
An EÆcient Symbolic Out-of-Core Solution

Method for Markov Models?

Rashid Mehmood, David Parker, and Marta Kwiatkowska

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom
frxm,dxp,mzkg@cs.bham.ac.uk

Abstract. In recent years, disk-based approaches to the analysis of Mar-
kov models have proved to be an e�ective method of combating the
state space explosion problem. Coupled with parallel and symbolic tech-
niques, disk-based methods have demonstrated impressive performance
for numerical solution. In an earlier paper, we presented a novel, sym-
bolic out-of-core algorithm which used MTBDD-based data structures
for matrix storage in RAM and disk-based storage for solution vectors.
This extended the size of models which could be solved on a standard
workstation. This paper reports on a signi�cant improvement to our ear-
lier work obtained by using an alternative scheme for decomposing the
matrix into blocks. We present experimental results for three benchmark
models, a Kanban manufacturing system, a cyclic server polling system
and a
exible manufacturing system, and analyse the performance of our
implementation. In general, we double the speed of numerical solution.
We report results for models as large as 216 million states and 2:1 billion
transitions on a workstation with 512MB RAM.

1 Introduction

Continuous-time Markov chains (CTMCs) are a widely used model for the per-
formance evaluation of communication networks and computer systems. A typ-
ical analysis of a CTMC requires computation of its steady-state probabilities, a
problem which reduces to solving a linear equation system of size equal to the
CTMC. Unfortunately, the size of these models usually grows exponentially with
the number of parallel components they contain, a phenomenon called the state
space explosion problem. A range of techniques exist to combat this problem.
They can be broadly classi�ed into explicit approaches, which use a data struc-
ture of size proportional to the number of states and transitions in the CTMC,
and implicit approaches, where this explicit storage is avoided. The latter in-
cludes symbolic (BDD-based) methods [16, 21, 6, 10, 22, 12, 29], on-the-
y meth-
ods [19] and Kronecker methods [31, 13, 8, 7]. Another classi�cation is between
in-core approaches, where data is stored in the main memory of a computer,
and out-of-core approaches, where it is stored on disk. Both serial [17, 18] and

? Supported in part by EPSRC grants GR/S11107 and GR/N22960

parallel [24, 5] implementations of out-of-core techniques have been presented.
Many standard parallel approaches also exist [11, 1, 9, 15].

The above methods provide a range of cures for the matrix storage problem.
However, all approaches are hindered by storage of the probability vector(s)
needed during the numerical solution phase, either because symbolic (BDD-
based) representations of these vectors were ineÆcient or because explicit rep-
resentations were used. In [26], an explicit out-of-core method was presented
which used disk-based, explicit storage of both the probability vector and the
CTMC matrix, thus relaxing these memory limitations and increasing the size
of solvable model.

In [27], this work was adapted to form a symbolic out-of-core algorithm, the
idea being to store the CTMC matrix symbolically, in-core, and to store the
probability vector explicitly, on disk. For this purpose, the probability vector
is divided into a number of blocks. The blocks are read from disk as required,
updated, and then written back to the disk. Generally, by increasing the number
of blocks, the total memory required can be reduced, albeit at a cost of length-
ened run times. This increases the size of model which can be solved on a single
workstation and is also amenable to parallelisation. In [27], the symbolic matrix
storage scheme used was o�set-labelled MTBDDs [29, 30]. In fact, this technique
should be equally applicable to other implicit storage solutions, such as matrix
diagrams [12] or Kronecker representations.

This paper presents an improvement to our symbolic out-of-core approach,
obtained by using an alternative block decomposition of the matrix which is bet-
ter suited to the symbolic matrix storage scheme used. Consequently, it results
in a signi�cant speedup for the matrix-vector product (MVP) operation, which
is the core component of the numerical solution phase. We give experimental re-
sults for our implementation, as applied to a Kanban manufacturing system [13],
a
exible manufacturing system (FMS) [14] and a cyclic server polling system
[23]. We typically double the speed of numerical solution.

The paper is organised as follows. In the rest of this section, we give a short
summary of the use of out-of-core methods in stochastic modelling. Section 2
deals with the iterative solution techniques which we use in this paper. Section 3
describes the MTBDD data structure, which we use for representing CTMCs.
Section 4 gives a detailed description of our symbolic out-of-core algorithm. In
Section 5, we present and analyse experimental results from our implementation.
Finally, Section 6 concludes the paper.

A History of Out-of-Core Solutions in Stochastic Modelling.

Out-of-core algorithms have been in use for a long time. By out-of-core algo-

rithms, we mean those which are designed to achieve high performance when
their data structures are stored on disk. A survey of such techniques for numer-
ical linear algebra can be found in, for example, [36].

In performance evaluation, Deavours and Sanders [17, 18] were the �rst to
use an out-of-core technique for the steady-state solution of Markov models.
They solved a 15 million state system on a workstation with 128MB RAM.

2

Since then, some excellent developments have been seen. The approach of [17]
was parallelised in 1999 [24], and solutions of up to 50 million state systems
on a 16-node Fujitsu parallel computer were reported. Bell and Haverkort [5]
extended the size of solvable models further in 2001 and reported the parallel
out-of-core solution of a 724 million state system on a 26-node dual-processor
cluster. Subsequently, [26, 27] focused on the out-of-core storage of the vector,
and extended these limits even further. The solution of a 41 million state system
on a 128MB RAM machine was demonstrated in [26]. In [27], by combining
symbolic and out-of-core approaches, solution of a 133 million state system on
a single workstation was reported.

