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Abstract

The safety and reliability of large complex systems play an important role in the availability

of the services provided by them. Unfortunately, fault occurrences in such systems are usually

unavoidable. Fault diagnosis addresses the problem of detection and isolation of these fault

occurrences. Thus, developing automatic approaches to obtain accurate and timely diagnosis

decisions in such systems enhances their safety and reliability. It is well known that the problem

of fault diagnosis under partial observation is a complex problem; and the challenge to solve this

problem is to find a compromise between the space complexity and time complexity. The classic

method to solve the problem is by constructing an automaton called a diagnoser. This method

suffers from the state explosion problem which limits its application to large systems.

In this thesis, the problem of fault diagnosis in partially-observed discrete event systems is

addressed. We assume that the system is modelled by Petri nets having no cycle of unobservable

transitions. The class of labelled Petri nets is also considered with both bounded and unbounded

cases. We propose a novel approach for fault diagnosis using the Integer Fourier-Motzkin

Elimination method. The main idea is to reduce the problem of constructing the diagnoser to a

problem of projecting between two spaces. In other words, we first obtain a set of inequalities

derived from the state equation of Petri nets. Then, the elimination method is used to drop the

variables corresponding to the unobservable transitions and we design two sets of inequalities

in variables representing the observable transitions. One set ensures that the fault has occurred,

whereas the other ensures that fault has not occurred. Given these two sets, we have proved

that the occurrences of faults can be decided as any other diagnoser can do. The obtained result

are extended to diagnose violations of constraints such as service-level agreement and Quality

of Service, which is of particular interested in telecommunication companies. We implement

our approach and demonstrate gains in performance with respect to existing approaches on a

benchmark example.
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CHAPTER 1

INTRODUCTION

1.1 Fault diagnosis

A fault is defined as an undesirable change in the property of a system or its components. Fault

diagnosis is the process whereby the faults are detected and isolated. The area of fault diagnosis

has received considerable attention in the past three decades from both academia and industry.

Within this area, algorithms and techniques from control theory and artificial intelligence fields

have been applied. These algorithms and techniques are capable of determining whether the

state of the system is normal or faulty and they further isolate the faults, i.e. determine the fault

type, if any. Generally speaking, two types of fault have been recognised in the literature: (i)

permanent and (ii) intermittent. When a permanent fault occurs, the shape of change in the

property is abrupt and this change propagates to all states following the faulty state. In the case

of intermittent faults, this change occurs repeatedly, i.e. the fault events are followed by reset

events which return the system to its normal state. Sometimes, these faults are captured as events

in the systems, but other times they represent violations of constraints and are not events in

themselves.

Several reasons make the fault diagnosis process an important task. First, the faults cannot be

avoided, especially for complex and large systems. In addition, their consequences and impacts

could present a risk to not only the systems themselves, but also to society in general. Secondly,

there is the difficulty of providing partial information about the occurrence of faults. In fact,
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CHAPTER 1. INTRODUCTION

due to technology limitations and budget issues, not all parts of a system can be monitored and

consequently we cannot observe all events which occur. These reasons, among others, motivate

the research in this area in order to create efficient automated methods which provide accurate

diagnosis decisions as soon as faults occur.

A variety of methods and techniques have been proposed to address the problem of fault

diagnosis. These methods and techniques have different schemes in their design and implemen-

tation, in addition to their theoretical foundations. Most of the proposed methods can be broadly

categorised into: (i) knowledge-based systems methods representing experts systems and other

artificial intelligence methods [1]; using these methods, the knowledge of experts is captured

in the form of a set of rules; (ii) qualitative model-based methods [2]; and (iii) quantitative

model-based methods [3].

Knowledge-based methods are particularly applied when it is difficult to obtain a model

of the system to be diagnosed. In other words, the level of details of such systems cannot be

captured as an abstract model describing their dynamical behaviour. On the contrary, qualitative

model-based methods (also called discrete event system (DES) methods) have an advantage

over the other methods in that they require no deeply detailed modelling [4]. Using such

methods, the dynamical behaviour of the system is captured by states and the corresponding

transitions between these states in a form of a modelling formalism. On the other hand, the

quantitative methods adopt mathematical models used to compare the actual measurements

of sensors with the predicted ones. All methods belonging to these different categories use

two different implementation frameworks: offline and online [5]. With an online framework,

the diagnosis process is performed during the normal operation of the system. In the offline

framework, the system is tested before operation by making a number of tests and observing the

outputs of the system to determine its behaviour. In effect, offline diagnosis is more flexible than

online diagnosis; in addition, the state of the system is not changed unless we choose to make

these changes. While in the case of online diagnosis, the state of the system is continuously

changed without even having control of some of these changes. Thus, working in online mode is

more difficult than working offline.

2



CHAPTER 1. INTRODUCTION

Discrete event systems are of particular interest and they represent a wide range of systems,

see [6] for further information. In fact, the study of fault diagnosis for such systems has attracted

a great deal of attention, in particular, under partial observation [2]. Fault diagnosis in partially-

observed DES requires two different problems to be addressed: diagnosability and fault diagnosis.

Diagnosability is an essential property by which we can ensure that any fault can be diagnosed

within a finite delay. A popular approach to address these problems is to assume the existence of

a formal representation of the behaviour of the system being analysed (often called the plant), as

captured in some modelling formalism. Two commonly used formalisms are automata and Petri

nets [4, 7–10]. Using these formalisms, faults are modelled as unobservable transitions. Among

others, the seminal paper by Sampath et al. [4] formulates the diagnosis and diagnosability

problems for systems modelled by automata. An automaton called a diagnoser is pre-compiled

from the model of the system to: i) verify the diagnosability offline and ii) diagnose faults online.

Also, Petri nets provide a rich modelling environment and are widely used in model-based fault

diagnosis and diagnosability, see for example [8, 11–17], extending the original definition and

standard notions.

Furthermore, using these two modelling formalisms, different architectures for the proposed

approaches have been presented: centralised, decentralised [18–21] and distributed [7, 22, 23].

This classification is based on the information used from the global system and how the diagnosis

decisions are made from this information. In the centralised architecture, the global model of the

system is used for building a single diagnoser which monitors the whole system. Similarly, the

global model is used within the decentralised architecture; however, a set of local diagnosers

are created from this model and then each diagnoser is responsible of monitoring its local site.

As opposed to using the global model, the distributed architecture uses individual diagnosers

constructed from partial (local) models of the system.

In this thesis, we address the fault diagnosis problem and not the diagnosability problem;

focusing on partially-observed DES, based on Petri nets. We adopt the centralised architecture

to address the problem assuming that the faults are permanent and diagnosed using the online

mode. We also address both cases of faults, i.e. when faults are modelled as events and when

3



CHAPTER 1. INTRODUCTION

faults are in the form of violations of constraints. Furthermore, as Petri nets extend automata, the

results in this thesis are thus also applicable to automata.

1.2 Problem statement

Fault diagnosis in partially-observed DES is a complex problem (NP-hard problem) and the

difficulty in solving it involves finding the best compromise between space complexity (size of the

diagnoser) and time complexity of the algorithm that uses the diagnoser to compute the diagnosis.

As mentioned previously, this problem has first been studied in the automata framework [4].

The idea of the solution starts by creating from the model of the system an automaton called a

diagnoser in which all events are observable. Although the diagnoser approach has significantly

lower time requirements to compute the diagnosis, the space requirements are significantly

higher. Thus, the application of this approach is limited to small systems. Another limitation

consists of the inability to handle infinite systems (unbounded state space). Extended work, using

the notion of basis marking and justifications, has been proposed in the Petri nets framework by

Cabasino et al. [8]. The authors have presented a method in which the efficiency of the diagnoser

approach could be improved by not considering all states in the system to be diagnosed. Also,

this approach can be applied to infinite systems, but at the cost of increasing the computations

required online which could be exponential in the worst case.

A different idea has been introduced in [10, 24] where they adopt the use of equations

to address the diagnosis problem. In other words, the diagnoser is no longer represented as

an automaton. More specifically, the fault diagnosis problem is reduced to an integer linear

programming (ILP) problem, which is solved online every time an event is observed. Using

this idea, space complexity has been reduced at the cost of time complexity, which could be

exponential. We conclude this discussion by pointing out that the existing approaches have either

a state explosion problem or high time requirements.

Another limitation of the existing approaches is shown where these approaches can only

be applied to diagnose the faults captured as events in the model of the plant. As previously
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CHAPTER 1. INTRODUCTION

explained, a common practice is to represent faults as a part of the plant’s model. For example, in

automaton and Petri net models of the plants, we create unobservable transitions for representing

faults. However, this style of modelling the faults is not always realistic. Sometimes, a fault

is created as a result of a violation of service-level agreement (SLA) or Quality of Service

(QoS) [25–31]. For example, consider the right-first time (RFT) fault [32] which is of interest to

telecommunication services. The RFT fault occurs when a process fails to complete a task the

first time and it is forced to repeat a part of the task again. This happens when one or more tasks

are repeated, indicating incorrect execution of the task in the first place. Such occurrences of a

fault may result in violations of SLA, causing financial penalties or customer dissatisfaction.

If the fault is expressed as a violation of constraint, there is no event in the system that

represents the fault. One can argue that if a fault is caused by a violation of a constraint, we can

always modify the model of the plant to include extra transitions (and/or states) to model the

occurrences of the fault. This would require alterations of the models which has been seen as

not always acceptable by engineers. Since the SLA and QoS requirements change over time, if

violations of such constraints are modelled by adding transitions, the model of the plant must

change whenever such constraints are modified. In addition, in some cases, adding extra events

or transitions may result in cumbersome models. To model an RFT fault, potential duplicates

of many transitions must be created to mark undesirable repetition of the multiple events. This

can result in a serious distortion of an originally elegant design, resulting in a large and complex

model.

In the light of the above issues, this thesis aims to answer three main research questions, in

particular:

• Is it possible to create a new approach for the fault diagnosis problem in partially-observed

DES based on Petri nets so that the compromise between space complexity and time

complexity is achieved? Note that the faults are modelled as events in the system model.

• If this is possible, would we be able to diagnose a different form of faults which represent

no events, i.e. faults in the form of violations of constraints?

5
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• What is the scope of the application of the proposed approach? In other words, what

type of Petri nets can be used and under what assumptions can the proposed approach be

applied?

1.3 Outline of the proposed approach

In this thesis, we introduce a new approach to address the classical problem of fault diagnosis in

partially-observed discrete event systems modelled as Petri nets. The main idea of this approach

incorporates using the Integer Fourier-Motzkin Elimination (IFME) method to build the diagnoser

from a Petri net based on the state equation [33], explained later. Fourier-Motzkin Elimination

(FME) was first introduced as a method to solve a set of inequalities in real variables [34–36]. It

is an extension of the Gaussian elimination method, commonly used with a set of equations. Like

Gaussian elimination, FME eliminates variables from a set of inequalities, obtaining inequalities

with fewer variables. The IFME method is an extension of the classic FME to cope with integer-

valued variables [37, 38]. Another important application of FME, and the one used in this thesis

for fault diagnosis, is to project the space defined by a set of inequalities in n variables onto

another space defined by a set of n′ < n variables [39].

The basic idea is to use this elimination method to omit the variables corresponding to

unobservable transitions in the original set of inequalities, derived from the state equation, and

design two sets of inequalities for each fault type. One set ensures that a fault has occurred (all

sequences of the Petri net producing the given observation are faulty sequences) and the other

ensures that the fault has not occurred (all sequences that produce the given observation are

non-faulty sequences of the system).

More specifically, starting from a Petri net, a set of inequalities, denoted I, based on the

state equation is produced. This set consists of integer-valued inequalities in variables that

represent the number of firing transitions. The occurrence, or absence, of a fault can also be

expressed by an inequality. Adding individually each of these inequalities to I yields two sets of

inequalities, to which we apply the IFME method to eliminate the variables corresponding to

6
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unobservable transitions ending up with two sets of inequalities R and R′ in variables representing

the observable transitions. Since all variables relate to observable events, the advantage of using

R and R′ is that we can check for a given sequence σ if the projection to observable events

satisfies R and R′. As a result, these sets of inequalities are used to decide about the occurrence

of the fault as any other diagnoser would do.

1.4 Contributions of the thesis

The contributions of this thesis are embodied in the following key points:

1. We introduce a new approach of fault diagnosis in partially-observed DES based on the

FME method. To the best of our knowledge, the FME has never been used in this context.

This new approach is applied in the Petri nets framework to produce a diagnoser used for

computing the diagnosis. In effect, the diagnoser is no longer represented as an automaton

but as sets of inequalities in variables representing the observable transitions. These sets of

inequalities are derived offline from the state equation in the Petri nets. Each pair of these

sets is used to diagnose faults from a single fault type. Furthermore, since it is always

possible to transform automata to Petri nets, application of our approach in automata

models is straightforward.

2. The introduced approach can also be applied to different complex fault forms such as those

in the form of violations of constraints, in which the faults are not captured as events in the

model of the system. The SLA and QoS violations are examples of such faults. Current

fault diagnosis methods often model faults as new events in the system by modifying the

model. In the case of dealing with SLA and QoS, modelling a fault as an event may result

in large models. As the creation of diagnosers is super exponential, this causes serious

problems. Our proposed approach to address this problem not only provides a solution

avoiding extra complexity, but is also more acceptable from an industrial point of view

because the provided solution does not require modifying the model of the system every
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time those constraints are changed.

3. We address the fault diagnosis problem in both finite and infinite systems without making

any modifications to deal with each case. The FME method enables the representation of

the diagnoser as sets of inequalities and not as an automaton which has a bounded number

of nodes.

4. A software tool implemented in Java has been developed to create the diagnoser. In

addition, a new emerging technology called complex event processing (CEP) is employed

to implement the diagnoser in order to compute the diagnosis states when observing a

sequence of events online.

5. A comparison has been performed between the proposed approach and the diagnoser

approach. This comparison is based on a benchmark example which is presented in

WODES and has been used in previous works also for comparison purposes [40–42].

The experimental results show that the proposed approach provides justified superior

performance and scalability, enabling the application of this approach to large complex

systems.

1.5 Publications related to this thesis

The majority of the present work of this thesis has been presented as conference and journal

papers. The results presented in Chapter 4 were first published in [43]. We have also submitted

a revised copy of a journal paper entitled A New Approach for Failure Diagnosis in Petri Net

Models of Discrete Event Systems Using Fourier-Motzkin method to the Automatica journal. This

paper represents the results obtained in Chapter 5. Relevant to Chapter 7, we presented in [44]

an approach addressing the problem of diagnosis and diagnosability of violations of constraints.

The presented approach extended the existing theory of fault diagnosis and diagnosability in DES.

Unfortunately, this approach still suffers from the state explosion problem inherited from existing

approaches. Thus, we applied the IFME to address the problem of violations of constraints in
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Chapter 7, and the obtained results, in the form of a paper entitled On Diagnosis of Violations

of Constraints in Petri Net Models of Discrete Event Systems Using Fourier-Motzkin Method,

were first accepted for publication in 27th International Workshop on Principles of diagnosis

(DX2016).

1.6 Thesis structure

This thesis is structured as follows. A literature review of the relevant work which address the

problem of fault diagnosis in partially-observed DES is first covered in Chapter 2. We classified

this work into two categories: automata models and Petri net models. Also, we consider the case

of decentralised and distributed diagnosis.

Some general background on the Petri nets theory is offered in Chapter 3, in addition to a

description of both the FME method and its extension to cope with integer solutions as well as

their theoretical foundations. The last part of this chapter is devoted to delivering an introduction

to complex event processing and one of its widely used examples named Esper.

Chapter 4 starts with a special case in which the problem of fault diagnosis in partially-

observed DES is addressed in acyclic Petri nets. We propose the use of the IFME method to

diagnose a single fault. Based on the notion of the state equation in Petri nets in addition to

expressing the faults as inequalities, we prove that the problem of fault diagnosis can be reduced

to a projection problem (eliminating a set of unwanted variables from a set of linear inequalities).

Also, algorithms are written to implement the proposed approach, supported by an illustrative

example for better understanding.

Chapter 5 provides an extension of the work to tackle the problem of fault diagnosis in more

general Petri nets, in particular, Petri nets having no cycle of unobservable transitions, where

each transition has a unique label. We elevate the notion of tracking the diagnosis history to avoid

the problem of lack of order information in the state equation. Then, algorithms implementing

the extension and their computational complexities are explained in detail.

Additionally, the work in Chapter 6 is expanded to the case where two or more transitions
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might share the same label. In other words, the IFME method is extended to address the problem

of fault diagnosis in labelled Petri nets. This extension includes using the enabling condition

in Petri nets to deal with the nondeterminism resulting from sharing the labels. We present a

supplemented definition of the diagnoser and algorithms to construct the diagnoser offline in

addition to performing online diagnosis considering this type of Petri nets.

Furthermore, the problem of fault diagnosis in the form of violations of constraints is studied

and addressed in Chapter 7. The SLA and QoS violations are some examples of such faults. We

present a special case of these faults called right-first time faults to clarify the notion of this type

of fault and how the IFME method can also be adopted to diagnose such faults.

Chapter 8 covers the implementation and evaluation of the proposed approach. Considering

a benchmark example representing a manufacturing system, we compare the performance of our

approach with the performance of the diagnoser automaton approach for Petri nets. Two criteria

are used for comparison, namely the diagnoser size created offline and the time for computing

the diagnosis. Also, the implementation details using Java and the CEP Esper engine are given.

Finally, conclusions and future directions to expand the current work and apply it for other

Petri nets classes such as timed Petri nets are the topics of the last chapter. In addition, the study

of diagnosability, where the diagnosis of any fault can be ensured within a finite delay, in the

context of the proposed approach is considered.

10



CHAPTER 2

RELATED WORK

The aim of this chapter is to review the state-of-the-art methods addressing the fault diagnosis

problem in DES under partial observation. Based on two modelling formalisms, namely automata

and Petri nets, we classify these methods and describe their proposed notions to tackle the

problem in question. We begin with automata model approaches and in particular, the initial

work which developed the theory and methodology of fault diagnosis and diagnosability in DES.

Then, we describe the notions introduced in automata models which have been extended to

the Petri net model. Different directions of research which have been explored in this regards

are considered. We end this chapter by reviewing the fault diagnosis approaches based on

decentralised and distributed frameworks.

2.1 Automata-based approaches

The fault diagnosis problem in partially-observed DES was first studied in an automata framework

[4, 45–47]. In fact, the idea proposed and the theory developed in these works have their roots

topics such as state estimation and observability [48, 49], which concerns estimating the current

state of the system under partial observation; and invertibility [50] which addresses the problem

of reconstructing all sequences of events (corresponding to an observed sequence) in the system.

