. A Layered Aggregate Engine for Analytics Workloads
relationalAl M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, X. Nguyen

Al for the enterprise

UNIVERSITY OF

OXFORD | MicHIGAN

relational.ai fdbresearch.github.1o0

Current State of Affairs

Turn Analytics Problem into Database Problem!

Customers

Weather Features 1. Exploit structure in the data
Sales » Algebraic structure: Factorized aggregate computation
Stores i » Gombinatorial structure: Query complexity measures
T Inventory 2. Sharing computation and data access
» Aggregates decomposed into directional views over join tree
» Share data access across views
3. for workload and data
» Generate code specific to the query batch and dataset
» Improve cache locality for hot data
» Carefully crafted by domain experts » Throws away relational structure 4. Parallelization
» Comes with relational structure » CGan be order-of-magnitude larger » Task and domain parallelism

—

Samples

Demographic

ltems

The Layers of LMFAO: Layered Multiple Functional Aggregate Optimization

Application — Aggregates Logical Optimization Code Optimization

Aggregates required per Analytics Workload Logical Optimization

Workload Query Batch # Queries Q1 02
Linear Regression SUM(X;x X)) 814

/\,\

Sales

s b
Covariance Matrix SUM(X;) GROUP BY X;
Decision Tree VARIANCE(Y) WHERE X; = C; 3,141

(Regression, 1 Node)
° [Transactlons Holidays

Mutual Information COUNT (%) GROUP BY X 56 Qj\
Chow-Liu Trees COUNT (%) GROUP BY Xj, X; N
Data Cubes SUM(M) GROUP BY Xj,..., Xy 40 Stores|
1. Find Roots: For each query, decide its output (root) node
| | 2. Break down each query into directional views over the join tree
(# Queries shown for Retailer dataset) 3. Reuse partial-aggregates and Merge Views with same group-by attributes

Dependency Graph & View Groups

Multi-Output Optimization & Code Compilation

Vi, 17q @=0 ,
> item foreach i € miem(S Mitem Vi Mitem V)
/ ‘ &VS%/ V/() Qo = g(l); az = 0;
Vy — date foreach d € mqate(Titem=iS Maate VH Mdate V7)
Xq — VH(d), X5 — O;
foreach ¢ € meoiorditem=i V| : as += h(d, c) - V|(i, c);
ag = 0; a7 = Q2 (0504,
V+ — store foreach s 7Tstore(Ui’[em:i,da’[e:ds Wstore Tdate=d VT)
\‘Q og = VT(O', S); ag = 0; 10 — ‘Uitem:i,date:d,store:ss‘;
: foreach u € 7Tuni’[SUitem:i,date:d,store:sS L Qg = f(U);
[VR%T] VO%T] g += Qg - Qg; 11 = Q7 - Og - (10;
Group 1 roup 2 if Cx(s) then Qu(S) += a1 else Cu(S) = aq1;
a3 += 04 * QOg;
g += 4 + (3 VS%/(I') — (/3 - 9,

» Create Dependency Graph and Group Views computed over same relation Qs = o
» View Group is computational unit, computed in one pass over relation
» Task and Domain Parallelism

Qq: SUM (f(units)) Vs_.;: SUM (f(units)-g(item)) GROUP BY item
(»: SUM (g(item) - h(date,color)) GROUP BY store

Aggregate Experiments Machine Learning Experiments

Relative Speedup over and MonetDB Relative Speedup over and MADIib
' i With at least same accuracy!
0 - 'L = 1000 Bl -
1M ="'~ =B ., 100 - ' ® '®H 'R E
N=REN | BN | EECEEEEREEN | NN | EECECCERERN | [N | EEEEEERERRE oeEfFe ' "R "R I ””” E
1 ’ | | | | |
L R L R C
Retaller Favorlta Yelp TPC DS Retailer Favorita TPC-DS
C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB) L = Linear Regression; R = Regression Tree; C = Classification Tree; Intel i7-4770 (8 CPUs, 32GB)

ACM SIGMOD, July 2019

relational.ai
fdbresearch.github.io

