
Probabilistic Databases

Dan Olteanu (Oxford)
London, November 2017

The National Archives

Probabilistic Databases

For the purpose of this introductory talk:

Probabilistic data =

• Relational data

+

• Probabilities that measure the degree of uncertainty in the data.

Long-term research challenges:

• Models for probabilistic data to capture data and its uncertainty.

• Query evaluation = Probabilistic inference

Query answers are annotated with output probabilities.

1 / 48

Research Development Map

Early work (80s and 90s):

• Basic data models and query processing

Wong’82, Shoshani’82, Cavallo & Pittarelli’87, Barbara’92,

Lakshmanan’97,’01, Fuhr& Roellke’97, Zimanyi’97.

Recent wave (2004 - now):

• Computational complexity of query evaluation

• Probabilistic database systems, just a few examples:

• UW (MystiQ)

• Stanford (Trio)

• Cornell & Oxford (MayBMS/SPROUT)

• IBM Almaden & Rice (MCDB)

• Maryland, Waterloo, UBC, Florida, Purdue, Wisconsin

• LogicBlox & Technion & Oxford (PPDL)

2 / 48

Talk Outline

Why Probabilistic Databases?

Probabilistic Data Models

The Query Evaluation Problem

Query Evaluation: Complexity and Algorithms

Live Demo with MayBMS

3 / 48

Why Do We Care About Probabilistic Databases?

Probabilistic relational data is commonplace. It accommodates several possible

interpretations of the data weighted by probabilities.

• Information extraction: Probabilistic data inferred from unstructured

data (e.g., web) text using statistical models

Google Knowledge Vault, DeepDive, NELL

• Manually entered data

Represent several possible readings with MayBMS [Antova’07]

Infer missing data with meta-rule semi-lattices [Stoyanovich’11]

Manage OCR data with Staccato/Google OCRopus [Kumar’12]

• Data cleaning

Represent several possible data repairs [Beskales’09]

• Data integration

Google Squared and SPROUT2 [Fink’11]

• Risk management (Decision support queries, hypothetical queries); ...

4 / 48

Information Extraction

Possible segmentations of unstructured text [Sarawagi’06]

52-A Goregaon West Mumbai 400 076

ID HouseNo Area City PinCode P

1 52 Goregaon West Mumbai 400 062 0.1

1 52-A Goregaon West Mumbai 400 062 0.2

1 52-A Goregaon West Mumbai 400 062 0.4

1 52 Goregaon West Mumbai 400 062 0.2

.

• Probabilities obtained using probabilistic extraction models (e.g., CRF)

The probabilities correlate with the precision of the extraction.

• The output is a ranked list of possible extractions

• Several segmentations are required to cover most of the probability mass

and improve recall

Avoid empty answer to queries such as Find areas in ’West Mumbai’

5 / 48

Continuously-Improving Information Extraction

Never-Ending Language Learner (NELL) database [Mitchell’15]

6 / 48

Manu
e

a
l?y-enter d census data

MayBMS manages 10106

possible readings of census data [Antova’07]

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

We want to enter the information from forms like these into a database.

• What is the marital status of the first resp. the second person?

• What are the social security numbers? 185? 186? 785?

7 / 48

Manu
e

a
l?y-enter d census data

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

(TID) SSN N M

t1 NULL Smith NULL

t2 NULL Brown NULL

Much of the available information cannot be represented and is lost, e.g.

• Smith’s SSN is either 185 or 785; Brown’s SSN is either 185 or 186.

• Data cleaning: No two distinct persons can have the same SSN.

8 / 48

OCR on manually-entered data

Staccato [Kumar’12]

3

0 1
5

4

F: 0.8

2

T: 0.2

0: 0.6

o: 0.4

' ': 0.6

r: 0.8

r: 0.4

m: 0.2

d: 0.9

3: 0.1

SELECT DocId, Loss

FROM Claims

WHERE Year = 2010 AND

DocData LIKE '%Ford%';

A B C

...

...

...

...

...

...

Figure 1: (A) An image of text. (B) A portion of a simple FST resulting from the OCR of the highlighted
part of (A). The numbers on the arcs are conditional probabilities of transitioning from one state to another.
An emitted string corresponds to a path from states 0 to 5. The string ‘F0 rd’ (highlighted path) has the
highest probability, 0.8 ⇤ 0.6 ⇤ 0.6 ⇤ 0.8 ⇤ 0.9 ⇡ 0.21. (C) An SQL query to retrieve loss information that contains
‘Ford’. Using the MAP approach, no claim is found. Using Staccato, a claim is found (with probability 0.12).

does appear (albeit with a lower probability). Empirically,
we show that the recall for simple queries on real-world OCR
can be as low as 0.3 – and so we may throw away almost
70% of our data if we follow the MAP approach.

To remedy this recall problem, our baseline approach is
to store and handle the FSTs as binary large objects inside
the RDBMS. As with a probabilistic relational database, the
user can then pose questions as if the data are deterministic
and it is the job of the system to compute the confidence
in its answer. By combining existing open-source tools for
transducer composition 3 with an RDBMS, we can then an-
swer queries like that in Figure 1(C). This approach achieves
a high quality (empirically, the recall we measured is very
close to 1.0, with up to 0.9 precision). Additionally, the en-
terprise users can ask their existing queries directly on top
of the RDBMS data (the query in Figure 1(C) remains un-
changed). The downside is that query processing is much
slower (up to 1000x slower). While the query processing
time for transducers is linear in the data size, the transduc-
ers themselves are huge, e.g., a single 200-page book blows
up from 400 kB as text to over 2 GB when represented by
transducers after OCR. This motivates our central question:
“Can we devise an approximation scheme that is somewhere
in between these two extremes of recall and performance?”

