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Key Observation behind this Work

Key observation:

@ The occurrence of input values in the result of conjunctive queries follow
certain regular patterns.

@ Such patterns represent a fundamental property of queries

@ ... and can be used to explain query computational complexity in various
contexts.



(High-level) Goal of this Work

Better understand and describe these occurrence patterns in query results.




Our Approach at a Glance

Ingredients:
@ provenance polynomials of query results
> ... to trace input values in the query result

@ factorization of provenance polynomials guided by query structure

> ... to get succinct, nested representations of the query result
and its provenance polynomial

@ new notion of readability width for conjunctive queries

> ... to quantify how many times an input value is used in
the (factorized) provenance polynomial of the query result



Provenance Polynomials



Annotated Relational Databases

@ Annotate each tuple with elements from a commutative semiring. [GKT'07]

@ Convenient generalisation of annotations in, e.g., incomplete databases,
probabilistic databases, bag semantics, lineage in data warehousing.

Example of annotated database:

Ord H ckey okey date Item H okey disc

ckey name 01 1 1 1995 i 1 0.1

c 1 Joe o)) 1 2 1996 i 1 02

o)) 2 Dan o3 2 3 1994 i3 3 04

ca 3 Li 04 2 4 1993 ia 3 01

cs 4 Mo o5 3 5 1995 i 4 04

06 3 6 1996 i§ 5 0.1
@ Relation Cust uses annotations (or variables) ¢y, ..., ¢.
o Relation Ord uses annotations (or variables) oy, ..., 0.

@ Relation Item uses annotations (or variables) i, ..., /.



Annotated Relational Databases

Ord H ckey okey date Item H okey disc

Cust || ckey name o1 1 1 1995 i 1 0.1
ca 1 Joe [ 1 2 1996 i 1 02
o 2 Dan o3 2 3 1994 i3 3 04
c3 3 Li o4 2 4 1993 n 3 01
cs 4 Mo o5 3 5 1995 i 4 04

06 3 6 1996 is 5 0.1

Consider a join query @ = Cust My, Ord Mype, Item on the three relations:

Q || ckey name okey date disc
ci-o01- 101 1 Joe 1 1995 0.1
cL-01- b 1 Joe 1 1995 0.2
0303 2 Dan 3 1994 0.4
0310 2 Dan 3 1994 0.1
0405 2 Dan 4 1993 0.4
c3- 05 g 3 Li 5 1995 0.1

The annotation ¢; - o; - ij of a result tuple t records its provenance:

@ t is the result of a join of input tuples annotated by ¢; and o; and ;.

@ Conjunction expressed using the semiring operation (-).



Annotated Relational Databases

Consider now the Boolean version my( Q) of the join query Q:

Q H ckey name okey date disc
cL-o01- 1 1 Joe 1 1995 0.1
cL-01-h 1 Joe 1 1995 0.2
0313 2 Dan 3 1994 0.4
0310 2 Dan 3 1994 0.1
Cr- 0405 2 Dan 4 1993 0.4
c3 - 05 - i 3 Li 5 1995 0.1

The annotation of my(Q)

c-or-ii+c-or

@ There are 6 alternative derivations of the result.

's result (the nullary tuple) is
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@ Disjunction expressed using the semiring operation (+).
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Provenance polynomials of interest = Semiring annotations of query results.



Factorization and Readability of Query Provenance



Factorizing Provenance Polynomials

Consider again the previous provenance polynomial (we omit (-) operation):
1 = 10111 + C101/2 + Cr03/3 + C2030s + Cr0415 + C3051
We can factorize it as follows:
Py = cro1(i + ix) + c2(03(i3 + ia) + 04i5) + C30516.

There are several algebraically equivalent factorized representations due to
@ distributivity of product over sum and

@ commutativity of product and sum.



Readability of Provenance Polynomials

@ A polynomial @ is read-k if
the maximum number of occurrences of any variable in @ is k.

9 The readability of ® is the smallest number k such that
there is a read-k polynomial equivalent to .

@ Readability has been used for Boolean functions [Golumbic et al.’06].

