A Dichotomy

for Queries with Negation
in Probabilistic Databases

Dan Olteanu
 Joint work with Robert Fink

Uncertainty in Computation
Simons Institute for the Theory of Computing Berkeley Oct 5, 2016

Outline

Probabilistic Databases

Dan Sucia
Dan Olteanu
Christopher Ré
Christoph Koch

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

Tuple-Independent Probabilistic Databases

Tuple-independent database of n tuples $\left(t_{i}\right)_{i \in[n]}$:
■ Each tuple t_{i} associated with an independent Boolean random variable x_{i}.
■ $P\left(x_{i}=\right.$ true $)$ gives the probability that t_{i} exists in the database.

Possible-worlds semantics:
■ Each possible world defined by an assignment θ of the variables $\left(x_{i}\right)_{i \in[n]}$:

- It consists of all tuples t_{i} for which $\theta\left(x_{i}\right)=$ true.
- It has probability $P(\theta)=\Pi_{i \in[n]} P\left(x_{i}=\theta\left(x_{i}\right)\right)$.
- A tuple-independent database with n tuples has 2^{n} possible worlds.

Relational Algebra

Popular database query language since Codd times.

- Algebra carrier: set of all finite relations
- Algebra operations: π (projection), \times (Cartesian product), - (set difference), \bowtie (join), σ (selection), \cup (set union), δ (renaming)
- As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment 1 RA $^{-}$
■ Included: Equality joins, selections, projections, difference
■ Excluded: Repeating relation symbols, unions

Relational Algebra

Popular database query language since Codd times.

- Algebra carrier: set of all finite relations

■ Algebra operations: π (projection), \times (Cartesian product), - (set difference), \bowtie (join), σ (selection), \cup (set union), δ (renaming)

- As expressive as domain relational calculus (RC)

In this talk: Relational algebra fragment $1 \mathrm{RA}^{-}$
■ Included: Equality joins, selections, projections, difference
■ Excluded: Repeating relation symbols, unions
Examples of (Boolean) 1RA ${ }^{-}$queries:

- Are there combinations of tuples in (R, T) that are not in (U, V) ?

$$
\begin{array}{rlrl}
\pi_{\emptyset}[(R(A) \times T(B)) & - & (U(A) \times V(B))] \\
\exists_{A} \exists_{B}[(R(A) \wedge T(B)) & \wedge \neg & & (U(A) \wedge V(B))]
\end{array}
$$

- Does relation S "hold hands" with both R and T ?

$$
\left.\left.\begin{array}{rl}
\pi_{\emptyset}[R(A) & \bowtie S(A, B) \bowtie T(B)] \\
\exists_{A} \exists_{B}[R(A) & \wedge S(A, B) \tag{inRC}
\end{array}\right) T(B)\right]
$$

The Query Evaluation Problem

For any Boolean $1 \mathrm{RA}^{-}$query Q and tuple-independent database D :

Compute the probability that Q is true in a random world of D.

The case of non-Boolean queries can be reduced to the Boolean case.

We are interested in the data complexity of this problem.
■ Fix the query Q and take the database D as input.

Outline

Probabilistic Databases 101

The Dichotomy

The Interesting but Hard Queries

The Easy Queries

Leftovers

Data complexity of any $1 \mathrm{RA}^{-}$query Q in tuple-independent databases:

- Polynomial time if Q is hierarchical and \#P-hard otherwise.

Hierarchical 1RA- Queries

(Boolean) 1RA ${ }^{-}$query Q is hierarchical if

- For every pair of distinct query variables A and B in Q,
- there is no triple of relation symbols R, S, and T in Q such that:

■ R has A but not B, S has both A and B, and T has B but not A.

Hierarchical 1RA- Queries

(Boolean) 1RA- query Q is hierarchical if
■ For every pair of distinct query variables A and B in Q,

- there is no triple of relation symbols R, S, and T in Q such that:
$\square R$ has A but not B, S has both A and B, and T has B but not A.

