

On Functional Aggregate Queries with Additive Inequalities

M. Abo Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, M. Schleich

relational.ai fdbresearch.github.io

FAQ-AI: Functional Aggregate Queries with Additive Inequalities

$$Q(\mathbf{x}_{F}) = \bigoplus_{\mathbf{x}_{\mathcal{V}\setminus F}} \left(\bigotimes_{K \in \mathcal{E}_{s}} R_{K}(\mathbf{x}_{K}) \right) \otimes \left(\bigotimes_{K \in \mathcal{E}_{\ell}} \mathbf{1}_{\sum_{v \in K} \theta_{v}^{K}(x_{v}) \leq 0} \right)$$

$$Q(a,b) = \sum_{c} R(a,b) \cdot S(b,c) \cdot T(c,d) \cdot \mathbf{1}_{a \le d} \cdot \mathbf{1}_{\frac{b}{2} \le c} \cdot \mathbf{1}_{a^{2} + \frac{b}{2} \le 5c}$$

$$Q(a,b) = \bigvee_{c} R(a,b) \wedge S(b,c) \wedge T(c,d) \wedge \mathbf{1}_{a \le d} \wedge \mathbf{1}_{\frac{b}{2} \le c} \wedge \mathbf{1}_{a^{2} + \frac{b}{2} \le 5c}$$

$$Q(a,b) = \bigotimes_{c} R(a,b) \oplus S(b,c) \oplus T(c,d) \oplus \mathbf{1}_{a \le d} \oplus \mathbf{1}_{\frac{b}{2} \le c} \oplus \mathbf{1}_{a^{2} + \frac{b}{2} \le 5c}$$

$$Arbitrary: (\mathbf{D}, \oplus, \otimes)$$

Relaxed Tree Decompositions

1. Running intersection property

1. Tree T = (V(T), E(T))

2. Containment property

A TD satisfies:

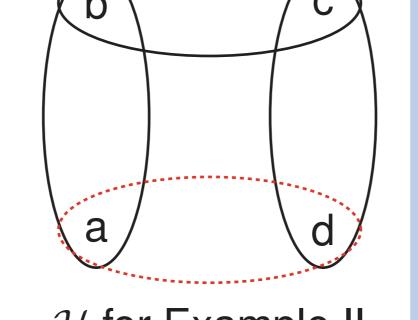
A Generalized Hypertree Decomposition (TD) for $\mathcal{H} = (\mathcal{V}, \mathcal{E} = \mathcal{E}_s \cup \mathcal{E}_\ell)$:

Query Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E} = \mathcal{E}_s \cup \mathcal{E}_\ell)$

• Set of variables $\mathcal{V} = \{X_1, \ldots, X_n\}$

Query Hypergraph for FAQ-Als

- ► Set of "skeleton" hyperedges \mathcal{E}_s
 - Each hyperedge in \mathcal{E}_s is defined by a factor $R_K(\mathbf{x}_K)$
- Set of "ligament" hyperedges \mathcal{E}_{ℓ}
 - Each hyperedge in \mathcal{E}_{ℓ} is defined by sum of univariate functions