According to this theory, the automaton modelling the system behaviour has two sets of events:

observable and unobservable. Further, the unobservable events set has two kinds of events: faulty
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and non-faulty.

In order to achieve the diagnosis task, there are two assumptions: 1) The system is live, i.e.

the system cannot reach a state in which there is no event possible. 2) No cycle of unobservable

events exists in the automata models being analysed. Based on these assumptions, a pre-computed

(compiled) finite-state automaton is built offline from the model of the system to be diagnosed.

This automaton is called a diagnoser automaton in which arcs are labelled by observable events

and states represent a subset of system states. Each state is provided with a diagnosis label

explaining whether faults have or have not occurred, or may have occurred before reaching this

state. In other words, each diagnosis state is an estimation of the current state of the system after

observing a sequence of events.

Having the diagnoser, the computation of the diagnosis can then be accomplished based on

the notion of string matching. In other words, the diagnosis of faults is performed by finding an

exact match for a string of observed events in the diagnoser, then checking the diagnoser state

reached from the initial state, by tracking events in the diagnoser matching that string.

Using the diagnoser automaton, all of the information about the system behaviour is compiled

offline. In other words, each diagnoser state is a possible diagnosis and each diagnosis represents

a diagnoser state. Also, the process of computing the diagnoser requires no more than triggering

the diagnoser state upon observing an event, which is time-efficient. However, since constructing

the diagnoser takes into account enumerating all possible states of the system, the size of the

diagnoser is exponential in the number of states of the system. This causes a state explosion

problem which can limit its application in large and complex systems [45].

Two remedies can be attempted to address this state explosion problem. The first involves

constructing separate diagnosers, where each monitors a different fault type. In the second

remedy, the construction of diagnoser is moved online by building the diagnosis states upon

observing events. In which case, the need to store a complete diagnoser is avoided and thereby

the space requirement is substantially improved, but at the cost of the time requirement spent

online.

The diagnoser automata approach described above adopts the notion of event-based diagnosis,
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which is also adopted in this thesis. Hence, the decision about the occurrence of a fault and its

type is made based on observing a sequence of events. Adopting this notion requires initialisation

of the diagnoser and the system being diagnosed simultaneously. Thus, another direction which

requires no such initialisation has been studied by Zad et al. [51] using the idea of state-based

diagnosis. According to this idea, the state space is decomposed by faulty states as opposed to

fault events, i.e. faults occur when reaching faulty states.

2.2 Petri net-based approaches

An alternative formalism to model DES is provided by Petri nets (PNs). The structure, analytical

capabilities and distributed nature, as well as its ability to express non-regular languages and

infinite systems are all reasons that have motivated researchers to adopt this formalism [10, 12,

24, 52–54]. Since the notion of events is locally captured in the state, this enables avoidance of

the state explosion problem by not enumerating all the states of the systems.

Some proposed Petri nets diagnosis methods have considered the notion of observable

and unobservable places [52, 55]; while others have adopted the notion of observable and

unobservable transitions [8–10, 12, 53]. The focus of this thesis will be on the latter notion. In

the following sections, a review of the main notions for fault diagnosis in Petri nets is provided.

2.2.1 The classic approach

A natural solution to address the fault diagnosis problem in Petri nets is by extending the

diagnoser automata method as follows. Starting from a Petri net model, a reachability graph

(RG) is constructed [33]. Since this graph is in the form of an automaton, the diagnoser automaton

can be built as described in Section 2.1. Then, this diagnoser is used online to compute the

diagnosis state whenever an observed event is received.

A different idea in which the diagnoser is directly created from a Petri net model, i.e. without

constructing the RG, has been reported by Genc and Lafortune [53]. The authors introduced
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the notion of a Petri net diagnoser having the same graphical structure of Petri nets. However,

transitions between markings are performed under a different rule. In addition, each marking

of the diagnoser has a subset of markings captured in the form of tokens. In fact, this Petri net

diagnoser can be imagined as a special case of coloured Petri nets [56]. Similar to the diagnoser

automaton, the Petri net diagnoser is created offline and then it is used online to compute the

diagnosis.

Note that the aforementioned solutions can only be applied to bounded Petri nets. The

problem of fault diagnosis in unbounded Petri nets has been investigated by Ushio and Onishi [52].

These authors have extended the diagnoser automata approach of [4] to a Petri net framework.

The proposed notion adopts the concept of observable and unobservable places as opposed

to observable and unobservable transitions, i.e. tokens are not observed in all markings. In

addition, all transitions have been assumed to be unobservable. Under this different form of

partial observation, two markings are not distinguishable if and only if their observable markings

are identical. Note also that fault events in this form are still defined and modelled in Petri nets.

To construct the diagnoser using the method of [52], a modified coverability tree (a finite

structure for infinite state space in unbounded Petri nets) is first generated from a Petri net model.

From this tree, the diagnoser is constructed where arcs are labelled by observable markings as

opposed to observable events. Then, diagnosis states are computed when observing a marking.

Chung [57] has used a similar idea, but the only difference involves assuming that transitions

are partially-observed. In effect, adding this assumption provides additional information to the

diagnoser and thereby enhances the diagnosis process in general.

In all of the methods described above, the state explosion problem inherited from the

diagnoser automata approach still exists because these methods consider enumerating all possible

markings reachable from the initial marking. Thus, a range of methods has been proposed to

avoid this problem and build smaller sized diagnosers.
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2.2.2 Basis marking and justifications

To avoid the state explosion problem and present a compact representation of the state space of

systems, an approach adopting basis marking and justifications has been proposed in [8, 54, 58].

Under the assumption that no cycle of unobservable transitions exists, it has been shown that

a subset of reachable markings (basis markings) is sufficient to obtain all markings consistent

with observable events, by firing only unobservable transitions starting from these markings.

Essentially, linear algebraic constraints are formulated based on the state equation and enabling

conditions in Petri nets. These constraints are used to determine the set of basis markings.

Generally, a basis marking is defined as a marking reachable by firing a sequence of ob-

servable transitions and the minimal sequence of unobservable transitions which is necessary

to enable it. The vector of values, where each value represents the number of appearances of

a transition in a given minimal sequence, is termed a minimal explanation or justification. In

general, the set of basis markings and consequently the set of minimal explanations is not a

singleton. Furthermore, the number of constraints characterising these sets is not fixed and

depends on the length of the observed sequence. However, the set of basis markings is a singleton

and the number of constraints is fixed under the assumption that the subnet of unobservable

transition is cycle-free and backward conflict-free1.

To obtain a set of minimal explanations, a tabular algorithm whose inputs are a marking

and the current observed transition has been developed. This algorithm employs algebraic

manipulations and it is applied to any Petri net whose subnet of unobservable transitions is

cycle free. Obtaining this set leads to computing the set of basis markings corresponding to the

observed sequence. Then, diagnosis states are decided based on this obtained information. In

effect, four diagnosis states have been defined, which take the labels 0, 1, 2 and 3. The label

0 represents the non-faulty state; the label 1 means that a fault has occurred within a given

sequence of observed events, but none of its justifications has this fault; the label 2 indicates the

uncertain state where some justifications has a fault, but not all them have the same fault; and the

label 3 refers to the faulty state. The states 2 and 3 can easily be distinguished by analysing the

1A subnet is called backward conflict-free if each transition has no common output place [59].

15



CHAPTER 2. RELATED WORK

basis markings corresponding to the observed sequence. However, to distinguish between states

0 and 1, solution of an integer linear programming (ILP) problem is required. If this problem is

infeasible, then state 0 is obtained; otherwise, we have state 1.

In the case of bounded Petri nets, the set of basis markings is finite, allowing the performance

of most of the computations offline by creating a basis reachability graph (BRG) which is a

deterministic directed graph. The number of nodes in this graph equals the number of basis

markings, which is strictly less than the number of nodes in the corresponding reachability

graph. However, the BRG requires more information to be encoded in the nodes and on the arcs.

Hence, to implement the basis markings and justifications approach in bounded Petri nets, two

algorithms have been developed [8, 54] for both constructing the BRG offline and computing

diagnosis states online.

Note that the approach described above assumes that the labels of all transitions are unique.

A relaxation of this assumption has been presented by Cabasino et al. [60] using the same notions

introduced in [8, 54]. To sum up, fault diagnosis of bounded Petri nets by constructing the BRG

offline can improve the time requirements to compute the diagnosis online. However, space

requirements for storing the BRG graph could be very large. Moreover, the size of the BRG may

still grow exponentially with the size of the state space. On the other hand, since such a graph

is not available in the case of unbounded Petri nets, then all computations are moved online.

The most burdensome part of these computations is spent in solving ILP problems, in which the

structure of the constraints is not fixed and grows with the length of the observed sequence.

Jiroveanu et al. [12] have also used the notion of basis markings and minimal explanations.

The authors proposed an online algorithm to estimate markings reachable from the initial marking

whenever an event is observed. Analogously, they determined the set of minimal explanations

which are necessary to enable the observed transition using a backward search algorithm. Under

the assumption that the Petri nets under consideration are bounded with respect to the subnet of

unobservable transitions, they showed that all markings corresponding to the observed sequence

of events can be obtained by enumerating a subset of all markings reachable from the initial

marking. Thus, the main difference between this approach and those of [8, 60] described earlier
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in this section is the manner in which the minimal explanations set is computed. Moreover, since

the computational complexity of the proposed algorithm relies on the size of the largest subnet

of unobservable transitions, it can efficiently be applied to Petri nets having small unobservable

subnets.

2.2.3 The integer linear programming (ILP) approach

The methods described previously create the diagnoser in the form of an automaton. This

automaton is pre-computed offline to reduce the time required to compute the diagnosis online.

This section and the following section review the methods which adopt algorithms to compute

the diagnosis online without relying on a pre-computed (compiled) diagnoser. Thus, these

algorithms can be imagined as interpreted diagnosers, which monitor a sequence of observed

events online and make diagnosis decisions every time an event is observed.

One of the methods which follows this direction has been proposed in [10, 61]. In these

works, integer linear programming (ILP) techniques are employed for fault diagnosis in Petri

nets. Under the assumption that subnets of unobservable transitions are cycle free and no two

transitions share the same label, the problem of fault diagnosis was reduced to an ILP problem

using an online algorithm to compute the diagnosis. Essentially, this method starts from the

state equation and enabling conditions to build a set of inequalities characterising all sequences

associated with an observed sequence.

Based on the set of inequalities, two ILP problems are defined in order to determine diagnosis

states. The first problem is a maximisation problem with respect to the number of occurrences of

a fault transition in a given sequence, satisfying the set of inequalities in question; it concerns

determining the normal and faulty states. To decide the uncertain state, a minimization problem

is defined analogously.

Using this method, the state explosion problem can be avoided. However, time requirements

are high and increase with the length of the observed sequence. More precisely, this method

requires solving at most r+1 ILP problems (each of which takes exponential time) every time

an observed sequence is observed (r is the number of fault types). In addition, the number of

17



CHAPTER 2. RELATED WORK

constraints defining the ILP problems grows with the number of observed events. Fanti et al. [23]

have extended the same method to apply to labelled Petri nets2. This work has been presented

under the assumption that no unobservable transitions occur after the last observed event.

Another idea which employs ILP techniques to address the fault diagnosis problem has been

investigated in [24, 62]. Similarly, the investigated idea produces an interpreted diagnoser to

then diagnose faults online. However, a different notion based on g-marking is introduced. A

g-marking is a uniquely estimated marking in which some components have negative values as a

result of firing observed transitions without considering the unobservable transitions which could

enable them. Furthermore, a new rule for the enabling condition and firing of transitions under

this marking is established. Based on the estimated g-marking, the set of associated possible

sequences whose firings are necessary to enable the observed event is computed. Then, ILP

problems are formulated using both the g-marking and this computed set.

In fact, the fundamental difference between both the methods is the need to estimate markings

after an event is observed. The latter method introduces a new definition of markings (g-marking),

however, it employs the same classic manner based on computing unobservable sequences

associated with a given observed sequence and then updating the diagnosis state accordingly.

While the former method avoids this by capturing the state information and enabling conditions

in a set of inequalities (constraints) under which ILP problems are solved.

With respect to the computational complexity, the latter method requires solving an ILP

problem for each fault transition and each new g-marking. This leads to solving a higher number

of ILP problems than the former method. However, the number of constraints in these ILP

problems does not grow with the number of observed events. Overall, the former method has an

advantage over the latter in terms of time, but at the cost of the space required for holding the

growing number of constraints.

2In labelled Petri nets, more than one transition may have the same label and could be enabled simultaneously.
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2.2.4 Net unfolding approach

To build a compact representation of the semantics of Petri net models in order to consequently

enhance the analysis of the state space, net unfolding techniques have been developed. The

essential notion is based on partially ordered analysis as opposed to totally ordered analysis in

which all possible solutions are considered. The abstract notions and formalisms relevant to the

net unfolding first appeared in [63]. Subsequently, the net unfolding techniques were adopted

to search and analyse the state space of Petri nets [64]. Using such techniques, the size of the

state space is significantly reduced via sharing the common prefixes between executions (firing

sequences) of nets. In addition, the executions which are only different in their interleaving firing

transitions are only represented once.

The net unfolding is a process whereby the set of firing sequences in Petri nets is represented.

For this process, another structure called an occurrence net, consisting of all these sequences, is

created. This occurrence net is also a Petri net supported by a labelling function to map between

transitions and places in the original Petri net and those in the occurrence net. In addition, the

occurrence nets have some structural characteristics, one of which is that they are acyclic. The

relation between the net unfolding and reachable marking in Petri nets is obtained via the notion

of configuration. The configurations are subsets of the occurrence nets which represent possible

firing sequences in Petri nets. Each configuration has a final state (a marking) which exactly

represents a reachable marking in the Petri net.

Benveniste et al. [65] have proposed an approach for fault diagnosis in asynchronous telecom-

munication networks. The authors have handled this problem using net unfolding techniques.

They showed that their method can be applied to safe Petri nets3 where no cycle of unobservable

transitions exists. The notion of a diagnosis net has been introduced, where all solutions of

a diagnosis are captured. Also, an algorithm to construct the diagnosis net online has been

developed, i.e. the proposed method has adopted the idea of the interpreted diagnoser as opposed

to the compiled diagnoser discussed previously, in which case, avoiding the state explosion

3A safe Petri net is a Petri net in which every place and every marking including the initial marking has at most
one token.
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problem comes at the cost of increasing the time of computing the diagnosis performed online.

In other words, this method is limited to applications where memory constraints are tight.

The notion of addressing the fault diagnosis problem by means of net unfolding has been

extended by Esparza and Kern [66], and Haar et al. [67]. Generally speaking, this extension

removed the assumption where no cycle of unobservable transitions is permitted.

2.3 Fault diagnosis using supervision patterns

All approaches previously described address the problem of fault diagnosis where the fault is

modelled by a single event. This is not always the case, as sometimes we say that a fault occurs

if a sequence of events occurs, e.g. detecting intrusions and attacks in networked systems [68].

To diagnose such faults, the theory and methodology of fault diagnosis need to be extended.

Genc [69] has investigated the problem of diagnosing patterns of events. Two types of patterns

have been defined and a methodology to diagnose such patterns have been developed. This

methodology has been applied in the automata framework representing a generalisation of the

diagnoser automata approach introduced by Sampath et al. [4].

Furthermore, the notion of patterns has been employed to separate between the objectives

of diagnosis and the system specification [70]. The concept of a supervision pattern has been

introduced, in which the fault diagnosis problem has been redefined and a new method to

construct the diagnoser has been presented. The advantage of using supervision patterns is a

unifying framework under which different and complex modes of faults, including permanent,

intermittent and repeating faults can be diagnosed.

Addressing the fault diagnosis problem under this framework assumes that a finite state

machine is employed to model the system being analysed. In addition, different supervision

patterns are defined and modelled as automata whose language captures the diagnosis objectives.

Then, construction of the diagnoser is performed as follows. Starting from the model of the

system and an automaton representing a pattern, a synchronous product operation of both models

is performed. Then, a determinisation operation on the resulting model is accomplished. By
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Figure 2.1: Centralised diagnosis architecture

observing a sequences of events, the diagnoser can decide whether this sequence has a pattern of

events compatible with the defined pattern.

In fact, the notion of supervision patterns might resemble the notion of violations of con-

straints presented in Chapter 7 of this thesis. However, there is a fundamental difference

consisting in the fact that our idea of diagnosing the violations of constraints is based on using

models which are more expressive than automata. In effect, the approach presented in Chapter 7

assumes that systems being diagnosed are modelled by Petri nets. In addition, inequalities are

employed to express patterns, enabling a broad range of these patterns to be defined. Furthermore,

the methodology used to construct the diagnoser and perform the diagnosis online is completely

different.

2.4 Decentralised and distributed diagnosis

In this section, different architectures for implementing the diagnoser and making diagnosis

decisions are discussed. In effect, there are three main architectures: centralised, decentralised

and distributed, which can be applied to both centralised and distributed systems.

In the centralised architecture, there is one global model of the system to be diagnosed and

a single diagnoser that monitors the global state of the system. Based on one set of global

observations, the diagnoser will make diagnosis decisions centrally as depicted in Figure. 2.1.

All approaches mentioned in the previous sections implement this architecture, including the

approach proposed in this thesis. As illustrated in the figure, there is a single global model of

the system. The diagnoser can only see observable events passing through the mask. This mask

can be imagined as a mapping function (projection); its inputs are observable and unobservable

events and its outputs are observable events only. Using these observable events, the diagnoser
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estimates diagnosis states.

The centralised architecture has the advantages of diagnosis accuracy and conceptual simplic-

ity. However, this will be at the cost of high computational complexity and low maintainability,

especially for complex and large systems such as distributed and communication systems [2]. In

such systems, the diagnoser may not be able to compute the diagnosis centrally and then send

all observations to the other parts. In addition, regarding security issues, sometimes observing

the global model of the system is not preferable. For example, in some systems distributed over

different legal entities, one entity may not wish that the other entities observe the detailed model

of its part. All of these reasons have motivated researchers in the model-based fault diagnosis

field to explore alternative architectures to implement the diagnoser.