2 Iterative Methods for CTMC Solution

Performance measures of interest for stochastic models are traditionally derived
by generating and solving a Markov chain obtained from some high-level for-
malism. We focus in this paper on the computation of steady-state probabili-
ties for a CTMC. If Q 2 Rn�n is the CTMC's in�nitesimal generator matrix,
and �(t) = [�1(t); �2(t); : : : ; �n(t)] is the transient state probability row vector,
where �i(t) denotes the probability of the CTMC being in state i at time t,
then the steady-state probability vector is de�ned as � = limt!1 �(t). It can
be computed by solving the following linear equation system:

�Q = 0;

n�1X
i=0

�i = 1: (1)

The order of the in�nitesimal generator matrix Q equals the number of states,
n, in the CTMC. The o�-diagonal elements of Q satisfy qij 2 R�0 , and the
diagonal elements are given by qii = �

P
j 6=i qij . The matrix Q is usually very

sparse; further details about the properties of these matrices can be found in
[35]. Equation (1) can be reformulated as QT�T = 0, and well-known methods
for the solution of systems of linear equations of the form Ax = b can be used.

Numerical solution methods for linear systems of the form Ax = b are broadly
classi�ed into direct methods and iterative methods. Direct methods attempt to
compute the exact solution to a linear system in a �nite number of steps. Iterative
methods begin with an initial approximate solution and then use successive
approximations to obtain increasingly more accurate solutions at each step until
a required accuracy is achieved [4]. For large systems, direct methods become
impractical due to the phenomenon of �ll-in, caused by the generation of new
matrix entries during the factorisation phase. Iterative methods, however, do
not modify the matrix A; rather, they involve the matrix only in the context
of matrix-vector product (MVP) operations. See [20] for further information on
direct methods and [4, 34, 35] for iterative methods.

In this paper, we consider stationary iterative methods, those which can be
expressed in the simple form x(k) = Fx(k�1)+c, where x(k) is the approximation
to the solution vector at the k-th iteration and neither F nor c depend on k [4].

3

In the k-th iteration of the Jacobi method, for example, we calculate:

x
(k)
i =

1

aii

0
@bi � X

j 6=i

aijx
(k�1)
j

1
A ; (2)

for 0 � i < n, where aij denotes the element in row i and column j of matrix

A and the term x
(k)
i indicates the i-th element of the k-th iteration vector. The

above equation can also be written in matrix notation as:

x(k) = D�1(L+ U) x(k�1) + D�1b; (3)

where A = D� (L+U) is a partitioning of A into its diagonal, lower-triangular
and upper-triangular parts, respectively. Note the similarities between x(k) =
Fx(k�1) + c and (3) above. The Jacobi method can be formulated into an MVP
(matrix-vector product) based algorithm, a typical iteration of which can be
implemented as follows:

1. ~x b

2. ~x ~x� �Ax
3. ~x D�1~x
4. Test for convergence, stop if converged

5. x ~x

where �A contains the o�-diagonal elements of matrix A, i.e. �A = �(L + U).
Observe the similarity between this algorithm and (3) above. Line 2 of the al-
gorithm performs the MVP operation. The algorithm requires storage for two
iteration vectors (the previous iterate x and the new iterate ~x), for the matrix
�A and for the diagonal entries in D. Note that the new approximation of the
solution vector is calculated using only the old approximation of the solution.
This makes the Jacobi method well suited for parallelisation, but means it tends
to exhibit slow convergence.

The Gauss-Seidel method, which in practice converges faster than the Jacobi
method, uses the most recently available approximation of the solution:

x
(k)
i =

1

aii

0
@bi � X

j<i

aijx
(k)
j �

X
j>i

aijx
(k�1)
j

1
A (4)

for 0 � i < n. The other advantage of the Gauss-Seidel algorithm is that it can
be implemented using only one iteration vector. The Gauss-Seidel method can
also be expressed in matrix notation:

x(k) = (D � L)�1 U x(k�1) + (D � L)�1 b (5)

where D, L and U are as described for the Jacobi method above. In practice, it
would be ineÆcient to perform Gauss-Seidel in this way due to the computation
required for matrix inverses.

4

1. for p = 0 to P � 1

2. ~Xp Bp

3. for q = 0 to P � 1

4. ~Xp ~Xp � �ApqXq

5. end for

6. ~Xp D�1pp ~Xp

7. Test for convergence

8. Xp ~Xp

9. end for

10. Stop if converged

Fig. 1. An iteration of the pseudo Gauss-Seidel algorithm

2.1 The Pseudo Gauss-Seidel Method

In the Jacobi method, the order in which matrix entries are accessed within
a single iteration is unimportant. For Gauss-Seidel, access to individual rows is
required. For these reasons, symbolic implementations of iterative methods based
on MTBDDs are better suited to Jacobi than Gauss-Seidel. Parker [30] resolves
this problem by introducing the pseudo Gauss-Seidel method, a compromise
between Jacobi and Gauss-Seidel, which can be summarised as follows.

Let the state space S of the CTMC be divided into P contiguous partitions
S0; : : : ; SP�1 of sizes n0; : : : ; nP�1, such that n =

PP�1
i=0 ni. We make no as-

sumptions about the relative sizes of these partitions. Using this, the matrix A

can be divided into P 2 blocks, fApq j 0 � p; q < Pg, where the rows and columns
of block Apq correspond to the states in Sp and Sq, respectively, i.e. block Apq

is of size np � nq. We introduce the additional notation Np =
Pp�1

i=0 ni, for
0 � p � P . A partition Sp includes states with indices Np up to Np+1 � 1.
We also de�ne nmax = maxfnp j 0 � p < Pg. Finally, we denote by block (i)
the index of the block containing state i, i.e. the unique 0 � p < P such that
Np � i < Np+1. The k-th iteration of the pseudo Gauss-Seidel method comprises
the computation:

x
(k)
i =

1

aii

0
@bi � X

j<Nblock(i)

aij x
(k)
j �

X
j�Nblock(i) ^ j 6=i

aij x
(k�1)
j

1
A (6)

for 0 � i < n. This can be written in block notation form as:

X(k)
p = D�1pp

0
@Bp �

X
q<p

�Apq X
(k)
q �

X
q�p

�Apq X
(k�1)
q

1
A (7)

for 0 � p < P , where X
(k)
p , X

(k�1)
p and Bp are the p-th blocks of vectors x(k),

x(k�1) and b respectively,D and �A contain the diagonal and o�-diagonal elements
of A respectively, and as above, Fpq denotes the (p; q)-th block of a matrix F .

