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Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!
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Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017
(based on 2017 Kaggle survey of 16,000 ML practitioners)
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Current State of Affairs in Analytics Workloads
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m Carefully crafted by domain experts m Throws away relational structure

m Comes with relational structure m Can be order-of-magnitude larger
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Turn Analytics Workload into Database Workload!

Many analytics workloads require computation of

batches of aggregate queries.

Advantages:

1. Use DB tools for optimization
2. Decompose Aggregates into views over join tree

> Using different roots and directional views
> Pushing aggregate computation past joins

3. Avoid materialization of data matrix

Challenge:

1. Workloads require many aggregate queries

In contrast:

1. Many ML systems rely on Linear Algebra packages for optimizations
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Aggregates are at the Core of Analytics Workloads

Workload Query Batch # Queries
Linear Regression SUM(X;*X;) 814
Covariance Matrix SUM(X;) GROUP BY X;

COUNT (*) GROUP BY X, X;
Decision Tree VARIANCE(Y) WHERE X; = ¢; 3,141
(Regression, 1 Node)
Mutual Information COUNT(*) GROUP BY X; 56
Chow-Liu Trees COUNT (%) GROUP BY X;, X;
Data Cubes SUM(M) GROUP BY Xi,..., Xy 40

(# Queries shown for Retailer dataset)
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Existing DBMSs are NOT Designed for Query Batches

| Relative Speedup for Our Approach over DBX and MonetDB |

1000 =

100 =

C R C R (o} R C R
Retailer Favorita Yelp TPC-DS

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)
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Tools of a Database Researcher

1. Exploit structure in the data

> Algebraic structure: Factorized aggregate computation
> Combinatorial structure: Query complexity measures

2. Sharing computation and data access

> Aggregates decomposed into views over join tree
> Share data access across views

3. Specialization for workload and data
> Generate code specific to the query batch and dataset

> Improve cache locality for hot data

4. Parallelization
> Task and domain parallelism
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LMFAO: Layered Multi Functional Aggregate Optimization

App — LMFAO Logical Optimization
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The Layers of LMFAQ: Logical Optimization
Q1: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Favorita Kaggle Dataset:
Units Sales for different store, date, item.
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The Layers of LMFAQ: Logical Optimization

Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Find Roots Layer:
For each query, decide its output (root) node.
Choose root which minimizes sizes of views.
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The Layers of LMFAQ: Logical Optimization

Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Aggregate Pushdown Layer:
Break down each query into directional views over the join tree.
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Reuse Partial Aggregates & Merge Views with same group-by attributes.
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Application

The Layers of LMFAO: Code Optimization

Q1: SUM (f(units)) Aggregates
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Group Views Layer: Parallelization

1. Construct Dependency Graph,

. X Compilation
2. Group Views that are computed over same relation.



The Layers of LMFAO: Code Optimization
Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Multi-Output Optimization Layer:
View Group is a computational unit in LMFAO.

All views in one group are computed in one scan over the relation.
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The Layers of LMFAO: Code Optimization
Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color
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Parallelization Layer:
Task parallelism: Evaluate independent groups in parallel
Domain parallelism: Partition the large relation used by each group
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Application

The Layers of LMFAO: Code Optimization

Q1: SUM (f(units)) A
ggregates
Qo: SUM (g(item) - h(date, color)) GROUP BY store

Qs: SUM (f(units) - g(item)) GROUP BY color
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Generate C++ code to compute each View Group. —
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Code Generation for Executing View Group 6 over Sales

item

date

store

Qi: SUM (f(units))
Traverse Sales as a trie following an order of its join attributes
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Code Generation for Executing View Group 6 over Sales

Vi

v = item
I

Vy — date

Vr — store

Qi: SUM (f(units))

foreach i € miem(S Miem Vi Mitem V/)

foreach d € 7Tdate(0'item:is Waate Vi Mgate VT)

foreach s € ’Tl'store(o'itern:i,date:ds Nstore Tdate=d VT)

Lookup into incoming views, e.g., V4, as early as possible
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Code Generation for Executing View Group 6 over Sales

Vi, ki V) Miem V]
V/, _% item oreach | € ﬂ'item(s Witem Vi Mitem /)
a1 = V(i)
az =0;
Vy — date foreach d € Wdate(O'item:iS Nate Vi Mdate VT)
as = Vi(d);
ag = 0;
Vr — store foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
ag = Vr(d,s); g =0;
foreach u € WunitsU\tem:i,date:d,store:sS tag = f(U);
Qe += Qg - Qg;
a3 += a4 - Qs;
o += a1 - a3

Qi = ao;

Qi: SUM (f(units))
Insert code for partial aggregates as early as possible
Reduces number of executed instructions 11/12



Code Generation for Executing View Group 6 over Sales

Vi—, forea ?1; ' V) Miem V/
v = item foreach i € iem (S Miem Vi Miem V)
a1 = V(i)
Qp = g(/);
az = 0;
Vy — date foreach d € Wdate(O'item:iS Nate Vi Mdate VT)
as = Vi(d);
ag = 0;
Vr — store foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
ag = Vr(d,s); g =0;
foreach u € 7TunitsUitem:i,date:d,store:sS Loy += f(U);
g += Qg - Qg;
a3z += Q4 - Q;
ap +=oq a3 Vs, (i) =as-az;

Qi = ao;

Vs_,: SUM (f(units) - g(item)) GROUP BY item

Different outputs share partial aggregates
11/12



Code Generation for Executing View Group 6 over Sales

Vi

v = item
I

Vy — date

Vr — store

ap = 0;
foreach i € mitem(S Miem Vi Miem V/)

a1 = V/(l)

az = g(i);

az =0;

foreach d € 7Tdate(0'item:is Waate Vi Mgate VT)

as = Vy(d); as=0;

foreach ¢ € TeolorGitem=i Vll Las = h(d7 C) . VI/(’v C);

ag=0; Q7=0a5- 024

foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
Qg = \/T(d7 S); ag =0; ap= |O'itemfi.daiefd,storefss‘;
foreach u € WunitsUitem:i,date:d,store:sS tag = f(U);
Qe += Qg - g; Qi1 = Q7 - Q8 * Q0;
if Qo(s) then Qx(s) += a1 else Qu(s) = ary;

a3z += 4 - Qe;
ap +=oq a3 Vs, (i) =as-az;

Q1 = ao;

Q:: SUM (g(item) - h(date, color)) GROUP BY store

Different outputs share partial aggregates
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Experimental Evaluation

‘ Relative Speedup for LMFAO over TensorFlow and MADIib

r T [ With at least same accuracy! ]
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Retailer Favorita TPC-DS

L = Linear Regression; R = Regression Tree; C = Classification Tree;
TensorFlow learns only 1 Decision Tree Node. Intel i7-4770 (8 CPUs, 32GB)
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