A Layered Aggregate Engine for Analytics Workloads

fdbresearch.github.io

relational.ai

Maximilian Schleich

University of Oxford

Dan Olteanu, University of Oxford
Mahmoud Abo Khamis, relationalAI
Hung Q. Ngo, relationalAI
XuanLong Nguyen, University of Michigan

ACM SIGMOD

June, 2019

Relational Data is Ubiquitous

Kaggle Survey: Most Data Scientists use Relational Data at Work!

Current State of Affairs in Analytics Workloads

- Carefully crafted by domain experts
- Comes with relational structure

- Throws away relational structure
- Can be order-of-magnitude larger

Turn Analytics Workload into Database Workload!

Many analytics workloads require computation of

batches of aggregate queries.

Advantages:

- 1. Use DB tools for optimization
- 2. Decompose Aggregates into views over join tree
 - Using different roots and directional views
 - Pushing aggregate computation past joins
- 3. Avoid materialization of data matrix

Challenge:

1. Workloads require many aggregate queries

In contrast:

1. Many ML systems rely on Linear Algebra packages for optimizations

Aggregates are at the Core of Analytics Workloads

Workload	Query Batch	# Queries
Linear Regression	$SUM(X_i * X_j)$	814
Covariance Matrix	$SUM(X_i)$ GROUP BY X_j	
	COUNT(*) GROUP BY X_i, X_j	
Decision Tree	$\mathtt{VARIANCE}(Y) \ \mathtt{WHERE} \ \ X_j = c_j$	3,141
(Regression, 1 Node)		
Mutual Information	COUNT(*) GROUP BY X_i	56
Chow-Liu Trees	COUNT(*) GROUP BY X_i, X_j	
Data Cubes	$\mathrm{SUM}(M)$ GROUP BY X_1,\ldots,X_d	40

(# Queries shown for Retailer dataset)

Existing DBMSs are **NOT** Designed for Query Batches

Relative Speedup for Our Approach over DBX and MonetDB

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

Tools of a Database Researcher

1. Exploit structure in the data

- Algebraic structure: Factorized aggregate computation
- Combinatorial structure: Query complexity measures

2. Sharing computation and data access

- Aggregates decomposed into views over join tree
- Share data access across views

3. Specialization for workload and data

- Generate code specific to the query batch and dataset
- Improve cache locality for hot data

4. Parallelization

Task and domain parallelism

LMFAO: Layered Multi Functional Aggregate Optimization

The Layers of LMFAO: Logical Optimization

```
Q_1: SUM (f(\text{units}))

Q_2: SUM (g(\text{item}) \cdot h(\text{date}, \text{color})) GROUP BY store

Q_3: SUM (f(\text{units}) \cdot g(\text{item})) GROUP BY color
```


Favorita Kaggle Dataset:

Units Sales for different store, date, item.

The Layers of LMFAO: Logical Optimization

```
Q_1: SUM (f(units))
Q_2: SUM (g(\text{item}) \cdot h(\text{date}, \text{color})) GROUP BY store
Q_3: SUM (f(units) \cdot g(item))
                                        GROUP BY color
                                            Q_1 Q_2
                                          Sales
                                                                      Items
                                                      Holidays
                         Transactions
               Stores
                                             Oil
```

Find Roots Layer:

For each query, decide its output (root) node. Choose root which minimizes sizes of views.

Application Aggregates Join Tree Find Roots Aggregate Pushdown Merge Views Group Views Multi-Output Optimization Parallelization

Compilation

9/12

The Layers of LMFAO: Logical Optimization

```
Q_1: SUM (f(units))
Q_2: SUM (g(\text{item}) \cdot h(\text{date}, \text{color})) GROUP BY store
Q_3: SUM (f(units) \cdot g(item))
                                        GROUP BY color
                                           Q_1 Q_2
                                                       VI S VI S
                                          Sales
                                                        Vs-1
                                                                     Items
                                                      Holidays
                         Transactions
               Stores
                                            Oil
```

Aggregate Pushdown Layer:

Break down each query into directional views over the join tree.