2.4.1 Decentralised diagnosis

Debouk et al. [18] have presented a framework of the decentralised diagnosis for DES modelled

by automata. Within this framework, the traditional notions introduced by Sampath et al. [4] have

been extended to the decentralised version. To perform a decentralised diagnosis, local diagnosers

are distributed over local sites. These local diagnosers are communicated between each other

via a coordinator or supervisor. The coordinator is responsible for collecting local diagnosis

decisions from the local diagnosers and then making final diagnosis decisions. Figure. 2.2 shows

the general structure of this architecture, where the system is partitioned into d local sites, each

of which is monitored by its own local diagnoser. This local diagnoser can only observe its own

subset of observable events. As a result, observable events of one site are unobservable events of

the other site and vice versa. Furthermore, no communication between the local sites is carried

out, since all communications are performed via the coordinator. However, the local sites still

use the global model of the system during the generation of their local diagnosers.

To design the decentralised diagnosers, three key factors are to be considered :

• Establish protocols for communications between the local diagnosers and the coordinator.

• Balance between the computational complexity and the diagnosis accuracy.
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• Compare diagnosis results of decentralised diagnosers to their centralised counterparts.

In [18], three protocols called Protocol 1, Protocol 2 and Protocol 3 have been proposed.

Implementing these protocols requires some assumptions and conditions of systems being

analysed in order to obtain diagnosis results as successfully as the centralised diagnosis. Then,

each protocol can be defined using three main elements: diagnostic information produced at

local sites; the communication rule used by the local sites to communicate to the coordinator;

and the decision making rule used by the coordinator to generate diagnosis decisions. Using

these protocols, the diagnosis accuracy improves by going from protocol 3 to 2 to 1, whereas the

computational complexity increases from protocol 3 to 2 to 1. However, all of these protocols

make the same diagnosis decisions as the centralised architecture.

Analogously, the notions introduced in [18] for automata models have been extended to

systems modelled by Petri nets by Cabasino et al. [21]. The contribution of this extension

comprises of reducing the enumeration of all space states using the notion of basis markings and

justifications described in Section 2.2.2. More specifically, diagnosis decisions made by local

diagnosers are obtained based on finding the basis markings and solving a set of inequalities

every time an event is observed. Then, these local decisions are sent to the coordinator to make
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the final diagnosis decision.

The dependency of the local diagnosers on the global model of the system being diagnosed

represents a major drawback of the aforementioned methods in this section. Pencolé et al. [71]

have presented another approach whose basic notion is based on using temporal windows. The

authors used these temporal windows to split observations and then compute the diagnosis locally

for each component of the system. Then, the global diagnosis is obtained by merging diagnosis

states computed locally and those of previous temporal windows.

A different approach in which faults are represented as violations of non-fault specifications

has been proposed by Qiu and Kumar [19]. In this work, the non-fault specifications are

modelled by automata for which algorithms of polynomial complexity have been developed for

fault diagnosis. In addition, the proposed notion requires neither communication between the

local diagnosers, nor between the local diagnosers and the coordinator, where the diagnosis is

completely computed locally.

2.4.2 Distributed diagnosis

Distributed diagnosis has been investigated in [7, 22, 23, 53]. The motivation for this architecture

for fault diagnosis is to improve scalability and robustness of diagnostics methodologies. In

addition, the communication overhead due to exchanging observations is reduced. Within the

distributed architecture, local sites do not refer to the global model of the system to be diagnosed,

as the other architectures do. Each local diagnoser uses its own local observations and makes

local diagnosis decision based on these observations. In this type of diagnosis, there is no need for

the coordinator where the local sites communicate to each other directly. These communications

are maintained by communication protocols, in order to exchange the information required to

update the local diagnosis and satisfy the consistency. Ensuring this consistency is necessary

to prevent conflicts in diagnosis decisions made by local sites. Figure. 2.3 depicts the general

structure of this distributed diagnosis.

The challenge raised in this diagnosis architecture comprises of how to obtain diagnosis

results as well as the centralised diagnosis in the presence of many obstacles, such as commu-
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Figure 2.3: Distributed diagnosis architecture

nication delay, messages loss, preserving order of information and complexity issues [2]. To

deal with these obstacles, different settings and methods have been proposed. One of the early

works in this context has been presented by Genc and Lafortune [53] to address fault diagnosis in

Petri nets. A new notion has been adopted in which the Petri net is partitioned into two subnets

according to place-bordered nets with shared places chosen in line with some conditions. Each

subnet represents a subsystem monitored by a local Petri nets diagnoser.

The communication protocol is implemented using an algorithm by which the communica-

tions between the two diagnosers are triggered upon occurrences of observable events. When

communicating, the diagnoser that observed these events will send message labels to the other

diagnoser in order to update the information about the shared places. Therefore, each state in the

distributed diagnoser is augmented by this piece of information. Decomposing Petri nets into

place-bordered nets, diagnosis states can properly be obtained as well as the centralised diagnosis.

However, the proposed notion has the problem of overhead communication; in addition the

message labels can grow arbitrarily. To overcome these problems and to extend the work in [53]

to multiple subnets, the same authors have presented a modular approach for implementing a

distributed diagnosis [7].

Starting from the results obtained by Genc and Lafortune [7] and Dotoli et al. [10], ILP

techniques have also been applied in a distributed setting [23]. Based on these results, the
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authors proposed a distributed diagnosis adopting the modular approach in labelled Petri nets.

As mentioned previously, using ILP techniques in centralised diagnosis requires high time

requirements. The distributed diagnosis mitigates this problem where a smaller set of inequalities

and variables is considered for local diagnosis computations. As a result, time requirements for

solving ILP problems online are reduced.
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BACKGROUND

3.1 Petri nets

A Petri net [33, 72–74] is defined as a four tuple N = (P,T, pre, post), where P and T are two

nonempty finite sets of places and transitions, respectively. In this thesis, N = {0,1,2, . . .} is

the set of non-negative integers, Z is the set of all integers and R is the set of real numbers.

We respectively denote m = |P| and n = |T | as the number of places and transitions. Let

pre : P×T → N and post : P×T → N be arcs weight matrices, where pre(p, t) (post(p, t))

defines the weight of the arc directed from a place p to a transition t (directed from a transition t

to a place p). For a given transition t, an input (output) place of t is a place p such that pre(p, t)

(post(p, t)) is positive, respectively. Matrix A = [ai j] is the m×n incidence matrix of integers,

where ai j = post(p, t)− pre(p, t) assuming that the set of places and transitions are ordered to

correspond with the coordinates of the matrix.

We write •t (t•) for the set of all input (output) places of a transition t, respectively. Also, we

write •p (p•) for the set of all input (output) transitions of a place p, respectively. A pair of a

place p and transition t is called a self-loop if p is both an input and output place of t. A Petri net

is called pure if it has no self-loop. A cycle in a Petri net is a closed directed path from one node

(place or transition) back to itself. A Petri net having no cycles is called an acyclic Petri net. For

a set Q⊆ P of places, let I(Q) = {t| •t ∩Q = /0∧ t•∩Q 6= /0, t ∈ T}. This set defines the input

transitions of places in the set Q incoming from places which are not in Q. The set Q is said to
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p1 t1
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Figure 3.1: Example of a Petri net.

be a deadlock (siphon) when I(Q) = /0. Also, a place p is called a source place when •p = /0. If

a deadlock has no token-free source place, then we have a circuit deadlock.

Example 3.1. Consider the Petri net N in Figure. 3.1 with the set of places P = {p1, p2, p3, p4}

and the set of transitions T = {t1, t2, t3, t4}. The matrices pre and post are:

pre =



t1 t2 t3 t4

p1 1 0 0 0

p2 1 0 0 0

p3 1 0 1 0

p4 0 1 0 1


post =



t1 t2 t3 t4

p1 1 0 0 0

p2 0 2 0 0

p3 0 1 0 0

p4 0 0 1 1


and the incidence matrix A is:

A = post− pre =




0 0 0 0

−1 2 0 0

−1 1 −1 0

0 −1 1 0

Note that the pairs p4t4 and p1t1 represent self-loops in this net, and the path p3t3 p4t2 p3 represents

a cycle. A non-pure Petri net can be transformed to one that is pure by adding a dummy

transitions-place pair to open self loops [33] (see Figure. 3.2 below).
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Figure 3.2: Transformation of a self-loop to a loop

A state of a Petri net, known as a marking, is represented as M : P→N capturing the number

of tokens in each place. We sometimes represent a marking as an m×1 matrix of non-negative

integers. A transition t is enabled at a marking M if M(p)≥ pre(p, t) for each p ∈ •t. We write

M t→ to denote that t is enabled at M. An enabled transition can fire resulting in a new marking

M′, denoted by M t→M′. The firing vector u is defined as an n-dimensional column vector of

the form u = (0, . . . ,0,1,0, . . . ,0), where the only 1 appears in the jth position, j ∈ {1, . . . ,n},

to indicate the fact that the jth transition is currently firing. Given u for a firing transition on

marking M, we can find the reachable marking M′ by M′ = M+Au. A sequence of transitions

σ = t1t2 . . . tl of T is called enabled at a marking M, denoted by M σ→ if there are markings

M, . . . ,Ml−1 so that M
t1→M1

t2→ ··· →Ml−1
tl→ . Firing the sequence σ results in the marking Ml

written as M σ→Ml and we refer to Ml as a state reachable from M and σ as the firing sequence.

We write R(N , M) for the set of all reachable states from M in a Petri net N . The initial state

of the system is represented by an initial marking M0. We will write (N , M0) for a Petri net

with its initial marking M0.

Example 3.2. Recall that the Petri net of Figure. 3.1 with an initial marking M0 = [1010]. Only

transition t3 is enabled at the initial marking. Firing this transition results in marking M1 = [1001].

Given a firing vector u = (0,0,1,0) and the matrix A described in Example 3.1, this marking
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can be found as follows:

M1 =



1

0

1

0


+



0 0 0 0

−1 2 0 0

−1 1 −1 0

0 −1 1 0


·



0

0

1

0



M1 =



1

0

1

0


+



0

0

−1

1


=



1

0

0

1


The set of all finite-length strings of the transitions in T is denoted by T ∗ and is called the

Kleene-closure of T. As a result, members of T ∗ are created from a concatenation of a finite

number of elements of T. In particular, T ∗ contains the empty string ε, so that tε = εt = t

for all t ∈ T. Every subset of T ∗ is called a language on the alphabet T . Suppose that we

have a sequence σ of (N , M0), then the Parikh vector # : T ∗→ Nn is a map which assigns to

every sequence σ a vector #(σ) in which each element represents the number of firings of each

transition in σ . In other words, for #(σ) : T → N, #(σ)(t) is the number of occurrences of t ∈ T

within the sequence σ . Sometimes, we write #(t,σ) to represent the number of the occurrences

of t in σ .

The set of sequences of transitions resulting in reachable markings is called the language of

the Petri net and is denoted by L(N , M0), i.e. L(N , M0) = {σ | ∃M M0
σ→M}. Suppose that

a destination marking M is reachable from M0 in a Petri net N through a sequence σ , we can

then find M using what is called state equation shown in the following:

M = M0 +Ax, M ≥~0 (3.1)

where A is the incidence matrix of N , and x ∈ Nn is a n-dimensional column vector with

x = (x1, . . . ,xn) and xi = #(ti,σ) for ti ∈ T . Then, for any sequence σ of N , there exists
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x = #(σ) satisfying (3.1). The converse is not always true. In some cases, e.g. acyclic Petri nets,

the converse holds too.

Definition 3.1. Firing count subnet [75]: let ν = (α1, . . . ,αn) be a solution of the state equation

in (3.1) for a Petri net (N ,M0) with a destination marking M. Then, the subnet Nν is called the

firing count subnet with respect to ν where each transition ti in Nν is such that αi > 0 together

with its input and output places and its connecting arcs. Markings M0ν and Mν denote the

restrictions of M0 and M to places in Nν .

Now, suppose that we have a Petri net (N ,M0), then the association of a label e ∈ Σ, where

Σ represents a set of labels (alphabet), to transitions in N is called a labelling function. This

function is defined as λ : T → Σ∪{ε}, i.e. λ (t) = e or λ (t) = ε for t ∈ T . Also, this labelling

function can be extended to the Kleene closure of Σ by λ : T ∗→ Σ∗ where for each sequence of

transitions σ and transition t, λ (σt) = λ (σ)λ (t). A labelled Petri net is defined as a four tuple

(N ,M0,Σ,λ ) in which we associate to each label e ∈ Σ a set of transitions τ(e).

τ(e) = {t| t ∈ T,e = λ (t)} (3.2)

3.2 The Fourier-Motzkin Elimination method

The Fourier-Motzkin Elimination (FME) method was originally proposed for solving a set of

linear inequalities and also to establish if the set is solvable [34–36,76–78]. In other words, given

a matrix A ∈ Rm×n and vector b ∈ Rm, FME tests if a set of inequalities I := Ax≤ b, where the

vector of variables x = (x1,x2, . . . ,xn) ∈ Rn, has a solution. Then, if there exists a solution, FME

will find it.

Another important application of the FME method is to solve the projection problem in which

the space defined by a finite number of linear inequalities in n variables is projected onto another

space defined by another set of linear inequalities in k < n variables [39, 79–81]. By projection,

we ensure that for any solution to the original set of inequalities, there exists a solution to the
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projected set and vice versa. Formally, given a set of linear inequalities

I := Ax≤ b, (3.3)

we create an equivalent set of linear inequalities in variables y = (x1, . . . ,xk), shown in (3.4),

such that for any solution y of (3.4) there exists a solution x = (y,z), z = (xk+1, . . . ,xn) of (3.3)

and vice versa.

R := By≤ d (3.4)

By creating this set of inequalities, we say that the set xk+1, . . . ,xn of variables has been eliminated.

In this thesis, we are interested in using the FME method for projection purposes and not to

solve a set of linear inequalities. In other words, the problem of fault diagnosis is reduced to

a projection problem in which we aim to eliminate all variables representing the unobservable

transitions.

When using the FME method to address either of these problems, the variables are essentially

eliminated one by one. To explain the notion of elimination, it is sufficient to describe the process

of the elimination of one variable, say xn, as the same procedure can be repeatedly applied to

eliminate the remaining variables. Also, for the sake of simplicity, all entries in the last column

of A are, without loss of the generality, assumed to be 0, +1 or -1; otherwise the values of the

matrix A corresponding to the variable xn need to first be equalised or divided by their absolute

values in order for xn to be eliminated. Then, after a possible reordering of the inequalities, I can

be rewritten as shown in (3.5).

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′− xn ≤ b j, j = m1 +1, . . . ,m2

a′kx′+ xn ≤ bk, k = m2 +1, . . . ,m

(3.5)

where x′ = {x1,x2, . . . xn−1}, i.e. the same set of variables without xn. Let I0 := a′ix
′ ≤ bi,

I− := a′jx
′−xn ≤ b j and I+ := a′kx′+xn ≤ bk, which means that the sets I0, I− and I+ define all
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inequalities in I whose xn has zero, negative and positive coefficient, respectively. Also, assume

that l = max(a′jx
′−b j, j = m1+1, . . . ,m2) and u = min(bk−a′kx′,k = m2+1, . . . ,m). Since the

last two lines of (3.5) are equivalent to l ≤ xn ≤ u, then the variable xn can be eliminated. This

yields the reduced set Rn in (3.6) having no xn as an equivalent to (3.5):

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′−b j ≤ bk−a′kx′, j = m1 +1, . . . ,m2,

k = m2 +1, . . . ,m

(3.6)

Based on the purpose for which the FME method is applied, the stop point of this method is

determined. If the purpose is to solve a set of inequalities, the process of elimination is repeated

until the last n−1 variables xn,xn−1, . . . ,x2 are eliminated ending up with the set of inequalities

R in one variable x1, which is trivial. On the other hand, for the purpose of projection, as is

the case for fault diagnosis, the process of elimination stops when all variables starting with xn

and ending with xk+1 are eliminated. These eliminated variables correspond to unobservable

transitions of Petri nets as will be explained later.

Theorem 3.1. [36] Assume that the variables xn, . . . ,xk+1 have been eliminated in order by

using the FME method described above from a set of linear inequalities I. This results in the

reduced set R. Then α1, . . . ,αk is a solution of R if and only if there exists values αk+1, . . . ,αn

such that α1, . . . ,αk,αk+1, . . . ,αn is a solution of I.

To illustrate the general method, the following example is presented.

Example 3.3. Given a set of inequalities I in three variables as shown in (3.7), assume that the
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variable x3 is to be eliminated.

− x1 ≤ −1

− x2 ≤ −1

− x3 ≤ −1

− x1 − x2 ≤ −3

− x1 − x3 ≤ −3

− x2 − x3 ≤ −3

x1 + x2 + x3 ≤ 6

(3.7)

Then, the application of the FME method proceeds as follows. We first partition the set I into

three subsets of inequalities I0, I+ and I− shown respectively in (3.8), (3.9) and (3.10).

− x1 ≤ −1

− x2 ≤ −1

− x1 − x2 ≤ −3

(3.8)

x1 + x2 + x3 ≤ 6 (3.9)

− x3 ≤ −1

− x1 − x3 ≤ −3

− x2 − x3 ≤ −3

(3.10)

Now, all inequalities in the set I0 are transferred to the resulting set R. Then, each inequality in

I− is summed to each inequality in I+ in order to eliminate x3. This elimination results in three

inequalities, x1 ≤ 3, x2 ≤ 3 and x1 + x2 ≤ 5. Adding these three inequalities to R, we obtain the
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following set having no x3:

− x1 ≤ −1

− x2 ≤ −1

− x1 − x2 ≤ −3

x1 + x2 ≤ 5

x2 ≤ 3

x1 ≤ 3

(3.11)

Then, any solution to the set of inequalities in (3.11) has a solution in the original set of

inequalities in (3.7) and vice versa.

Remark 3.1.

• If the process of partitioning the set of inequalities I results in I+ = /0, then no inequality

is added to the resulting set, i.e. all inequalities in I− are deleted. In fact, choosing a

sufficiently large value for the eliminated variable can trivially satisfy I−. Similarly, if

I− = /0, all inequalities in I+ are discarded.

• The number of inequalities generated in the worst case grows exponentially with number

of variables eliminated. However, there exists a partial remedy for this difficulty since

many of these inequalities are redundant in the sense that deleting them will not affect

the solution space described by the original set of inequalities. Later in Section 5.2.6,

an explanation will be provided about the rule used to define the redundant inequality

and how effective this rule will be to remove the redundancy generated by the nature of

elimination of the FME method, at least from a practical point of view.

Other elimination methods exist which could perform a similar role to the FME [39, 79, 82].

