
SPROUT:

Scalable Query Processing in Probabilistic Databases

Dan Olteanu
Oxford University Computing Laboratory

Joint work with Jiewen Huang (Oxford)

Alice looks for movies

Which movies are really good?
Manos: The Hands of Fate (1966)

IMDB:

Lots of data

Well maintained and clean :-)

But no reviews :-(

On the Web there are lots of reviews..

Alice needs:

Information extraction
Is this unstructured text referring to
a movie review?

Similarity joins
Which movie is the review about?

Sentiment analysis
Is the review positive or negative?
Should I trust the reviewer?

Social networks
What do my friends recommend?

A probabilistic database can help Alice store and query her uncertain data.

Alice Needs Information Extraction

Possible segmentations of unstructured text [Sarawagi VLDB’06]

52-A Goregaon West Mumbai 400 076

ID HouseNo Area City PinCode P
1 52 Goregaon West Mumbai 400 062 0.1
1 52-A Goregaon West Mumbai 400 062 0.2
1 52-A Goregaon West Mumbai 400 062 0.4
1 52 Goregaon West Mumbai 400 062 0.2
.

Sound confidence values obtained using probabilistic extraction models

Output a ranked list of possible extractions
Empty answer to query: Find movies filmed in ’West Mumbai’

Several segmentations are required to cover most of the probability mass and
improve recall

Probabilistic Databases Today

Many active projects

Mystiq, Lahar (Washington U.)

Trio (Stanford)

MCDB (IBM Almaden & Florida)

BayesStore (Berkeley)

Orion (Purdue)

At Maryland, UMass, Waterloo, Hong Kong, Florida State, Wisconsin, etc.

Projects I am involved in

MayBMS (co-inventor, Cornell joint with Oxford)

◮ New uncertainty-aware query language and data representation models
◮ Officially released last month, see maybms.sourceforge.net

To be demonstrated at SIGMOD’09!

SPROUT = Scalable Query PROcessing on Uncertain Tables (PI, Oxford)
◮ Query engine that extends PostgreSQL backend
◮ Used by MayBMS, but also available standalone
◮ State-of-the-art scalable query processing techniques

maybms.sourceforge.net

Probabilistic Databases: Syntax

Probabilistic databases are relational databases where

Tuples are associated with lineage, i.e., Boolean expressions over independent
random variables.

Probability distributions over the possible assignments of each variable.

Tuple-independent database: tuples have independent lineage.

Example of a tuple-independent TPC-H database:

Cust
ckey cname V P
1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord
okey ckey odate V P

1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item
okey disc ckey V P

1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Probabilistic Databases: Semantics

One-to-one mapping between possible worlds and total valuations over variables.

Consider the total valuation f : x1, y1, z1 are true, all other variables are false.

Cust
ckey cname V P
1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord
okey ckey odate V P
1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item
okey disc ckey V P
1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Probabilistic Databases: Semantics

One-to-one mapping between possible worlds and total valuations over variables.

Consider the total valuation f : x1, y1, z1 are true, all other variables are false.

Cust
ckey cname
1 Joe

Ord
okey ckey odate

1 1 1995-01-10

Item
okey disc ckey

1 0.1 1

What about the probability of a world?

Probability of a world A is the product of the probabilities of the chosen
assignments defining A.

For the above world:
Pr(f) = Π{Pr(v) | v ∈ {x1, y1, z1}} · Π{Pr(¬v) | v ∈ {x2, . . . , x4, y2, . . . , y6, z2, . . . , z6}}

Query Evaluation on Probabilistic Databases

Follows standard semantics, with the addition that

Each answer tuple is associated with the lineage of its input tuples.

Query asking for the dates of discounted orders shipped to customer ’Joe’:

Q(odate) :- Cust(ckey ,′ Joe′), Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0
odate Vc Pc Vo Po Vi Pi tuple probability

1995-01-10 x1 0.1 y1 0.1 z1 0.1 0.1 · 0.1 · 0.1
1995-01-10 x1 0.1 y1 0.1 z2 0.2 0.1 · 0.1 · 0.2

Probability of (1995-01-10) = Probability of associated lineage x1y1z1 + x1y1z2.

Probability computation for bipartite positive 2DNF formulas is #P-complete.