Hierarchical 1RA- Queries

(Boolean) 1 RA $^{-}$query Q is hierarchical if

- For every pair of distinct query variables A and B in Q,
- there is no triple of relation symbols R, S, and T in Q such that:

■ R has A but not B, S has both A and B, and T has B but not A.

Hierarchical 1RA- Queries

(Boolean) $1 \mathrm{RA}^{-}$query Q is hierarchical if

- For every pair of distinct query variables A and B in Q,
- there is no triple of relation symbols R, S, and T in Q such that:

■ R has A but not B, S has both A and B, and T has B but not A.

Examples

Hierarchical queries:

- $\pi_{\emptyset}[(R(A) \bowtie S(A, B))-T(A, B)]$
- $\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]$
- $\pi_{\emptyset}[(M(A) \times N(B))-[(R(A) \times T(B))-(U(A) \times V(B))]]$
- $\pi_{\emptyset}\left[\pi_{A}[M(A) \times N(B)]-\pi_{A}[(R(A) \times T(B))-(U(A) \times V(B))]\right]$

Examples

Hierarchical queries:

- $\pi_{\emptyset}[(R(A) \bowtie S(A, B))-T(A, B)]$

■ $\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]$

- $\pi_{\emptyset}[(M(A) \times N(B))-[(R(A) \times T(B))-(U(A) \times V(B))]]$
- $\pi_{\emptyset}\left[\pi_{A}[M(A) \times N(B)]-\pi_{A}[(R(A) \times T(B))-(U(A) \times V(B))]\right]$

Non-hierarchical queries:

- $\pi_{\emptyset}[R(A) \bowtie S(A, B) \bowtie T(B)]$
- $\pi_{\emptyset}\left[\pi_{B}(R(A) \bowtie S(A, B))-T(B)\right]$
- $\pi_{\emptyset}\left[T(B)-\pi_{B}(R(A) \bowtie S(A, B))\right]$
- $\pi_{\emptyset}\left[X(A) \bowtie\left[R(A)-\pi_{A}(T(B) \bowtie S(A, B))\right]\right]$

Outline

The Interesting but Hard Queries

The Easy Queries

Leftovers

Hardness Proof Idea

Reduction from \#P-hard model counting problem for positive bipartite DNF:
■ Given a non-hierarchical $1 \mathrm{RA}^{-}$query Q and

- Any positive bipartite DNF formula Ψ over disjoint sets \mathbf{X} and \mathbf{Y} of random variables.
- \# Ψ can be computed using linearly many calls to an oracle for $P(Q)$, where Q is evaluated on tuple-independent databases of sizes linear in the size of Ψ.

A Simple Case

Input formula and query:
■ $\Psi=x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{1}$ over sets $\mathbf{X}=\left\{x_{1}, x_{2}\right\}, \mathbf{Y}=\left\{y_{1}, y_{2}\right\}$

- $Q=\pi_{\emptyset}[R(A) \bowtie S(A, B) \bowtie T(B)]$

Construct a database D such that Ψ becomes the grounding of Q wrt D :
■ Column Φ holds formulas over random variables.

- We use \top for true and \perp for false.

■ Variables also used as constants for A and B.

- $S\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \top\right): x_{i} y_{j}$ is a clause in Ψ.
- $R\left(\mathrm{x}_{\mathrm{i}}, x_{i}\right)$ and $T\left(\mathrm{y}_{j}, y_{j}\right): x_{i}$ is a variable in \mathbf{X} and y_{j} is a variable in \mathbf{Y}.