However, none of these methods are restricted to integer-valued variables. For fault diagnosis in

Petri nets, we need integer-valued variables representing the number of firing transitions. Thus,

the following section discusses the extension of the FME method to deal with integer-valued

variables.
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3.3 The Integer Fourier-Motzkin Elimination method

In sets of linear inequalities having integer-valued variables, we look for integer solutions only.

Such sets may have real solutions when integer solutions do not exist. Difficulties can arise

when directly applying the FME method to eliminate integer-valued variables; this will be

demonstrated as follows. Suppose that FME is applied to a set of inequalities I resulting in the

reduced set of inequalities R, if R has no integer solutions, then I has no integer solutions. In

some cases, the set of inequalities R may have an integer solution but there does not exist a

corresponding integer solution in I.

Example 3.4. Let us suppose that the variable x2 is to be eliminated using the FME method from

the following set of inequalities in two variables: e1 := 5x1+3x2≤ 19 and e2 :=−x1−2x2≤−3.

To eliminate x2, we first multiply the inequality e1 by 2 and e2 by 3 obtaining the inequalities

10x1 +6x2 ≤ 38 and −3x1−6x2 ≤−9. Then, the FME method determines the bounds on the

variable x2 as 9−3x1 ≤ 6x2 ≤ 38−10x1 rewritten as 9−3x1 ≤ 38−10x1; which further yields

e3 := 7x1 ≤ 29. The value 4 of x1 represents an integer solution of e3. However, there does not

exist an integer value for x2 such that (4,x2) is a solution of the inequalities e1 and e2.

To ensure that, for any integer solution in R, there exists an integer solution in I, the FME

method has been extended. This extension, called the Integer FME (IFME) method, has been

created to cope with integer-valued variables and has been reported in [35, 37, 38, 83]. In this

thesis, we have chosen the method presented in [38], which better meets our needs as it is

somewhat simpler and more efficient.

The IFME method proceeds as follows. Firstly, each inequality i in the set I := Ax≤ b is

normalised by computing the greatest common divisor (GCD) G of the coefficients ai1, . . . ,ain.

Then, all coefficients are divided by G and b is replaced by b b
Gc. Now suppose that the variable

xn constrained by the inequalities C ≤ bxn and axn ≤ B is to be eliminated. Applying the IFME

method to eliminate xn results in the following inequality:

aC−bB≤ (1−a)(1−b) (3.12)
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Then, for any integer solution to (3.12) there exists an integer solution for C ≤ bxn and axn ≤ B.

Note that if a = 1 and b = 1, then the results of the elimination using the FME and IFME methods

are identical, i.e. no need for the extension in this case.

Referring to the set of inequalities in Example 3.4, the bounds on x2 are 3x2 ≤ 19−5x1 and

3− x1 ≤ 2x2, in which case, C := 3− x1, B := 19−5x1, a = 3 and b = 2. Applying the general

form of (3.12), we obtain the inequality 7x1 ≤ 27. The value of x1 = 3 is an integer solution to

the inequality 7x1 ≤ 27. In return, there exists an integer solution (x1 = 3,x2 = 1) of e1 and e2.

Remark 3.2. In ordinary Petri nets (where all arcs have weights equal to one), the FME method

can be applied without the extension. In effect, having the weights of all arcs in the Petri net

equal to one implies that all values of coefficients (the elements of matrix A) of variables in the

set I equal one. As a result, we have a = 1 and b = 1 which when substituted in (3.12), means its

right-hand side is evaluated to zero. This yields the same inequality obtained by using the FME

method to eliminate the variable xn.

3.4 Complex event processing

Complex event processing (CEP) [84–88] is a relatively new technology in which streams of

simple events are received, processed and analysed in real-time. From these simple events,

complex events are produced using some operations provided by CEP systems. To monitor these

incoming simple events and then make decisions or to extract new complex events from them, a

CEP system is associated to the target enterprise system using a continuous processing model.

Thus, this feature, among others, meets the needs of many different applications such as fault

diagnosis, intrusion detection, SLA monitoring, process monitoring and reporting exceptions.

For building CEP applications, two main components are needed: an event processing

language (EPL) and an event processing agent (EPA).

Event processing language (EPL): an EPL is an SQL-language with extended facilities

and its purpose is to express rules (patterns/queries). These rules represent the main building
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blocks in CEP systems by which the information from one or more streams of events is derived

and aggregated. Syntactically, each rule consists of two parts: triggers (conditions) and a body

having a set of actions. The rules are written to find a pattern of events inside events streams

matching the conditions included in a rule.

Event processing agent (EPA): an EPA represents an object by which streams of events

are monitored in order to detect a pattern of events that is of interest. Every time that there is a

match between the defined pattern and a stream of events, the engine responds by executing the

actions included in the body part of the rule. This process is performed online and the response

is produced in real time.

These CEP systems provide several different types of EPAs. The following briefly describes

three basic types of EPAs which have proved their usefulness in building CEP applications:

• Filters: using this type of agent, the events of interest in the stream of events are filtered

out. To do so, a test is applied on this stream to decide whether to discard or to transfer the

events to the following agent for further processing.

• Pattern detectors: the pattern detectors examine a collection of arriving events to detect a

particular pattern. Then, different operations can be applied to the detected pattern. For

example, the engine could discard or pass the pattern or derive a new event from it.

• Transformers: the content of incoming events is modified when using the transformer

engine. For instance, we could aggregate a stream of incoming events by producing new

events which represent functions of incoming events.

There seems to be a strong relationship between the traditional rule-based systems and CEP

systems. However, there is a main difference between these two kinds of systems consisting in

the way by which the flow of processing is accomplished. In CEP systems, this flow goes in the

opposite direction to the traditional rule-based systems, such as SQL systems. In other words, in

CEP systems, the rules are stored and the data (events) run through these rules to find a match.
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Figure 3.3: Esper CEP building blocks

Conversely, in SQL systems, the data is stored and the queries (rules) are then checked against

them to find a match.

3.4.1 Esper CEP

Esper [89–92] is an open-source tool which is widely used to develop CEP applications under

the Java platform. The core of this tool is the Esper engine that presents a continuous processing

model. By embedding Esper inside a Java application, the CEP facilities presented by Esper

can be accessed for processing events. Esper provides a very rich EPL, which is an extension to

SQL, and it is used to write EPL statements and patterns in order to support different types of

operations on events such as filtering, aggregations and joining.

To create an application using Esper, three building blocks are required: an event class, EPL

statements/pattern and listeners/subscribers. These building blocks and the interactions between

them are depicted in Figure. 3.3. The common way to represent events in Esper is through

Plain Old Java Object (POJO) classes, but maps and XML representations are also supported.

As it is known, the objects of the type POJO have no restrictions other than these which are

compatible with specifications of Java. This means that POJO objects do not extend a superclass

or implement an interface. In addition, Esper defines two types of statements to match events:

patterns and EPL queries. Patterns begin with the keyword every while EPL queries begin with

the keyword select or insert. To create and register these statements in the Esper engine,

an instance of class EPAdministrator is initiated.

Regarding the mechanism of work, two modes are supported by Esper: push and pull modes.
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In push mode, the listener(s) associated to an EPL statement is notified every time there is a

match between the incoming events and the statement. Also, we can associate more than one

listener to one statement; in which case, all listeners associated to the statement are notified when

a match occurs. On the other hand, the Esper engine is queried at any time and not necessarily at

the time of the events arrival. This mode is implemented by subscribers and better suited for

periodic pulling of information from the engine, see Figure. 3.3. The following code represents

a simple example using the push mode as described in [89]; the unnecessary details have been

removed:

1 Package Esper.cep;

2 import com.espertech.esper.client.*;

...

3 public class PrintListener implements UpdateListener{

4 public void update (EventBean[] newEvent, Eventbean[] oldEvent){

5 System.out.println(Arrays.toString(newEvent));

6 }

7 }

8 public class Deposit{

9 private float Amount;

10 private string customerID;

11 public void setCustomerID (String customerID){...}

12 public void setAmount(float Amount) {...}

13 }

14 public class Esper_CEP_test;

15 public static void main(string[]) args){

16 EPServiceProvider epa=EPServiceProviderManager.getDefaultProvider().

17 EPAdministrator admin=epa.getEPAdministrator();

18 EPStatement pattern=admin.createPattern("every A=Esper.cep.Deposit");

19 PrintListener listener=new PrintListener();

20 pattern.addListener(listener);

21 Deposit d=new Deposit();

22 d.setAmount(100);
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23 d.setCustomerID("222");

24 EPRuntime runtime=epa.getEPRuntime();

25 runtime.sendEvent(d);

26 }

27 }

In this example, the POJO class representation is adopted by declaring the class Deposit,

in addition an instance epa of the Esper engine is created in step 16. As is seen, the pattern

pattern in step 18 is defined as every A=Esper.cep.Deposit which means that every

event named A of type Deposit included in the package Esper.cep. The defined pattern is

associated to the listener listener in step 20. Then, every created event is sent to the engine

via the step 25. Note that the definition of patterns in EPL represents an extension to SQL which

has no such statements. Also, we can create an EPL query, which behaves similarly to the

pattern, as:

Select * from Esper.cep.Deposit
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CHAPTER 4

FAULT DIAGNOSIS IN ACYCLIC PETRI NETS

In this chapter, we address the problem of fault diagnosis in partially-observed discrete event

systems modelled by Petri nets. Following the assumption that the nets are acyclic, the IFME

method is used to solve the problem. This class of Petri nets is used to model some manufacturing,

assembly and disassembly processes [93]; in addition, they are used to represent some workflow

procedures which are of particular interest in business processes [94]. The advantage of using

acyclic Petri nets for analysis of DES arises from fact that the state equation in such nets is

necessary and sufficient condition for the reachability of markings, i.e. for any solution of the

state equation, there exists a sequence in the language of the Petri net.

The chapter begins with a formal description of the problem followed by presentation of

a new formalism for representing faults. In this new formalism, the faults can be expressed

as inequalities. The definition of the diagnoser is extended and described according to the

formalism. An outline of the proposed approach is also presented, supported by a mathematical

proof of correctness for the proposed solution. In addition, algorithms for both creating the

diagnoser offline and diagnosing faults online are described. We end this chapter by giving an

example to illustrate the proposed approach.
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4.1 Description of the problem

In this section, a description of the problem of fault diagnosis in DES modelled by Petri nets

is given, as outlined in [53] and [8]. Consider a Petri net (N , M0) with a set of transitions

T = {t1, t2, . . . , tn} and suppose that T is partitioned into two sets: observable transitions To and

unobservable transitions Tu. We further assume that faults are unobservable events, i.e. assuming

Tf is the set of transitions modelling occurrences of faults, then Tf ⊆ Tu. The set Tu may also

have other transitions which model non- fault events (normal events). In this chapter, the system

is assumed to have a single fault.

In Petri nets which model partially-observed DES, each observable transition is associated

with an event (given as a label). We assume that, if a transition fires, the associated event is

observed. In other words, in every execution of events, a sequence of transitions from To can

only be observed. A diagnoser (defined below) uses such information to identify whether the

fault has definitely occurred or only may have occurred.

Also, consider the projection function π : T → To∪{ε} that maps unobservable transitions

to the empty string ε, i.e. π(t) = ε for t ∈ Tu while, π(t) = t for t ∈ To. The projection function

π can be extended to the Kleene closure of T by π : T ∗→ (To∪{ε})∗, where for each sequence

of transitions σ and each transition t, π(σt) = π(σ)π(t). We assume π(ε) = ε and that π(tε) =

π(εt) = ε for each t ∈ Tu.

Denote by s = π(σ) the observed sequence corresponding to a given firing sequence σ ∈ T ∗.

Now, based on the definition of the valuation described in [95], the following definition is

presented.

Definition 4.1. The valuation function: let x = (x1, . . . ,xn) be a set of variables. We suppose

that the variables range over N. A valuation ν for x is a function that associates a value in N to

each variable xi in x.

Remark 4.1. In the light of Definition 4.1, given a sequence σ ∈ T ∗, then Parikh vector #(σ)

represents a valuation of x. In other words, for each xi of x, xi = #(ti,σ), where i = 1,2, . . . ,n.
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Figure 4.1: Example of an acyclic Petri net

Definition 4.2. The logical operator � on an inequality: suppose that e is an inequality of

the form a1x1 + · · ·+anxn ≤ b in the variable set x = (x1, . . . ,xn), xi ∈ N and a1, . . . ,an,b ∈ Z.

Consider a valuation ν as α1, . . . ,αn assigned to values x1, . . . ,xn, respectively; then we write

ν � e to say that the valuation ν satisfies the inequality e if and only if a1α1 + · · ·+anαn ≤ b

holds.

Definition 4.3. The logical operator � on a set of inequalities: suppose that we have a set of

inequalities I = {ei | 1≤ i≤ d}, where each ei has the form of e in Definition 4.2. Consider a

valuation ν for the variables of the inequalities in I, then ν � I holds if and only if (ν � e1)∧(ν �

e2)∧·· ·∧ (ν � ed) holds.

Lemma 4.1. Given a Petri net (N ,M0), we can derive a corresponding set of inequalities I in

the form −Ax≤M0 (extracted from (3.1)), equipped with non-negativity constraints on x, i.e.

x≥~0. If N is acyclic, then a marking M is reachable from M0, i.e. M0
σ→M if and only if there

exists x satisfying I and x = #(σ).

Proof. Since the state equation M =M0+Ax is such that M≥~0, then we can obtain M0+Ax≥~0.

This latter formula can be easily written as I :=−Ax≤M0. Then, any solution to I is a solution

to M = M0 +Ax subject to M ≥~0 and vice versa. Afterwards, the result holds following the

proof of Theorem 16 in [33].

Example 4.1. Consider the Petri net depicted in Figure. 4.1. Assume that the initial marking

of this net is M0 = [1000000]. This Petri net models the process of sending messages in a

communication system, where a token in place p1 at the initial marking represents a message

ready to be sent. Firing transition t1 expresses dividing the message into two packets. These
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packets are separately sent on two channels causing that one token is put in both places p2 and

p3. Finally, the two packets are combined (transition t6) at the receiver side. In this Petri net,

the fault occurs (transition t7) when the first packet is erroneously moved to the second channel.

Then, the set of inequalities derived from the state equation in the net is shown in (4.1).

x1 ≤ 1

− x1 + x2 ≤ 0

− x1 + x3 ≤ 0

− x2 + x4 − x7 ≤ 0

− x3 + x5 + x7 ≤ 0

− x4 + x6 ≤ 0

− x5 + x6 ≤ 0

− xi ≤ 0

(4.1)

where the constraints of the form −xi ≤ 0, i = 1, . . . ,7, represent non-negativity constraints on

the variables in the set.

In this chapter, the fault diagnosis problem in Petri nets is addressed under the following

assumptions:

a) The systems under consideration are diagnosable (any fault can be diagnosed in a finite

delay).

b) The system to be diagnosed starts from a non-faulty state.

c) Faults are permanent, i.e. when a fault occurs in a state, it propagates to all following states.

d) The structure of a given Petri net N and its initial marking M0 are known.

e) There is no cycle of transitions in Petri nets under consideration.

f) Every transition has a unique label.

g) A single fault transition is considered.
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The assumption (a) is required to ensure reaching to a certain diagnosis state in a finite delay

after fault occurrences. Assumptions (b)-(d) are commonly adopted in the literature on fault

diagnosis. The additional assumption (e) is to ensure that any solution to the state equation

represents a sequence in the language of a given Petri net. The last two assumptions are to

simplify the presentation of the proposed approach.

4.2 Representation of faults as inequalities

In this thesis, inequalities are generally used in two ways. Firstly, the state equation constraints

can be written as a set of inequalities I. Secondly, faults can also be written as inequalities.

Suppose that a transition ti ∈ T is a fault transition; then occurrences of ti in a given firing

sequence σ can trivially be written as:

#(ti,σ)> 0 (4.2)

Conversely, the case where ti does not appear in σ can be expressed as:

#(ti,σ)≤ 0 (4.3)

if we consider the case where there is no ti in σ corresponds to a satisfaction of a constraint.

Likewise, we can say that the appearance of ti in σ corresponds to a violation of the constraint.

Let us denote the constraint by c and its violation by ¬c, i.e. c and ¬c represent the inequalities

in (4.3) and (4.2), respectively.

In the following paragraphs, the definition of the diagnoser is presented. This definition is

inspired by the previous work of [4] and [8].

Definition 4.4. A diagnoser is a function ∆ : T ∗o →{NoFault,Faulty,Uncertain} that associates

with each observed sequence s, with respect to the fault, one of the following diagnosis states:

• ∆(s) = NoFault if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � c holds. This state
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represents the non-faulty state as there is no firing sequence having the same observation s

containing the fault transition, i.e. no fault has occurred.

• ∆(s) = Faulty if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ¬c holds. This state

implies that the behaviour of the system is faulty as all firing sequences having the same

observation s contain the fault transition, i.e. the fault has certainly occurred during the

observed sequence s.

• ∆(s) = Uncertain if there exists two sequences σ1, σ2 ∈ L(N ,M0) such that π(σ1) =

π(σ2) = s, and #(σ1) � c and #(σ2) � ¬c hold. In this case, the behaviour of the system

is ambiguous because both NoFault and Faulty states are possible during the observed

sequence. For this reason, this state is called an Uncertain state.

Example 4.2. To explain the fault diagnosis notions in the Petri nets mentioned previously, let

us recall the Petri net of Example 4.1 illustrated in Figure. 4.1. Note that observable transitions

are shown by solid rectangles, while empty rectangles represent unobservable transitions. Also,

in this Petri net, there is only one fault, modelled by transition t7. Thus, the constraint c can be

written as x7 ≤ 0 and its negation ¬c as x7 > 0.

If we assume that no firing of any transition is observed at the initial marking M0, we are

then certain that no fault has occurred as there is not an unobservable transition enabled at the

initial marking. Let us also assume that the sequence s = t1 is observed at the initial marking.

By observing this sequence, we are not certain about the diagnosis state as there are at least

two possible sequences; for example, σ1 = t1t2 and σ2 = t1t3t7 such that π(σ1) = π(σ2) = t1;

in addition, #(σ1) � c and #(σ2) � ¬c. Hence, we say that the diagnosis state is Uncertain.

Likewise, we have the same diagnosis state when the sequence t1t4 is observed. In this case,

we also have at least two sequences; for instance σ1 = t1t2t4 and σ2 = t1t3t7t4, with π(σ1) =

π(σ2) = t1t4 such that #(σ1) � c but #(σ2) � ¬c. In both cases, the fault may have occurred, but

also the diagnosis state could be NoFault. Thus ∆(s) =Uncertain.