State-of-the-art OCR tools segment each of the images
corresponding to pages in a document into lines using spe-
cial purpose line-breaking tools. Breaking a single line fur-
ther into individual words is more di�cult (spacing is very
di�cult to accurately detect). With this in mind, a natu-
ral idea to improve the recall of the MAP approach is to
retain not only the highest probability string for each line,
but instead to retain the k highest probability strings that
appear in each line (called k-MAP [28, 53]). Indeed, this
technique keeps more information around at a linear cost
(in k) in space and processing time. However, we show that
even storing hundreds of paths makes an insignificant jump
in the recall of queries.

To combat this problem, we propose a novel approxima-
tion scheme called Staccato, which is our main techni-
cal contribution. The main idea is to apply k-MAP not
to the whole line, but to first break the line into smaller
chunks which are themselves transducers and apply k-MAP
to each transducer individually. This allows us to store ex-
ponentially more alternatives than k-MAP (exponential in
the number of chunks), while using roughly a linear amount
more space than the MAP approach. If there is only a sin-
gle chunk, then Staccato’s output is equivalent to k-MAP.

3OpenFST. http://www.openfst.org/

If essentially every possible character is a chunk, then we
retain the full FST. Experimentally, we demonstrate that
the Staccato approach gracefully trades o↵ between perfor-
mance and recall. For example, when looking for mentions
of laws on a data set that contains scanned acts of the US
congress, the MAP approach achieves a recall of 0.28 execut-
ing in about 1 second, the full FST approach achieves perfect
recall but takes over 2 minutes. An intermediate representa-
tion from Staccato takes around 10 seconds and achieves
0.76 recall. Of course, there is a fundamental trade o↵ be-
tween precision and recall. On the same query as above,
the MAP has precision 1.0, and the full FST has precision
0.25, while Staccato achieves 0.73. In general, Staccato’s
precision falls in between the MAP and the full FST.

To understand Staccato’s approximation more deeply,
we conduct a formal analysis, which is our second techni-
cal contribution. When constructing Staccato’s approx-
imation, we ensure two properties (1) each chunk forms a
transducer (as opposed to a more general structure), and
(2) that the model retains the unique path property, i.e.,
that every string corresponds to a unique path. While both
of these properties are satisfied by the transducers produced
by OCRopus, neither property is necessary to have a well-
defined approximation scheme. Moreover, enforcing these
two properties increases the complexity of our algorithm and
may preclude some compact approximations. Thus, it is nat-
ural to wonder if we can relax these two properties. While
we cannot prove that these two conditions are necessary, we
show that without these two properties, basic operations be-
come intractable. Without the unique path property, prior
work has shown that determining (even approximating) the
k-MAP is intractable for a fixed k [32]. Even with the
unique path property and a fixed set of chunks, we show
that essentially the simplest violation of property (1) makes
it intractable to construct an approximation even for k = 2
(Theorem 3.1). On the positive side, for any fixed partition,
Staccato retains a set of strings that achieves the high-
est total probability among approximations that satisfy the
above restrictions.

Finally, we describe how to use standard text-indexing
techniques to improve query performance. Directly applying
an inverted index to transducer data is essentially doomed
to failure: the sheer number of terms one would have to
index grows exponentially with the length of the document,
e.g., an FST for a single line may represent over 10100 terms.
To combat this, we allow the user to specify a dictionary of
terms. We then construct an index of those terms specified
in the dictionary. This allows us to process keyword and
some regular expressions using standard techniques [14,52].

• Stochastic automaton constructed from text using Google OCRopus.

• String F0 rd has the highest probability (0.21).

• String Ford has lower probability (0.12).

Staccato accommodates several possible readings of the text to increase recall.

9 / 48

Web Data Integration with Google Squared

• Tables instead of lists of page links as answers to Google queries

• Integration of data sources with contradicting information or different

schemas, degrees of trust, and degrees of completion

• Confidence values mapped to [0,1]

10 / 48

Talk Outline

Why Probabilistic Databases?

Probabilistic Data Models

The Query Evaluation Problem

Query Evaluation: Complexity and Algorithms

Live Demo with MayBMS

11 / 48

Revisiting the Census Data Example

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

RID SSN N M

t1 NULL Smith NULL

t2 NULL Brown NULL

NULL values are too uninformative.

We could instead incorporate all available possibilities:

• Smith’s SSN is either 185 or 785; Brown’s SSN is either 185 or 186.

• Smith’s M is either 1 or 2; Brown’s M is either 1, 2, 3, or 4.
12 / 48

Revisiting the Census Data Example

There are 2× 2× 2× 4 = 32 possible readings of our two census entries.

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

SSN N M

185 Smith 1

185 Brown 1

SSN N M

185 Smith 1

185 Brown 2

SSN N M

185 Smith 1

185 Brown 3

SSN N M

185 Smith 1

185 Brown 4

SSN N M

185 Smith 1

186 Brown 1

SSN N M

185 Smith 1

186 Brown 2

SSN N M

185 Smith 1

186 Brown 3

SSN N M

185 Smith 1

186 Brown 4

.

13 / 48

Incomplete Databases

An Incomplete Database is a finite set of database instances W = (W1, . . . ,Wn).

W1

SSN N M

185 Smith 1

185 Brown 1

W2

SSN N M

185 Smith 1

185 Brown 2

W3

SSN N M

185 Smith 1

185 Brown 3

W4

SSN N M

185 Smith 1

185 Brown 4

W5

SSN N M

185 Smith 1

186 Brown 1

W6

SSN N M

185 Smith 1

186 Brown 2

.