Challenge: Scalable probability computation for distinct answer tuples.

Query Evaluation using SPROUT

Cast the query evaluation problem as an OBDD construction problem.

Given a query q and a probabilistic database D,
each distinct tuple t ∈ q(D) is associated with a DNF expression φt .

Probability of t is probability of lineage φt .

Compile φt into a propositional theory with efficient model counting.
We use ordered binary decision diagrams (OBDDs), for which probability
computation can be done in one traversal.

Probability of φt is then the probability of its OBDD.

To achieve true scalability, SPROUT employs secondary-storage techniques for
OBDD construction and probability computation.

Can we leverage existing results on OBDD construction?

Generic compilation techniques developed by the AI community construct
OBDDs whose sizes are exponential in the treewidth of the lineage.

Conjunctive queries do generate lineage with unbounded treewidth.
◮ The product query Q :- R(X), S(Y) generates lineage that has a clause for

each pair of random variables of R and S ⇒ unbounded treewidth.

We need new compilation techniques that take the query structure into account!

OBDD-based Query Evaluation

OBDDs

Commonly used to represent compactly large Boolean expressions.

Idea: Decompose Boolean expressions using variable elimination and avoid
redundancy in the representation.
Variable elimination by Shannon’s expansion: φ = x · φ |x +x̄ · φ |x̄ .

Variable order π = order of variable eliminations;
the same variable order on all root-to-leaf paths.

An OBDD for φ is uniquely identified by the pair (φ, π).

Supports linear-time probability computation.

Pr(φ) = Pr(x · φ |x +x̄ · φ |x̄)

= Pr(x · φ |x) + Pr(x̄ · φ |x̄)

= Pr(x) · Pr(φ |x) + Pr(x̄) · Pr(φ |x̄)

Compilation example

R A B Vr

a1 b1 x1

a2 b1 x2

a2 b2 x3

a3 b3 x4

S A C Vs

a1 c1 y1

a1 c2 y2

a2 c1 y3

a4 c2 y4

q :- R(A, B), S(A, C)
Vr Vs

x1 y1

x1 y2

x2 y3

x3 y3

Query q has lineage φ = x1y1 + x1y2 + x2y3 + x3y3.
Assume variable order: π = x1y1y2x2x3y3.
Task: Construct the OBDD (φ, π).

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 1: Eliminate variable x1 in φ.

x1

x2y3 + x3y3 y1 + y2 + x2y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 2: Eliminate variable y1.

x1

x2y3 + x3y3 y1

y2 + x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 3: Eliminate variable y2.

x1

x2y3 + x3y3 y1

y2 1

x2y3 + x3y3 1

Some leaves have the same expressions ⇒ Represent them only once!

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 4: Merge leaves with the same expressions.

x1

y1

y2

x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 5: Eliminate variable x2.

x1

y1

y2

x2 1

x3y3 y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and

π = x1y1y2x2x3y3.

Step 6: Replace y3 + x3y3 by y3.

x1

y1

y2

x2 1

x3y3 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 7: Eliminate variable x3.

x1

y1

y2

x2 1

x3 y3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 8: Merge leaves with the same expression y3.

x1

y1

y2

x2 1

x3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 9: Eliminate variable y3.

x1

y1

y2

x2 1

x3

0 y3

0 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and
π = x1y1y2x2x3y3.

Step 10 (final): Merge leaves with the same expression (0 or 1).

x1

y1

y2

x2

x3

y3

0 1

Compilation example: Summing Up

OBDD (φ, π)

has exactly one node per variable in φ,

although the size of φ can be exponential in the arity of its clauses.

Questions

1 Is this property shared by the OBDDs of many queries?

2 Can we directly and efficiently construct such succinct OBDDs?

3 Can we efficiently find such good variable orders?

Compilation example: Summing Up

OBDD (φ, π)

has exactly one node per variable in φ,

although the size of φ can be exponential in the arity of its clauses.

Questions

1 Is this property shared by the OBDDs of many queries?

2 Can we directly and efficiently construct such succinct OBDDs?

3 Can we efficiently find such good variable orders?

The answer is in the affirmative for all of the three questions!

Tractable Queries and Succinct OBDDs

Class of tractable queries TQ on probabilistic structures (wrt data complexity):

all hierarchical queries, i.e., tractable conjunctive queries without self-joins.

natural classes of conjunctive queries with inequalities.