If the sequence s = t1t4t4 is observed, for any σ ∈ L(N ,M0) such that π(σ) = s, σ has

the transition t7. As a result, we are certain that c is violated and ∆(s) = Faulty. By contrast,
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observing s = t1t4t6 excludes the possibility of firing any sequence having the transition t7 as

t6, if fired, requires at least one token in both places p6 and p7 and this is impossible in a case

where t7 fires. Hence, #(s) � c for all σ such that σ ∈ L(N ,M0) and π(σ) = s, i.e. the fault has

not occurred during observing the sequence and ∆(s) = NoFault.

4.3 The IFME method for fault diagnosis

4.3.1 Description of the method

In this section, the main results of this chapter are presented. If we suppose that N is an acyclic

Petri net, without any loss of generality, we can rename the transitions of N such that the first k

transitions are observable, i.e. To = {t1, t2, . . . , tk}. The remaining transitions are unobservable,

i.e. Tu = {tk+1, tk+2, . . . , tn}. We further assume that the system has a single fault and tn is the

only fault transition of the system. We introduce the vector x = (x1, . . . ,xn) in which each xi

represents the number of firings of ti for all i = 1, . . . ,n, as described in Section 4.1. Suppose

that I :=−Ax≤M0, where x≥~0, represents the state equation constraints. We further assume

that c is the inequality xn ≤ 0 and ¬c is the negation of c, i.e. the inequality xn > 0. For each

sequence σ of (N ,M0), if σ contains tn (the fault transition), then #(σ) (the Parikh vector of σ )

satisfies ¬c. Conversely, if #(σ) satisfies c, then σ has no fault transition tn.

Figure. 4.2 depicts a general sketch of the proposed method. Assuming that we start with an

acyclic Petri net model, then a two-step process is carried out:

• Offline step: we first obtain a set of inequalities I created from the state equation and non-

negativity constraints on x. Then, two sets of inequalities I∪{c} and I∪{¬c} are created.

Applying the IFME method simultaneously to both I ∪{c} and I ∪{¬c} respectively

results in two reduced sets R and R′, obtained by eliminating every variable corresponding

to a transition in the set Tu.

• Online step: in this step, the reduced sets of inequalities R and R′ are used to make
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Offline step

Online step

PN model
(Acyclic)

c := xn ≤ 0
¬c := xn > 0

Plant (firing
sequence σ )

State equation:
I := M0 +Ax≥ 0

Check #(s)
against
R & R′

Diagnosis

IFME
IFME

Observed
sequence
s = π(σ)

I∪{c}
I∪{¬c}

NoFault,
Faulty,
Uncertain

R
R′

Figure 4.2: Sketch of the proposed approach in the case of acyclic Petri nets

diagnosis decisions. More precisely, the Parikh vector of a given observed sequence s is

tested against R and R′ to determine whether it satisfies any or both of R and R′.

The following theorem gives full details of this process and its validation for fault diagnosis.

Theorem 4.1. Suppose that (N ,M0) is a Petri net satisfying the assumptions (a)-(g) listed

in Section 4.1. Also, suppose that I is the set of inequalities −Ax ≤ M0 created from the

state equation of N plus x ≥~0, see Lemma 4.1. Assume that T = To ∪Tu, To = {t1, . . . , tk},

Tu = {tk+1, . . . , tn} and tn is a fault transition. The vector of variables x1, . . . ,xn corresponds to the

number of firing the transitions t1, . . . , tn. Assume also that c is the inequality xn ≤ 0 and ¬c is its

negation. Suppose that the set of inequalities R and R′ are respectively produced from applying

IFME to both I∪{c} and I∪{¬c} to eliminate all variables corresponding to transitions in Tu.

Then, for any given observed sequence of events s = π(σ), where σ is a firing sequence in N

(M0
σ→M), ∆(s) is determined as follows:

∆(s) =



NoFault if #(s) 2 R′

Faulty if #(s) 2 R

Uncertain if #(s) � R∧#(s) � R′

Impossible if #(s) 2 R∧#(s) 2 R′
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Proof. In the following, we assume that #(s) = (α1, . . . ,αk).

Proof of ∆(s) = NoFault: assume that #(s) 2 R′, but the diagnosis state is not

NoFault. If #(s) 2 R′, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I∪{¬c} by Theorem 3.1. Since σ is a firing sequence, we are

certain that ν � I, see Lemma 4.1. Hence, ν 2 ¬c, i.e. ν � c . As a result, ∀σ ′ ∈ L(N ,M0) such

that π(σ ′) = s, #(σ ′) � c, i.e. #(tn,σ ′)≤ 0. Thus, the fault has not occurred during observing s.

This contradicts the assumption.

Proof of ∆(s) = Faulty: using the same argument in Proof of ∆(s) = NoFault replacing R′

with R.

Proof of ∆(s) = Uncertain: assume that #(s) � R and #(s) � R′, but we are certain about

the diagnosis state. If #(s) � R, then there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn)

such that ν = (α1, . . . ,αk,αk+1, . . . ,αn) and ν � I ∪{c} by Theorem 3.1. If ν � I ∪{c}, then

ν � I. Considering that N is acyclic, then there exists σ ′ such that M0
σ ′→M′, #(σ ′) = ν . Since

ν � I ∪{c}, then ν � c which means #(tn,σ ′) ≤ 0, i.e. σ ′ contains no fault. Now, we claim

that π(σ ′) = s. The proof of this claim is obtained by induction on the length of the observed

sequence denoted |s|. We start the proof with the case of |s|= 1 as the case |s|= 0 is already

proved.

Base case: if |s|= 1, then π(σ ′) = s because #(π(σ ′)) = #(s). In fact, if π(σ ′) 6= s, then there

exists an entry in both #(s) and π(#(σ ′)) having different values and this contrasts #(π(σ ′)) =

#(s).

Induction step: we assume that the claim is true for all s with |s|< k1 (Induction hypothesis).

Then, we prove it is true for s with |s| = k1. Suppose s = s′t where t ∈ To and s′ ∈ T ∗o . Since

σ ,σ ′ ∈ L(N ,M0) and #(π(σ)) = #(π(σ ′)) = #(s), then there are sequences σ ′1 ∈ T ∗ and

σ ′2 ∈ T ∗u such that σ ′ = σ ′1t ′σ ′2. In effect, t ′ is the most recent observable transition in σ ′. Then

we have:

M0
σ ′1→M′1

t ′→M′2
σ ′2→M′, t ′ ∈ To

also σ ′2 can be empty. For σ = σ1tσ2 we have:

M0
σ1→M1

t→M2
σ2→M, σ1 ∈ T ∗,σ2 ∈ T ∗u
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As π(σ) = s = s′t and t is the last observable transition in σ , then π(σ1) = s′. By the induction

hypothesis, π(σ ′1) = s′. Since #(π(σ ′)) = #(s) = #(s′t) and π(σ1) = π(σ ′1), then t = t ′ (if t 6= t ′

then #(π(σ ′)) 6= #(s) and this is not true). As a result, π(σ ′) = π(σ ′1)t
′ = s′t = s and this proves

the claim.

Similarly, we can prove that, if #(s) � R′, there exists a sequence σ ′′ such that M0
σ ′′→M′′,

#(σ ′′) � ¬c (#(tn,σ ′′)> 0) and π(σ ′′) = s.

To conclude, since σ ′,σ ′′ ∈ L(N ,M0) with π(σ ′) = π(σ ′′) = s, #(σ ′) � c and #(σ ′′) � ¬c,

hence we have an Uncertain state, see Definition 4.4. This contradicts the assumption.

Proof of the case Impossible: assume that #(s) 2 R and #(s) 2 R′, but this case is

possible. If #(s) 2 R, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I ∪{c} by Theorem 3.1. Also, if #(s) 2 R′, then for every

valuation (βk+1, . . . ,βn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2 I ∪{¬c}

by Theorem 3.1. Rephrasing this statement, we can say that there exists a valuation (βk+1, . . . ,βn)

of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and ν � I∪{c} taking into account that

¬c is the negation of c and σ is a firing sequence of N , i.e. ν = #(σ) � I. Here we have

contradictory statements. Hence, this case is an impossible case. This contradicts the assumption

and completes the proof.

Put simply, the above theorem states that, given an observed sequence s, the satisfaction of

the Parikh vector of the sequence is checked against both sets R and R′. Then, diagnosis states

are estimated according to the outcomes. In particular, if the observed sequence does not satisfy

R, then the diagnosis state is Faulty. By contrast, if the observed sequence does not satisfy R′,

then the diagnosis state is NoFault. Otherwise, the diagnosis state is Uncertain. Note that the

case where the observed sequence does not satisfy both R and R′ is not possible. Thus, Theorem

4.1 provides a systematic procedure to detect the firing of the fault transition.

Remark 4.2. Note that the proofs of the cases Faulty and NoFault in Theorem 4.1 are still valid

for Petri nets which are not acyclic. In effect, diagnosis of these cases in our approach is similar

to using the state equation to check unreachability of a given marking M in general Petri nets.

In other words, we know that if the state equation admits no solution for a given marking M,
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Algorithm 4.1 : build the diagnoser.
Input: A Petri net (N ,M0),

a set of unobservable transitions Tu, the fault transition tn.
Output: A pair (R, R′).

1: Let I←{−Ax≤M0}∪{−xi ≤ 0 |i=1,...,n}
2: Let c← xn ≤ 0
3: Let ¬c←−xn ≤−1
4: R← I∪{c}
5: R′← I∪{¬c}
6: for all t j such that t j ∈ Tu do
7: R← IFME_method(R,x j)
8: R′← IFME_method(R′,x j)
9: end for

then M is not reachable from the initial marking, i.e. there does not exist a sequence σ such that

M0
σ→M. Similarly, if the Parikh vector #(s) of a given observed sequence s is not a solution to

R (R′), then #(s) has no corresponding solution in I∪{c} (I∪{¬c}) regardless of the structure

of the Petri nets.

4.3.2 Fault diagnosis algorithms

The steps for producing the pair of the sets of inequalities R and R′, in addition to using these

sets online in order to diagnose faults, are described by algorithms below. These algorithms are

developed based on the results obtained in Theorem 4.1.

Algorithm 4.1 takes three parameters: a Petri net (N ,M0), a set of unobservable transitions

Tu and the fault transition tn. Eventually, it outputs the pair of the sets of inequalities R and

R′ which will be used later for computing diagnosis states online. To explore the details of

this algorithm: step 1 initialises the set of inequalities I; steps 2-3 create a pair of inequalities

(c,¬c) as described in Section 4.2. Then, augmented sets of inequalities I∪{c} and I∪{¬c} are

produced, and a pair of inequalities (R,R′) is initialised in steps 4-5 accordingly.

The sets of inequalities (R,R′) are updated by steps 6-9. The IFME method (IFME_method

function) is recursively applied |Tu| times to eliminate all variables x j, ∀t j ∈ Tu. The resulting

sets of inequalities R and R′ can be imagined as a diagnoser in the new context.
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Algorithm 4.2 : online fault diagnosis.

Input: A pair (R, R′) as defined in Algorithm 4.1.
Output: The diagnosis state {NoFault,Faulty,Uncertain}.

1: Let s← ε

2: loop
3: if a new event e is observed then
4: Let s′← s, s← s′e
5: if #(s) 2 R′ then
6: ∆(s)← NoFault
7: else if #(s) 2 R then
8: ∆(s)← Faulty
9: else if #(s) � R and #(s) � R′ then

10: ∆(s)←Uncertain
11: end if
12: end if
13: end loop

On the other hand, Algorithm 4.2 is used online to diagnose faults. Its inputs are the two sets

of inequalities R and R′ created by Algorithm 4.1. The output of the algorithm is a diagnosis state

from {NoFault,Faulty,Uncertain} (see Definition 4.4). This algorithm begins by initialising

the observed sequence s by the empty string ε . Then, in step 2 in particular, it enters into a loop

to monitor the system state to check whether the fault has occurred. In step 3, the algorithm waits

until a new event e is observed and then concatenates it to the previous sequence of observed

events s′, updating the sequence s. The Parikh vector of the observed sequence #(s) is tested

against both sets of inequalities R′ and R in steps 5, 7 and 9. The aim of this testing is to decide

whether the fault has occurred, or may have occurred. Then, the diagnosis state is determined in

steps 6, 8 and 10 as described in Theorem 4.1.

4.3.3 Illustrative example

Referring to the Petri net of Figure. 4.1, where the transition fault is t7 and its associated set

of inequalities is as described in (4.1), assume that we have augmented this set once by adding

the constraint c := x7 ≤ 0 and another by adding the negation of the constraint ¬c :=−x7 ≤−1.

Note that the latter inequality is rewritten in the standard form of the set of inequalities defined
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Table 4.1: The sets R and R′ resulting from the IFME method in the illustrative example

No. R R′

1 x1 ≤ 1 x1 ≤ 1
2 −x4 + x6 ≤ 0 −x4 + x6 ≤ 0
3 −2x1 + x4 + x6 ≤ 0 −2x1 + x4 + x6 ≤ 0
4 −2x1 + x4 ≤ 0 −2x1 + x4 ≤ 0
5 −x1 + x4 ≤ 0 −x1 + x6 ≤−1
6 −x1 + x6 ≤ 0 −x1 ≤−1

in Lemma 4.1, and also the non-negative constraint x7 ≥ 0 is previously removed from I as it is

redundant. Then, applying the IFME method to each augmented set results in the two reduced

sets R and R′ described in Table 4.1. Note that all variables corresponding to unobservable

transitions Tu = {t2, t3, t5, t7} have been eliminated in both sets. The sets of inequalities R and R′

are in variables representing observable transitions To = {t1, t4, t6}.

Considering these two sets, let the observed sequence s be ε , then #(t1,s) = 0, #(t4,s) = 0,

#(t6,s) = 0 as no firing of any transition from the set To = {t1, t4, t6} has been observed. By

looking at R and R′, we find that the latter is not satisfied. In this case, we are certain that no

fault has occurred. Likewise, when s = t1t4t6, we have #(t1,s) = 1, #(t4,s) = 1, #(t6,s) = 1.

Substituting these values of variables into R and R′ establishes that R′ is not satisfied. Thus we

conclude a similar diagnosis state, i.e. ∆(s) = NoFault.

Now, assume that s = t1t4t4, then #(t1,s) = 1, #(t4,s) = 2, #(t6,s) = 0. In such a case, R is

not satisfied which implies that the fault has occurred, i.e. we have ∆(s) = Faulty. Finally, let

s = t1t4, this yields #(t1,s) = 1, #(t4,s) = 1, #(t6,s) = 0. Verifying these values against R and

R′, we find that both of them are satisfied. Thus, we infer that the fault may have occurred, i.e.

∆(s) =Uncertain.

4.4 Chapter summary

This chapter introduced a new approach for fault diagnosis in discrete event systems modelled

by acyclic Petri nets. The systems under study are partially-observed where faults are modelled

as unobservable transitions. In this new approach, we presented a different technique to produce
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the diagnoser. In fact, the diagnoser here is no longer represented as an automaton but as a

pair of sets of inequalities in variables representing the number of firing observable transitions.

To produce these sets, we first create two sets after adding a constraint (expressing the normal

behaviour) and its negation (expressing the faulty behaviour) to the set of inequalities created

from the state equation. Then, the IFME method is applied to eliminate the variables representing

unobservable transitions from these sets. The two resulting sets are used for the purpose of

diagnosis. The proposed approach has been applied to systems with a single fault. However, the

extension to include systems with multiple faults can be made. In parallel, we can somewhat

relax the cyclicity assumption. These two points will be demonstrated in the next chapter.
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FAULT DIAGNOSIS IN PETRI NETS: A MORE
GENERAL CASE

Based on the results obtained in the previous chapter, this chapter extends these results in several

ways. First, the assumption of having no cycles of transitions in the nets has been relaxed to the

case where only cycles of unobservable transitions are not permitted. By this, we address the

problem of fault diagnosis in a more general case of Petri nets. Also, the case of multiple fault

types in which each type has multiple faults is considered.

To address this more general case using the IFME method, the idea of tracking diagnosis

history is introduced. Using this idea is necessary to overcome the problem of not capturing the

order of events in the state equation formulation of Petri nets, i.e. one solution for state equation

could represent more than one different sequence in the language of Petri nets. The lack of the

order information in the state equation could cause misleading in making diagnosis decisions in

cases where the order of events is required to ensure a diagnosis state.

This chapter proceeds as follows. We start by explaining how faults can be expressed as

inequalities considering the case of multiple faults. Based on this, an extension of the diagnoser

definition described in Chapter 4 is given. In addition, we prove the correctness of the obtained

results and analyse the complexity of the approach. Then, algorithms for offline construction of

a diagnoser and subsequent online diagnosis of faults are presented. For a better understanding,

the extended approach is applied to a Petri net example.
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5.1 Fault diagnosis in Petri nets

In this section, we generalise the description of the fault diagnosis problem in DES modelled by

Petri nets as outlined in Section 4.1 to the case of having multiple fault types where each type

represents a set of faults. A system may have more than one type of fault. Thus, the set Tf is

further partitioned to T 1
f ,T

2
f , . . . ,T

r
f representing different types of faults. Since it is not required

to identify uniquely the occurrence of every fault in a given type, firing of any transition t ∈ T i
f

implies that a fault of type T i
f has occurred.

The functionality of the diagnoser is to use such information (observations) to identify a

diagnosis state as one of the following [4,8] : 1) Normal state - when all sequences in L(N ,M0)

with the same s have no fault transition from the set Tf ; 2) T i
f −Certain state is obtained when

all sequences in L(N ,M0) with the same s have a fault transition from the set T i
f ; and 3)

T i
f −Uncertain state in which there exists two sequences having the same s, one of them has a

fault transition from T i
f , but the other has none.

All assumptions of Section 4.1 are still applied to the extended results in this chapter except

assumptions (e) and (g). In other words, the cycles are allowed provided that not all transitions

on these cycles are unobservable. In addition, the case of having multiple fault types where each

type has multiple faults is considered.

5.2 The IFME method for fault diagnosis

In this section, it is shown how the IFME method can be used to diagnose faults in Petri nets

modelling DES where the nets have no cycle of unobservable transitions. Moreover, the case of

multiple fault types where each type has multiple faults is considered.

5.2.1 Modelling and diagnosing multiple faults

A family of faults can be represented as an inequality by extending the formulation introduced in

Section 4.2. Considering that T i
f , i = 1,2, . . . ,r, is a fault type; we associate to each type T i

f two
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inequalities ¬ci and ci described in (5.1) and (5.2) respectively.

