query lineage W.

= Compile W into poly-size OBDD(W).
m Compute probability of OBDD(V) in time linear in its size.
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Evaluation of Hierarchical 1IRA™ Queries

Approach based on knowledge compilation

m For any Tl database D, the probability Popy of a IRA™ query Q is the
probability Py of the query lineage W.

= Compile W into poly-size OBDD(W).
m Compute probability of OBDD(V) in time linear in its size.

Lineage of tractable 1RA™ queries:

m Read-once for queries without negation (so NCQ) [O.'08b]
It admits linear-size OBBDs.

m Not read-once for queries with negation [Fink'16]

> It admits OBBDs of size linear in the database size
but exponential in the query size.
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The Inner Workings

From hierarchical 1RA™ to RC-hierarchical 3-consistent RC>:

m Translate query Q into an equivalent disjunction of disjunction-free
existential relational calculus queries @1 V - - -V Qk.

m RC-hierarchical:
For each 3x(Q’), every relation symbol in Q' has variable X.
> Each of the disjuncts gives rise to a poly-size OBDD.

® J-consistent:
The nesting order of the quantifiers is the same in Q1,- -, Q«.

> All OBDDs have compatible variable orders and
their disjunction is a poly-size OBDD.

m The OBDD width grows exponentially with k,
its height stays linear in the size of the database.

> Width = maximum number of edges crossing the section between any two
consecutive levels.

Similar ideas used for the evaluation of inversion-free UCQs. [Jha'13]
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Query Evaluation Example (1/3)

Consider the following query and TI| database:

Q=3,38 [(R(A) A T(B)) A —(U(A) A V(B))]

R T U v RAT RATA=(UAV)

Ao B o Ao B ¢ AB ¢ AB ]

1r 1ty 1uy 1vg 11nt 11 rpty—(upvy)

21y 2ty 2 uy 2 vy 12ty 12 rnty—(uvp)
2 1 rpty 21 rpty—(upvy)
2 2 rpty 22 rty—(upvy)
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Query Evaluation Example (1/3)

Consider the following query and T| database:

Q=3,38 [(R(A) A T(B)) A —(U(A) A V(B))]

R T U v RAT RATA=(UAV)

Ao B o Ao B ¢ AB ¢ AB ]

1r 1ty 1uy 1vg 11nt 11 rpty—(upvy)

21y 2ty 2 uy 2 vy 12ty 12 rnty—(uvp)
2 1 rpty 21 rpty—(upvy)
2 2 rpty 22 rty—(upvy)

The lineage of Q is:

V=n [tl(ﬁul \Y% ﬁvl) \Y tz(ﬁul \Y% ﬁVz)] V [tl(ﬂu2 \Y% ﬁvl) \Y tz(ﬁuz \Y ﬁVQ)}.

m Variables entangle in W beyond read-once factorization.

m This is the pivotal intricacy introduced by negation.
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Query Evaluation Example (2/3)

Translate Q@ = 3,3 [(R(A) A T(B)) A —=(U(A) A V(B))] into RC™:

Qrc :HA(R(A)/\ﬂU(A))/\HBT(B) \ HAR(A)/\HB(T(B)/\ﬂV(B)).

Q1 Q

m Both @Q; and Q. are RC-hierarchical.
m @1V @ is 3-consistent: Same order I35 for Q1 and Q-.

Query annotation:

\IJ:(rl—\ul\/rgﬂuz)/\(thg) \Y (r1Vr2)/\(t1—|v1\/t2—\v2).

vy vy

m Both Wi and ¥, admit linear-size OBDDs.

m The two OBDDs have compatible orders and their disjunction is an OBDD
whose width is the product of the widths of the two OBDDs.



Query Evaluation Example (3/3)

Compile query annotation into OBDD:

‘U:(rl—\ul\/rzﬂuﬁ/\(thtz) \Y (r1Vr2)/\(t1—|v1\/t2—\V2).

vy vy
rn
ST -
» »
rp 4 rn
—up
\ " v
¥
t2
o
1 T
v, \2 Wy = \j
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Ranking Queries
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Ranking Answers in Probabilistic Databases

Given a NCQ query Q, a Tl database D, and any two answers ti,t; € Q(D),
does P(t1) < P(t2) hold?

Motivation:

m Probabilities are mere degrees of uncertainty in the data and are not
otherwise meaningful to the user.

m Users mostly care about the ranking of answers in decreasing order of their
probabilities or about a few most likely answers.



