A Layered Aggregate Engine
for Analytics Workloads

fdbresearch.github.io relational.ai

Maximilian Schleich
University of Oxford

Dan Olteanu, University of Oxford

OXTORD B MicHiGaN Mahmoud Abo Khamis, relationalAl
Hung Q. Ngo, relationalAl

XuanLong Nguyen, University of Michigan

relationalAl

Al for the enterprise

ACM SIGMOD June, 2019

1/12

fdbresearch.github.io
relational.ai

Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!

100 % 100 %
80 % 80 %
60 % 60 %

40 %

40 %

20 % 20 %

%o 0%

0% .
Relational ~ Text Image Video Other Retail Marketing Insurance Financial

Overall By Industry

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017
(based on 2017 Kaggle survey of 16,000 ML practitioners)
2/12

Current State of Affairs in Analytics Workloads

Customers
Weather
Features
Sales
Stores
Inventory
I N
2
o
—_— IS
©
. n
Demographic
Items

m Carefully crafted by domain experts m Throws away relational structure

m Comes with relational structure m Can be order-of-magnitude larger

3/12

Turn Analytics Workload into Database Workload!

Many analytics workloads require computation of

batches of aggregate queries.

Advantages:

1. Use DB tools for optimization
2. Decompose Aggregates into views over join tree

> Using different roots and directional views
> Pushing aggregate computation past joins

3. Avoid materialization of data matrix

Challenge:

1. Workloads require many aggregate queries

In contrast:

1. Many ML systems rely on Linear Algebra packages for optimizations

4/12

Aggregates are at the Core of Analytics Workloads

Workload Query Batch # Queries
Linear Regression SUM(X;*X;) 814
Covariance Matrix SUM(X;) GROUP BY X;

COUNT (*) GROUP BY X, X;
Decision Tree VARIANCE(Y) WHERE X; = ¢; 3,141
(Regression, 1 Node)
Mutual Information COUNT(*) GROUP BY X; 56
Chow-Liu Trees COUNT (%) GROUP BY X;, X;
Data Cubes SUM(M) GROUP BY Xi,..., Xy 40

(# Queries shown for Retailer dataset)

5/12

Existing DBMSs are NOT Designed for Query Batches

| Relative Speedup for Our Approach over DBX and MonetDB |

1000 =

100 =

C R C R (o} R C R
Retailer Favorita Yelp TPC-DS

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

6/12

Tools of a Database Researcher

1. Exploit structure in the data

> Algebraic structure: Factorized aggregate computation
> Combinatorial structure: Query complexity measures

2. Sharing computation and data access

> Aggregates decomposed into views over join tree
> Share data access across views

3. Specialization for workload and data
> Generate code specific to the query batch and dataset

> Improve cache locality for hot data

4. Parallelization
> Task and domain parallelism

7/12

LMFAO: Layered Multi Functional Aggregate Optimization

App — LMFAO Logical Optimization

I

N

Code Optimization

Application Group Views

Multi-Output
Optimization
Aggregate
Pushdown

y)
S

Aggregates

Parallelization

W

L

Compilation

N
Find Roots

8/12

The Layers of LMFAQ: Logical Optimization
Q1: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

Sales

/

ltems

Transactions Holidays

N
l/

Stores

I\
E/

Favorita Kaggle Dataset:
Units Sales for different store, date, item.

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

9/12

The Layers of LMFAQ: Logical Optimization

Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

Qi Q

[

Sales

/

(@3]
I

Holidays

N
I/

Transactions

AN
S

Find Roots Layer:
For each query, decide its output (root) node.
Choose root which minimizes sizes of views.

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

— « « — « — —
©
=
=
N

The Layers of LMFAQ: Logical Optimization

Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

i Qo

’/ '/
Sales %
« \Kyg\“’) ltems
&

Holidays

— 0

@
1

Transactions

N

Aggregate Pushdown Layer:
Break down each query into directional views over the join tree.

SN

Y
Zoh

Reuse Partial Aggregates & Merge Views with same group-by attributes.

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

9/12

Application

The Layers of LMFAO: Code Optimization

Q1: SUM (f(units)) Aggregates
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

17 (2]
17 «~. Group6
Group 7

S
o X "~ Aggregate
& ?&U‘) Pushdown
Group 5 Viss Vins

i Group 4 -
[Transactions J [Holidays J Viiss P Merge Views

S
=

Joil

Find Roots

/

- — « « — «— — — «— —
o =
@
= @
)

Group 3
< Group Views
&A
Group 1 Group 2 Multi-Output
Optimizati
o) o)
Group Views Layer: Parallelization

1. Construct Dependency Graph,

. X Compilation
2. Group Views that are computed over same relation.

The Layers of LMFAO: Code Optimization
Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

17 (2]

17 «~. Group6
Group 7
Group 5

[Transactions J [Holidays J Vs

Group 3

/

Group 1 Group 2

(o] ()

Multi-Output Optimization Layer:
View Group is a computational unit in LMFAO.