∑
t∈T i

f

#(t,σ)> 0 (5.1)

∑
t∈T i

f

#(t,σ)≤ 0 (5.2)

Then, any fault transition from T i
f appearing in σ implies that (5.1) holds. In contrast, no fault

transition of T i
f appearing in σ implies that (5.2) holds. To generalise the same notion on the

whole set Tf , we can say that given a sequence σ , no fault from set Tf appears in σ if and only if

(5.3) holds.
r

∑
i=1

∑
t∈T i

f

#(t,σ)≤ 0 (5.3)

On the contrary, at least one fault appears in σ if and only if (5.4) is evaluated to True.

r

∑
i=1

∑
t∈T i

f

#(t,σ)> 0 (5.4)

By considering the new formulation of faults, described above, and the extended definition

of the diagnoser introduced in Definition 4.4, the following definition is presented.

Definition 5.1. A diagnoser is a function ∆ : T ∗o × 2Tf → {NoFault,Faulty,Uncertain} that

associates with each observed sequence s with respect to the fault type T i
f , i ∈ {1, . . . ,r}, one of

the following diagnosis states:

• ∆(s,T i
f ) = NoFault if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ci holds. This state

ensures that no fault of type T i
f has occurred as there is no sequence having the same

observation as s containing a fault transition in T i
f .

• ∆(s,T i
f ) = Faulty if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ¬ci holds. This state

shows faulty behaviour as all sequences having the same observation as s contain a fault

transition in T i
f , i.e. a fault from set T i

f has certainly occurred during the sequence s.

• ∆(s,T i
f ) =Uncertain if there exists two sequences σ1, σ2 ∈ L(N ,M0) such that π(σ1) =
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p1 p2

t1(T 1
f )

t2(T 2
f )

t3

p3 p4 p5

t4 t5(T 2
f )

p6 p7

t6 t7

Figure 5.1: A Petri net example

π(σ2) = s, #(σ1) � ci and #(σ2) � ¬ci hold. In this case, the behaviour of the system

is ambiguous because both NoFault and Faulty states are possible during the observed

sequence s.

If ∆(s,T i
f ) = NoFault for all i = 1, . . . ,r, then we are certain that no fault from any type has

occurred during the observed sequence s. To explain the fault diagnosis notions with respect to

the extended diagnoser definition mentioned above, let us present the following example:

Example 5.1. Consider the Petri net depicted in Figure. 5.1. In this Petri net, the set of

places is P = {p1, . . . , p7} and the initial marking is M0 = [1100000]; the set of transitions is

T = {t1, . . . , t7}. In the figure, observable transitions are depicted by solid rectangles, while

empty rectangles represent unobservable transitions. Moreover, we model two types of faults

corresponding to two sets of transitions, T 1
f = {t1} and T 2

f = {t2, t5}.

Since we have two fault types, two pairs of inequalities need to be created to express faults

from both types. The inequalities c1 := x1 ≤ 0 and ¬c1 := x1 > 0 are associated to T 1
f . While

T 2
f can be represented by the inequalities c2 := x2 + x5 ≤ 0 and ¬c2 := x2 + x5 > 0.

Suppose that the diagnoser observes no sequence (s = ε), then ∆(s,T 1
f ) = ∆(s,T 2

f ) =

Uncertain because s might correspond to two sequences, σ1 = t1 and σ2 = t2. In which

case, x1 = #(σ1) = (1,0,0,0,0,0,0) and x2 = #(σ2) = (0,1,0,0,0,0,0). Then #(σ1) � ¬c1,

but #(σ2) � c1. Also, #(σ1) � c2 but #(σ2) � ¬c2.
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If we assume now that s = t3t4, then ∆(s,T 1
f ) = Faulty, but ∆(s,T 2

f ) = NoFault. The

diagnoser estimates such a state because all sequences with π(s) = t3t4 have a fault from type

T 1
f , but no fault from the type T 2

f appears in these sequences. In particular, there exist only

four sequences σ1 = t1t3t4, σ2 = t3t1t4, σ3 = t1t3t4t7 and σ4 = t3t1t4t7 with π(σ1) = π(σ2) =

π(σ3) = π(σ4) = t3t4. In this case, we have #(σ1) = #(σ2) = (1,0,1,1,0,0,0) and #(σ3) =

#(σ4) = (1,0,1,1,0,0,1). Then, #(σ1),#(σ2),#(σ3) and #(σ4) satisfy ¬c1 and c2.

5.2.2 The proposed approach for fault diagnosis

In Chapter 4, we have introduced the idea of using the IFME method for fault diagnosis in

partially-observed DES modelled by Petri nets. Under the assumptions that Petri nets are acyclic

and have a single fault, we showed that the diagnoser can be expressed as two sets of inequalities.

These sets are derived from the state equation of Petri nets augmented by c or ¬c. In this

chapter, we relax these assumptions to the case where the Petri nets under study have no cycle of

unobservable transitions. In addition, we consider the case of multiple faults.

The IFME approach for fault diagnosis in Petri nets satisfying the assumptions (a)-(g) listed

in Section 5.1, can be outlined as follows. Supposing that (N ,M0) is a Petri net with an initial

marking M0, without any loss of generality, assume that we have renamed the transitions of N

such that the first k transitions are observable, i.e. To = {t1, t2, . . . , tk}. The remaining transitions

are unobservable, i.e. Tu = {tk+1, tk+2, . . . , tn}.

We further suppose that the set of fault transitions in N is Tf ⊆ Tu and all faults are of the

same type. We introduce variables x1,x2, . . . ,xn representing the number of firing of t1, t2, . . . , tn,

respectively (see Remark 4.1). Denote by I :=−Ax≤M0 the state equation constraints equipped

with x≥~0, where x = (x1,x2, . . . ,xn) (see Lemma 4.1). We further assume that c is the inequality

∑
t j∈Tf

x j ≤ 0 and ¬c is the negation of c, i.e. the inequality ∑
t j∈Tf

x j > 0. For each firing sequence

σ of (N ,M0), if σ contains a fault from Tf , then x = #(σ) satisfies ¬c (see Definition 4.2).

Conversely, for a firing sequence σ , if x satisfies c, then σ has no fault transition.

The general idea of our approach to address the problem of fault diagnosis where cycles are

permitted can be illustrated in Figure. 5.2. In fact, the only difference between the present notion
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Offline step

Online step

PN model

c := ∑
t j∈Tf

x j ≤ 0

¬c := ∑
t j∈Tf

x j > 0

Plant (firing
sequence σ )

State equation:
I := M0 +Ax≥ 0

Check #(s)
against
R & R′

Diagnosis

IFME
IFME

Observed
sequence
s = π(σ)

I∪{c}
I∪{¬c}

NoFault,
Faulty,
Uncertain

Diagnosis
history

R
R′

Figure 5.2: Sketch of the proposed approach in Petri nets with no cycle of unobservable transitions

and the one introduced in Section 4.3.1 involves adding a concept of the diagnosis history as

stated in Figure. 5.2. The introduction of this concept is necessary to overcome the problem

of not considering the order of fired transitions by state equation representation, which will be

explained later. Using the idea of diagnosis history, the process of fault diagnosis can be divided

into two steps:

• Offline step: in this step, we start from the Petri net model to first obtain a set of in-

equalities I created from the state equation plus the non-negativity constraints on x. Then,

two sets of inequalities I ∪{c} and I ∪{¬c} are created. Applying the IFME method

simultaneously to both I∪{c} and I∪{¬c}, two reduced sets R and R′ are obtained by

eliminating every variable corresponding to a transition in the set Tu.

• Online step: during this step, the reduced sets of inequalities R and R′ along with the

diagnosis history are used to compute diagnosis states. In effect, the diagnosis history is

only needed when the Parikh vector of the observed sequence s satisfies both R and R′.

In the following, we establish the mathematical foundations on which the proposed approach

in this chapter relies. This foundation is captured by the following lemma and theorem which

summarise the main results in diagnosing fault occurrences. Inspired by Theorem 16 in [33],
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Lemma 5.1 is first presented; which is necessary to prove Theorem 5.1 below.

Lemma 5.1. Suppose that ν is a n-dimensional column vector and M is a reachable marking

in a Petri net N such that M′ = M+Aν ≥~0. Considering that Nν (see Definition 3.1) is cycle

free, then there exists a sequence σ ∈ T ∗ν (Tν is the set of transitions in Nν ) such that Mν

σ→M′ν

and #(σ) = ν , where Mν and M′ν are restrictions of M and M′ to places of Nν . In addition, σ

can fire under M resulting in M′ such that M σ→M′.

Proof. Consider subnet Nν is acyclic, then there is at least one transition t enabled at Mν (if

not, there exists a token-free source place for the disabled transitions or a token-free circuit

deadlock on Nν at Mν , but this contradicts M′ ≥~0 and our assumption that Nν is acyclic).

Let M′′ = M+Au is the resulting marking after firing t (one of the enabled transitions in Nν )

and ν ′ = ν−u. Then, M′ = M′′+Aν ′ ≥~0, ν ′ ≥~0 and the subnet Nν ′ is acyclic. By the same

argument, Nν ′ has at least one enabled transition. Repeating this process until ν ′ becomes~0, we

will reach to the marking M′ = M′+A~0≥~0. This completes the proof.

Definition 5.2. The most recent diagnosis state: suppose that s = s′t is a sequence of observed

events, where s′ ∈ T ∗o and t ∈ To, then the most recent diagnosis state of s is ∆(s′,Tf ).

Note that the most recent diagnosis state of the empty string ε is NoFault because we assume

that the system starts from a non-faulty state.

Theorem 5.1. Assume that (N ,M0) is a Petri net satisfying the assumptions in Section 5.1.

Suppose that I is the set of inequalities−Ax≤M0 created from the state equation of N , equipped

with x≥~0, see Lemma 4.1. Assume that T = To∪Tu, To = {t1, . . . , tk}, Tu = {tk+1, . . . , tn} and

the set of fault transitions is Tf ⊆ Tu, which has one fault type. The vector of variables x1, . . . ,xn

corresponds to the number of firing the transitions t1, . . . , tn. Assume also that c is the inequality

∑
t j∈Tf

x j ≤ 0 and ¬c is its negation, i.e. ¬c := ∑
t j∈Tf

x j > 0. Suppose that sets of inequalities R and

R′ are respectively produced from applying the IFME to both I∪{c} and I∪{¬c} to eliminate

all variables corresponding to transitions in Tu. Then, for any given sequence of observed events

s = s′t, s′ ∈ T ∗o and t ∈ To such that there exists a firing sequence σ in N (M0
σ→ M) and

62



CHAPTER 5. FAULT DIAGNOSIS IN PETRI NETS: A MORE GENERAL CASE

π(σ) = s, ∆(s,Tf ) is determined as follows:

∆(s,Tf ) =



NoFault if (#(s) 2 R′)

Faulty if (#(s) 2 R)

∨((#(s) � R)∧ (#(s) � R′)

∧(∆(s′,Tf ) = Faulty))

Uncertain if (#(s) � R)∧ (#(s) � R′)

∧((∆(s′,Tf ) = NoFault)∨ (∆(s′,Tf ) =Uncertain))

Impossible if (#(s) 2 R)∧ (#(s) 2 R′)

Proof. In the following, we assume that #(s) = (α1, . . . ,αk).

Proof of ∆(s,Tf ) = NoFault: by contradiction, assume that #(s) 2 R′, but the diagnosis state

is not NoFault. If #(s) 2 R′, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I∪{¬c} by Theorem 3.1. Since σ is a firing sequence, we

are certain that ν � I, see Lemma 4.1. Hence, ν 2 ¬c, i.e. ν � c. As a result, ∀σ ′ ∈ L(N ,M0)

such that π(σ ′) = s, #(σ ′) � c, i.e. ∑
t∈Tf

#(t,σ ′) ≤ 0. Hence, a fault has not occurred during

observing s, i.e. ∆(s,Tf ) = NoFault. This contradicts the assumption.

Proof of ∆(s,Tf ) = Faulty: here we have two cases to be proved.

Case i: if #(s) 2 R holds. Using the same argument in Proof of ∆(s,Tf ) = NoFault replacing

R′ with R, we can prove this case.

Case ii: if (#(s) � R)∧ (#(s) � R′)∧ (∆(s′,Tf ) = Faulty) holds. Since ∆(s′,Tf ) = Faulty holds,

i.e. the most recent diagnosis state is Faulty, then a fault has occurred during the observed

sequence s′. Also, since the fault propagates to all states following the Faulty state, then the

fault has also occurred during s = s′t.

Proof of ∆(s,Tf ) =Uncertain: we first assume that s = ε , then there exists one possible case

for the most recent diagnosis state, particularly NoFault, because we suppose that the system

starts from a non-faulty state. Now let us prove the result in the case of s = ε . If #(s) � R, then

there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn)

and ν � I∪{c} by Theorem 3.1. If ν � I∪{c}, then ν � I, i.e. ν satisfies M′=M0+Aν ≥~0. Since
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s has no observable transitions (s = ε), then the subnet Nν has only unobservable transitions.

Again, by the assumption that no cycle of unobservable transitions exists in N , then Nν is

cycle free. As a result, there exists σ ′ ∈ T ∗ν such that M0
σ ′→M′ and #(σ ′) = ν by Lemma 5.1.

Hence, the sequence σ ′ has no fault. Likewise, we can prove that if #(s) � R′, there exists another

sequence having a fault. Since there exists two sequences having the same observed sequence s,

but one has a fault and the other has none, then we have an Uncertain state.

Now, assume that s = s′t, t ∈ To and s′ ∈ T ∗o . Then, there are two cases to be considered:

Case i: when the most recent diagnosis state is NoFault (∆(s′,Tf ) = NoFault). If #(s) � R, then

there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn)

and ν � I∪{c} by Theorem 3.1. If ν � I∪{c}, then ν � I, i.e. M′′ = M0+Aν ≥~0. Since no fault

has occurred during observing s′, and t is an observable transition, then we are certain that all

sequences σ ′t such that M0
σ ′t→M′ and π(σ ′) = s′ have no fault. Assuming y= ν−#(σ ′t), y∈Nn,

then M′′ = M′+Ay≥~0. Since the subnet Ny has only unobservable transitions, then Ny is cycle

free. As a result, there exists σ ′′ ∈ T ∗y such that M′ σ ′′→M′′ and #(σ ′′) = y by Lemma 5.1. Hence,

the sequence σ ′tσ ′′ with #(σ ′tσ ′′) = ν has no fault. Likewise, we can prove that if #(s) � R′,

there exists another sequence having a fault. Since there exists two sequences with the same s,

but one of them has a fault and the other does not, then we have an Uncertain state.

Case ii: when the most recent diagnosis state is Uncertain (∆(s′,Tf ) = Uncertain). If

#(s) � R, then there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =

(α1, . . . ,αk,αk+1, . . . ,αn) and ν � I ∪ {c} by Theorem 3.1. If ν � I ∪ {c}, then ν � I, i.e.

M′′ = M0 +Aν ≥~0. Since we have an Uncertain state while observing s′, i.e. the most re-

cent diagnosis state is Uncertain, and t is an observable transition, then we still have the same

state for any sequence σ ′t such that M0
σ ′t→M′ and π(σ ′) = s′. Assuming y = ν−#(σ ′t), y ∈Nn,

then M′′ = M′+Ay≥~0. Since the subnet Ny has only unobservable transitions, then Ny is cycle

free. As a result, there exists σ ′′ ∈ T ∗y such that M′ σ ′′→M′′ and #(σ ′′) = ν by Lemma 5.1. Hence,

the sequence σ ′tσ ′′ with #(σ ′tσ ′′) = ν has no fault. Similarly, we can prove that if #(s) � R′,

there exists another sequence having a fault. Since there are two sequences having the same

observed sequence s, but one has a fault and the other does not, then we have an Uncertain state.
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Figure 5.3: Tracking diagnosis history

Proof of the case Impossible: assume that #(s) 2 R and #(s) 2 R′, but this case is

possible. If #(s) 2 R, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I ∪{c} by Theorem 3.1. Also, if #(s) 2 R′, then for every

valuation (βk+1, . . . ,βn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2 I ∪{¬c}

by Theorem 3.1. Rephrasing this statement, we can say that there exists a valuation (βk+1, . . . ,βn)

of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and ν � I ∪{c} taking into account

that ¬c is the negation of c and σ is a firing sequence of N , i.e. #(σ) � I. Here we have

contradictory statements. Hence, this case is an impossible case. This contradicts the assumption

and completes the proof.

Remark 5.1. Note that the proofs of the diagnosis states NoFault and Faulty in Theorem 5.1

are still valid for Petri nets which have cycles of unobservable transitions (see Remark 4.2).

In Theorem 5.1 above, the assumption that no cycle of unobservable transitions are permitted

is necessary in order not to have spurious solutions of the state equation, i.e. the solutions which

do not correspond to any sequence in Petri nets. In addition, the following example demonstrates

the importance of using the notion of tracking the diagnosis history in order to obtain correct

diagnosis decisions.

Example 5.2. Consider the Petri net in Figure. 5.3 where the initial marking is M0 = [10000],

To = {t2, t6} and Tu = {t1, t4, t5}. In this Petri net, there is a single fault transition modelled by t3.

Assume that the sequence t2t2 is observed. Then, we are certain that the fault has occurred. By

Theorem 5.1 we can obtain the same diagnosis state. Now, assume that s1 = t2t2t6 is observed.

Again this sequence is a Faulty sequence. Although we obtain that #(s1) � R and #(s1) � R′,
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Theorem 5.1 yields a Faulty state because the most recent diagnosis state (∆(t2t2,Tf )) is Faulty.

However, note that not considering the diagnosis history in this case leads to an incorrect

diagnosis decision - Uncertain state. This is due to the presence of another sequence s2 = t2t6t2

with no fault, but #(s1) = #(s2).

From this example, we infer that adopting the notion of tracking the diagnosis history enables

the avoidance of problems, where the order of events in an observed sequence can affect the

diagnosis decisions. Using this notion, the fault diagnosis process is performed on the basis of

individual observed events. In each diagnosis step, the diagnosis state is computed for a single

observed event and then propagated to the following steps. In this case, we remove the confusion

resulting from having two different observed sequences with the same Parikh vector.

5.2.3 Multiple fault types with multiple faults

Let us now investigate the case of multiple fault types in which each type has multiple faults.

To address this case, we produce a separate pair of sets of inequalities for each fault type. In

that case, when creating a set of inequalities for a given fault type, the transitions representing

faults in the other fault types are considered as normal unobservable transitions. We say that a

fault of type T i
f , i = 1,2, . . . ,r, occurs if and only if at least one fault transition t ∈ T i

f fires. The

following corollary extends Theorem 5.1 to the case where multiple fault types with multiple

faults exist in the system.