Theorem: For any TQ query q and database D, ∀t ∈ q(D), and lineage φt ,

There is a variable order π computable in time O(|φt | · log2 |φt |) such that

The OBDD (φt , π) has size and can be computed in time
O(f (|q|) · |Vars(φt)|), where f (·) is a function of the query size only.

Classes of such good variable orders can be statically derived from queries!

Static Query Analysis

Hierarchical Queries

A query is hierarchical if for any two non-head variables, either their sets of
subgoals are disjoint, or one set is contained in the other.

Q(odate) :- Cust(ckey ,
′ Joe′), Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0.

is hierarchical; also without odate as head variable.

subgoals(disc)={Item}, subgoals(okey)={Ord, Item}, subgoals(ckey)={Cust, Ord, Item}.

It holds that subgoals(disc)⊆ subgoals(okey)⊆ subgoals(ckey).

ckey

ckey,okey

Ord(okey,ckey,odate) Item(okey,disc,ckey)

Cust(ckey,’Joe’)

Tractability beyond Hierarchical Queries

Tractable queries with inequalities

At most one query variable v per subgoal can occur in join conditions,

Variable v may be a head variable of a hierarchical query.

For 6=-joins only: the inequality graph is a tree.

Examples of tractable queries:

Q1:-R(A, B), S(C), T (D, E), A < C < E .

Q2:-R(A, B), S(C), T (D, E), A < C , A < E .

Q3:-R(A, B), S(C), T (D, E), A < C , A < E , C < E .

Q4:-R(A, B), S(C), T (D, E), A 6= C , A 6= D.

Results published in SUM’08 and SIGMOD’09.

Query Signatures

Query signatures for TQ queries capture

the structures of queries and

the one/many-to-one/many relationships between the query tables;

variable orders for succinct OBDDs representing compiled lineage!

A

R(A,B) S(A,C)

Query q :- R(A, B), S(A, C) has signature (R∗S∗)∗ .

There may be several R-tuples with the same A-value, hence R∗

There may be several S-tuples with the same A-value, hence S∗

R and S join on A, hence R∗S∗

There may be several A-values in R and S , hence (R∗S∗)∗

Variable orders captured by (R∗S∗)∗ (xi ’s are from R , yj ’s are from S):

{[x1(y1y2)][(x2x3)y3]}, {[(x2x3)y3][x1(y1y2)]}, {[y3(x3x2)][x1(y2y1)]}, etc.

Deriving Better Query Signatures

Q :- Cust(ckey ,′ Joe ′), Ord(okey , ckey , odate), Item(okey , disc , ckey), disc > 0

ckey

ckey,okey

Ord(okey,ckey,odate) Item(okey,disc,ckey)

Cust(ckey,’Joe’)

Query Q has signature (Cust∗(Ord∗Item∗)∗)∗.

Database constraints can make the signature more precise

If ckey is key in Cust, we obtain the signature (Cust(Ord∗Item∗)∗)∗.
The many-to-many relationship between Cust and Ord is now one-to-many

If in addition okey is key in Ord, we obtain the signature (Cust(Ord Item∗)∗)∗.

Secondary-storage Query Evaluation

Secondary-storage Query Evaluation

Query evaluation in two logically-independent steps

1 Compute query answer using a good relational query plan of your choice

2 Compute probabilities of each distinct answer (or temporary) tuple

Probability computation supported by a new aggregation operator that can

blend itself in any relational query plan

be placed on top of the query plan, or partially pushed down past joins

compute in parallel different fragments of the OBDD for the lineage
without materializing the OBDD.

Our aggregation operator is a sequence of

aggregation steps. Effect on query signature: α∗ → α

propagation steps. Effect on query signature: αβ → α

Results published in ICDE’09 and SIGMOD’09.

