
1 / 12

A Layered Aggregate Engine
for Analytics Workloads
fdbresearch.github.io relational.ai

Maximilian Schleich
University of Oxford

Dan Olteanu, University of Oxford
Mahmoud Abo Khamis, relationalAI
Hung Q. Ngo, relationalAI
XuanLong Nguyen, University of Michigan

ACM SIGMOD June, 2019

fdbresearch.github.io
relational.ai

Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!

Overall By Industry

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017
(based on 2017 Kaggle survey of 16,000 ML practitioners)

2 / 12

Current State of Affairs in Analytics Workloads

Sales

Weather

Inventory
Stores

Demographic
Items

Customers

Features

S
am

pl
es

Carefully crafted by domain experts

Comes with relational structure

Throws away relational structure

Can be order-of-magnitude larger

3 / 12

Turn Analytics Workload into Database Workload!

Many analytics workloads require computation of

batches of aggregate queries.

Advantages:

1. Use DB tools for optimization

2. Decompose Aggregates into views over join tree
I Using different roots and directional views
I Pushing aggregate computation past joins

3. Avoid materialization of data matrix

Challenge:

1. Workloads require many aggregate queries

In contrast:

1. Many ML systems rely on Linear Algebra packages for optimizations

4 / 12

Aggregates are at the Core of Analytics Workloads

Workload Query Batch # Queries

Linear Regression SUM(Xi*Xj) 814
Covariance Matrix SUM(Xi) GROUP BY Xj

COUNT(*) GROUP BY Xi ,Xj

Decision Tree VARIANCE(Y) WHERE Xj = cj 3,141
(Regression, 1 Node)

Mutual Information COUNT(*) GROUP BY Xi 56
Chow-Liu Trees COUNT(*) GROUP BY Xi ,Xj

Data Cubes SUM(M) GROUP BY X1, . . . ,Xd 40

(# Queries shown for Retailer dataset)

5 / 12

Existing DBMSs are NOT Designed for Query Batches

Relative Speedup for Our Approach over DBX and MonetDB

1

10

100

1000

C R C R C R C R
TPC-DSYelpFavoritaRetailer

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

6 / 12

Tools of a Database Researcher

1. Exploit structure in the data
I Algebraic structure: Factorized aggregate computation
I Combinatorial structure: Query complexity measures

2. Sharing computation and data access
I Aggregates decomposed into views over join tree
I Share data access across views

3. Specialization for workload and data
I Generate code specific to the query batch and dataset
I Improve cache locality for hot data

4. Parallelization
I Task and domain parallelism

7 / 12

LMFAO: Layered Multi Functional Aggregate Optimization

Application

Aggregates

Join Tree Find Roots

Aggregate
Pushdown

Merge Views Group Views

Multi-Output
Optimization

Parallelization

Compilation

App→ LMFAO Logical Optimization Code Optimization

8 / 12

The Layers of LMFAO: Logical Optimization

Sales

Transactions

Stores Oil

Items

Holidays

Favorita Kaggle Dataset:
Units Sales for different store, date, item.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

9 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Logical Optimization

Sales

Transactions

Stores Oil

Items

Holidays

Q1 Q2

Q3

Find Roots Layer:
For each query, decide its output (root) node.
Choose root which minimizes sizes of views.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

9 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Logical Optimization

Sales

Transactions

Stores Oil

Items

Holidays

Q1 Q2

Q3

V T→
S

VR→
T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

Aggregate Pushdown Layer:
Break down each query into directional views over the join tree.
Reuse Partial Aggregates & Merge Views with same group-by attributes.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

9 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Code Optimization

Q1,Q2,VS→I

VT→S

VR→T VO→T

VI→S,V ′
I→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 3

Group 7
Sales

Transactions

Stores Oil

Items

Holidays

V T
→

S

V R
→

T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

Q1 Q2

Q3

Group Views Layer:

1. Construct Dependency Graph,

2. Group Views that are computed over same relation.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

10 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Code Optimization

Q1,Q2,VS→I

VT→S

VR→T VO→T

VI→S,V ′
I→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 3

Group 7
Sales

Transactions

Stores Oil

Items

Holidays

V T
→

S

V R
→

T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

Q1 Q2

Q3

Multi-Output Optimization Layer:
View Group is a computational unit in LMFAO.
All views in one group are computed in one scan over the relation.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

10 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Code Optimization

Q1,Q2,VS→I

VT→S

VR→T VO→T

VI→S,V ′
I→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 3

Group 7
Sales

Transactions

Stores Oil

Items

Holidays

V T
→

S

V R
→

T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

Q1 Q2

Q3

Parallelization Layer:
Task parallelism: Evaluate independent groups in parallel
Domain parallelism: Partition the large relation used by each group

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

10 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

The Layers of LMFAO: Code Optimization

Q1,Q2,VS→I

VT→S

VR→T VO→T

VI→S,V ′
I→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 3

Group 7
Sales

Transactions

Stores Oil

Items

Holidays

V T
→

S

V R
→

T

V
O→

T

V
H→

S

VI→S V ′
I→S

VS→I

Q1 Q2

Q3

Compilation Layer:
Generate C++ code to compute each View Group.