5

The pseudo Gauss-Seidel method can be formulated into an MVP-based al-
gorithm, a typical iteration of which is shown in Figure 1. The algorithm works
as follows. Each iteration is divided into P phases. In the p-th phase, the method
updates elements in the p-th block of the solution vector. It does this using the
most recent approximation for each element of the solution vector available, i.e.
it uses values from the previous iteration for entries corresponding to vector
blocks p; : : : ; P � 1 and values from earlier phases of the current iteration for
entries corresponding to blocks 0; : : : ; p � 1. The pseudo Gauss-Seidel method
can be related to the Jacobi and Gauss-Seidel methods by considering Jacobi to
be the case where P = 1 and Gauss-Seidel to be the case where P = n.

Note that the p-th phase of an iteration, which computes the p-th block of
the solution vector, only requires access to entries from the p-th row of blocks
in �A, i.e. �Apq for 0 � q < P . We illustrate this in Figure 2 for P = 4 and p = 1.
Here, all blocks are of equal size but this is generally not the case. The matrix
and vector blocks used are shaded grey. A unit of computation comprises the
multiplication of a single matrix block by a single vector block (a sub-MVP).
This corresponds to line 4 of the algorithm in Figure 1. As we will see later, sub-
blocks of matrices represented as MTBDDs are particularly easy to access. This
is one of the main motivations for introducing the pseudo Gauss-Seidel method.

(0,0)

(3,3)

(1,1)(1,0) (1,2) (1,3)

XUnit of Computation:

0

1

2

3

1

q(p,q)

Fig. 2. Matrix vector multiplication at block level

The algorithm given in Figure 1 requires, in addition to the matrix storage,
one iteration vector x of size n to store the solution vector, the p-th block of
which is denoted Xp, and another vector ~Xp of size nmax to accumulate the sub-

MVPs. The subscript p of ~Xp in the algorithm is used to make the description
intuitive and to keep the vector block notation consistent; it does not imply that
we have used P such arrays.

Since pseudo Gauss-Seidel uses some elements of the most recent approxi-
mation in each iteration, it generally converges faster than the Jacobi method.
Factors which will a�ect the speed of its convergence include the number of
partitions, P , and the sizes of these partitions. We can show, though, that the
convergence characteristics of pseudo Gauss-Seidel are similar to those of Jacobi
and Gauss-Seidel, as presented for example in [35].

6

All three iterative methods can be associated with a splitting of the ma-
trix A = M � N . An iteration of each method can then be written as x(k) =
M�1Nx(k�1) + M�1b. For Jacobi, M contains the diagonal entries of A; for
Gauss-Seidel,M contains the diagonal and lower-triangular entries of A; and for
pseudo Gauss-Seidel, we de�ne M as:

Mij =

�
Aij if j < Nblock(i) or j = i

0 otherwise.

In all three cases, N is equal to M � A. In [35], the convergence properties of
both Jacobi and Gauss-Seidel are analysed for the speci�c case of computing
steady-state probabilities for a CTMC. This analysis uses the fact that both
M�1 and N are non-negative, which is shown to be true if M can be obtained
from A only by setting o�-diagonal elements to zero. As can be seen above, this
is also true for pseudo Gauss-Seidel.

In all the experiments presented in this paper, we have used the following
relative error criterion:

max
i

j x

(k)
i � x

(k�1)
i j

j x
(k)
i j

!
< 10�6: (8)

3 MTBDD-Based CTMC Storage

MTBDDs (multi-terminal binary decision diagrams) [16, 2] are an extension of
BDDs (binary decision diagrams). An MTBDD is a rooted, directed acyclic
graph which represents a function mapping Boolean variables to real numbers.
MTBDDs can be used to represent real-valued vectors and matrices by encoding
their indices as Boolean variables. Standard operations such as matrix-vector
multiplication can then be implemented eÆciently on the data structure. It has
been shown in [21, 3, 22] how such operations can then be used to implement
iterative numerical solution techniques including the Power and Jacobi methods.

The principle reason for using an MTBDD representation is that it can pro-
vide extremely compact storage of large matrices, provided that structure and
regularity derived from their high-level description can be exploited. However,
the performance of early MTBDD-based implementations of numerical compu-
tation was typically found to be poor, especially in comparison to traditional,
explicit implementations based on sparse matrices and arrays. The drawback of
the latter, though, is that they can be expensive in terms of memory.

In [29, 30], a hybrid approach was presented, representing the matrix as an
MTBDD and the solution vector as an array. This was achieved by making
modi�cations to the MTBDD, labelling nodes with integer o�sets. The entries of
the matrix can then be extracted by traversing the nodes and edges of the graph
and using the o�sets to calculate their row and column indices. The modi�ed data
structure is called an o�set-labelled MTBDD. It was found that this approach
retained the compact storage advantages of MTBDDs and, for typical examples,
could almost match the numerical solution speed of sparse matrices.

7

Figure 3 shows a small example of a matrix �A, as might be used in the itera-
tive numerical solution techniques described in the previous section, and its rep-
resentation as an o�set-labelled MTBDD. Figure 4 gives a table explaining how
the information is encoded. Row and column indices of the matrix are encoded
using Boolean variables (x1; x2) and (y1; y2), respectively. This is demonstrated
in the �rst three columns of the table. An entry of the matrix can be read from
the MTBDD by tracing a path from top to bottom, at each node taking an else

edge (dashed line) or then edge (solid line) if the variable labelling the node is
0 or 1 respectively. The value read o� at the bottom of the path is equal to the
entry of the matrix, as illustrated by the fourth column of the table. The fact
that the variables for rows and column indices are interleaved is a common vari-
able ordering heuristic in BDD-based representations to reduce graph size. The
integer values on the nodes are used to compute the row and column indices of
matrix entries in terms of reachable states only. This is typically essential since
the potential state space can be much larger than the actual state space. See [29,
30] for more information. All entries of the matrix can be extracted in a single
recursive traversal of this data structure.