All views in one group are computed in one scan over the relation.

!
Viss Vins

Application

Aggregates

Joil

=
=

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

@
®

Compilation

10/12

The Layers of LMFAO: Code Optimization
Qq: SUM (f(units))
Qo: SUM (g(item) - h(date, color)) GROUP BY store
Qs: SUM (f(units) - g(item)) GROUP BY color

17 (2]
17 «~. Group6
Group 7

\S

. Group 4
[Transactions J [Holidays J Viss up

Group 3

/

Group 1 Group 2

(o] ()

Parallelization Layer:
Task parallelism: Evaluate independent groups in parallel
Domain parallelism: Partition the large relation used by each group

Application

Aggregates

=
=

Joil

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

@
®

Compilation

10/12

Application

The Layers of LMFAO: Code Optimization

Q1: SUM (f(units)) A
ggregates
Qo: SUM (g(item) - h(date, color)) GROUP BY store

Qs: SUM (f(units) - g(item)) GROUP BY color

i (2]
17 «~_ Group6
v, 3 Group 7
Aggregate

S
- S, Pushdown
Group 5 =S TS
. G 4 -
[Transactions J [Holidays J Viss roup Merge Views

Joi

5
=

Find Roots

/

N — «— « — «— «— — — —
o =
@
= @
)

Group 3
s Group Views
Group 1 Group 2 Multi-Output
() ()
Parallelization
Compilation Layer:

Generate C++ code to compute each View Group. —

Compilation

Code Generation for Executing View Group 6 over Sales

item

date

store

Qi: SUM (f(units))
Traverse Sales as a trie following an order of its join attributes
11/12

Code Generation for Executing View Group 6 over Sales

Vi

v = item
I

Vy — date

Vr — store

Qi: SUM (f(units))

foreach i € miem(S Miem Vi Mitem V/)

foreach d € 7Tdate(0'item:is Waate Vi Mgate VT)

foreach s € ’Tl'store(o'itern:i,date:ds Nstore Tdate=d VT)

Lookup into incoming views, e.g., V4, as early as possible

11/12

Code Generation for Executing View Group 6 over Sales

Vi, ki V) Miem V]
V/, _% item oreach | € ﬂ'item(s Witem Vi Mitem /)
a1 = V(i)
az =0;
Vy — date foreach d € Wdate(O'item:iS Nate Vi Mdate VT)
as = Vi(d);
ag = 0;
Vr — store foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
ag = Vr(d,s); g =0;
foreach u € WunitsU\tem:i,date:d,store:sS tag = f(U);
Qe += Qg - Qg;
a3 += a4 - Qs;
o += a1 - a3

Qi = ao;

Qi: SUM (f(units))
Insert code for partial aggregates as early as possible
Reduces number of executed instructions 11/12

Code Generation for Executing View Group 6 over Sales

Vi—, forea ?1; ' V) Miem V/
v = item foreach i € iem (S Miem Vi Miem V)
a1 = V(i)
Qp = g(/);
az = 0;
Vy — date foreach d € Wdate(O'item:iS Nate Vi Mdate VT)
as = Vi(d);
ag = 0;
Vr — store foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
ag = Vr(d,s); g =0;
foreach u € 7TunitsUitem:i,date:d,store:sS Loy += f(U);
g += Qg - Qg;
a3z += Q4 - Q;
ap +=oq a3 Vs, (i) =as-az;

Qi = ao;

Vs_,: SUM (f(units) - g(item)) GROUP BY item

Different outputs share partial aggregates
11/12

Code Generation for Executing View Group 6 over Sales

Vi

v = item
I

Vy — date

Vr — store

ap = 0;
foreach i € mitem(S Miem Vi Miem V/)

a1 = V/(l)

az = g(i);

az =0;

foreach d € 7Tdate(0'item:is Waate Vi Mgate VT)

as = Vy(d); as=0;

foreach ¢ € TeolorGitem=i Vll Las = h(d7 C) . VI/(’v C);

ag=0; Q7=0a5- 024

foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)
Qg = \/T(d7 S); ag =0; ap= |O'itemfi.daiefd,storefss‘;
foreach u € WunitsUitem:i,date:d,store:sS tag = f(U);
Qe += Qg - g; Qi1 = Q7 - Q8 * Q0;
if Qo(s) then Qx(s) += a1 else Qu(s) = ary;

a3z += 4 - Qe;
ap +=oq a3 Vs, (i) =as-az;

Q1 = ao;

Q:: SUM (g(item) - h(date, color)) GROUP BY store

Different outputs share partial aggregates

11/12

Experimental Evaluation

‘ Relative Speedup for LMFAO over TensorFlow and MADIib

r T [With at least same accuracy!]

1000

100

L R L R C
Retailer Favorita TPC-DS

L = Linear Regression; R = Regression Tree; C = Classification Tree;
TensorFlow learns only 1 Decision Tree Node. Intel i7-4770 (8 CPUs, 32GB)

12/12

