
A Layered Aggregate Engine for Analytics Workloads
M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo, X. Nguyen

relational.ai fdbresearch.github.io

Current State of Affairs

Sales

Weather

Inventory
Stores

Demographic
Items

Customers

Features

S
am

pl
es

I Carefully crafted by domain experts
I Comes with relational structure

I Throws away relational structure
I Can be order-of-magnitude larger

Turn Analytics Problem into Database Problem!

1. Exploit structure in the data
I Algebraic structure: Factorized aggregate computation
I Combinatorial structure: Query complexity measures

2. Sharing computation and data access
I Aggregates decomposed into directional views over join tree
I Share data access across views

3. Specialization for workload and data
I Generate code specific to the query batch and dataset
I Improve cache locality for hot data

4. Parallelization
I Task and domain parallelism

The Layers of LMFAO: Layered Multiple Functional Aggregate Optimization

Application→ Aggregates Logical Optimization Code Optimization

Application

Aggregates

Join Tree

Find Roots

Aggregate

Pushdown

Merge Views

Group Views

Multi-O
utput

Optim
ization

Parallelization

Compilation

Aggregates required per Analytics Workload

Workload Query Batch # Queries
Linear Regression SUM(Xi*Xj) 814
Covariance Matrix SUM(Xi) GROUP BY Xj

COUNT(*)GROUP BY Xi,Xj

Decision Tree VARIANCE(Y) WHERE Xj = cj 3,141
(Regression, 1 Node)

Mutual Information COUNT(*)GROUP BY Xi 56
Chow-Liu Trees COUNT(*)GROUP BY Xi,Xj

Data Cubes SUM(M) GROUP BY X1, . . . ,Xd 40

(# Queries shown for Retailer dataset)

Logical Optimization

Sales

Transactions

Stores Oil

Items

Holidays

Q1Q2

Q3

V T→
S

V R→
T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

1. Find Roots: For each query, decide its output (root) node
2. Break down each query into directional views over the join tree
3. Reuse partial-aggregates and Merge Views with same group-by attributes

Dependency Graph & View Groups

Q1,Q2,VS→I

VT→S

VR→T VO→T

VI→S,V ′I→S

VH→S

Q3
Group 6

Group 5

Group 1 Group 2

Group 4
Group 3

Group 7

I Create Dependency Graph and Group Views computed over same relation
I View Group is computational unit, computed in one pass over relation
I Task and Domain Parallelism

Multi-Output Optimization & Code Compilation

item

date

store

foreach i ∈ πitem(S 1item VI 1item V ′I)

foreach d ∈ πdate(σitem=iS 1date VH 1date VT)

foreach s ∈ πstore(σitem=i ,date=dS 1store σdate=dVT)

α0 = 0;

α1 = VI(i); α2 = g(i); α3 = 0;

α4 = VH(d); α5 = 0;
foreach c ∈ πcolorσitem=iV ′I : α5 += h(d , c) · V ′I (i , c);
α6 = 0; α7 = α2·α5·α4;

α8 = VT (d , s); α9 = 0; α10 = |σitem=i ,date=d ,store=sS|;
foreach u ∈ πunitsσitem=i ,date=d ,store=sS : α9 += f (u);
α6 += α8 · α9; α11 = α7 · α8 · α10;
if Q2(s) then Q2(s) += α11 else Q2(s) = α11;
α3 += α4 · α6;
α0 += α1 · α3 VS→I(i) = α3 · α2;

Q1 = α0;

VI

V ′I
VH

VT

Q1

Q2

VS→I

Q1: SUM (f (units)) VS→I: SUM (f (units) · g(item)) GROUP BY item

Q2: SUM (g(item) · h(date, color)) GROUP BY store

Aggregate Experiments

Relative Speedup over DBX and MonetDB

1

10

100

1000

C R C R C R C R
TPC-DSYelpFavoritaRetailer

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

Machine Learning Experiments

Relative Speedup over TensorFlow and MADlib

1

10

100

1000

L R L R C
TPC-DSFavoritaRetailer

L = Linear Regression; R = Regression Tree; C = Classification Tree; Intel i7-4770 (8 CPUs, 32GB)

ACM SIGMOD, July 2019

With at least same accuracy!

relational.ai
fdbresearch.github.io