�A =

0
BB@

0 0:9 0 1:2
1:2 0 0 1:2
0 0 0 0
3:7 0:9 0 0

1
CCA

2

2 2

1 1 0

0 1 1 1

1.2 0.9 3.7

x

x

y

y

1

2

2

1

Fig. 3. A matrix �A and an o�set-labelled MTBDD representing it

Entry of �A Encoding MTBDD Path
x1 x2 y1 y2 x1 y1 x2 y2

(0; 1) = 0:9 0 0 0 1 0 0 0 1 ! 0:9
(0; 3) = 1:2 0 0 1 1 0 1 0 1 ! 1:2
(1; 0) = 1:2 0 1 0 0 0 0 1 0 ! 1:2
(1; 3) = 1:2 0 1 1 1 0 1 1 1 ! 1:2
(3; 0) = 3:7 1 1 0 0 1 0 1 0 ! 3:7
(3; 1) = 0:9 1 1 0 1 1 0 1 1 ! 0:9

Fig. 4. Table explaining the representation of matrix �A in Figure 3

8

Note that MTBDDs are an inherently recursive data structure: each node is
itself an MTBDD. Furthermore, each node can be seen to represent a submatrix
of the matrix represented by the whole MTBDD. For example, descending one
level of the MTBDD in Figure 3 (i.e. a pair of xi and yi variables), we see that
each x2 node represents a 2 � 2 submatrix of the 4 � 4 matrix �A. This allows
convenient and fast access to individual submatrices.

4 A Symbolic Out-of-Core Solution with MTBDDs

In an implementation of the iterative algorithms mentioned in Section 2, the
matrix can be stored using a sparse storage scheme (see for example [4, 35, 34])
and the vector(s) can be stored as an array of doubles. However, this makes the
total memory requirements for large CTMCs well above the size of the RAM
available in standard workstations. One possible solution [18] is to store the
matrix on disk and read blocks of matrix into RAM when required. The in-core
storage of iteration vector(s), however, can still be prohibitive. This problem can
be solved by either keeping the vector on disk [26] or by distributing the vector
among multiple processors [24, 5].

The out-of-core scheduling of both the matrix and the iteration vector incurs
a huge penalty in terms of disk I/O. Keeping the matrix in-core, in a compact
representation can signi�cantly reduce this penalty. This motivates our symbolic
out-of-core solution. The idea is to keep the matrix in-core, in an appropriate
symbolic data structure, and to store the probability vector on disk. The iter-
ation vector is divided into a number of blocks. During the iterative computa-
tion phase, these blocks can be fetched from disk, one after another, into main
memory to perform the numerical computation. We have used o�set-labelled
MTBDDs [29, 30] for CTMC storage, while the iteration vector for numerical
computation is kept on disk as an array.

In Section 4.1, we present our symbolic out-of-core algorithm, focusing on
the high-level issues related to the out-of-core implementation of the iterative
algorithm. In Section 4.2, we explain the implementation of the sub-MVP oper-
ation.

4.1 The Out-of-Core Algorithm

As described in Section 2, we reformulate the system �Q = 0 to QT�T = 0 and
solve Ax = 0, where A = QT and x = �T . Furthermore, we de�ne �A to be the
matrix containing the o�-diagonal entries of the matrix A, and d to be a vector
containing the diagonal entries of A. The iterative method we use to solve the
system Ax = 0 is the pseudo Gauss-Seidel method, which has been explained
in Section 2.1. An MVP-based algorithm for a typical iteration was given in
Figure 1.

A high-level description of the symbolic out-of-core algorithm for the numer-
ical solution of the linear system Ax = 0 is shown in Figure 5. The algorithm is
based on that of our earlier approaches [26, 27]. We include the new version in

9

Integer constant: P (number of blocks)
Semaphores: S1, S2: occupied
Shared variable: Dbox (to read diagonal blocks into RAM)
Shared variables: Xbox0, Xbox1 (to read solution vector x blocks into RAM)

Disk-IO Process

1. Local variable: p, q, k, m
2. m P � 1
3. while not converged
4. for p = 0 to P � 1
5. k 1
6. for all non-zero blocks �Apq

7. if k = 0
8. read Xq from disk
9. end if

10. Signal(S1)
11. Wait(S2)
12. if k 6= 0
13. read Dp into Dbox
14. write Xm to disk
15. k 0
16. end if

17. end for

18. m p
19. end for

20. end while

Compute Process

1. Local variable: p, q, ~Xp[]
2. while not converged
3. for p = 0 to P � 1

4. ~Xp 0
5. for all non-zero blocks �Apq

6. Wait(S1)
7. Signal(S2)

8. ~Xp = ~Xp � �ApqXq

9. end for

10. ~Xp D�1p ~Xp

11. Test for convergence
12. end for

13. end while

Fig. 5. The symbolic out-of-core pseudo Gauss-Seidel iterative algorithm

full for completeness. The algorithm is implemented using two separate concur-
rent processes: the Disk-IO Process and the Compute Process. The two processes
communicate via shared memory and synchronise with semaphores.

The algorithm of Figure 5 assumes that the CTMC matrix to be solved
is stored in-core, using the o�set-labelled MTBDD data structure. The matrix
is divided into P 2 blocks, where blocks can be unequal in size and some of
the blocks may be empty. Figure 2 depicts decomposition of a matrix into 16
blocks of equal sizes. These matrix blocks are kept together as one MTBDD.
Pointers to the MTBDD nodes representing each block are stored in an array to
allow fast access during the sub-MVP operation (line 8, Compute Process). The
implementation of the MVP operation while the matrix is kept as an MTBDD
is explained in Section 4.2. We use �Apq to refer to the q-th block in the p-th row
block of the o�-diagonal matrix �A.