R	T	S	$R \bowtie S \bowtie T$	$\pi_{\emptyset}[R \bowtie S \bowtie T]$
A ${ }^{\text {d }}$	B ¢	$A B \Phi$	$A B \quad \Phi$	Ф
$\mathrm{x}_{1} \mathrm{x}_{1}$	$\mathrm{y}_{1} \mathrm{y}_{1}$	$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{~T}$	$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{1} y_{1}$	() Ψ
$\mathrm{x}_{2} \mathrm{x}_{2}$	$\mathrm{y}_{2} \mathrm{y}_{2}$	$\mathrm{x}_{1} \mathrm{y}_{2} \top$	$\mathrm{x}_{1} \mathrm{y}_{2} x_{1} y_{2}$	
		$\mathrm{x}_{2} \mathrm{y}_{1} \mathrm{~T}$	$\mathrm{x}_{2} \mathrm{y}_{1} x_{2} y_{1}$	

A Simple Case

Input formula and query:
■ $\Psi=x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{1}$ over sets $\mathbf{X}=\left\{x_{1}, x_{2}\right\}, \mathbf{Y}=\left\{y_{1}, y_{2}\right\}$

- $Q=\pi_{\emptyset}[R(A) \bowtie S(A, B) \bowtie T(B)]$

Construct a database D such that Ψ becomes the grounding of Q wrt D :

- Column Φ holds formulas over random variables.
- We use \top for true and \perp for false.

■ Variables also used as constants for A and B.

- $S\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \top\right): x_{i} y_{j}$ is a clause in Ψ.
- $R\left(\mathrm{x}_{\mathrm{i}}, x_{i}\right)$ and $T\left(\mathrm{y}_{j}, y_{j}\right): x_{i}$ is a variable in \mathbf{X} and y_{j} is a variable in \mathbf{Y}.

R	T	S	$R \bowtie(1) T$	$\pi_{\emptyset}[R \bowtie S \bowtie T]$
A ¢	B ¢	$A B \Phi$	$A B \quad \Phi$	Ф
$\mathrm{x}_{1} \mathrm{x}_{1}$	$\mathrm{y}_{1} y_{1}$	$\mathrm{x}_{1} \mathrm{y}_{1} \top$	$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{x}_{1} y_{1}$	() Ψ
$\mathrm{x}_{2} \mathrm{x}_{2}$	$\mathrm{y}_{2} y_{2}$	$\mathrm{x}_{1} \mathrm{y}_{2} \top$	$\mathrm{x}_{1} \mathrm{y}_{2} x_{1} y_{2}$	
		$\mathrm{x}_{2} \mathrm{y}_{1} \top$	$\mathrm{x}_{2} \mathrm{y}_{1} \mathrm{x}_{2} \mathrm{y}_{1}$	

This is the only minimal hard pattern for positive $1 \mathrm{RA}^{-}$queries!

A Surprising Case

Input formula and query:
■ $\Psi=x_{1} y_{1} \vee x_{1} y_{2}$ over sets $\mathbf{X}=\left\{x_{1}\right\}, \mathbf{Y}=\left\{y_{1}, y_{2}\right\}$

- $Q=\pi_{\emptyset}\left[R(A)-\pi_{A}(T(B) \bowtie S(A, B))\right]$

Construct a database D such that Ψ becomes the grounding of Q wrt D :

- $S(\mathrm{a}, \mathrm{b}, \top)$: Clause a has variable b in Ψ.
- $R(\mathrm{a}, T)$ and $T(\mathrm{~b}, \neg b): a$ is a clause and b is a variable in Ψ.

R	T	S	$T \bowtie S$	$\pi_{A}(T \bowtie S)$	$R-\pi_{A}(T \bowtie S)$	
$A \Phi$	B ¢	$A B$ ¢	$A B \quad \Phi$	$A \quad \Phi$	A	Ф
$1{ }^{\top}$	$\mathrm{x}_{1} \neg \mathrm{x}_{1}$	$1 \mathrm{x}_{1}{ }^{\top}$	$1 \mathrm{x}_{1} \neg \mathrm{x}_{1}$	$1 \neg x_{1} \vee \neg y_{1}$	1	$x_{1} y_{1}$
2 T	$\mathrm{y}_{1} \neg \mathrm{y}_{1}$	$1 \mathrm{y}_{1} \mathrm{~T}$	$1 \mathrm{y}_{1} \neg \mathrm{y}_{1}$	$2 \neg x_{1} \vee \neg y_{2}$	2	$x_{1} y_{2}$
	$\mathrm{y}_{2} \neg \mathrm{y}_{2}$	$2 \mathrm{x}_{1}$ T	$2 \mathrm{x}_{1} \neg \mathrm{x}_{1}$			
		$2 \mathrm{y}_{2} \top$	$2 \mathrm{y}_{2} \neg \mathrm{y}_{2}$			