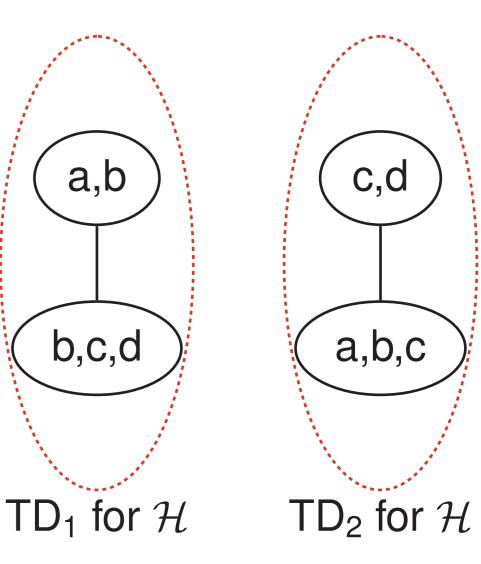


 ${\cal H}$ for Example II

Containment for Tree Decompositions: 1. every hyperedge is covered by some bag

2. Bag $\chi(t) \subseteq \mathcal{V}$ for each tree-node $t \in V(T)$

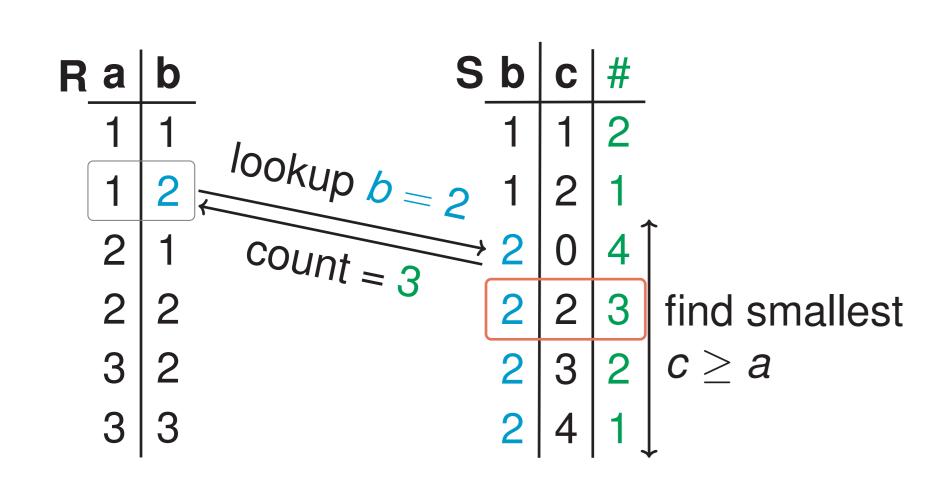
Containment for Relaxed Tree Decompositions:
1. every skeleton hyperedge is covered by some bag
2. every ligament hyperedge is covered by two adjacent bags



Example I	Example II	Example III: Learning SVM over Databases
Given: Relations R, S of size $O(N)$	Given: Relations R, S, T of size $O(N)$	Task: Compute $J(\beta)$ over dataset D defined by query Q over database I
Task: $Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot 1_{a \leq c}$	Task: $Q() = \sum_{a,b,c,d} R(a,b) \cdot S(b,c) \cdot T(c,d) \cdot 1_{a \leq d}$	$J(\beta) = \sum_{(\mathbf{x}, y) \in \mathbf{D}} \underbrace{\max\{0, 1 - y \cdot f_{\beta}(x)\}}_{\text{Hinge Loss}}$