Each Wi is a possible world.

Typical scenario: 200M people

(2/3 US census), 50 questions, 1

in 10000 ambiguous (2 options)

• 2106

possible worlds

• A world is a table with 50

columns and 200M rows!

[Antova’07]

→ Key challenge: How to succinctly represent incomplete databases?

14 / 48

Incomplete Databases

An Incomplete Database is a finite set of database instances W = (W1, . . . ,Wn).

W1

SSN N M

185 Smith 1

185 Brown 1

W2

SSN N M

185 Smith 1

185 Brown 2

W3

SSN N M

185 Smith 1

185 Brown 3

W4

SSN N M

185 Smith 1

185 Brown 4

W5

SSN N M

185 Smith 1

186 Brown 1

W6

SSN N M

185 Smith 1

186 Brown 2

.

Each Wi is a possible world.

Typical scenario: 200M people

(2/3 US census), 50 questions, 1

in 10000 ambiguous (2 options)

• 2106

possible worlds

• A world is a table with 50

columns and 200M rows!

[Antova’07]

→ Key challenge: How to succinctly represent incomplete databases?

14 / 48

Probabilistic Databases

A Probabilistic Database is a pair (W,P), where W is an incomplete database

and P : W→ [0, 1] is a probability distribution:
∑

Wi∈W P(Wi) = 1.

W1 : P(W1) = 0.1

SSN N M

185 Smith 1

185 Brown 1

W2 : P(W2) = 0.1

SSN N M

185 Smith 1

185 Brown 2

W3 : P(W3) = 0.1

SSN N M

185 Smith 1

185 Brown 3

W4 : P(W4) = 0.1

SSN N M

185 Smith 1

185 Brown 4

W5 : P(W5) = 0.3

SSN N M

185 Smith 1

186 Brown 1

W6 : P(W6) = 0.3

SSN N M

185 Smith 1

186 Brown 2

For W = {W1, . . . ,W6},∑
Wi∈W P(Wi) = 1.

15 / 48

Succinct Representations of Incomplete/Probabilistic Data

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

Succinct or-set representation: [Imielinski’91]

SSN N M

{ 185,785 } Smith { 1,2 }
{ 185, 186 } Brown { 1,2,3,4 }

It exploits independence of different fields:

• Choice for Smith’s SSN independent of choice of for Brown’s SSN.

• The probability distributions associated with these choices are independent.
16 / 48

BID: Alternative Representation of Our Or-Set

RID SSN P

t1 185 0.7

t1 785 0.3

t2 185 0.8

t2 186 0.2

RID N P

t1 Smith 1

t2 Brown 1

RID M P

t1 1 0.9

t1 2 0.1

t2 1 0.25

t2 2 0.25

t2 3 0.25

t2 4 0.25

Interpretation:

• The tuples within each block with the same key RID are disjoint

Each world contains one tuple per block, so the tuples within a block are

mutually exclusive.

• Blocks are independent of each other.

The choices of tuples within different blocks are independent.

The aggregated probability of the worlds taking the first tuple of the first

block in each relation is 0.7× 1× 0.9 = 0.63.

These block-independent disjoint (BID) relations are sometimes called

x-relations or x-tables. Google squares are prime examples.

17 / 48

BID: Alternative Representation of Our Or-Set

RID SSN P

t1 185 0.7

t1 785 0.3

t2 185 0.8

t2 186 0.2

RID N P

t1 Smith 1

t2 Brown 1

RID M P

t1 1 0.9

t1 2 0.1

t2 1 0.25

t2 2 0.25

t2 3 0.25

t2 4 0.25

Interpretation:

• The tuples within each block with the same key RID are disjoint

Each world contains one tuple per block, so the tuples within a block are

mutually exclusive.

• Blocks are independent of each other.

The choices of tuples within different blocks are independent.

The aggregated probability of the worlds taking the first tuple of the first

block in each relation is 0.7× 1× 0.9 = 0.63.

These block-independent disjoint (BID) relations are sometimes called

x-relations or x-tables. Google squares are prime examples.

17 / 48

BID: Alternative Representation of Our Or-Set

RID SSN P

t1 185 0.7

t1 785 0.3

t2 185 0.8

t2 186 0.2

RID N P

t1 Smith 1

t2 Brown 1

RID M P

t1 1 0.9

t1 2 0.1

t2 1 0.25

t2 2 0.25

t2 3 0.25

t2 4 0.25

Interpretation:

• The tuples within each block with the same key RID are disjoint

Each world contains one tuple per block, so the tuples within a block are

mutually exclusive.

• Blocks are independent of each other.

The choices of tuples within different blocks are independent.

The aggregated probability of the worlds taking the first tuple of the first

block in each relation is 0.7× 1× 0.9 = 0.63.

These block-independent disjoint (BID) relations are sometimes called

x-relations or x-tables. Google squares are prime examples. 17 / 48

More on BID Databases

BIDs also allow blocks with probabilities less than 1:

RID SSN P

t1 185 0.6

t1 785 0.3

t2 185 0.8

t2 186 0.2

RID N P

t1 Smith 0.9

t2 Brown 1

RID M P

t1 1 0.8

t1 2 0.1

t2 1 0.25

t2 2 0.25

t2 3 0.25

t2 4 0.25

Interpretation:

• There are worlds where the first block of each of the three relations is

empty, e.g., the following world:

RID SSN P

t2 186 0.2

RID N P

t2 Brown 1

RID M P

t2 4 0.25

The probability of this world is

0.2×1×0.25× (1− 0.6− 0.3)× (1− 0.9)× (1− 0.8− 0.1) = 5×10−5.