Corollary 5.1. Assume that (N ,M0) is a Petri net satisfying the assumptions in Section 5.1.

Suppose that I is the set of inequalities−Ax≤M0 created from the state equation of N , equipped

with x≥~0, see Lemma 4.1. Assume that T = To∪Tu, To = {t1, . . . , tk}, Tu = {tk+1, . . . , tn}, Tf =

T 1
f ∪·· ·∪T r

f and Tf ⊆ Tu. The vector of variables x1, . . . ,xn corresponds to the number of firing

the transitions t1, . . . , tn. Assume also that ci is the inequality ∑
t j∈T i

f

x j ≤ 0 and ¬ci := ∑
t j∈T i

f

x j > 0

is its negation. For every i∈ {1, . . . ,r}, suppose that sets of inequalities Ri and R′i are respectively

produced from applying the IFME to both I ∪ {ci} and I ∪ {¬ci} to eliminate all variables

corresponding to transitions in Tu. Then, for any given sequence of observed events s = s′t,
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s′ ∈ T ∗o and t ∈ To such that there exists a firing sequence σ in N (M0
σ→ M) and π(σ) = s,

∆(s,T i
f ) is determined as follows:

∆(s,T i
f ) =



NoFault if #(s) 2 R′i

Faulty if (#(s) 2 Ri)

∨((#(s) � Ri)∧ (#(s) � R′i)

∧(∆(s′,T i
f ) = Faulty))

Uncertain if (#(s) � Ri)∧ (#(s) � R′i)

∧((∆(s′,T i
f ) = NoFault)∨ (∆(s′,T i

f ) =Uncertain))

Impossible if (#(s) 2 Ri)∧ (#(s) 2 R′i)

Proof. It follows from Theorem 5.1; in particular, we can obtain a formal proof of this corollary

by repeating the proof of Theorem 5.1 for each i ∈ {1, . . . ,r}.

5.2.4 Fault diagnosis algorithms: cycles are permitted

In this section, the algorithms introduced in Section 4.3.2 are extended to address the problem of

fault diagnosis in Petri nets satisfying the assumptions (a)-(g) of Section 5.1. Also, the extended

algorithms consider the case of multiple fault types based on results obtained in Theorem 5.1

and Corollary 5.1.

Algorithm 5.1 takes three parameters: a Petri net (N ,M0), the set of unobservable transitions

Tu and fault types set Tf . The output of this algorithm is a set of pairs of sets of inequalities,

namely Ri and R′i, ∀i = 1, . . . ,r, which will be used later for the purpose of diagnosis. Algorithm

5.1 begins with an initialisation of the set of inequalities I in step 1. In steps 3-4, a pair of

inequalities (ci,¬ci) is created for each fault type i ∈ {1, . . . ,r} as described in Section 5.2.3.

Then, augmented sets of inequalities I∪{ci} and I∪{¬ci} are produced. These augmented sets

are used to initialise the sets of inequalities Ri,R′i in steps 5-6.

The sets of inequalities Ri,R′i are updated in steps 7-10 by recursively applying the IFME

method (IFME_method) |Tu| times in order to eliminate all variables x j, ∀t j ∈ Tu. The resulting
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Algorithm 5.1 : build the diagnoser.
Input: A Petri net (N ,M0),

a set of unobservable transitions Tu,
fault types set {T i

f |1≤ i≤ r}.
Output: A set of pairs (Ri, R′i)i=1,2,...,r.

1: Let I←{−Ax≤M0}∪{−x j ≤ 0 | j=1,...,n}
2: for all i such that i ∈ {1,2, . . . ,r} do
3: Let ci← ∑

t j∈T i
f

x j ≤ 0

4: Let ¬ci← ∑
t j∈T i

f

−x j ≤−1

5: Ri← I∪{ci}
6: R′i← I∪{¬ci}
7: for all t j such that t j ∈ Tu do
8: Ri← IFME_method(Ri,x j)
9: R′i← IFME_method(R′i,x j)

10: end for
11: end for

sets of inequalities Ri and R′i represent the diagnoser used online for fault diagnosis.

Algorithm 5.2 is used online to diagnose faults. Its inputs are fault types set Tf in addition

to sets of inequalities Ri and R′i produced by Algorithm 5.1. The output of Algorithm 5.2 is

the diagnosis state {NoFault,Faulty,Uncertain} (see Definition 5.1). This algorithm starts by

initialising the observed sequence s by the empty string ε . Then, in particular in step 2, it enters

into a loop to monitor the system state to check whether a fault has occurred. In step 3, the

algorithm waits until a new event e is observed and then adds it to the previous sequence of

observed events s′, creating the sequence s. For each fault type T i
f , 1≤ i≤ r, #(s) is checked

against both R′i and Ri in steps 6 and 8. The purpose of this checking is to decide whether a

fault of type T i
f has occurred. Then, the diagnosis state is determined in steps 7 and 9. In the

case where #(s) satisfies both Ri and R′i (step 10), then a further check is performed to determine

the diagnosis state (steps 11-15) as described in Theorem 5.1 and Corollary 5.1. This check

considers using the diagnosis state of the observed sequence s′ before observing e (the most

recent diagnosis state) to make a diagnosis decision when observing e.
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Algorithm 5.2 : online fault diagnosis.

Input: The fault types set {T i
f |1≤ i≤ r},

a set of pairs (Ri, R′i)i=1,2,...,r as defined in Algorithm 5.1.
Output: A diagnosis state {NoFault,Faulty,Uncertain}.

1: Let s← ε

2: while true do
3: if a new event e is observed then
4: Let s′← s, s← s′e
5: for all i such that i ∈ {1,2, . . . ,r} do
6: if #(s) 2 R′i then
7: ∆(s,T i

f )← NoFault
8: else if #(s) 2 Ri then
9: ∆(s,T i

f )← Faulty
10: else if #(s) � Ri and #(s) � R′i then
11: if ∆(s′,T i

f ) = Faulty then
12: ∆(s,T i

f )← Faulty
13: else if ∆(s′,T i

f ) = NoFault or ∆(s′,T i
f ) =Uncertain then

14: ∆(s,T i
f )←Uncertain

15: end if
16: end if
17: end for
18: end if
19: end while

5.2.5 Computational complexity

This section presents a mathematical formulation of computational requirements (time and space

complexities) of the proposed approach. It is well known that the difficulty in solving the fault

diagnosis problem is in finding the best compromise between space complexity (size of the

diagnoser created offline) and the time complexity of the algorithm using the diagnoser online to

compute the diagnosis. Thus, our focus is on computing these requirements in the context of our

approach.

Proposition 5.1. Suppose N is a Petri net with an initial marking M0 and n, k and k1 represent

|T |, |To| and |Tu|, respectively. In addition, suppose that mI represents the number of inequalities

in the initial set; then,

• the size of the diagnoser (space complexity) in the best case (the worst case) is O(mI)
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(O(m2k1
I )), where k1 itself represents the number of eliminations,

• the time complexity in the best case (the worst case) of Algorithm 5.2 is O(1) (O(mF)),

where mF is the number of inequalities in the final set (diagnoser size).

Proof. Let us first compute the size of the diagnoser represented by sets of inequalities. Suppose

that pn, qn and rn are the number of positive, negative and zero coefficients of the variable xn to

be eliminated, respectively. Then, the best case occurs when pn = qn = 1 and rn = mI−2. In

which case, we obtain the lowest number of inequalities in each elimination step. In effect, the

number of inequalities can never be higher than mI . Thus, reduced sets of inequalities will have

O(mI) of inequalities after k1 eliminations.

On the other hand, the worst case occurs when pn = qn and rn = 0 as it results in the highest

number of possible pairs of inequalities to be considered. In other words, occurrence of this

case generates
(mI

2

)2 of inequalities in each elimination step. Let T (mI,k1) be the number of

inequalities in a resulting set after applying the IFME method to eliminate k1 variables from a

set with mI inequalities. If k1 = 1, then T (mI,k1) = (mI
2 )2, i.e. if there exists just one variable

elimination step, then this number will be equal to
(mI

2

)2. However, if k1 > 1, then T (mI,k1)

can recursively be expressed as the number of inequalities produced after the first elimination,

denoted (mI
2 )2, plus the number of the inequalities resulting from eliminating the remaining

variables whose number is k1−1. Thus, the number of inequalities with respect to mI and k1 , in

the worst case, can be written as a recurrence relation capturing the following form:

T (mI,k1) =

 T ((mI
2 )2,k1−1)+(mI

2 )2 ,k1 > 1

(mI
2 )2 ,k1 = 1

Then, using the iterative substitution method, this relation can be solved to obtain the closed-form

solution as described below:

= T
((mI

2

)2
,k1−1

)
+
(mI

2

)2
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= T

((mI
2

)2

2

)2

,k1−2

+

((mI
2

)2

2

)2

+
(mI

2

)2

= T



(
(mI

2 )
2

2

)2

2


2

,k1−3

+


(
(mI

2 )
2

2

)2

2


2

+

((mI
2

)2

2

)2

+
(mI

2

)2

= T

(
3

∏
j=1

1
22 j ×m23

I ,k1−3

)
+

3

∏
j=1

1
22 j ×m23

I +
2

∏
j=1

1
22 j ×m22

I +
1
22 ×m2

I

= T

(
3

∏
j=1

1
22 j ×m23

I ,k1−3

)
+

3

∑
k=1

(
k

∏
j=1

1
22 j ×m2k

I

)
...

= T

(
i

∏
j=1

1
22 j ×m2i

I ,k1− i

)
+

i

∑
k=1

(
k

∏
j=1

1
22 j ×m2k

I

)
when k1− i = 1, then i = k1−1

= T

(
k1−1

∏
j=1

1
22 j ×m2k1−1

I ,1

)
+

k1−1

∑
k=1

(
k

∏
j=1

1
22 j ×m2k

I

)

=


k1−1
∏
j=1

1
22 j ×m2k1−1

I

2


2

+
k1−1

∑
k=1

(
k

∏
j=1

1
22 j ×m2k

I

)

= O(m2k1 )

Note that the number of inequalities O(m2k1
I ) is produced for each fault type T i

f , i = 1, . . . ,r.

Consequently, the total number of inequalities is O(r×m2k1
I ). Since r ≤ k1, the highest total

number of inequalities can be written as O(k1×m2k1
I ). Assuming that mI > 1, we always have

k1 < m2k1
I . As a result, the size of the diagnoser (space complexity) is O(m2k1

I ), i.e. it is doubly

exponential in the number of unobservable transitions k1.

Now with Algorithm 5.2, considering the number of inequalities of each resulting set after

applying the IFME method as mF = O(m2k1
I ), then the time complexity is computed as follows.

When the diagnosis state is NoFault or Faulty and the first inequality of the set is not satisfied, we

obtain the best case time complexity. In which case, we stop checking the remaining inequalities

and the time complexity is O(1). On the other hand, the worst case occurs when the diagnosis
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state is Uncertain. In this case, we need to check all inequalities in both sets Ri and R′i for

i = 1, . . . ,r. Hence, Algorithm 5.2 requires O(mF) of comparisons, i.e. the time of computing

the diagnosis is polynomial in the size of the diagnoser.

Obviously, the number of states in the system to be diagnosed is no longer a parameter on

which the computational requirements depend. The only parameter appearing in the complexity

relation is the number of inequalities in the initial set of inequalities mI; in addition to the

number of unobservable transitions k1. Consequently, the time and space complexity of the

IFME approach heavily relies on the number of unobservable transitions in Petri net models.

Also, although the computational complexities tend to be doubly exponential in the number of

unobservable transitions, it is unlikely in practical situations to have Petri nets representing the

worst case. Further, for an important subclass of Petri nets, the best case of space complexity

(diagnoser size) can be obtained.

Corollary 5.2. Suppose that N is a Petri net in which every transition t has exactly one input

place and one output place, i.e. |•t|= |t•|= 1, ∀t ∈ T ; mI and k1 are as defined in Proposition

5.1. Then, our approach does produce a diagnoser whose size corresponds to the best case

complexity O(mI) described in Proposition 5.1.

Proof. As previously, assume that pn, qn and rn respectively represent the number of positive,

negative and zero coefficients of the variable xn to be eliminated. Then, having exactly one input

and one output for the transition corresponding to xn makes at most pn = qn = 2 and rn = mI−4.

Assume that S( j) is the number of inequalities in the jth elimination step, then an application

of the IFME method will generate S( j)≤ mI of inequalities, where j = 1, . . . ,k1. In effect, the

number of eliminated inequalities will be at most identical to the number of produced inequalities

in each elimination step. In other words, the application of the IFME method in each step of the

elimination does not increase the number of inequalities. As a result, the number of inequalities

of the final set will be mF = O(mI).

A state machine which is an ordinary Petri net [33] represents a special case of the Petri nets

described in Corollary 5.2. To such a Petri net, we can always transform any automaton using
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the procedure stated in [6]. This indicates that our approach can be efficiently applied for fault

diagnosis in automata frameworks.

Furthermore, the IFME method yields very efficient results (the number of inequalities

produced in each elimination step is strongly polynomial) when each inequality has at most two

variables [77]. One example of Petri nets whose set of inequalities has at most two variables is

a Marked graph, see [33], where each place p has exactly one input transition and one output

transition, i.e. |•p|= |p•|= 1, ∀p ∈ P.

5.2.6 Complexity and redundancy

As described in the previous section, the diagnoser size could be doubly exponential in the number

of unobservable transitions to be eliminated. However, most of the inequalities constituting

this diagnoser are redundant and can be deleted without any impact on the size of the solution

space defined by them. This redundancy results from the nature of the elimination adopted

using the IFME method. The deletion of redundant inequalities can end up with refined sets of

inequalities whose sizes could be in the order of a single exponential in the number of eliminated

variables [81].

In this thesis, we remove a special category of redundancy in which a redundant inequality

is defined as follows: assume that there exists two inequalities e1 := a1x1 + · · ·+anxn ≤ b1 and

e2 := c1x1 + · · ·+ cnxn ≤ b2; then e1 is redundant if ∀i ∈ {1, . . . ,n} (ai = 0→ ci = 0)∧ (ai ≤

ci)∧ (b1 ≥ b2). For example, let e1 be −2x1 + x2 ≤ 4 and e2 be −x1 + 2x2 ≤ 4, then e1 is a

redundant inequality with respect to e2. Removal of these redundant inequalities is performed

during the course of elimination, i.e. after each inequality is created. Note that the testing of

whether an inequality is redundant requires no more than a polynomial number of comparisons.

Furthermore, there is another type of redundancy consisting of the common inequalities

between the sets of inequalities generated by the elimination. In other words, to compute the

diagnosis state for a given sequence of observed events, there is no need to test the Parikh vector

of the sequence against all common inequalities in the sets Ri and R′i for i = 1, . . . ,r. In effect,

one test is enough to decide the state, while all inequalities are the same and can give the result.
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Consequently, the time for computing a diagnosis can be improved, especially when there are

many common inequalities; which is more likely to happen in practice. For example, assume that

we have r = 10 of fault types where |Ri| = |R′i| = 100, i = 1, . . . ,10. Without considering the

common inequalities, we are required to test 2×10×100 = 2000 inequalities in the worst case

to decide the diagnosis state of all fault types. Assume now that |R1∩R′1∩·· ·∩R10∩R′10|= 60,

i.e. the number of common inequalities in these sets is 60, then it is sufficient to carry out

(2×10×40)+60 = 860 inequality tests to decide the same diagnosis state. The difference in

gained performance by adding this improvement will be reported later in Section 8.2.2.

5.2.7 Illustrative example

Let us consider the Petri net of Figure. 5.1; since we have two fault types, two pairs of sets of

inequalities are created to represent the diagnoser.

We start with the fault type T 1
f . We extend the set of inequalities I created from the state

equation by simultaneously adding the inequalities c1 := x1 ≤ 0 and ¬c1 := −x1 ≤ −1 (Note

that ¬c1 is rewritten in the standard form of the set of inequalities I, and also the non-negative

constraint x1 ≥ 0 is previously removed from I). As a result, two extended sets of inequalities

are obtained, namely I∪{c1} and I∪{¬c1}. Applying the IFME method to both sets results

in the sets R1 and R′1 shown in Table 5.1. Then, R1 and R′1 can be used to diagnose faults from

type T 1
f . Likewise, two sets of inequalities R2 and R′2 are created to express faults from type T 2

f .

Since there are two fault transitions t2 and t3 in the set T 2
f , the inequalities c2 and ¬c2 will be

x2 + x5 ≤ 0 and −x2− x5 ≤−1, respectively.

After applying the IFME method, all variables corresponding to unobservable transitions

Tu = {t1, t2, t5, t7} are eliminated. The sets of inequalities in R1, R′1, R2 and R′2 are in variables

representing observable transitions To = {t3, t4, t6}. These sets represent the diagnoser used for

estimating the current state of the system for a given observed sequence of events. Note that the

inequalities 7 and 8 of the sets R1 and R′2 are respectively redundant, i.e. they can be deleted

without affecting the diagnosis results.

Suppose that no sequence is observed (s = ε), then ∆(s,T 1
f ) = ∆(s,T 2

f ) =Uncertain because
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Table 5.1: The sets of inequalities resulting from applying the IFME method in the illustrative
example

No. R1 R′1 R2 R′2
1 x4− x6 ≤ 1 x4− x6 ≤ 1 x4− x6 ≤ 1 x4− x6 ≤ 1
2 −x3 + x6 ≤ 0 −x3 + x6 ≤ 0 −x3 + x6 ≤ 0 −x3 + x6 ≤ 0
3 −x3 + x4 ≤ 0 −x3 + x4 ≤ 0 −x3 + x4 ≤ 0 −x3 + x4 ≤ 0
4 x3− x6 ≤ 2 x3− x6 ≤ 2 x3− x6 ≤ 2 x3− x6 ≤ 2
5 x4 ≤ 0 x3− x4− x6 ≤ 1 x3− x4 ≤ 1 2x4−2x6 ≤ 1
6 x3− x4− x6 ≤ 2 −x4 + x6 ≤ 0 −x3 +2x4− x6 ≤ 0
7 −x4− x6 ≤ 1 x3− x4− x6 ≤ 0 x3− x4− x6 ≤ 2
8 −x4− x6 ≤ 1

#(s) satisfies R1, R′1, R2 and R′2 and the most recent diagnosis state is NoFault (see Theorem 5.1

and Corollary 5.1). In effect, the empty sequence ε might correspond to two other sequences,

σ1 = t1 and σ2 = t2. In which case, for both fault types, there exits two sequences having the

same observation, one of them has a fault but the other has none. Note that observing the

sequence t3 yields the same diagnosis state of the empty sequence ε . However, the most recent

diagnosis state in this case is ∆(ε,T 1
f ) = ∆(ε,T 2

f ) =Uncertain.