Example of Probability Computation

x1

y1

y2

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y1

x1 y2

x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x1

y1

y2

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y1 + y2

x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x1

y ′

1

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′

1
x2 y3

x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x1

y ′

1

x2

x3

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′

1
x2 + x3 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x1

y ′

1

x ′

2

y3

0 1

q :- R(A, B), S(A, C)
Vr Vs

x1 y ′

1
x ′

2 y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x1

y ′

1

x ′

2

y3

0 1

q :- R(A, B), S(A, C)
Vr

x1y
′

1
x ′

2y3

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′

1

x ′′

2

0 1

q :- R(A, B), S(A, C)
Vr

x ′′

1
x ′′

2

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′

1

x ′′

2

0 1

q :- R(A, B), S(A, C)
Vr

x ′′

1 + x ′′

2

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′′

0 1

q :- R(A, B), S(A, C)
Vr

x ′′′

Return the probability of x ′′′.

How to proceed?

1 Sort query answer by (Vr , Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Grouping Aggregations and Propagations

Groups of aggregations/propagations can be computed in one scan.

Definition: A signature has the 1scan property if each of its composite
expressions is made up by concatenating signatures with the 1scan property and
at least one table without (*).

Examples of 1scan signatures:

(RS∗)∗ (last 3 steps in the previous example)

R∗S∗ (relational product)

Nation1Supp(Nation2(Cust(Ord Item∗)∗)∗)∗ (conj. part of TPC-H query 7)

For signature α: #scans(α) = one plus the number of its starred (*)
subexpressions, including itself, without the 1scan property.

Proposition: An operator with signature α needs #scans(α) scans.

Examples:

#scans((R∗S∗)∗) = 2

#scans((Cust∗(Ord∗Item∗)∗)∗) = 3, BUT #scans((Cust(Ord Item∗)∗)∗) = 1

Query Optimization

Types of Query Plans

Our previous examples considered lazy plans

probability computation done after the computation of answer tuples

unrestricted search space for good query plans

especially desirable when join conditions are selective (eg, TPC-H)!

(Cust∗(Ord∗Item∗)∗)∗

πodate

1ckey,okey

1ckey

σcname=′Joe′

Cust

Ord

σdisc>0

Item

BUT, we can push down probability computation!

Proposition: Any subquery of a hierarchical query is hierarchical.

Types of Query Plans

Eager plans discard duplicates and compute probabilities on each temporary table.

(Cust Ord)∗

πodate

1ckey

(Ord Item)∗

πodate,ckey

1ckey,okey

Ord∗

πodate,ckey,okey

Ord

Item∗

πckey,okey

σdisc>0

Item

Cust∗

πckey

σcname=′Joe′

Cust

Experiments

Experiments: SPROUT vs. MystiQ

 0

 50

 100

 150

 200

 250

 300

 350

 400

3 10 15 16 B17 18 20 21

w
al

l-c
lo

ck
 ti

m
e

in
 s

ec

TPC-H queries (aggregations/ineq-joins dropped). B17 is Boolean.

29
2.

9
30

.5
22

.1

12
0.

9
28

.9
4.

8

2.
9

2.
9

3.
2

4.
9

2.
3

0.
4

28
3.

1
30

.7

2.
4

40
0.

1

55
.0

17
.2

11
.2

5.
4

0.
5

30
3.

5
96

.1
6.

7

MystiQ plans
Eager plans

Lazy plans

SPROUT query engine extends PosgreSQL backend. MystiQ is a middleware.
TPC-H conj. queries accepted by MystiQ on 1GB tuple-independent TPC-H.

Experiments: Probability Computation with SPROUT

 0.001

 0.01

 0.1

 1

 10

 100

1 B1 2 B3 4 B4 B6 7 B10 11 B11 12 B12 B14 B15 B16 B18 B19

w
al

l-c
lo

ck
 ti

m
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H queries (aggregations/ineq-joins dropped). Boolean queries are prefixed by B.

tuples
prob

Computing the answer tuples vs duplicate removal and probability computation.
TPC-H conj. queries on 1GB tuple-independent TPC-H.

Thanks!

Why are Non-hierarchical Queries Hard?

Key ingredients:

The query pattern R(. . . , X , . . .), S(. . . , X , . . . , Y , . . .), T (. . . , Y , . . .) can
produce any bipartite positive 2DNF lineage φ, given suitable R , S , and T .

#SAT for bipartite positive 2DNF formulas is #P-complete.

Proof idea:

Find tuple-independent tables R and T and a certain table S such that the
query answer is associated with lineage φ.

S has precisely one tuple pairing the variables in each clause. of φ.