18 / 48

TI: Tuple-Independent Databases

TI databases are BID databases where each block has exactly one tuple.

TI databases are the simplest and most common probabilistic data model.

RID SSN P

t1 185 0.7

t2 185 0.8

RID N P

t1 Smith 1

t2 Brown 1

RID M P

t1 1 0.9

t2 2 0.25

Interpretation:

• Each tuple t is in a random world with its probability p(t).

• A relation with n tuples, whose probabilities are less than 1, has 2n

possible worlds, since each tuple may be in or out.

• Our TI example has 24 worlds: Any subset of the first and third relation

and the entire second relation.

19 / 48

Are BID Databases Enough?

BIDs (and TIs) are good at capturing independence and local choice.

What about correlations across blocks?

• Enforce the key dependency on SSN in each world.

That is: Discard the worlds where both t1 and t2 have SSN = 185.

RID SSN P

t1 185 0.6

t1 785 0.3

t2 185 0.8

t2 186 0.2

⇒

RID SSN Φ

t1 185 X = 1

t1 785 X = 2

t2 185 Y = 1 ∧ X 6= 1

t2 186 Y = 2

This constraint is supported by a probabilistic version of conditional databases.

[Imielinski’84]

Idea: Use random variables to encode correlations between tuples.

• Exclude the world where t1 and t2 have the same SSN 185 by using

contradicting assignments for variable X .

• Transfer probabilities of tuples to probability distributions of variables.

20 / 48

Are BID Databases Enough?

BIDs (and TIs) are good at capturing independence and local choice.

What about correlations across blocks?

• Enforce the key dependency on SSN in each world.

That is: Discard the worlds where both t1 and t2 have SSN = 185.

RID SSN P

t1 185 0.6

t1 785 0.3

t2 185 0.8

t2 186 0.2

⇒

RID SSN Φ

t1 185 X = 1

t1 785 X = 2

t2 185 Y = 1 ∧ X 6= 1

t2 186 Y = 2

This constraint is supported by a probabilistic version of conditional databases.

[Imielinski’84]

Idea: Use random variables to encode correlations between tuples.

• Exclude the world where t1 and t2 have the same SSN 185 by using

contradicting assignments for variable X .

• Transfer probabilities of tuples to probability distributions of variables. 20 / 48

PC: Probabilistic Conditional Databases

A PC database is (D,X,Φ), where D is a relational database, X is a set of

independent random variables, and Φ is a function mapping each tuple in D to

a propositional formula over X.

RID SSN Φ

t1 185 X = 1

t1 785 X = 2

t2 185 Y = 1 ∧ X 6= 1

t2 186 Y = 2

VAR Dom P

X 1 0.6

X 2 0.3

Y 1 0.8

Y 2 0.2

Interpretation:

• The world table (right) lists the probability distribution for each

independent random variable in X.

• Each total valuation of variables in X defines a world whose probability is

the product of probabilities of the variable assignments.

• Each tuple t is conditional on the satisfiability of the formula Φ(t) and is

contained in those worlds defined by valuations that satisfy Φ(t).

21 / 48

TIs and BIDs are Special Cases of PCs

Recall our previous TI database example:

RID SSN P

t1 185 0.7

t2 185 0.8

RID N P

t1 Smith 1

t2 Brown 1

RID M P

t1 1 0.9

t2 2 0.25

Here is a PC encoding of the above TI database:

RID SSN Φ P

t1 185 s1 0.7

t2 185 s2 0.8

RID N Φ P

t1 Smith n1 1

t2 Brown n2 1

RID M Φ P

t1 1 m1 0.9

t2 2 m2 0.25

Idea:

• Consider a set of Boolean random variables

• Associate each tuple in the TI database with exactly one of them

• For instance, s1 annotates (t1, 185) and P(s1) = 0.7

• World table with variable assignments may be stored explicitly

22 / 48

Takeaways

Various representations for probabilistic databases of increasing expressiveness.

• Most complex: probabilistic conditioned databases. [Imielinski’84]

• Trio’s ULDBs [Benjelloun’06] and MayBMS’s U-relations [Antova’07].

• Completeness: They can represent any probabilistic database.

• Mid-level: block-independent disjoint databases. [Barbará’92]

• MystiQ, Trio, MayBMS, SPROUT2.

• Prime examples of BIDs: Google squares.

• Not complete, but achieve completeness via conjunctive queries over BIDs.

[Poole’93]

• Simplest: tuple-independent databases. [Zimanyi’97]

• The norm in real-world repositories like Google’s, DeepDive, and NELL.

• Not complete even via unions of conjunctive queries.

• Most theoretical work on complexity of query evaluation done for them.

23 / 48

Talk Outline

Why Probabilistic Databases?

Probabilistic Data Models

The Query Evaluation Problem

Query Evaluation: Complexity and Algorithms

Live Demo with MayBMS

24 / 48

Possible Worlds Semantics

The underlying semantics of query evaluation in probabilistic databases:

Possible worlds semantics: Given a database W = {W1, . . . ,Wn} and a query

Q, the query answer is Q(W) = {Q(W1), . . . ,Q(Wn)}.

Investigations so far followed three main directions:

1. Possible and certain query answers for incomplete databases.

2. Probabilities of query answers for probabilistic databases.

3. Succinct representation of Q(W) for query languages and data models.

Approaches 1 & 2 close the possible worlds semantics: They compute one

relation with answer tuples and possibly their probabilities.