A Surprising Case

Input formula and query:
■ $\Psi=x_{1} y_{1} \vee x_{1} y_{2}$ over sets $\mathbf{X}=\left\{x_{1}\right\}, \mathbf{Y}=\left\{y_{1}, y_{2}\right\}$

- $Q=\pi_{\emptyset}\left[R(A)-\pi_{A}(T(B) \bowtie S(A, B))\right]$

Construct a database D such that Ψ becomes the grounding of Q wrt D :

- $S(\mathrm{a}, \mathrm{b}, \top)$: Clause a has variable b in Ψ.
$\square R(\mathrm{a}, \top)$ and $T(\mathrm{~b}, \neg b): a$ is a clause and b is a variable in Ψ.

R	T	S	$T \bowtie S$	$\pi_{A}(T \bowtie S)$	$R-\pi_{A}(T \bowtie S)$	
A ¢	$B \quad \Phi$	$A B \Phi$	$A B \quad \Phi$	$A \quad \Phi$	A	Ф
1 T	$\mathrm{x}_{1} \neg \mathrm{x}_{1}$	$1 \mathrm{x}_{1}{ }^{\top}$	$1 \mathrm{x}_{1} \neg \mathrm{x}_{1}$	$1 \neg x_{1} \vee \neg y_{1}$	1	$x_{1} y_{1}$
2 T	$\mathrm{y}_{1} \neg \mathrm{y}_{1}$	$1 \mathrm{y}_{1} \mathrm{~T}$	$1 \mathrm{y}_{1} \neg \mathrm{y}_{1}$	$2 \neg x_{1} \vee \neg y_{2}$	2	$x_{1} y_{2}$
	$\mathrm{y}_{2} \neg \mathrm{y}_{2}$	$2 \mathrm{x}_{1} \top$	$2 \mathrm{x}_{1} \neg \mathrm{x}_{1}$			
		$2 \mathrm{y}_{2} \mathrm{~T}$	$2 \mathrm{y}_{2} \neg \mathrm{y}_{2}$			

This query is already hard when T is the only probabilistic input relation!

A More Involved Case

Input formula and query:
■ $\Psi=x_{1} y_{1} \vee x_{1} y_{2} \vee x_{2} y_{1}$ over sets $\mathbf{X}=\left\{x_{1}, x_{2}\right\}, \mathbf{Y}=\left\{y_{1}, y_{2}\right\}$

- $Q=\pi_{\emptyset}[S(A, B)-R(A) \times T(B)]$

We need a different reduction gadget:
■ Use additional random variables $\mathbf{Z}=\left\{z_{1}, \ldots, z_{|E|}\right\}$, one per clause in $\Psi=\psi_{1} \vee \cdots \vee \psi_{|E|}$.

- Construct a database D such that the grounding of Q wrt D is

$$
\neg \Upsilon=\neg\left[\bigvee_{i=1}^{|E|} \neg z_{i} \neg \psi_{i}\right]=\bigwedge_{i=1}^{|E|}\left(z_{i} \vee \psi_{i}\right)
$$