The probability vector x is also divided into P blocks of sizes fn0, n1, : : :
nP�1g, where the p-th block is denoted by Xp. The algorithm assumes that,

10

before it commences, an initial approximation for the probability vector x has
been stored on disk and that the block XP�1 is stored in RAM. In order to
schedule the vector x out-of-core, the algorithm requires three arrays of size
nmax doubles. The array ~Xp, which is local to the Compute Process, is used
to accumulate the sub-MVPs (line 8, Compute Process). As in Section 2.1, the
subscript p for ~Xp is intended to be intuitive; it does not imply that we have used
P such arrays. The other two arrays required are the shared memory bu�ers,
Xbox0 and Xbox1. These are used to read vector blocks from disk (line 8, Disk-
IO Process). At a certain point in time during the execution, the Disk-IO Process

is reading a block of iteration vector in one shared bu�er, say Xbox0, while the
Compute Process is consuming a vector block from the other bu�er, Xbox1, to
accumulate the sub-MVP �ApqXq . Both processes alternate the value of a local
variable t (t is kept hidden in the algorithm for the sake of simplicity) between
0 and 1, in order to switch between the two bu�ers Xbox0 and Xbox1.

To preserve structure in the symbolic representation, the diagonal elements
of the CTMC matrix are stored1 separately as a vector d. The vector d is also
divided into P blocks of sizes fn0, n1, : : : nP�1g, and is stored on disk. The
algorithm uses a shared memory bu�er2 Dbox of size nmax short ints to read a
block of diagonal vector from disk (line 13, Disk-IO Process). The notation for
the probability vector described in the paragraph above applies to the diagonal
vector: Dp is the p-th block of the diagonal vector d.

The high-level structure of the algorithm, given in Figure 5, is that of a
producer-consumer problem. In each execution of its inner for loop (lines 6�17),
the Disk-IO Process reads the required vector block, Xq, and issues a Signal(�)
operation. On receiving this signal, the Compute Process issues a return signal
and then advances to carry out a unit of computation: the sub-MVP �ApqXq

(line 8, Compute Process; see also Figure 2). This activity (lines 5� 9, Compute
Process) is repeated until all of the blocks in a block row have been read and
their products have been accumulated in ~Xp. Once the whole p-th vector block
has been updated, the Compute Process advances to the next p and signals the
Disk-IO Process, which receives the signal and writes the new approximation for
the p-th block to disk.

We note that, in the p-th phase, all the vector blocks which are required for
the computation of the p-th vector block are loaded into RAM from disk such
that a diagonal vector block (Xp) follows all the o�-diagonal blocks (Xq ; q 6=
p). This ordering is required to perform the convergence test before a block is
updated with the new approximation.

1 Since the number of the distinct values in the diagonal of the matrices considered
here is relatively small, n short int pointers to these distinct values are stored instead
of n doubles. Also, to save n divisions per iteration, the value val of each distinct
diagonal entry is stored as 1=val.

2 Using one shared block can a�ect the concurrent execution of the two processes, and
hence can worsen the performance. Two shared blocks can be used for the diagonal
vector, which may improve the time performance of the algorithm, at a cost of an
increase in the memory requirement.

11

4.2 Computing Sub-MVPs with Symbolic Matrix Storage

The computation of the matrix-vector product (MVP) is the core operation of
the iterative symbolic out-of-core algorithm. Its eÆciency determines the overall
performance of the algorithm. In our approach, the matrix is stored in an o�set-
labelled MTBDD, as described in Section 3. To implement each sub-MVP, we
need to extract the matrix entries for a given matrix block from the MTBDD.
As we saw in Section 3, because of its recursive nature, the MTBDD provides
a natural decomposition of a matrix into its submatrices. Since an MTBDD
is based on binary decisions, descending each level of the data structure splits
the matrix into 4 submatrices. Hence, descending l levels, gives a decomposition
into (2l)2 blocks. However, in order to produce an eÆcient representation, the
MTBDD actually encodes a matrix over its potential state space, which typically
includes many unreachable states. Furthermore, the distribution of these reach-
able states across the state space is unpredictable. Hence, descending l levels of
the MTBDD actually results in blocks of varying and uneven sizes.

x 1

y
1

(a) (b) (c)

Fig. 6. Matrix block referencing: (a) Original o�set-labelled MTBDD (b) P �P array
pointer storage (c) Sparse pointer storage

In our previous implementation of the symbolic out-of-core algorithm, we
envisaged that widely varying partition sizes could seriously disrupt the overlap
of numerical computation with disk I/O, hindering its performance, and hence
we opted to use partitions of equal size. It was therefore necessary to associate
each matrix block with several di�erent subtrees of the MTBDD (over a range of
levels). Maintaining and referencing this information required additional time.

In this work, we select a value of l, take P = 2l and use the natural decom-
position of the matrix given by the MTBDD. To access each block we simply
need to store a pointer to the relevant node of the o�set-labelled MTBDD. One
possible scheme would be to use a P � P array of pointers. However, as l grows
larger, many of the matrix blocks are empty. Hence, we actually adopt the CSR
sparse storage format [33, 34, 25]. These ideas (for the case l = 1) are illustrated
in Figures 6(a), (b) and (c). The extraction of each row of matrix blocks, as re-

12

quired by the inner loop of the Compute Process in Figure 5, is therefore simple
and fast.

5 Results

The algorithm presented in Section 4 has been implemented on an UltraSPARC-

II 440MHz CPU machine running Solaris with 512MB RAM, and a 6GB local
disk. We tested the implementation on three widely used benchmark models: a

exible manufacturing system (FMS) [14], a Kanban system [13] and a cyclic
server polling system [23]. These models were generated using PRISM [28], a
probabilistic model checker developed at the University of Birmingham. More
information about these models, a wide range of other case studies to which
PRISM has been applied and the tool itself can be found at the PRISM web site
[32]. The work presented in this paper is part of an ongoing e�ort to improve
the range of solution techniques supported by PRISM.

In the next section, we present results of our current implementation of the
symbolic out-of-core algorithm and compare these with those of the previous
implementation [27]. In Section 5.2, we compare the performance of the symbolic
out-of-core algorithm with explicit in-core, explicit out-of-core and symbolic in-
core solutions on an identical workstation.