@ Example: 1 is read-3 and ), is read-1. They are equivalent and have
readability one.

11 = c101i1 + C101/2 + C20313 + C20304 + C20405 + C30515-
oy = cro1(in + ix) + c2(03(i3 + ia) + 04i5) + C30516.

@ Readability of ® quantifies the succinctness of its factorization.



How to Factorize Query Provenance?

Our approach to define nesting structures of possible factorizations:
@ They are statically derived from the query.

@ They are independent of the database instance.

We call them factorization trees (or f-trees for short).



Factorization Trees of a Conjunctive Query

A factorization tree of a query @ is a rooted unordered forest T, where

@ there is a one-to-one mapping between inner nodes in 7 and equivalence
classes of attributes of @, which do not contain any constants,

@ there is a one-to-one mapping between leaf nodes in 7 and relations in @,
@ the attributes of each relation only appear in the ancestors of its leaf.

Example: Query Q = my(04(R x S x T x U)), with
o schemas R(Ag, Bg, C), S(As, Bs, D), T(Ar, ET), and ,
o condition ¢ = (Ag = As = A1, Br = Bs, ET = Ey)).



Factorized Polynomials over Factorization Trees

Bg, Bs

T/ \T |
® © O
YalXe(XcRYEpS) Xe (T V)]
foreach value a € Domj do output sum of
foreach value b € Domg do output sum of
foreach value ¢ € Dom¢ do output sum of annotations of R-tuples (a, b, ¢)
X
foreach value d € Domp do output sum of annotations of S-tuples (a, b, d)
X
foreach value e € Domg do output sum of
output sum of annotations of T-tuples (a, e)
X

foreach value f € Domf do output sum of annotations of U-tuples (e, f)



Factorized Polynomials over Factorization Trees

The read-6 provenance polynomial of a possible result to our previous query:

® =n1s111t12001 + nasiitiauo + ra1sietiz el + 1Stz +

ri22s121t12u21 + rizgesizitiau + ri12s21t2iuil + Ri12s211tU2 + rR12S211t22U22.

@ The index of each annotation represents the tuple with that annotation.

@ Thus, 111 is the annotation of the tuple (1,1,1) in relation R.



Factorized Polynomials over Factorization Trees

The read-6 provenance polynomial of a possible result to our previous query:

® =n1s111t12001 + nasiitiauo + ra1sietiz el + 1Stz +

ri22s121t12u21 + rizgesizitiau + ri12s21t2iuil + Ri12s211tU2 + rR12S211t22U22.

Over the above factorization tree, we obtain the equivalent read-2 polynomial:

&1 =(rna1(si11 + s112) + rizesion) ti2(u21 + w22) + r12so11(t21unr + to2(u21 + u22)).



Readability Characterization of Conjunctive Queries

For any Boolean conjunctive query @, there is a rational number r(Q) such that:

@ For any database D, the readability of the provenance of Q(D) is at most
M - |D|"(@), where M is the max number of repeating relation symbols in Q.

@ For any f-tree 7 of Q there exist arbitrarily large databases D for which the
factorized polynomial of Q(D) over T is at least read-(|D|/|@|)"(?).

Parameter r(Q) is the readability width of Q.

Remarks:
@ Trivial extension to non-Boolean conjunctive queries.

@ We do not consider here query equivalence (modulo provenance polynomials).



Two Readability Dichotomies

1. Let @ be a conjunctive query.

o If Q is hierarchical, then the readability of Q(D) for any database D is
bounded by a constant.

@ If @ is non-hierarchical, then for any f-tree T of Q there exist arbitrarily large
databases D such that 7(D) is read-Q(|D]).

2. Let Q be a conjunctive query without repeating relation symbols.
o If Q is hierarchical, then the readability of Q(D) is 1 for any database D.

@ If @ is non-hierarchical, then there exist arbitrarily large databases D such
that the readability of Q(D) is (+/|D]).



What are these hierarchical queries?

A query is hierarchical if for any two equivalence classes of attributes in Q:
@ either their sets of relation symbols are disjoint,

@ or one is included in the other.

Examples:
9 Q = mp(Cust Mekey Ord Mokey,ckey Item) is not hierarchical.