Reuse Partial Aggregates & Merge Views with same group-by attributes.

Application Aggregates Join Tree Find Roots Aggregate Pushdown Merge Views Group Views Multi-Output Optimization Parallelization

Compilation

 Q_1 : SUM (f(units))

 Q_2 : SUM $(g(\text{item}) \cdot h(\text{date}, \text{color}))$ GROUP BY store

 Q_3 : SUM $(f(units) \cdot g(item))$ GROUP BY color

Group Views Layer:

- 1. Construct Dependency Graph,
- 2. Group Views that are computed over same relation.

 Q_1 : SUM (f(units))

 Q_2 : SUM $(g(\text{item}) \cdot h(\text{date}, \text{color}))$ GROUP BY store

 Q_3 : SUM $(f(units) \cdot g(item))$ GROUP BY color

Multi-Output Optimization Layer:

View Group is a computational unit in LMFAO.

All views in one group are computed in one scan over the relation.

Application Aggregates Join Tree Find Roots Aggregate Pushdown Merge Views Group Views Multi-Output Optimization Parallelization

Compilation

 Q_1 : SUM (f(units)) Q_2 : SUM ($g(\text{item}) \cdot h(\text{date}, \text{color})$) GROUP BY store Q_3 : SUM $(f(units) \cdot g(item))$ GROUP BY color Q1 Q2 Group 6 Group 7 VINS VINS Sales $Q_1, Q_2, V_{S\rightarrow I}$ Items $V_{l\to S}, V'_{l\to S}$ Group 5 Group 4 Transactions Holidays $V_{T \rightarrow S}$ $V_{H \to S}$ Group 3 Group 2

Group 1

 $V_{B \rightarrow T}$

 $V_{O \rightarrow T}$

Parallelization Layer:

Oil

Stores

Task parallelism: Evaluate independent groups in parallel Domain parallelism: Partition the large relation used by each group

Application Aggregates Join Tree Find Roots Aggregate Pushdown Merge Views Group Views Multi-Output Optimization Parallelization

Compilation

```
Q_1: SUM (f(units))
Q_2: SUM (g(\text{item}) \cdot h(\text{date}, \text{color})) GROUP BY store
Q_3: SUM (f(units) \cdot g(item))
                                                    GROUP BY color
                           Q1 Q2
                                                                                       Group 6
                                       VIJS VIJS
                                                                   Group 7
                          Sales
                                                                                   Q_1, Q_2, V_{S\rightarrow I}
                                                        Items
                                                                                                         V_{l\to S}, V'_{l\to S}
                                                                 Group 5
                                                                                                           Group 4
           Transactions
                                    Holidays
                                                                        V_{T \rightarrow S}
                                                                                          V_{H \to S}
                                                                                               Group 3
                                                                                     Group 2
                                                       Group 1
                                                             V_{R \to T}
Stores
                                Oil
                                                                                   V_{O \rightarrow T}
```

Compilation Layer:

Generate C++ code to compute each View Group.

 Q_1 : SUM (f(units))

Traverse Sales as a trie following an order of its join attributes

 Q_1 : SUM (f(units))

Lookup into incoming views, e.g., V_H , as early as possible

```
for each i \in \pi_{\text{item}}(S \bowtie_{\text{item}} V_i \bowtie_{\text{item}} V'_i)
                                          \alpha_3 = 0:
                                          for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
                                           \alpha_4 = V_H(d);
                                                \alpha_6 = 0;
V_T \rightarrow \text{store}
                                           for each s \in \pi_{\text{store}}(\sigma_{\text{item}=i,\text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_T)
                                                \alpha_8 = V_T(d,s); \quad \alpha_9 = 0;
                                               for each u \in \pi_{\text{units}} \sigma_{\text{item}=i, \text{date}=d, \text{store}=s} S : \alpha_9 += f(u);
                                                 \alpha_6 += \alpha_8 \cdot \alpha_9;
```