Application

Aggregates

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

10 / 12

Q1: SUM (f (units))
Q2: SUM (g(item) · h(date, color)) GROUP BY store

Q3: SUM (f (units) · g(item)) GROUP BY color

Code Generation for Executing View Group 6 over Sales

item

date

store

Q1: SUM (f (units))

Traverse Sales as a trie following an order of its join attributes

11 / 12

Code Generation for Executing View Group 6 over Sales

item

date

store

foreach i ∈ πitem(S 1item VI 1item V ′
I)

foreach d ∈ πdate(σitem=iS 1date VH 1date VT)

foreach s ∈ πstore(σitem=i,date=d S 1store σdate=d VT)

VI

V ′
I

VH

VT

Q1: SUM (f (units))

Lookup into incoming views, e.g., VH , as early as possible

11 / 12

Code Generation for Executing View Group 6 over Sales

item

date

store

foreach i ∈ πitem(S 1item VI 1item V ′
I)

foreach d ∈ πdate(σitem=iS 1date VH 1date VT)

foreach s ∈ πstore(σitem=i,date=d S 1store σdate=d VT)

α0 = 0;

α1 = VI(i)

α3 = 0;

α4 = VH(d);

α6 = 0;

α8 = VT (d , s); α9 = 0;
foreach u ∈ πunitsσitem=i,date=d,store=sS : α9 += f (u);
α6 += α8 · α9;

α11 = α7 · α8 · α10;

α3 += α4 · α6;
α0 += α1 · α3

Q1 = α0;

VI

V ′
I

VH

VT

Q1: SUM (f (units))

Insert code for partial aggregates as early as possible
Reduces number of executed instructions 11 / 12

Code Generation for Executing View Group 6 over Sales

item

date

store

foreach i ∈ πitem(S 1item VI 1item V ′
I)

foreach d ∈ πdate(σitem=iS 1date VH 1date VT)

foreach s ∈ πstore(σitem=i,date=d S 1store σdate=d VT)

α0 = 0;

α1 = VI(i)
α2 = g(i);

α3 = 0;

α4 = VH(d);

α6 = 0;

α8 = VT (d , s); α9 = 0;
foreach u ∈ πunitsσitem=i,date=d,store=sS : α9 += f (u);
α6 += α8 · α9;

α11 = α7 · α8 · α10;

α3 += α4 · α6;
α0 += α1 · α3 VS→I(i) = α3 · α2;

Q1 = α0;

VI

V ′
I

VH

VT

VS→I : SUM (f (units) · g(item)) GROUP BY item

Different outputs share partial aggregates
11 / 12

Code Generation for Executing View Group 6 over Sales

item

date

store

foreach i ∈ πitem(S 1item VI 1item V ′
I)

foreach d ∈ πdate(σitem=iS 1date VH 1date VT)

foreach s ∈ πstore(σitem=i,date=d S 1store σdate=d VT)

α0 = 0;

α1 = VI(i)
α2 = g(i);

α3 = 0;

α4 = VH(d); α5 = 0;
foreach c ∈ πcolorσitem=iV ′

I : α5 += h(d , c) · V ′
I (i, c);

α6 = 0; α7 = α5 · α2·α4;

α8 = VT (d , s); α9 = 0; α10 = |σitem=i,date=d,store=sS|;
foreach u ∈ πunitsσitem=i,date=d,store=sS : α9 += f (u);
α6 += α8 · α9; α11 = α7 · α8 · α10;
if Q2(s) then Q2(s) += α11 else Q2(s) = α11;

α3 += α4 · α6;
α0 += α1 · α3 VS→I(i) = α3 · α2;

Q1 = α0;

VI

V ′
I

VH

VT

Q2: SUM (g(item) · h(date, color)) GROUP BY store

Different outputs share partial aggregates
11 / 12

Experimental Evaluation

Relative Speedup for LMFAO over TensorFlow and MADlib

1

10

100

1000

L R L R C
TPC-DSFavoritaRetailer

L = Linear Regression; R = Regression Tree; C = Classification Tree;

TensorFlow learns only 1 Decision Tree Node. Intel i7-4770 (8 CPUs, 32GB)

12 / 12

With at least same accuracy!

