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I Carefully crafted by domain experts
I Comes with relational structure

I Throws away relational structure
I Can be order-of-magnitude larger

Turn Analytics Problem into Database Problem!

1. Exploit structure in the data
I Algebraic structure: Factorized aggregate computation
I Combinatorial structure: Query complexity measures

2. Sharing computation and data access
I Aggregates decomposed into directional views over join tree
I Share data access across views

3. Specialization for workload and data
I Generate code specific to the query batch and dataset
I Improve cache locality for hot data

4. Parallelization
I Task and domain parallelism

The Layers of LMFAO: Layered Multiple Functional Aggregate Optimization
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Aggregates required per Analytics Workload

Workload Query Batch # Queries
Linear Regression SUM(Xi*Xj) 814
Covariance Matrix SUM(Xi) GROUP BY Xj

COUNT(*)GROUP BY Xi,Xj

Decision Tree VARIANCE(Y ) WHERE Xj = cj 3,141
(Regression, 1 Node)

Mutual Information COUNT(*)GROUP BY Xi 56
Chow-Liu Trees COUNT(*)GROUP BY Xi,Xj

Data Cubes SUM(M) GROUP BY X1, . . . ,Xd 40

(# Queries shown for Retailer dataset)
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1. Find Roots: For each query, decide its output (root) node
2. Break down each query into directional views over the join tree
3. Reuse partial-aggregates and Merge Views with same group-by attributes

Dependency Graph & View Groups
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I Create Dependency Graph and Group Views computed over same relation
I View Group is computational unit, computed in one pass over relation
I Task and Domain Parallelism

Multi-Output Optimization & Code Compilation

item
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foreach i ∈ πitem(S 1item VI 1item V ′I )

foreach d ∈ πdate(σitem=iS 1date VH 1date VT )

foreach s ∈ πstore(σitem=i ,date=dS 1store σdate=dVT )

α0 = 0;

α1 = VI(i); α2 = g(i); α3 = 0;

α4 = VH(d); α5 = 0;
foreach c ∈ πcolorσitem=iV ′I : α5 += h(d , c) · V ′I (i , c);
α6 = 0; α7 = α2·α5·α4;

α8 = VT (d , s); α9 = 0; α10 = |σitem=i ,date=d ,store=sS|;
foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α9 += f (u);
α6 += α8 · α9; α11 = α7 · α8 · α10;
if Q2(s) then Q2(s) += α11 else Q2(s) = α11;
α3 += α4 · α6;
α0 += α1 · α3 VS→I(i) = α3 · α2;

Q1 = α0;
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Q1: SUM (f (units)) VS→I: SUM (f (units) · g(item)) GROUP BY item

Q2: SUM (g(item) · h(date, color )) GROUP BY store

Aggregate Experiments

Relative Speedup over DBX and MonetDB
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C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

Machine Learning Experiments

Relative Speedup over TensorFlow and MADlib
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L = Linear Regression; R = Regression Tree; C = Classification Tree; Intel i7-4770 (8 CPUs, 32GB)
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With at least same accuracy!
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