5.1 A Comparison with the Old Implementation

Table 1 summarises results for the Kanban, FMS and polling system case stud-
ies. The parameter k in column 2 denotes the number of tokens in the Kanban
and FMS models, and the number of stations in the polling system models.
Column 3 and 4 list the resulting number of reachable states and o�-diagonal
non-zero elements in the CTMC matrices. The number of blocks, P , each vector
is partitioned into and the resulting total amount of memory used by the cur-
rent implementation of the out-of-core algorithm are listed in column 5 and 6,
respectively. For a large number of vector blocks, 2l notation is used in column 5,
where l is the number of levels in an MTBDD. Accordingly, a matrix is divided
into P 2 blocks.

The run times per iteration of the improved symbolic out-of-core solution
are recorded in column 8 under the heading \new". In order to measure the im-
provements obtained from this new implementation of the algorithm, we report
results for the previous implementation in column 7 under the heading \old".
A comparison of the two columns con�rms a signi�cant improvement in time.
In general, we see that the new implementation is approximately twice as fast.
All the (out-of-core) solution times are in real time. The symbol `{' in column 7
against a row indicates that the system has not been solved using the old imple-
mentation on this workstation. Column 9 (\Iter.") gives the number of iterations
the computation took to converge, using the criterion (8) from Section 2. We
observe a steady pattern of convergence for all three models. The last column

13

Model k States O�-diagonal Blocks RAM Time (sec/it) Iter. MB
(n) non-zeros (P) (MB) old new per �

Kanban 5 2,546,432 24,460,016 210 133 11.5 4.5 532 20
system 6 11,261,376 115,708,992 210 226 49.4 22.6 717 86

7 41,644,800 450,455,040 210 240 215 143 924 317
8 133,865,325 1,507,898,700 213 194 1,110 601 1,151 1,004

FMS 8 4,459,455 38,533,968 22 222 25.41 10.4 1,245 34
9 11,058,190 99,075,405 223 220 107.8 35.9 1,416 84
10 25,397,658 234,523,289 223 281 380 142 1,591 194
11 54,682,992 518,030,370 223 315 1,132 708 1,770 417
12 111,414,940 1,078,917,632 223 325 { 1,554 > 50 850
13 216,427,680 2,136,215,172 223 392 { 3,428 > 50 1,651

Polling 18 7,077,888 69,599,232 32 94 21 10.5 302 54
system 19 14,942,208 154,402,816 32 124 53 23.8 315 114

20 31,457,280 340,787,200 32 198 110 52 328 240
21 66,060,288 748,683,264 32 306 364 177 340 504
22 138,412,032 1,637,875,712 32 505 795 374 353 1,056

Table 1. Out-of-core numerical solution times for steady-state solution

indicates the amount of memory required to store the probability vector (n dou-
bles). Since the vector is stored on disk, this value also corresponds to the �le
size for the iteration vector.

The �rst case study in Table 1 is the Kanban system. The largest CTMC
solved in this case has 133 million states, which used 194MB of RAM and took
8 days to converge. The matrix was divided into 81922 blocks. The second case
study is the
exible manufacturing system. The largest model solved in this case
is for k = 11 with 54 million states. The solution took over 14 days to complete,
using 315MB RAM. The largest FMS model we scheduled using our out-of-core
solution method is for k = 13 with 216 million states. The run times for this
model are taken for 50 iterations; we were unable to wait for its convergence,
and hence the total number of iterations is not reported in the table. The �nal
case study is the polling system, where the largest model solved is for k = 22
which contains 138 million states. The out-of-core solution for this system used
505MB of RAM and took 1:5 days to converge.

Generally, the memory required by our out-of-core solution can be decreased
by increasing the number of blocks. This is due to the fact that increasing the
number of vector blocks typically causes a reduction in the size of the largest
vector block to be kept in RAM, i.e. reduces nmax. Figure 7(a) illustrates this
for three CTMCs, one from each model. The plots display the total amount of
memory used against the number of vector blocks. Consider the plot for the
Kanban system (k = 6). The memory required for the case P = 2 is above
650MB. Increasing the number of blocks reduces the memory requirements to
the minimum: nearly 140MB. The same properties are evident for the FMS
(k = 8) and polling system (k = 18) CTMCs. For large numbers of blocks
(i.e. the rightmost portions of the plots), we note an increase in the amount

14

10
0

10
2

10
4

10
6

10
8

0

100

200

300

400

500

600

700

Blocks

M
em

or
y

(M
B

)

Kanban6 (11.2 million states)
FMS8 (4.4 million states)
Polling18 (7 million states)

10
0

10
2

10
4

10
6

10
8

10

20

30

40

50

60

70

80

90

100

Blocks

T
im

e
(s

ec
on

ds
/it

er
at

io
n)

Kanban6 (11.2 million states)
FMS8 (4.4 million states)
Polling18 (7 million states)

(a) Memory requirements vs. blocks (b) Time per iteration vs. blocks

Fig. 7. Memory and time usage of the symbolic out-of-core solution

of memory. This is because the memory overhead required to store information
about the blocks of the MTBDD dominates the overall memory in these cases.

In Figure 7(b), we analyse the time per iteration for the same three CTMCs,
plotted against the number of vector blocks. We explain the plot for the Kanban
system (k = 6). Initially, for P = 2, the memory required (see Figure 7(a)) for
solution is more than the available RAM. This causes thrashing and results in
a high solution time. An increase in the number of blocks removes this problem
and explains the initial downward jump in the plot. From this point on, however,
the times vary. The explanation for this is as follows. Our decomposition of the
matrix into blocks can result in a partitioning such that there is a signi�cant
di�erence between the maximum and minimum partition sizes. This can a�ect
the overlap of computation and disk I/O, e�ectively increasing the solution time.
The sizes of the partitions are generally unpredictable, being determined both
by the sparsity pattern of the matrix and by the encoding of the matrix into
the MTBDD. Finally, we note that the end of the plot shows an increase in the
solution time. This is due to the overhead of manipulating a large number of
blocks of the matrix and the increased memory requirements that this imposes,
as is partially evident from Figure 7(a).

Similar patterns can be observed for the other two plots in Figure7(b). Like-
wise, we have found that varying the value of k within each case study also results
in similar patterns. This can, in fact, be useful for predicting good choices of par-
tition sizes for larger values of k. A useful direction for future work would be to
investigate more fully what constitutes a good choice of P .