For rel(disc)={ltem}, rel(okey)={Ord, Item}, rel(ckey)={Cust, Ord}, we have
rel(ckey) N rel(okey) # 0 and rel(ckey) Z rel(okey) and rel(ckey) 2 rel(okey).

@ @ becomes hierarhical if ckey is an attribute of ltem, since:
rel(disc)C rel(okey)C rel(ckey).
ckey

ckey,okey Cust(ckey,name)

Ord(okey,ckey,date) Item(okey,disc,ckey)



What are these hierarchical queries?

A query is hierarchical if for any two equivalence classes of attributes in Q:
@ either their sets of relation symbols are disjoint,

@ or one is included in the other.

Readability Width and Hierarchical Queries:

@ All hierarchical queries have readability width 0.

@ Readability width of a query Q states how far Q is from a hierarchical query.



The Hierarchical Property

Key to query characterisation in several contexts:

@ In probabilistic databases, any tractable non-repeating conjunctive query is
hierarchical; non-hierarchical queries are #P-hard. [Suciu&Dalvi'07].

@ In the finite cursor machine model of computation, any query that can be
evaluated in one pass is hierarchical; non-hierarchical queries need more
passes. [Grohe et al'07]

» Assumption: we are allowed to first sort the input relations.

@ In the Massively Parallel computation model, any query that can be
evaluated with one synchronisation step is hierarchical. [Suciu et al'11]



Thanks!



(Non-)Relevant Nodes in Factorization Trees

AR7A57AT ET7
Bg, Bs Er, AR, As, AT

/N N\ /N |
C D Bgr, B
7O /\ © O
® e O ¢
® ©
Definition: For a relation R; at a leaf, an ancestor node is non-relevant if it does

not contain attributes of R;. Let NR be the set of nodes non-relevant to R;.

Examples: The root node is not relevant to U in the left factorization tree, and to
R and S in the right factorization tree.



Bounds on the Readability of Factorized Representations

Consider:
@ Any equi-join query Q = g4(R1 X --- X Rp),
@ A restriction of Q to NR: Qnr = 0gue(TnrRRL X -+ X TNRR),
@ Databases D and Dpg obtained by projecting D onto NR.

The number of occurrences of the annotation for a tuple t in R; in a factorized
representation modelled on a factorization tree of o4(Ry X -+ X R,) is:

|| 7R (Ts(R)=(006 (R % -+ x Ry))|].

@ Upper bound

> Further refinement: The number of occurrences is at most ||Qur(Dnr)||.
» Cover all attributes of Qur by k relations = ||Qnr(Dnr)|| < |D|*.
» = minimum edge cover in the hypergraph of Qur!

o Lower bound
» Construct databases for which the number of occurrences is ||Qnr(Dnr)||.

» Pick k attributes such that no two share a relation = ||Qngr(Dng)|| > |D|*.
» = maximum independent set in the hypergraph of Qng!



Tightening the Bounds

Idea [Grohe&Marx'06]:
@ Relax edge cover and independent set to their fractional (weighted) versions.

@ They meet by LP duality
> A fractional edge cover number can be an optimal solution to both the
minimisation problem and its dual maximisation problem
For a query with equi-joins @, the fractional edge cover number p*(Q) is an
optimal solution to the linear program with variables {x;}"_;,

minimise DX
subject to Zi:RiEr(A) xi>1 for all attributes A, and
x; >0 for all J.

o Each x; represents one query relation (hyperedge in the hypergraph).

o For edge cover: x; can be either 0 or 1 and each node (=attribute) has to be
covered by at least one edge.

@ For fractional edge cover: x; > 0 and each node can be covered by fractions
of edges as long as the sum of all these fractions is above 1.



Special Case: Read-once Representations

Minimal number of occurrences of input annotations:
o NR = () = any annotation of R; occurs at most once.
@ If this holds for all relations, then all annotations occur at most once.

» The readability of the representation is independent of the database size!
» From the two factorization trees below, only the left one has this nice property.

AR, As, AT Bg, Bs

Bg, Bs Er AR, As, AT
Et
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| |
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