R	T	S	$S-R \times T$	$\pi_{\emptyset}[S-R \times T]$
A ${ }^{\text {¢ }}$	B ¢	$A B \quad \Phi$	$A B \quad \Phi$	Φ
$\mathrm{x}_{1} \mathrm{x}_{1}$	$\mathrm{y}_{1} \mathrm{x}_{1}$	$\mathrm{x}_{1} \mathrm{y}_{1} \neg \mathrm{z}_{1}$	$\mathrm{x}_{1} \mathrm{y}_{1} \neg z_{1} \neg\left(x_{1} y_{1}\right)$	() $\bigvee_{i=1}^{\|E\|} \neg z_{i} \neg \psi_{i}$
$\mathrm{x}_{2} \mathrm{x}_{2}$	$\mathrm{y}_{2} \mathrm{y}_{2}$	$\mathrm{x}_{1} \mathrm{y}_{2} \neg \mathrm{z}_{2}$	$\mathrm{x}_{1} \mathrm{y}_{2} \neg z_{2} \neg\left(x_{1} y_{2}\right)$	
		$\mathrm{x}_{2} \mathrm{y}_{1} \neg \mathrm{z}_{3}$	$\mathrm{x}_{2} \mathrm{y}_{1} \neg z_{3} \neg\left(x_{2} y_{1}\right)$	

■ Compute $\# \Psi$ using linearly many calls to the oracle for $P_{Q}=1-P(\Upsilon)$.

The Small Print $(1 / 2)$

- $\Psi=\bigvee_{(i, j) \in E} x_{i} y_{j}=\psi_{1} \vee \cdots \vee \psi_{|E|}$ over disjoint variable sets \mathbf{X} and \mathbf{Y}
- Let Θ be the set of assignments of variables $\mathbf{X} \cup \mathbf{Y}$ that satisfy Ψ :

$$
\# \Psi=\sum_{\theta \in \Theta: \theta \models \Psi} 1 .
$$

■ Partition Θ into disjoint sets $\Theta_{0} \cup \cdots \cup \Theta_{|E|}$, such that $\theta \in \Theta_{i}$ if and only if θ satisfies exactly i clauses of ψ :

$$
\# \Psi=\sum_{\theta \in \Theta_{1}: \theta \models \Psi} 1+\cdots+\sum_{\theta \in \Theta_{|E|:}: \theta=\Psi} 1=\left|\Theta_{1}\right|+\cdots+\left|\Theta_{|E|}\right| .
$$

- $\left|\Theta_{1}\right|, \ldots,\left|\Theta_{|E|}\right|$ can be computed using an oracle for P_{\curlyvee} :

$$
\Upsilon=\bigvee_{i=1}^{|E|} \neg z_{i} \wedge \neg \psi_{i} \quad \text { or, equivalently } \quad \neg \Upsilon=\bigwedge_{i=1}^{|E|}\left(z_{i} \vee \psi_{i}\right)
$$

The Small Print $(2 / 2)$

Express the probability of $\neg \Upsilon=\bigwedge_{i=1}^{|E|}\left(z_{i} \vee \psi_{i}\right)$ as a function of $\left|\Theta_{1}\right|, \ldots,\left|\Theta_{|E|}\right|$:

- Fix the probabilities of variables in $\mathbf{X} \cup \mathbf{Y}$ to $1 / 2$ and of variables in \mathbf{Z} to p_{z}. Then:

$$
\begin{aligned}
P_{\neg \Upsilon} & =\sum_{k=0}^{|E|} P \underbrace{P\left(\neg \left\lvert\, \begin{array}{l}
\text { exactly } k \text { clauses } \\
\text { of } \Psi \text { are satisfied }
\end{array}\right.\right)}_{p_{z}^{|E|-k}} \cdot \underbrace{}_{\frac{1^{|\mathbf{X}|+|\mathbf{Y}|} \cdot\left|\Theta_{k}\right|}{P\binom{\text { exactly } k \text { clauses }}{\text { of } \Psi \text { are satisfied }}}} \\
& =\frac{1}{2}{ }^{|\mathbf{X}|+|\mathbf{Y}|} \sum_{k=0}^{|E|} p_{z}^{|E|-k}\left|\Theta_{k}\right|
\end{aligned}
$$

■ This is a polynomial in p_{z} of degree $|E|$, with coefficients $\left|\Theta_{0}\right|, \ldots,\left|\Theta_{|E|}\right|$.