25 / 48

Possible Worlds Semantics

The underlying semantics of query evaluation in probabilistic databases:

Possible worlds semantics: Given a database W = {W1, . . . ,Wn} and a query

Q, the query answer is Q(W) = {Q(W1), . . . ,Q(Wn)}.

Investigations so far followed three main directions:

1. Possible and certain query answers for incomplete databases.

2. Probabilities of query answers for probabilistic databases.

3. Succinct representation of Q(W) for query languages and data models.

Approaches 1 & 2 close the possible worlds semantics: They compute one

relation with answer tuples and possibly their probabilities.

25 / 48

Queries on Incomplete Databases

Given query Q and incomplete database W:

• An answer t is certain, if ∀Wi ∈W : t ∈ Q(Wi)

• An answer t is possible if ∃Wi ∈W : t ∈ Q(Wi)

W1

SSN N M

185 Smith 1

185 Brown 1

W2

SSN N M

185 Smith 1

185 Brown 2

W3

SSN N M

185 Smith 1

185 Brown 3

W4

SSN N M

185 Smith 1

185 Brown 4

W5

SSN N M

185 Smith 1

186 Brown 1

W6

SSN N M

185 Smith 1

186 Brown 2

Let W = {W1, . . . ,W6}.

• Query

Q1(s) = Census(s, n,m)

has certain answer (185)

and possible answers (185)

and (186).

• Query

Q2(n) = Census(s, n,m)

has the same possible and

certain answers (Smith)

and (Brown).

26 / 48

Queries on Incomplete Databases

Given query Q and incomplete database W:

• An answer t is certain, if ∀Wi ∈W : t ∈ Q(Wi)

• An answer t is possible if ∃Wi ∈W : t ∈ Q(Wi)

W1

SSN N M

185 Smith 1

185 Brown 1

W2

SSN N M

185 Smith 1

185 Brown 2

W3

SSN N M

185 Smith 1

185 Brown 3

W4

SSN N M

185 Smith 1

185 Brown 4

W5

SSN N M

185 Smith 1

186 Brown 1

W6

SSN N M

185 Smith 1

186 Brown 2

Let W = {W1, . . . ,W6}.

• Query

Q1(s) = Census(s, n,m)

has certain answer (185)

and possible answers (185)

and (186).

• Query

Q2(n) = Census(s, n,m)

has the same possible and

certain answers (Smith)

and (Brown).

26 / 48

Queries on Incomplete Databases

Several studies on this date back to 90s for various models, in particular

conditional databases. [Abiteboul’91, Grahne’91, O.’08]

Hard tasks already for positive relational algebra:

• Tuple possibility is NP-complete

• Tuple certainty is coNP-complete

We next focus on probabilistic databases.

27 / 48

Queries on Probabilistic Databases

Given query Q and probabilistic database (W,P): The Marginal Probability of

an answer t is: P(t) =
∑{P(Wi) |Wi ∈W, t ∈ Q(Wi)}.

W1 : P(W1) = 0.1

SSN N M

185 Smith 1

185 Brown 1

W2 : P(W2) = 0.1

SSN N M

185 Smith 1

185 Brown 2

W3 : P(W3) = 0.1

SSN N M

185 Smith 1

185 Brown 3

W4 : P(W4) = 0.1

SSN N M

185 Smith 1

185 Brown 4

W5 : P(W5) = 0.3

SSN N M

185 Smith 1

186 Brown 1

W6 : P(W6) = 0.3

SSN N M

185 Smith 1

186 Brown 2

Let W = {W1, . . . ,W6}.

• Q1(s) = Census(s, n,m):

P(185) = 1 and

P(186) = 0.6.

• Q2(n) = Census(s, n,m):

P(Smith) = P(Brown) = 1.

Q1 and Q2 are trivial queries!

Computing the marginal

probability is hard in general!

→ Key challenge: Which queries admit efficient (polynomial time) computation

of marginal probabilities for their answers?

28 / 48

Queries on Probabilistic Databases

Given query Q and probabilistic database (W,P): The Marginal Probability of

an answer t is: P(t) =
∑{P(Wi) |Wi ∈W, t ∈ Q(Wi)}.

W1 : P(W1) = 0.1

SSN N M

185 Smith 1

185 Brown 1

W2 : P(W2) = 0.1

SSN N M

185 Smith 1

185 Brown 2

W3 : P(W3) = 0.1

SSN N M

185 Smith 1

185 Brown 3

W4 : P(W4) = 0.1

SSN N M

185 Smith 1

185 Brown 4

W5 : P(W5) = 0.3

SSN N M

185 Smith 1

186 Brown 1

W6 : P(W6) = 0.3

SSN N M

185 Smith 1

186 Brown 2

Let W = {W1, . . . ,W6}.

• Q1(s) = Census(s, n,m):

P(185) = 1 and

P(186) = 0.6.

• Q2(n) = Census(s, n,m):

P(Smith) = P(Brown) = 1.

Q1 and Q2 are trivial queries!

Computing the marginal

probability is hard in general!

→ Key challenge: Which queries admit efficient (polynomial time) computation

of marginal probabilities for their answers?

28 / 48

Queries on Probabilistic Databases

Given query Q and probabilistic database (W,P): The Marginal Probability of

an answer t is: P(t) =
∑{P(Wi) |Wi ∈W, t ∈ Q(Wi)}.