It is evident from Table 1 and Figure 7(b) that the FMS system has the
highest solution times per iteration, given an equal number of states. The lowest
solution times among the three reported models are attributed to the polling sys-
tem. The FMS system is the least structured of the three models which equates
to a large MTBDD to store it; the larger the MTBDD, the more time is re-
quired to perform its traversal. The polling system, on the other hand, is very
structured and therefore results in a smaller MTBDD.

15

5.2 A Comparison of In-Core and Out-of-Core Solutions

In this section, we compare in-core and out-of-core versions of both symbolic
and explicit implementations. The results are summarised in Table 2. They were
collected on the same machine { an UltraSPARC-II 440MHz CPU machine with
512MB RAM and a 6GB local disk. All reported run times are in real time.

The �rst three columns of Table 2 are identical to Table 1 except that this
time we have reported a larger range of the parameter k for each model. Columns
4{5 in the table list the results for explicit implementations: both standard \in-
core", where the matrix and the vector are kept in RAM; and \out-of-core", as
in [26], where they are stored on disk. In both cases, the matrix is stored using
the Compact MSR sparse matrix storage scheme [26] and the vector is stored as
an array.

Model k States Time (seconds per iteration)
Explicit Symbolic

in-core out-of-core in-core out-of-core

Kanban 4 454,475 0.4 1.2 0.5 1.3
system 5 2,546,432 2.3 7.0 3.1 4.5

6 11,261,376 { 69 15.6 22.6
7 41,644,800 { 308 { 143
8 133,865,325 { { { 601

FMS 6 537,768 0.5 2.2 1.0 1.3
7 1,639,440 1.6 7 3.0 3.2
8 4,459,455 3.9 21 8.9 10.4
9 11,058,190 { 57 39.6 35.9
10 25,397,658 { 178 149 142
11 54,682,992 { { { 708
12 111,414,940 { { { 1,554
13 216 427 680 { { { 3,428

Polling 15 737,280 0.5 3.0 0.8 0.8
system 16 1,572,864 1.1 7.2 1.7 2.0

17 3,342,336 2.58 15.2 3.9 4.6
18 7,077,888 5.80 34.3 8.3 10.5
19 14,942,208 { 68.6 20.3 23.8
20 31,457,280 { 132 155 52
21 66,060,288 { { { 177
22 138,412,032 { { { 374

Table 2. Comparing solution times for in-core and out-of-core solutions

Columns 6{7 in Table 2 report results for symbolic implementations: both
\in-core", where the o�set-labelled MTBDD for the matrix and the array for the
vector are kept in RAM, and \out-of-core", as described in this paper. The run
times for the former were obtained using the existing in-core implementation
in the tool PRISM. The times for the latter are identical to those reported in
Table 1. The relative performances of these two symbolic implementations are

16

plotted against the number of states in Figure 8. The smaller the value of this
ratio, the better the performance of the out-of-core approach. Ideally, we would
like this value to be as close to 1 as possible, i.e. minimising the additional time
overhead incurred due to the out-of-core scheduling of the vector. We see from
Table 2 and Figure 8 that, in general, we achieve this aim. In fact, when the
memory usage of the in-core technique approaches or exceeds the total RAM
available, this ratio is actually less than 1 due to thrashing. For the case where
the in-core method is incapable of scheduling a CTMC model, we consider the
performance ratio to be zero (see Figure 8).

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

States (millions)

R
at

io
: t

im
e

pe
r

ite
ra

tio
n

(o
ut

co
re

/in
co

re
)

Kanban
FMS
Polling

Fig. 8. Symbolic out-of-core vs. symbolic in-core

We note in Table 2 that the in-core solution of column 4 provides the fastest
run-times. However, pursuing this approach, the largest model solvable on the
512MB workstation is the polling system (k = 18) with approximately 7 million
states. The in-core symbolic solution of column 6 can solve larger models because,
in this case, the matrix is stored symbolically. The largest model solvable with
this symbolic in-core approach is the polling system (k = 20) with 31 million
states. The out-of-core storage of matrix (explicit) and vector can solve even
larger models. This is reported in column 5, and the largest model reported in
this case is the Kanban system (k = 7) with 41 million states, although, using
this approach, solution of even larger models is possible.

We observe that the results for explicit solutions are quite consistent with
all three example models. However, the performance of implicit (symbolic) so-
lutions, both in-core and out-of-core, depends on a particular system. This is
because the symbolic methods rely on structure in a model. We conclude with
our observation of Table 2 that the symbolic out-of-core solution provides the
best overall results for the examples considered.

17

6 Conclusion

In this paper, we have presented an improved implementation of our symbolic
out-of-core algorithm and given a detailed analysis of its performance. The imple-
mentation has been tested on three benchmark models. Generally, we observe
a speedup of approximately a factor of two over our earlier approach. We re-
port solution of models as large as with 138 million states on a workstation
with 512MB RAM. Even larger systems with up to 216 million states have been
shown to be solvable using this approach. This is demonstrated by scheduling
these models for steady-state solution on the workstation. Since the equivalent
implicit approaches require an iteration vector of size proportional to the state
space, the largest model these techniques can solve on equivalent hardware is of
size 64 million states.

The idea of symbolic out-of-core solution is a promising one, and is equally
applicable to other symbolic methods such as matrix diagrams or Kronecker
methods. Although it has been demonstrated in this paper that very large models
can be solved on a modern workstation using our symbolic out-of-core approach,
the solution process for large models is quite slow. In future we will extend
this approach by employing parallelisation. We also intend to generalise these
techniques to other numerical computation problems, such as transient analysis
of CTMCs and analysis of DTMCs and MDPs.

7 Acknowledgement

We are grateful to Gethin Norman for his assistance in developing the case
studies which we have used for experimental results in this paper.

References

1. S. Allmaier, M. Kowarschik, and G. Horton. State space construction and steady-
state solution of GSPNs on a shared-memory multiprocessor. In Proc. PNPM'97,
pages 112{121. IEEE Computer Society Press, 1997.

2. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii, A. Pardo, and F. Somenzi.
Algebraic Decision Diagrams and their Applications. In Proc. ICCAD'93, pages
188{191, Santa Clara, 1993.

3. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic Model Checking for Probabilistic Processes. In Proc. ICALP'97, pages
430{440, April 1997. Available as Volume 1256 of LNCS.

4. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. Philadalphia: Society for
Industrial and Applied Mathematics, 1994.

5. A. Bell and B. R. Haverkort. Serial and Parallel Out-of-Core Solution of Linear
Systems arising from Generalised Stochastic Petri Nets. In Proc. High Performance
Computing 2001, Seattle, USA, April 2001.

18

6. Marius Bozga and Oded Maler. On the Representation of Probabilities over Struc-
tured Domains. In N. Halbwachs and D. Peled, editors, Proceedings of CAV'99,
Trento, Italy, volume 1633 of LNCS, pages 261{273. Springer-Verlag, July 1999.

7. P. Buchholz. Structured analysis approaches for large Markov chains. SIAM Jour-
nal on Matrix Analysis and Applications, 31(4), 1999.

8. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Kronecker Operations and
Sparse Matrices with Applications to the Solution of Markov Models. ICASE
Report 97-66, Institute for Computer Applications in Science and Engineering,
December 1997.

9. P. Buchholz, M. Fischer, and P. Kemper. Distributed Steady State Analysis Using
Kronecker Algebra. In Proc. NSMC'99, pages 76{95, 1999.

10. P. Buchholz and P. Kemper. Compact Representations of Probability Distribu-
tions in the Analysis of Superposed GSPNs. In Reinhard German and Boudewijn
Haverkort, editors, Proc. PNPM'01, pages 81{90, September 2001.

11. S. Caselli, G. Conte, F. Bonardi, and M. Fontanesi. Experiences on SIMD mas-
sively parallel GSPN analysis. In G. Haring and G. Kotsis, editors, Computer
Performance Evaluation: Modelling Techniques and Tools, volume 794 of Lecture
Notes in Computer Science, pages 266{283. Springer-Verlag, 1994.

12. G. Ciardo and A. Miner. A Data Structure for the EÆcient Kronecker Solution of
GSPNs. In Proc. PNPM'99, Zaragoza, 1999.

13. G. Ciardo and M. Tilgner. On the use of Kronecker Operators for the Solution of
Generalized Stochastic Petri Nets. ICASE Report 96-35, Institute for Computer
Applications in Science and Engineering, 1996.

14. G. Ciardo and K. S. Trivedi. A Decomposition Approach for Stochastic Reward
Net Models. Performance Evaluation, 18(1):37{59, 1993.

15. Gianfranco Ciardo. Distributed and structured analysis approaches to study large
and complex systems. Lecture Notes in Computer Science, 2090:344{374, 2001.

16. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-Terminal Binary
Decision Diagrams: An EÆ�cient Data Structure for Matrix Representation. In
Proc. International Workshop on Logic Synthesis (IWLS'93), May 1993.

17. D. D. Deavours and W. H. Sanders. An EÆcient Disk-based Tool for Solving Very
Large Markov Models. In Raymond Marie et al., editor, Proc. TOOLS'97, volume
1245 of LNCS, pages 58{71. Springer-Verlag, 1997.

18. D. D. Deavours and W. H. Sanders. An EÆcient Disk-based Tool for Solving Large
Markov Models. Performance Evaluation, 33(1):67{84, 1998.

19. D. D. Deavours and W. H. Sanders. \On-the-
y" Solution Techniques for Stochas-
tic Petri Nets and Extensions. IEEE Transactions on Software Engineering,
24(10):889{902, 1998.

20. I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford Science Publications. Clarendon Press Oxford, (with corrections)1997.

21. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large
Finite State Machines. IEEE Transactions on CAD, 15(12):1479{1493, 1996.

22. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary Decision
Diagrams to Represent and Analyse Continuous Time Markov Chains. In Proc.
Numerical Solutions of Markov Chains (NSMC'99), Zaragoza, 1999.

23. O. Ibe and K. Trivedi. Stochastic Petri Net Models of Polling Systems. IEEE
Journal on Selected Areas in Communications, 8(9):1649{1657, 1990.

24. William J. Knottenbelt and Peter G. Harrison. Distributed Disk-based Solution
Techniques for Large Markov Models. In Proc. Numerical Solution of Markov
Chains (NSMC'99), Prensas Univerversitarias de Zaragoza, 1999.

19

25. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cumming
Publishing Company, 1994.

26. M. Kwiatkowska and R. Mehmood. Out-of-Core Solution of Large Linear Systems
of Equations arising from Stochastic Modelling. In Proc. PAPM-PROBMIV'02,
July 2002. Available as Volume 2399 of LNCS.

27. M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker. A Symbolic Out-of-
Core Solution Method for Markov Models. In Proc. Parallel and Distributed Model
Checking (PDMC'02), August 2002. Appeared in Volume 68, issue 4 of ENTCS
(http://www.elsevier.nl/locate/entcs).

28. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic
Model Checker. In Proc. TOOLS'02, volume 2324 of LNCS, April 2002.

29. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic Symbolic Model Check-
ing with PRISM: A Hybrid Approach. In Proc. TACAS 2002, April 2002. Available
as Volume 2280 of LNCS.

30. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, August 2002.

31. B. Plateau. On the Stochastic Structure of Parallelism and Synchronisation Models
for Distributed Algorithms. In Proc. 1985 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 147{153, 1985.

32. PRISM Web Page. http://www.cs.bham.ac.uk/~dxp/prism/.
33. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical

Report RIACS-90-20, NASA Ames Research Center, Mo�ett Field, CA, 1990.
34. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, 1996.
35. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, 1994.
36. Sivan Toledo. A Survey of Out-of-Core Algorithms in Numerical Linear Algebra. In

James Abello and Je�rey Scott Vitter, editors, External Memory Algorithms and
Visualization, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society Press, Providence, RI, 1999.

20