- The coefficients can be derived from $|E|+1$ pairs (p_{z}, P_{Υ}) using Lagrange's polynomial interpolation formula.
- $|E|+1$ oracle calls to Pr suffice to determine $\# \Psi=\sum_{i=0}^{|E|}\left|\Theta_{i}\right|$.

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

- Binary trees with leaves $A, A B$, and B and inner nodes \bowtie or .
- Some are symmetric and need not be considered separately: A and B can be exchanged, joins are commutative and associative.
- Still, many cases left to consider due to the difference operator.

- There is a database construction scheme for each pattern.
- Each non-hierarchical query Q matches a pattern $\mathbf{P}_{\mathrm{x} . \mathrm{y}}$.

Hard Query Patterns

There are 48 (!) minimal non-hierarchical query patterns.

- Binary trees with leaves $A, A B$, and B and inner nodes \bowtie or .
- Some are symmetric and need not be considered separately: A and B can be exchanged, joins are commutative and associative.
- Still, many cases left to consider due to the difference operator.

- There is a database construction scheme for each pattern.
- Each non-hierarchical query Q matches a pattern $\mathbf{P}_{\mathrm{x} . \mathrm{y}}$.

In the absence of negation, $\mathbf{P}_{1.1}$ is the only hard pattern to consider!

Non-hierarchical Queries Match Minimal Hard Patterns

Each non-hierarchical query Q matches a pattern $\mathbf{P}_{\mathrm{x} . \mathrm{y}}$:

- There is a total mapping from $\mathbf{P}_{\mathrm{x} . \mathrm{y}}$ to Q 's parse tree that
- is identity on inner nodes \bowtie and -,
- preserves ancestor-descendant relationships,
- maps leaves to relations: A to $R(A) ; A B$ to $S(A, B)$; and B to $T(B)$.

- The match "preserves" the grounding of the query pattern: Q and $\mathbf{P}_{\mathrm{x} . \mathrm{y}}$ have the same grounding for any database using our construction scheme.

Outline

The Easy Queries

Leftovers

Evaluation of Hierarchical 1RA- Queries

Approach based on knowledge compilation
■ For any database D, the probability $P_{Q(D)}$ of a 1 RA $^{-}$query Q is the probability P_{ψ} of Q 's grounding Ψ.

- Compile Ψ into $\operatorname{OBDD}(\Psi)$ in polynomial time.

■ Compute probability of $\operatorname{OBDD}(\Psi)$ in time linear in its size.

Evaluation of Hierarchical 1RA- Queries

Approach based on knowledge compilation
■ For any database D, the probability $P_{Q(D)}$ of a 1 RA $^{-}$query Q is the probability P_{ψ} of Q 's grounding Ψ.

- Compile Ψ into $\operatorname{OBDD}(\Psi)$ in polynomial time.

■ Compute probability of $\operatorname{OBDD}(\Psi)$ in time linear in its size.

Distinction from existing tractability results [O. \& Huang 2008]:

- 1RA ${ }^{-}$without negation: Grounding formulas are read-once.
- Read-once formulas admit linear-size OBBDs.
- $1 \mathrm{RA}^{-}$: Grounding formulas are not read-once.
- They admit OBBDs of sizes linear in the database size but exponential in the query size.

The Inner Workings

From hierarchical $1 \mathrm{RA}^{-}$to RC-hierarchical \exists-consistent RC^{\exists} :

- Translate query Q into an equivalent disjunction of disjunction-free existential relational calculus queries $Q_{1} \vee \cdots \vee Q_{k}$.
- k can be very large for queries with projection under difference!

■ RC-hierarchical:
For each $\exists_{X}\left(Q^{\prime}\right)$, every relation symbol in Q^{\prime} has variable X.

- Each of the disjuncts yields a poly-size OBDD.

■ \exists-consistent:
The nesting order of the quantifiers is the same in Q_{1}, \cdots, Q_{k}.

- All OBDDs have compatible variable orders and their disjunction is a poly-size OBDD.
- The OBDD width grows exponentially with k, its height stays linear in the size of the database.
- Width = maximum number of edges crossing the section between any two consecutive levels.

Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

$$
\begin{aligned}
& Q=\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]
\end{aligned}
$$

Query Evaluation Example (1/3)

Consider the following query and tuple-independent database:

$$
\begin{aligned}
& Q=\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]
\end{aligned}
$$

The grounding of Q is:

$$
\Psi=r_{1}\left[t_{1}\left(\neg u_{1} \vee \neg v_{1}\right) \vee t_{2}\left(\neg u_{1} \vee \neg v_{2}\right)\right] \vee r_{2}\left[t_{1}\left(\neg u_{2} \vee \neg v_{1}\right) \vee t_{2}\left(\neg u_{2} \vee \neg v_{2}\right)\right] .
$$

■ Variables entangle in Ψ beyond read-once factorization.

- This is the pivotal intricacy introduced by the difference operator.

Query Evaluation Example (2/3)

Translate $Q=\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]$ into RC^{\exists} :

$$
Q_{R C}=\underbrace{\exists_{A}(R(A) \wedge \neg U(A)) \wedge \exists_{B} T(B)}_{Q_{1}} \vee \underbrace{\exists_{A} R(A) \wedge \exists_{B}(T(B) \wedge \neg V(B))}_{Q_{2}} .
$$

- Both Q_{1} and Q_{2} are RC-hierarchical.
- $Q_{1} \vee Q_{2}$ is \exists-consistent: Same order $\exists_{A} \exists_{B}$ for Q_{1} and Q_{2}.

Query grounding:

$$
\Psi=\underbrace{\left(r_{1} \neg u_{1} \vee r_{2} \neg u_{2}\right) \wedge\left(t_{1} \vee t_{2}\right)}_{\psi_{1}} \vee \underbrace{\left(r_{1} \vee r_{2}\right) \wedge\left(t_{1} \neg v_{1} \vee t_{2} \neg v_{2}\right)}_{\psi_{2}} .
$$

■ Both Ψ_{1} and Ψ_{2} admit linear-size OBDDs.

- The two OBDDs have compatible orders and their disjunction is an OBDD whose width is the product of the widths of the two OBDDs.

Query Evaluation Example (3/3)

Compile grounding formula into OBDD:

$$
\Psi=\underbrace{\left(r_{1} \neg u_{1} \vee r_{2} \neg u_{2}\right) \wedge\left(t_{1} \vee t_{2}\right)}_{\Psi_{1}} \vee \underbrace{\left(r_{1} \vee r_{2}\right) \wedge\left(t_{1} \neg v_{1} \vee t_{2} \neg v_{2}\right)}_{\Psi_{2}} .
$$

Outline

Probabilistic Databases 101The Dichotomy
The Interesting but Hard Queries
The Easy Queries
Leftovers

Dichotomies Beyond 1RA-

Some known dichotomies

- Non-repeating CQ, UCQ
[Dalvi \& Suciu 2004, 2010]
■ Quantified queries, ranking queries
[O.\& team 2011, 2012]
Non-repeating relational algebra $=1 \mathrm{RA}^{-}+$union.
■ Hierarchical property not enough, consistency also needed.
- $\pi_{\emptyset}\left[\left(R(A) \bowtie S_{1}(A, B) \cup T(B) \bowtie S_{2}(A, B)\right)-S(A, B)\right]$ is hard, though it is equivalent to a union of two hierarchical $1 \mathrm{RA}^{-}$queries.

Non-repeating relational calculus

- $S(x, y) \wedge \neg R(x)$ is tractable, $S(x, y) \wedge(R(x) \vee T(y))$ is hard.
- Both are non-repeating, yet not expressible in 1RA ${ }^{-}$.

■ Possible (though expensive) approach:

- Translate to RC^{\exists} and check RC-hierarchical and \exists-consistency.

Full relational algebra (or full relational calculus)

- It is undecidable whether the union of two equivalent relational algebra queries, one hard and one tractable, is tractable.

Thank you!