Ranking versus Query Evaluation

Two complementary observations

1. Probability computation for distinct answers may share a common factor
> That can be computed only once

> Save computation time for both query evaluation and ranking!

> Or that can be uniformly ignored for all answers.

> For ranking purposes, we may ignore computationally hard tasks!

Ranking is computationally easier than query evaluation.




Ranking versus Query Evaluation

Two complementary observations

1. Probability computation for distinct answers may share a common factor
> That can be computed only once

> Save computation time for both query evaluation and ranking!

> Or that can be uniformly ignored for all answers.

> For ranking purposes, we may ignore computationally hard tasks!

Ranking is computationally easier than query evaluation.

2. To compute the exact ranking of query answers,
approximate probabilities of the individual answers may suffice.

» Compute lower and upper bounds on these probabilities.

> Incrementally refine the bounds to the extent needed to rank the answers.



Share Query Plans and Anytime Approximation

Approach with two main ingredients [0."12]
1. Share query plans to detect factors common to query answers

> Static analysis on the query structure to identify subqueries
whose computation can be shared across distinct query answers.

> Equivalently, they identify factors shared by lineage of query answers.

2. Ranking based on anytime deterministic approximate inference
> Incremental compilation of lineage with shared factors into BDDs

> Each compilation step refines lower and upper bounds on lineage
probabilities



Share Query Plans and Anytime Approximation

Approach with two main ingredients [0."12]
1. Share query plans to detect factors common to query answers

> Static analysis on the query structure to identify subqueries
whose computation can be shared across distinct query answers.

> Equivalently, they identify factors shared by lineage of query answers.

2. Ranking based on anytime deterministic approximate inference
> Incremental compilation of lineage with shared factors into BDDs

> Each compilation step refines lower and upper bounds on lineage
probabilities

Alternative approach using FPRAS-based Monte Carlo [Ré'07]
m Ranking with probabilistic guarantee only
m Not truly incremental

m Black box approach, structure and common factors of query lineage not
exploited.



Example

List topics posted by users who have mentioned their followers:

Q(X) = 3y3z3yTrends(X, Y), Follows(Y, Z), Mentions(U, Y, Z), Tweets(U, Y).
(User Y contributed to trendy topic X, user Y follows user Z, user Y mentions
user Z in tweet U, tweet U of user Y.)

A share plan for Q is as follows

Y

T T

Trends(X7 *) FoIIows(*, Z), Mentions(U7 *, Z), Tweets( U, *)

and corresponds to the following rewriting:
Q(X) = Trends(X, Y), Q' (Y)
Q'(Y) = Follows(Y, Z), Mentions(U, Y, Z), Tweets(U, Y)

m Several answers (X-values) can be paired with the same value y of the
variable Y and thus share the lineage Q'(y).

m For any value y, the query Q'(y) is non-hierarchical and thus #P-hard!



Outline

Next Steps
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Next Steps

m Declarative Probabilistic Programming with Datalog: Probabilities become
first-class citizens in the query language.

» PPDL, semantics given by a notion of probabilistic chase
> Incorporating ontologies

> Vast literature (including MLNs) but missing the declarativity aspect!

[Barany'16]
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Next Steps

m Declarative Probabilistic Programming with Datalog: Probabilities become
first-class citizens in the query language.

> PPDL, semantics given by a notion of probabilistic chase [Bérdny'16]
> Incorporating ontologies
> Vast literature (including MLNs) but missing the declarativity aspect!

m Further push the barrier on complexity

» See Dan Suciu's advanced lecture on lifted inference!
> Understand tractability for probabilistic programs at large

m Tractability not sufficient in practice, develop approximations with
predictable performance

m This tutorial assumed CWA. What about OWA, e.g., Google squares?
See Guy van den Broeck et al’s talk on open-world probabilistic databases!
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Next Steps

m Declarative Probabilistic Programming with Datalog: Probabilities become
first-class citizens in the query language.

> PPDL, semantics given by a notion of probabilistic chase [Bérdny'16]
> Incorporating ontologies
> Vast literature (including MLNs) but missing the declarativity aspect!

m Further push the barrier on complexity

» See Dan Suciu's advanced lecture on lifted inference!
> Understand tractability for probabilistic programs at large

m Tractability not sufficient in practice, develop approximations with
predictable performance

This tutorial assumed CWA. What about OWA, e.g., Google squares?
See Guy van den Broeck et al’s talk on open-world probabilistic databases!

m Build open-source systems, provide benchmarks

59 /74
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