

A Layered Aggregate Engine for Analytics Workloads

M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, X. Nguyen

relational.ai fdbresearch.github.io

Current State of Affairs

- Carefully crafted by domain experts Comes with relational structure
- Throws away relational structure
- Can be order-of-magnitude larger

Turn Analytics Problem into Database Problem!

- 1. Exploit structure in the data
 - Algebraic structure: Factorized aggregate computation
 - Combinatorial structure: Query complexity measures
- 2. Sharing computation and data access
 - Aggregates decomposed into directional views over join tree
 - Share data access across views
- 3. Specialization for workload and data
 - Generate code specific to the query batch and dataset
 - Improve cache locality for hot data
- 4. Parallelization
 - Task and domain parallelism

The Layers of LMFAO: Layered Multiple Functional Aggregate Optimization

Aggregates required per Analytics Workload

Workload	Query Batch	# Queries
Linear Regression Covariance Matrix	SUM $(X_i * X_j)$ SUM (X_i) GROUP BY X_j COUNT (*) GROUP BY X_i, X_j	814
Decision Tree (Regression, 1 Node)	VARIANCE(Y) WHERE $X_j = c_j$	3,141
Mutual Information Chow-Liu Trees	COUNT(*)GROUP BY X_i COUNT(*)GROUP BY X_i, X_j	56
Data Cubes	SUM(<i>M</i>) GROUP BY <i>X</i> ₁ ,, <i>X</i> _d	40

Logical Optimization

1. Find Roots: For each query, decide its output (root) node

2. Break down each query into directional views over the join tree

3. Reuse partial-aggregates and Merge Views with same group-by attributes

(# Queries shown for Retailer dataset)

Dependency Graph & View Groups

Create Dependency Graph and Group Views computed over same relation

- View Group is computational unit, computed in one pass over relation
- Task and Domain Parallelism

Multi-Output Optimization & Code Compilation

$$V_{l} \longrightarrow item \qquad \alpha_{0} = 0; \\ \text{for each } i \in \pi_{\text{item}}(S \Join_{\text{item}} V_{l} \bowtie_{\text{item}} V'_{l}) \\ V_{l} \longrightarrow date \qquad \alpha_{1} = V_{l}(i); \qquad \alpha_{2} = g(i); \qquad \alpha_{3} = 0; \\ \text{for each } d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_{H} \bowtie_{\text{date}} V_{T}) \\ | \qquad \alpha_{4} = V_{H}(d); \qquad \alpha_{5} = 0; \\ \text{for each } c \in \pi_{\text{color}}\sigma_{\text{item}=i}V'_{l} : \alpha_{5} + = h(d, c) \cdot V'_{l}(i, c); \\ \alpha_{6} = 0; \qquad \alpha_{7} = \alpha_{2} \cdot \alpha_{5} \cdot \alpha_{4}; \\ \text{for each } s \in \pi_{\text{store}}(\sigma_{\text{item}=i,\text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_{T}) \\ | \qquad \alpha_{8} = V_{T}(d, s); \qquad \alpha_{9} = 0; \qquad \alpha_{10} = |\sigma_{\text{item}=i,\text{date}=d,\text{store}=s}S|; \\ \text{for each } u \in \pi_{\text{units}}\sigma_{\text{item}=i,\text{date}=d,\text{store}=s}S : \alpha_{9} + = f(u); \\ \alpha_{6} + = \alpha_{8} \cdot \alpha_{9}; \qquad \alpha_{11} = \alpha_{7} \cdot \alpha_{8} \cdot \alpha_{10}; \\ \text{if } Q_{2}(s) \text{ then } Q_{2}(s) + = \alpha_{11} \text{ else } Q_{2}(s) = \alpha_{11}; \\ \alpha_{3} + = \alpha_{4} \cdot \alpha_{6}; \\ \alpha_{0} + = \alpha_{1} \cdot \alpha_{3} \quad V_{S \rightarrow l}(i) = \alpha_{3} \cdot \alpha_{2}; \\ Q_{1} = \alpha_{0}; \\ Q_{2}: \text{ SUM } (f(\text{units})) \qquad V_{S \rightarrow l}: \text{ SUM } (f(\text{units}) \cdot g(\text{item})) \text{ GROUP BY item}) \\ Q_{2}: \text{ SUM } (g(\text{item}) \cdot h(\text{date}, \text{color})) \quad \text{GROUP BY store} \end{cases}$$

Aggregate Experiments

Relative Speedup over **DBX** and **MonetDB**

Machine Learning Experiments

Relative Speedup over **TensorFlow** and **MADIb**

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

L = Linear Regression; R = Regression Tree; C = Classification Tree; Intel i7-4770 (8 CPUs, 32GB)