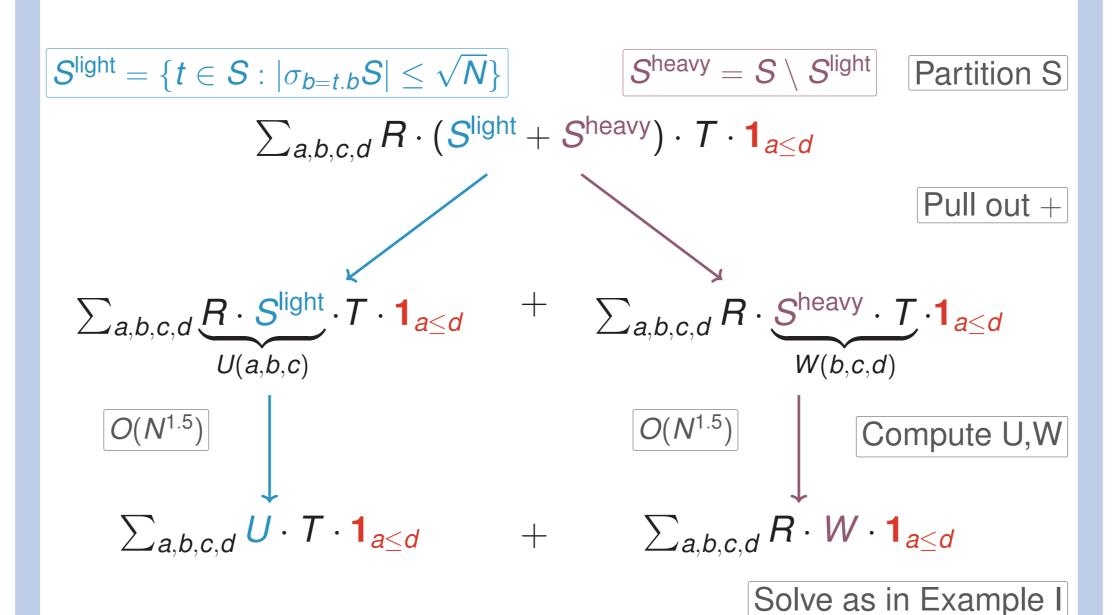
Existing approaches take $O(N^2)$ time

Our approach takes $O(N \log N)$ time



Step 1: Pre-count S for each *b* Step 2: Foreach R(a, b), locate first S(b, c) with $a \le c$ Step 3: Return pre-aggregated count Existing approaches take $O(N^2)$ time

Our approach takes $O(N^{1.5} \log N)$ time



 $= \underbrace{\sum_{(\mathbf{x}, y) \in \mathbf{D}} (1 - y \cdot f_{\beta}(x)) \cdot \mathbf{1}_{y \cdot f_{\beta}(x) \leq 1}}_{\text{FAQ-AI}}$

Existing approaches:1. materialize D2. learn model using favorite ML tool

Our approach:

- 1. avoid materialization of **D**
- 2. express learning using FAQ-AIs

SVM models can be learned in time **sublinear** in |**D**|.

Further ML models that can benefit from FAQ-AI:

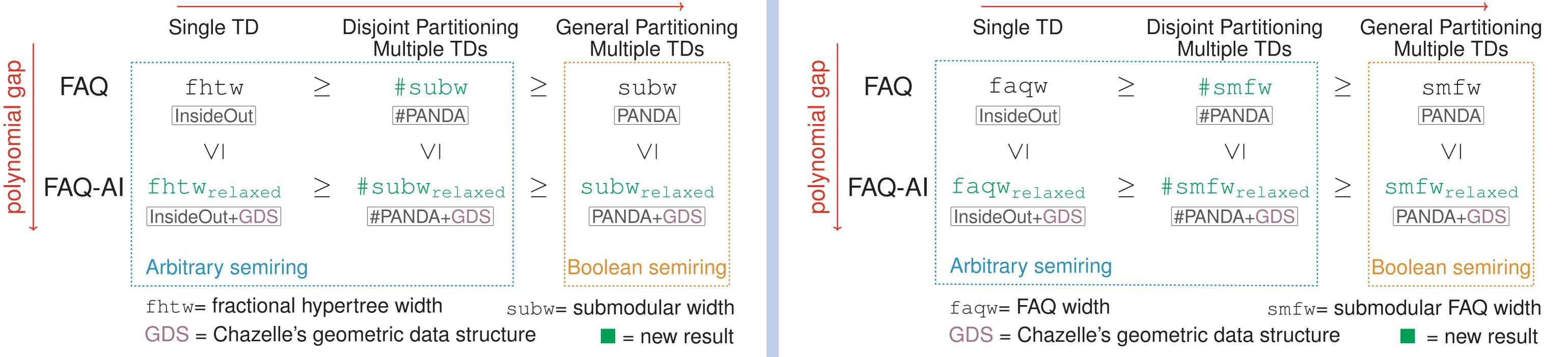
- k-Means Clustering
- Robust Regression with Huber Loss
- Boolean Principle Component Analysis
- Other models trained with non-polynomial loss

Width Measures for FAQs and FAQ-Als without Free Variables

Width Measures for FAQs and FAQ-Als with Free Variables

unbounded gap

unbounded gap



ACM PODS, July 2019