Example

Bipartite positive 2DNF φ = x1y1 + x1y2 + x2y1 + x2y3 + x3y2

Boolean query Q :- R(X), S(X , Y), T (Y) on the database given below.

R A Vr

1 x1

2 x2

3 x3

S B C
1 1
1 2
2 1
2 3
3 2

T D Vt

1 y1

2 y2

3 y3

Q Vr Vt

x1 y1

x1 y2

x2 y1

x2 y3

x3 y2

Query Rewriting under Functional Dependencies (FDs)

FDs on tuple-independent databases can help deriving better query signatures.

Definition: Given a set of FDs Σ and a conjunctive query of the form

Q = πA0
(σφ(R1(A1) ⊲⊳ . . . ⊲⊳ Rn(An))

where φ is a conjunction of unary predicates. Let Σ0 = CLOSUREΣ(A0).
Then, the Boolean query

π∅(σφ(R1(CLOSUREΣ(A1) − Σ0) ⊲⊳ . . . ⊲⊳ Rn(CLOSUREΣ(An) − Σ0)))

is called the FD-reduct of Q under Σ.

Proposition: If there is a sequence of chase steps under Σ that turns Q into a
hierarchical query, then the fixpoint of the chase (the FD-reduct) is hierarchical.

Importance of FD-reducts

The signature of Q’s FD-reduct captures the structure of Q’s lineage.

Two relevant cases
1 Intractable queries may admit tractable FD-reducts.

Under X → Y , the hard query Q :- R(X), S(X , Y), T (Y) admits the
hierarchical FD-reduct Q ′ :- R(X , Y), S(X , Y), T (Y) with signature
((RS)∗T)∗.

2 FD-reducts have more precise query signatures.

In the presence of keys ckey and okey, the query
Q(odate) :- Cust(ckey , cname), Ord(okey , ckey , odate), Item(okey , disc, ckey)

with signature (Cust∗(Ord∗Item∗)∗)∗ rewrites into

Q ′ :- Cust(ckey , cname), Ord(okey , ckey , cname), Item(okey , disc, ckey , cname)

with signature (Cust(Ord Item∗)∗)∗.

Case Study: TPC-H Queries

Considered the conjunctive part of each of the 22 TPC-H queries

Boolean versions (B)

with original selection attributes, but without aggregates (O)

Hierarchical in the absence of key constraints

8 queries (B)

13 queries (O)

Hierarchical in the presence of key constraints

8+4 queries (B)

13+4 queries (O)

In-depth study at
http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

Grouping Aggregations and Propagations

Groups of aggregations and propagations can be computed in one sequential
scan.

Definition: A signature has the 1scan property if each of its composite
expressions is made up by concatenating signatures with the 1scan property and
at least one table without (*).

Examples of 1scan signatures:

(RS∗)∗ (last 3 steps in the previous example)
R∗S∗ (relational product)
Nation1Supp(Nation2(Cust(Ord Item∗)∗)∗)∗ (conj. part of TPC-H query 7)

For signature α: #scans(α) = one plus the number of its starred (*)
subexpressions, including itself, without the 1scan property.

Proposition: An operator with signature α needs #scans(α) scans.

Examples:

#scans((R∗S∗)∗) = 2
#scans((Cust∗(Ord∗Item∗)∗)∗) = 3, BUT #scans((Cust(Ord Item∗)∗)∗) = 1

Types of Query Plans

Eager plans discard duplicates and compute probabilities on each temporary table.

(Cust Ord)∗

πodate

1ckey

(Ord Item)∗

πodate,ckey

1ckey,okey

Ord∗

πodate,ckey,okey

Ord

Item∗

πckey,okey

σdisc>0

Item

Cust∗

πckey

σcname=′Joe′

Cust

MystiQ’s safe plans are special cases of eager plans!

mirror the hierarchical structure of the query signature
probability computation restricts join ordering!
suboptimal join ordering, which is more costly than probability computation

Types of Query Plans

Hybrid plans

are useful when selectivities of different joins differ significantly

push down probability computation below unselective joins

keep probability computation on top of selective joins

(Cust∗Ord)∗

πodate

1ckey

(Ord∗Item∗)∗

πodate,ckey

1ckey,okey

Ord σdisc>0

Item

σcname=′Joe′

Cust