W1 : P(W1) = 0.1

SSN N M

185 Smith 1

185 Brown 1

W2 : P(W2) = 0.1

SSN N M

185 Smith 1

185 Brown 2

W3 : P(W3) = 0.1

SSN N M

185 Smith 1

185 Brown 3

W4 : P(W4) = 0.1

SSN N M

185 Smith 1

185 Brown 4

W5 : P(W5) = 0.3

SSN N M

185 Smith 1

186 Brown 1

W6 : P(W6) = 0.3

SSN N M

185 Smith 1

186 Brown 2

Let W = {W1, . . . ,W6}.

• Q1(s) = Census(s, n,m):

P(185) = 1 and

P(186) = 0.6.

• Q2(n) = Census(s, n,m):

P(Smith) = P(Brown) = 1.

Q1 and Q2 are trivial queries!

Computing the marginal

probability is hard in general!

→ Key challenge: Which queries admit efficient (polynomial time) computation

of marginal probabilities for their answers?
28 / 48

Representability of Query Answers

For a given query language Q and data model W:

For any query Q ∈ Q and database W ∈ W, is there Q ∈ Q such that Q(W) =

{Q(Wi) |Wi ∈W} and can be represented in W?

W Q(W)

{W1, . . . ,Wn} {Q(W1), . . . ,Q(Wn)}

Q

rep rep

Q

• This holds for relational algebra and PC databases: [Imielinski’84]

Q(T) is an extension of Q to also compute the query lineage.

• This does not hold for BIDs and TIs, but query lineage still useful for

computing marginal probabilities of query answers on BIDs and TIs.

• This idea is also used by Trio and MayBMS. [Benjelloun’06, Antova’09]

29 / 48

Query Lineage by Example

Customer

ckey name Φ

1 Joe x1

2 Dan x2

Orders

okey ckey date Φ

1 1 1995-01-10 y1

2 1 1996-01-09 y2

3 2 1994-11-11 y3

Lineitem

okey disc ckey Φ

1 0.1 1 z1

1 0.2 1 z2

3 0.4 2 z3

3 0.1 2 z4

Query asking for the dates of discounted orders shipped to customer ’Joe’:

Customer(ckey , Joe),Orders(okey , ckey , date), Lineitem(okey , disc, ckey)

Query answer and lineage

odate Φ

1995-01-10 x1y1z1 + x1y1z2

Q does Q and propagates the input conditions Φ to the answers:

• join of tuples leads to conjunction of their conditions

• union/disjunction of tuples leads to disjunction of their conditions.

Query lineage traces the computation of an answer back to its input.
30 / 48

Marginal Probabilities via Query Lineage

The marginal probability of a query answer is the probability of its lineage.

How to compute the lineage probability?

x1 y1 z1 z2 x1y1z1 + x1y1z2 Probability

0 * * * 0 0

1 0 * * 0 0

1 1 0 0 0 0

1 1 0 1 1 P(x1) · P(y1) · (1− P(z1)) · P(z2)

1 1 1 0 1 P(x1) · P(y1) · P(z1) · (1− P(z2))

1 1 1 1 1 P(x1) · P(y1) · P(z1) · P(z2)

P(x1y1z1 + x1y1z2) = P(x1) · P(y1) · [1− (1− P(z1)(1− P(z2))].

• The truth table is exponential in the number of variables.

Two ideas: [O.’08+]

• Read-once lineage factorization: x1y1z1 + x1y1z2 = x1y1(z1 + z2)

• Lineage compilation into polysize decision diagrams.

31 / 48

Where Are We Now?

• We know how to compute the query answers using a simple query

extension that also computes the query lineage.

• We do not know yet how to compute the marginal probabilities of query

answers efficiently.

Next, more technical part of the tutorial (not covered here):

• Analyze the complexity of computing marginal probabilities as a function

of database size and query structure.

32 / 48

Talk Outline

Why Probabilistic Databases?

Probabilistic Data Models

The Query Evaluation Problem

Query Evaluation: Complexity and Algorithms

Live Demo with MayBMS

33 / 48

Short Recap on Complexity Class #P (Sharp P)

#P = Class of functions f (x) for which there exists a PTIME non-deterministic

Turing machine M such that f (x) = number of accepting computations of M

on input x . [Valiant’79]

Class of counting problems associated with decision problems in NP:

• SAT (given formula φ, is φ satisfiable?) is NP-complete

• #SAT (given formula φ, count # of satisfying assignments) is

#P-complete

A PTIME machine with a #P oracle can solve any problem in polynomial

hierarchy with one #P query. [Toda’91]

#SAT is #P-complete already for bipartite positive DNFs! [Provan’83]

• .. yet SAT is trivially PTIME for DNFs.

Dichotomies for Queries on Probabilistic Databases

The following property has been observed for several classes Q of relational

queries on TI databases:

The data complexity of every query in Q is either polynomial time or #P-hard.

Examples of such classes Q of relational queries:

• NCQ: non-repeating conjunctive queries [Dalvi&Suciu’04]

• Quantified queries (division, set comparisons) [Fink&O.’11]

• UCQ: unions of conjunctive queries [Dalvi&Suciu’12]

• RNCQ: ranking NCQ [O.&Wen’12]

• 1RA−: NCQ’s relational algebra counterpart extended with negation

[Fink&O.’14]

35 / 48

Dichotomies for Queries on Probabilistic Databases

The following property has been observed for several classes Q of relational

queries on TI databases:

The data complexity of every query in Q is either polynomial time or #P-hard.