Q_1 : SUM (f(units))

Insert code for partial aggregates as early as possible

Reduces number of executed instructions

```
\begin{array}{c|c} V_I \Longrightarrow \text{item} & \alpha_0 = 0; \\ V_I' \Longrightarrow \text{item} & I & \alpha_1 = V_I(i) \\ & \alpha_2 = g(i); \\ & \alpha_3 = 0; \\ & V_H \to \text{date} & \text{foreach } d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H) \end{array}
                                                    for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
                                                             \alpha_4 = V_H(d);
                                                                  \alpha_6=0;
                                                             for each s \in \pi_{\mathsf{store}}(\sigma_{\mathsf{item}=i,\mathsf{date}=d}S \bowtie_{\mathsf{store}} \sigma_{\mathsf{date}=d}V_{\mathcal{T}})
                                                                    \alpha_8 = V_T(d,s); \quad \alpha_9 = 0;
                                                             foreach u \in \pi_{\text{units}}\sigma_{\text{item}=i,\text{date}=d,\text{store}=s}S : \alpha_9 += f(u);

\alpha_6 += \alpha_8 \cdot \alpha_9;
                                                                    \alpha_6 += \alpha_8 \cdot \alpha_9;
                                                          \begin{vmatrix} \alpha_3 += \alpha_4 \cdot \alpha_6; \\ \alpha_0 += \alpha_1 \cdot \alpha_3 & V_{S \to I}(i) = \alpha_3 \cdot \alpha_2; \end{vmatrix}
```

 $V_{S o I}$: SUM $(f(\text{units}) \cdot g(\text{item}))$ GROUP BY item

Different outputs share partial aggregates

```
\alpha_0 = 0:
                                        for each i \in \pi_{\text{item}}(S \bowtie_{\text{item}} V_i \bowtie_{\text{item}} V'_i)
V_H \rightarrow \text{date}
                                            for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
                                                  \alpha_4 = V_H(d); \quad \alpha_5 = 0;
                                                  for each c \in \pi_{\text{color}} \sigma_{\text{item}=i} V'_i: \alpha_5 += h(d,c) \cdot V'_i(i,c);
                                                  \alpha_6 = 0; \alpha_7 = \alpha_5 \cdot \alpha_2 \cdot \alpha_4;
                                                for each s \in \pi_{\text{store}}(\sigma_{\text{item}=i, \text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_T)
V_{\tau} \rightarrow \text{store}
                                                  \alpha_8 = V_7(d, s); \quad \alpha_9 = 0; \quad \alpha_{10} = |\sigma_{\text{item}=i, date}|_{d, store} S|_{d, store}
                                                 for each u \in \pi_{\text{units}} \sigma_{\text{item}=i, \text{date}=d, \text{store}=s} S : \alpha_9 += f(u);
                                                 \alpha_6 += \alpha_8 \cdot \alpha_9; \quad \alpha_{11} = \alpha_7 \cdot \alpha_8 \cdot \alpha_{10};
                                                 | if Q_2(s) then Q_2(s) += \alpha_{11} else Q_2(s) = \alpha_{11};
                                            \alpha_3 += \alpha_4 \cdot \alpha_6;

\alpha_0 += \alpha_1 \cdot \alpha_3 \quad V_{S \to I}(i) = \alpha_3 \cdot \alpha_2;
```

 Q_2 : SUM $(g(\text{item}) \cdot h(date, color))$ GROUP BY store

Different outputs share partial aggregates

Experimental Evaluation

 $L = \mbox{Linear Regression}; \quad R = \mbox{Regression Tree}; \quad C = \mbox{Classification Tree};$ $\mbox{TensorFlow learns only 1 Decision Tree Node}. \quad \mbox{Intel i7-4770 (8 CPUs, 32GB)}$