Examples of such classes Q of relational queries:

• NCQ: non-repeating conjunctive queries [Dalvi&Suciu’04]

• Quantified queries (division, set comparisons) [Fink&O.’11]

• UCQ: unions of conjunctive queries [Dalvi&Suciu’12]

• RNCQ: ranking NCQ [O.&Wen’12]

• 1RA−: NCQ’s relational algebra counterpart extended with negation

[Fink&O.’14]

35 / 48

Syntactic Characterizations of Tractable Queries

The tractable queries in (R)NCQ and 1RA− admit an efficient syntactic

characterization via the hierarchical property.

A (Boolean) NCQ or 1RA− query Q is hierarchical if:

For every pair of distinct variables A and B in Q,

there is no triple of relation symbols R, S , and T in Q such that:

• RA¬B has query variable A and not B,

• SAB has both query variables A and B, and

• T¬AB has query variable B and not in A.

36 / 48

Examples

Hierarchical queries:

• ∃A∃B
[(
R(A) ∧ S(A,B)

)
∧ ¬T (A,B)

]
• ∃A∃B

[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]
• ∃A∃B

[(
M(A) ∧ N(B)

)
∧ ¬
[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]]

Non-hierarchical queries:

• ∃A∃B
[
R(A) ∧ S(A,B) ∧ T (B)

]
• ∃B

[
∃A
(
R(A) ∧ S(A,B)

)
∧ ¬T (B)

]
• ∃B

[
T (B) ∧ ¬∃A

(
R(A) ∧ S(A,B)

)]

37 / 48

Examples

Hierarchical queries:

• ∃A∃B
[(
R(A) ∧ S(A,B)

)
∧ ¬T (A,B)

]
• ∃A∃B

[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]
• ∃A∃B

[(
M(A) ∧ N(B)

)
∧ ¬
[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]]

Non-hierarchical queries:

• ∃A∃B
[
R(A) ∧ S(A,B) ∧ T (B)

]
• ∃B

[
∃A
(
R(A) ∧ S(A,B)

)
∧ ¬T (B)

]
• ∃B

[
T (B) ∧ ¬∃A

(
R(A) ∧ S(A,B)

)]

37 / 48

Hardness Proof Idea

Reduction from #P-hard model counting problem for positive 2DNF:

• Given a non-hierarchical 1RA− query Q and

• Any positive bipartite DNF formula Ψ over disjoint sets X and Y of

random variables.

• #Ψ can be computed using linearly (in most cases constantly) many calls

to an oracle for P(Q), where Q is evaluated on tuple-independent

databases with sizes polynomial in the size of Ψ.

38 / 48

Simplest Example of Hardness Reduction

[Grädel’98, Dalvi& Suciu’04]

Input formula and query:

• Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}
• Q = ∃A∃B

[
R(A) ∧ S(A,B) ∧ T (B)

]
Construct a TI database D such that Ψ annotates Q(D):

• Column Φ holds random variables in Ψ.
• Notation: > (true)

• Variables also used as constants for A and B.

• S(xi , yj ,>): xiyj is a clause in Ψ.

• R(xi , xi) and T (yj , yj): xi is a variable in X and yj is a variable in Y.

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 y1

y2 y2

S

A B Φ

x1 y1 >
x1 y2 >
x2 y1 >

R ∧ S ∧ T

A B Φ

x1 y1 x1y1

x1 y2 x1y2

x2 y1 x2y1

Q

Φ

() Ψ

Query Q is the only minimal hard pattern in case of queries without negation!

39 / 48

Simplest Example of Hardness Reduction

[Grädel’98, Dalvi& Suciu’04]

Input formula and query:

• Ψ = x1y1 ∨ x1y2 ∨ x2y1 over sets X = {x1, x2},Y = {y1, y2}
• Q = ∃A∃B

[
R(A) ∧ S(A,B) ∧ T (B)

]
Construct a TI database D such that Ψ annotates Q(D):

• Column Φ holds random variables in Ψ.
• Notation: > (true)

• Variables also used as constants for A and B.

• S(xi , yj ,>): xiyj is a clause in Ψ.

• R(xi , xi) and T (yj , yj): xi is a variable in X and yj is a variable in Y.

R

A Φ

x1 x1

x2 x2

T

B Φ

y1 y1

y2 y2

S

A B Φ

x1 y1 >
x1 y2 >
x2 y1 >

R ∧ S ∧ T

A B Φ

x1 y1 x1y1

x1 y2 x1y2

x2 y1 x2y1

Q

Φ

() Ψ

Query Q is the only minimal hard pattern in case of queries without negation! 39 / 48

A Surprising Example of Hardness Reduction

Input formula and query:

• Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}
• Q = ∃A

[
R(A) ∧ ¬∃B

(
T (B) ∧ S(A,B)

)]
Construct a TI database D such that Ψ annotates Q(D):

• S(i , b,>): Clause i in Ψ has variable b.

• R(i ,>) and T (b,¬b): i is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T ∧ S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

∃B(T ∧ S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R ∧ ¬∃B(T ∧ S)

A Φ

1 x1y1

2 x1y2

Query Q is already hard when T is the only uncertain input relation!

40 / 48

A Surprising Example of Hardness Reduction

Input formula and query:

• Ψ = x1y1 ∨ x1y2 over sets X = {x1},Y = {y1, y2}
• Q = ∃A

[
R(A) ∧ ¬∃B

(
T (B) ∧ S(A,B)

)]
Construct a TI database D such that Ψ annotates Q(D):

• S(i , b,>): Clause i in Ψ has variable b.

• R(i ,>) and T (b,¬b): i is a clause and b is a variable in Ψ.

R

A Φ

1 >
2 >

T

B Φ

x1 ¬x1

y1 ¬y1

y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
2 x1 >
2 y2 >

T ∧ S

A B Φ

1 x1 ¬x1

1 y1 ¬y1

2 x1 ¬x1

2 y2 ¬y2

∃B(T ∧ S)

A Φ

1 ¬x1 ∨ ¬y1

2 ¬x1 ∨ ¬y2

R ∧ ¬∃B(T ∧ S)

A Φ

1 x1y1

2 x1y2

Query Q is already hard when T is the only uncertain input relation!

40 / 48

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

• For any TI database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of the query lineage Ψ.

• Compile Ψ into poly-size OBDD(Ψ).

• Compute probability of OBDD(Ψ) in time linear in its size.

Lineage of tractable 1RA− queries:

• Read-once for queries without negation (so NCQ) [O. & Huang’08]

It admits linear-size OBBDs.

• Not read-once for queries with negation [Fink& O’14]

• It admits OBBDs of size linear in the database size

but exponential in the query size.

41 / 48

Evaluation of Hierarchical 1RA− Queries

Approach based on knowledge compilation

• For any TI database D, the probability PQ(D) of a 1RA− query Q is the

probability PΨ of the query lineage Ψ.

• Compile Ψ into poly-size OBDD(Ψ).

• Compute probability of OBDD(Ψ) in time linear in its size.

Lineage of tractable 1RA− queries:

• Read-once for queries without negation (so NCQ) [O. & Huang’08]

It admits linear-size OBBDs.

• Not read-once for queries with negation [Fink& O’14]

• It admits OBBDs of size linear in the database size

but exponential in the query size.

41 / 48

The Inner Workings

From hierarchical 1RA− to RC-hierarchical ∃-consistent RC∃:

• Translate query Q into an equivalent disjunction of disjunction-free

existential relational calculus queries Q1 ∨ · · · ∨ Qk .

• RC-hierarchical:
For each ∃X (Q ′), every relation symbol in Q ′ has variable X .

• Each of the disjuncts gives rise to a poly-size OBDD.

• ∃-consistent:
The nesting order of the quantifiers is the same in Q1, · · · ,Qk .

• All OBDDs have compatible variable orders and

their disjunction is a poly-size OBDD.

• The OBDD width grows exponentially with k,

its height stays linear in the size of the database.

• Width = maximum number of edges crossing the section between any two

consecutive levels.

Similar ideas used for the evaluation of inversion-free UCQs. [Jha& Suciu’12]
42 / 48

Query Evaluation Example (1/3)

Consider the following query and TI database:

Q = ∃A∃B
[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]

R

A Φ

1 r1

2 r2

T

B Φ

1 t1

2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R ∧ T

A B Φ

1 1 r1t1

1 2 r1t2

2 1 r2t1

2 2 r2t2

R ∧ T ∧ ¬(U ∧ V)

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The lineage of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

• Variables entangle in Ψ beyond read-once factorization.

• This is the pivotal intricacy introduced by negation.

43 / 48

Query Evaluation Example (1/3)

Consider the following query and TI database:

Q = ∃A∃B
[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]

R

A Φ

1 r1

2 r2

T

B Φ

1 t1

2 t2

U

A Φ

1 u1

2 u2

V

B Φ

1 v1

2 v2

R ∧ T

A B Φ

1 1 r1t1

1 2 r1t2

2 1 r2t1

2 2 r2t2

R ∧ T ∧ ¬(U ∧ V)

A B Φ

1 1 r1t1¬(u1v1)

1 2 r1t2¬(u1v2)

2 1 r2t1¬(u2v1)

2 2 r2t2¬(u2v2)

The lineage of Q is:

Ψ = r1

[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨ r2

[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

• Variables entangle in Ψ beyond read-once factorization.

• This is the pivotal intricacy introduced by negation.

43 / 48

Query Evaluation Example (2/3)

Translate Q = ∃A∃B
[(
R(A) ∧ T (B)

)
∧ ¬
(
U(A) ∧ V (B)

)]
into RC∃:

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

• Both Q1 and Q2 are RC-hierarchical.

• Q1 ∨ Q2 is ∃-consistent: Same order ∃A∃B for Q1 and Q2.

Query annotation:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

• Both Ψ1 and Ψ2 admit linear-size OBDDs.

• The two OBDDs have compatible orders and their disjunction is an OBDD

whose width is the product of the widths of the two OBDDs.

44 / 48

Query Evaluation Example (3/3)

Compile query annotation into OBDD:

Ψ = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)︸ ︷︷ ︸
Ψ1

∨ (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2)︸ ︷︷ ︸
Ψ2

.

r1

r2

¬u1

¬u2

t1

t2

>⊥

∨

Ψ1 ∨

r1

r2

t1

t2

¬v1

¬v2

>⊥

=

Ψ2 =

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥

Ψ

45 / 48

Talk Outline

Why Probabilistic Databases?

Probabilistic Data Models

The Query Evaluation Problem

Query Evaluation: Complexity and Algorithms

Live Demo with MayBMS

46 / 48

The MayBMS/SPROUT Probabilistic Database Management System

http://maybms.sourceforge.net

• Extension of open-source PostgreSQL relational DBMS

• Available manual, worked-out examples, and publications

• 3-min video demo: http://www.cs.ox.ac.uk/dan.olteanu/maybms.mp4

We now go over a few simple examples from the manual.

47 / 48

http://maybms.sourceforge.net
http://www.cs.ox.ac.uk/dan.olteanu/maybms.mp4

Thank you!

48 / 48

	Why Probabilistic Databases?
	Probabilistic Data Models
	The Query Evaluation Problem
	Query Evaluation: Complexity and Algorithms
	Live Demo with MayBMS