Assume now that the sequence s = t3t4 is observed, then ∆(s,T 1
f ) = Faulty, but ∆(s,T 2

f ) =

NoFault. The diagnoser estimates such a state because #(s) satisfies R′1 and R2, but it does

not satisfy R1 and R′2. In other words, the sequences σ1 = t1t3t4, σ2 = t3t1t4, σ3 = t1t3t4t7 and

σ4 = t3t1t4t7 with π(s) = t3t4 have a fault from type T 1
f , but no fault from the type T 2

f appears in

these sequences.

On the contrary, observing s = t3t3 yields ∆(s,T 1
f ) = NoFault and ∆(s,T 2

f ) = Faulty as #(s)

satisfies both R1 and R′2, but it does not satisfy R′1 and R2. For this observed sequence, there exist

two sequences σ1 = t3t2t5t7t3 and σ2 = t2t3t5t7t3 such that π(s) = t3t3. These sequences contain

(no) fault from type T 2
f (T 1

f ).

Finally, let us explore the case where the sequence s = t3t6 is observed. In which case, we

have ∆(s,T 1
f ) =Uncertain and ∆(s,T 2

f ) = Faulty. The set of sequences having π(s) = t3t6 is

{t3t2t5t6, t2t3t5t6, t3t2t5t6t1, t2t3t5t6t1, t3t2t5t6t2, t2t3t5t6t2}. All of these sequences have a fault from

type T 2
f but only some of them have a fault from type T 1

f . Consequently, #(s) satisfies R1, R′1

and R′2, but it does not satisfy R2. With regards to the fault type T 1
f , the most recent diagnosis

75



CHAPTER 5. FAULT DIAGNOSIS IN PETRI NETS: A MORE GENERAL CASE

state of the sequence s = t3t6 is ∆(t3,T 1
f ) =Uncertain. Using Theorem 5.1 and Corollary 5.1,

we have ∆(s,T 1
f ) =Uncertain.

5.3 Chapter summary

This chapter has extended the work introduced in Chapter 4. The IFME method has been

applied to address the fault diagnosis problem in DES modelled by Petri nets where no cycle of

unobservable transitions exists. The notion of tracking the diagnosis history has been presented

to overcome the problems of the state equation related to ordering. In other words, the state

equation does not take into account the order of transitions in execution sequences of nets. This

could represent a problem in the case where the order can affect the diagnosis results.

Furthermore, this chapter has given the complexity analysis of the proposed approach and

commented on these complexities for special cases of Petri nets which are widely used. Two

factors on which the complexity analysis relies are the size of the diagnoser produced offline and

the time spent online for diagnosis computations. The analysis results state that a good trade-off

between these two factors has been achieved. In particular, the results show that the size of the

diagnoser is highly dependent on the number of unobservable transitions in the Petri nets and

not on the state space size, as is the case with existing methods. Having obtained this diagnoser,

online fault diagnosis can at most be performed in time polynomial in the size of the diagnoser.
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CHAPTER 6

FAULT DIAGNOSIS IN LABELLED PETRI NETS

An extension of the work presented in Chapter 5 is covered in this chapter. We apply the IFME

method to address the problem of fault diagnosis in DES modelled by labelled Petri nets (LPN).

This type of Petri net has more expressive modelling power than unlabelled Petri nets (also called

free labelled Petri nets). The type of languages generated by unlabelled Petri nets represents a

subset of that generated by labelled Petri nets, where there is no a restriction of having unique

labels associated to transitions [73]. Due to budget constraints, technology limitations or power

consumption, not all events associated to observable transitions are monitored by their own

sensors, i.e. the same sensor might be used to monitor more than one event (activity) in the

system being analysed. When addressing a fault diagnosis problem in these Petri nets, the

most interesting case arises when at least two transitions sharing the same label (sensor) are

simultaneously enabled, but only one of them can fire. In which case, we cannot ensure which

transition fired because we observe the same label. This adds another case of non-determinism

and requires additional computations online to decide the diagnosis states. In effect, addressing

the problem of fault diagnosis in labelled Petri nets based on the IFME method provides a more

general solution to the problem with lower computational requirements compared to the existing

solutions.

In this chapter, the problem of fault diagnosis in the context of labelled Petri nets is first

described. Then, a definition of the diagnoser with regards to this Petri nets type is formed. In

addition, the details of the IFME method to tackle this problem are given, with a formal proof of
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its correctness. Finally, algorithms which implement the proposed approach and an illustrative

example are presented.

6.1 Fault diagnosis in labelled Petri nets (LPN)

In this section, an expanded description of the problem of fault diagnosis in DES modelled by

labelled Petri nets is given based on Sections 4.1 and 5.1. In this description, the formulation

presented by Cabasino et al. [60] and Fanti et al. is adopted. Consider a labelled Petri net

(N ,M0,Σ,λ ), as defined in Section 3.1, where the net (N ,M0) is as described in Section 4.1.

Let ω ∈ Σ∗ denote an observed sequence of events (labels), where ω = λ (s) and s = π(σ) for a

given sequence σ ∈ T ∗.

Supposed that the labels captured by ω is the only information we receive when a sequence of

observable transitions fires. This information is passed to the diagnoser to identify the diagnosis

state as one of the following [23,60] : 1) Normal state - when all sequences in L(N ,M0) whose

projections s corresponding to ω have no fault transition from the set Tf ; 2) T i
f −Certain state,

obtained when all sequences in L(N ,M0) whose projections s corresponding to ω have a fault

transition from the set T i
f ; and 3) T i

f −Uncertain state - this state occurs when there exist two

sequences in L(N ,M0) with projection s corresponding to ω , such that one of them has a fault

transition from T i
f , but the other has none.

In this chapter, the problem of fault diagnosis is addressed holding all assumptions of Section

5.1 and excluding the one of having unique labels associated to the observable transitions. That

means the case of labelled Petri nets is considered, where the same label can be shared by more

than one transition, taking into account that these transitions could simultaneously be enabled.

In addition, a discussion about dealing with the non-pure Petri nets (having self-loops) will be

covered in Section 6.2.6. Until then, we assume that the Petri nets being analysed are either pure

or have been transformed into being pure as described in Section 3.1.
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6.2 The IFME method for fault diagnosis in LPN

The main results obtained in this chapter are covered in this section. In effect, the key challenge to

handle the case of labelled Petri nets concerns the nondeterminism resulting from the possibility

of more than one transition sharing a label. In addition, it is possible that these transitions are

enabled simultaneously. Hence, a sequence of observed events (labels) might correspond to

different sequences of observable transitions. In this case, generating all possible sequences of

observable transitions corresponding to this observed sequence is required. In general, not all

generated sequences are legal sequences. In other words, not all generated sequences have a

corresponding sequence in the language of the Petri net. In fact, the sets of inequalities R and R′

created only based on the state equation are no longer able to identify the legal sequences. To

this end, another set of inequalities is built based on both the state equation and the enabling

condition of the Petri nets.

To formulate an IFME-based solution, we first introduce some definitions and notation which

are necessary to establish the case of fault diagnosis in the case of labelled Petri nets. Then, we

will explain how to obtain the set of inequalities characterising the legal sequences.

6.2.1 Definitions and notations

From the same concepts described in Section 5.2.1 to represent faults as inequalities, the

following definition is introduced for use in determining the set X i(ω) described below.

Definition 6.1. The diagnosis labelling function: a diagnosis labelling function D : T ∗o ×2Tf →

{N,F,FN} is a mapping that associates to each sequence of observable transitions s with respect

to the fault type T i
f (expressed by ci), i ∈ {1, . . . ,r}, one of the following diagnosis labels:

• D(s,T i
f ) = N if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ci holds.

• D(s,T i
f ) = F if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ¬ci holds.

• D(s,T i
f ) = FN if there exists two sequences σ1, σ2 ∈ L(N ,M0) such that π(σ1) =

π(σ2) = s, but #(σ1) � ci and #(σ2) � ¬ci hold.
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Two sets of sequences are defined in the following. The first set characterises the set of

sequences in the language of N corresponding to an observed sequence of events ω as shown

below:

Γ(ω) = {σ ∈ L(N ,M0) |s = π(σ),ω = λ (s)} (6.1)

The second set consists of a number of pairs associated with a given sequence of observed events.

Each pair captures the form (observed sequence, diagnosis label) expressed in the following

definition:

Definition 6.2. Suppose that (N ,M0,Σ,λ ) is a labelled Petri net. Given an observed sequence

ω ∈ Σ∗, we define a set of pairs associated with ω with respect to a fault type T i
f as:

X i(ω) = {(s, l) |∃σ ∈ Γ(ω),s = π(σ), l = D(s,T i
f )} (6.2)

Note that the set X i(ω) 6= /0 because ω corresponds to a firing sequence. In addition, every s

such that (s, l) ∈ X i(ω) satisfies the following equation:

∑
t j∈τ(e)

#(t j,s) = k (6.3)

where k represents the number of times a label e appears in the observed sequence ω . For example,

assume that ω = e1e1e2e1, where τ(e1) = {t1, t2} and τ(e2) = {t3}, and the corresponding

s = t1t1t3t2, then the number of t1 plus the number of t2 in s equals to the number of e1 in ω .

Similarly, the number of t3 in s equals the number of e2 in ω .

In the following, we extend Definition 5.1 described in Section 5.2.1 in order to deal with

the case of labelled Petri nets. This definition is inspired by the definitions of the diagnoser

presented by Cabasino et al. [60] and Fanti et al. [23].

Definition 6.3. A diagnoser is a function ∆ : Σ∗× 2Tf → {NoFault,Faulty,Uncertain} that

associates with each observed sequence ω ∈ Σ∗ with respect to the fault type T i
f , i ∈ {1, . . . ,r}

one of the following diagnosis states:
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• ∆(ω,T i
f ) = NoFault if ∀σ ∈ Γ(ω), #(σ) � ci holds. This state indicates that there is no

sequence having the same observation as ω contains a fault transition in T i
f , i.e. no fault

from set T i
f has occurred.

• ∆(ω,T i
f ) = Faulty if ∀σ ∈ Γ(ω), #(σ) � ¬ci holds. This state is Faulty as all sequences

having the same observation as ω contain a fault transition in T i
f , i.e. a fault from set T i

f

has certainly occurred during the observed sequence ω.

• ∆(ω,T i
f ) = Uncertain if there exists two sequences σ1, σ2 ∈ Γ(ω) such that #(σ1) � ci

and #(σ2) � ¬ci hold. In this case, the behaviour of the system is ambiguous because both

NoFault and Faulty states are possible during the observed sequence.

Note that if ∆(ω,T i
f ) = NoFault for all i = 1, . . . ,r, then we are certain that no fault from

any type has occurred during the observed sequence ω , i.e. a non-faulty state has arisen.

Example 6.1. To explain the ideas of fault diagnosis with respect to the extended diagnoser

definition mentioned above, we present this example. Consider the labelled Petri net depicted

in Figure. 6.1. In this net, the set of places is P = {p1, . . . , p12} and the initial marking is

M0 = [100000000000]. Also, the set of transitions is T = {t1, . . . , t14}. In the figure, observable

transitions are depicted by solid rectangles, while empty rectangles represent unobservable

transitions. The labelling function λ yields τ(ε) = {t3, t4, t5, t6, t11, t13}, τ(a) = {t1}, τ(b) =

{t2, t7}, τ(c) = {t8, t10, t14} and τ(d) = {t9, t12}. Moreover, there are two fault types T 1
f = {t6}

and T 2
f = {t11} labelled by f1 and f2 as shown in the figure. Thus, we have the constraints

c1 := x6≤ 0 and c2 := x11≤ 0 and their negations ¬c1 := x6 > 0 and ¬c2 := x11 > 0, respectively.

Note that in this Petri net, two transitions sharing the same label could be enabled simultaneously,

e.g. the transitions t8 and t10.

If we suppose that the diagnoser observes no sequence (ω = ε), then Γ(ω) = {ε}. In which

case, we are certain that neither a fault from type T 1
f nor T 2

f has occurred, i.e. ∆(ε,T 1
f ) =

∆(ε,T 2
f ) = NoFault. Similarly, we have the same certainty when ω = a because Γ(ω) = {t1}.

Assuming now that ω = ab, then Γ(ω) = {t1t2, t1t2t3, t1t2t3t4, t1t2t3t4t5, t1t2t3t6}. One of these

sequences has the fault transition t6, but the others have none. However, all sequences have

81



CHAPTER 6. FAULT DIAGNOSIS IN LABELLED PETRI NETS

p1 t1(a)

p2

t2(b) p3 t3
p4

t4p5t5

t6( f1)

p6

t7(b) p7

t8(c)

p8

t9(d)

p9

t10(c)

p10

t11( f2)

t12(d)

p11

t13

p12

t14(c)

Figure 6.1: A labelled Petri net example

no fault transition t11. Consequently, we are not certain about the diagnosis state regarding the

fault type T 1
f but we are certain that no fault from the type T 2

f has occurred during observing ab.

Hence, ∆(ab,T 1
f ) =Uncertain, but ∆(ab,T 2

f ) = NoFault.

When observing ω = acc, a different diagnosis state is obtained. In effect, Γ(ω) =

{t1t10t11t10, t1t10t11t10t11}. This ensures that a fault from type T 2
f has occurred, while no fault

from the type T 1
f has occurred. Formally, ∆(acc,T 1

f ) = NoFault, but ∆(acc,T 2
f ) = Faulty.

6.2.2 Identification of the legal sequences

We start this section by recalling the results obtained by Dotoli et al. [10] in the case of free

labelled Petri nets. These results showed that the set of all sequences, in a free labelled Petri net,

which corresponds to an observed sequence of events can be characterised by a set of inequalities

as expressed in the following proposition.

Proposition 6.1. [10] Given a free labelled Petri net (N ,M0) having no cycle of unobservable

transitions and an observed sequence of events s ∈ T ∗o . Then, there exists a sequence σ =

σ1t1 . . .σhth such that M0
σ1t1→ M1 → ··· → Mh−1

σhth→ Mh and s = t1 . . . th for σ1, . . . ,σh ∈ T ∗u

and t1, . . . , th ∈ To if and only if there exists a solution #(σ1), . . . ,#(σh) to the following set of
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inequalities:

S =



Au ·#(σ1)≥ pre(., t1)−M0 (1)

Au · (#(σ1)+#(σ2))≥ pre(., t2)−M0−A ·u1 (2)
...

Au · (#(σ1)+ · · ·+#(σh))≥ pre(., th)−M0−A · (u1 + · · ·+uh−1) (h)

where Au is the restriction of A on the unobservable transitions and ui is the firing vector of ti

for i = 1, . . . ,h−1. From Proposition 6.1, we can infer that if the set of inequalities S does not

have a solution with respect to s = t1 . . . th, then there does not exist a corresponding sequence

σ ∈ L(N ,M0) such that σ = σ1t1 . . .σhth. The set of inequalities in S can also be rewritten as:

S ′ =



−Au ·#(σ1)+ pre(., t1)≤M0 (1)

−Au · (#(σ1)+#(σ2))−A ·u1 + pre(., t2)≤M0 (2)
...

−Au · (#(σ1)+ · · ·+#(σh))−A · (u1 + · · ·+uh−1)+ pre(., th)≤M0 (h)

where each subset S ′
i , i = 1, . . . ,h, of inequalities in S ′ can be expressed by the following

general form, given a subsequence of transitions σ1t1 . . .σiti:

E := (−A ·x)+y≤M0 (6.4)

where the vector y = pre(., t) for t ∈ {t1, . . . , th} and x = (x1, . . . ,xn) is such that xi represents the

number of firing ti ∈ T . Then, any solution to (6.4) is a solution to the subset S ′
i and vice versa.

Proposition 6.2. Suppose that (N ,M0,Σ,λ ) is a labelled Petri net satisfying the assumptions

(a)-(e) listed in Section 6.1. Also, assume that E is the set of inequalities of (6.4) in variables xi

and y j for i = 1, . . . ,n and j = 1, . . . ,m. The variable xi corresponds to the number of firings of

the transition ti and y j = pre(p j, t) for a given transition t ∈ To. Applying IFME to the set E, in

order to eliminate the variables corresponding to the unobservable transitions, results in the set E ′.

Then, for any given sequence of observable transitions s = t1 . . . th, there exists a corresponding
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sequence σ = σ1t1 . . .σhth in N such that M0
σ1→ M1

t1→ ··· σh→ Mh
th→ if there exists a vector

ν = (α1, . . . ,αk, pre(p1, t), . . . , pre(pm, t)) � E ′, where αi = #(ti,s′), s′ = t1 . . . th−1 and k = |To|.

Proof. We prove this by the induction on the length of s, denoted by |s|.

Base case: assume that |s|= 1. If (α1, . . . ,αk, pre(p1, t1), . . . , pre(pm, t1)) � E ′, where αi =

0, then there exists a solution ν ′ = (α1, . . . ,αk,αk+1, . . . ,αn, pre(p1, t1), . . . , pre(pm, t1)) � E

by Theorem 3.1. Assume that ν = (α1, . . . ,αn), then the subnet Nν has only unobservable

transitions. Since Nν is free cycle by the assumption, there exits a sequence σ1 ∈ T ∗u such

that M0
σ1→M1 and #(σ1) = ν by Lemma 5.1. As a result, we have a sequence σ1t1 such that

M0
σ1→M1

t1→ for s = t1. This proves the case.

Induction step: we assume that the result holds for all s with |s| < h (Induction hy-

pothesis). Then, we prove that the result holds for |s| = h. Hence, for s′ = t1 . . . th−1

there exists a sequence σ ′ = σ1t1 . . .σh−1th−1 such that M0
σ1→ M1

t1→ ··· σh−1→ Mh−1
th−1→ . If

the transition th−1 fires, we obtain the marking Mh = Mh−1 + A · #(σ ′) ≥~0. If we have

s = t1 . . . th such that (α1, . . . ,αk, pre(p1, th), . . . , pre(pm, th)) � E ′, then there exits a solu-

tion ν ′ = (α1, . . . ,αk,αk+1, . . . ,αn, pre(p1, th), . . . , pre(pm, th)) � E by Theorem 3.1. Assume

that ν = (α1, . . . ,αk,αk+1, . . . ,αn) and z = ν − #(σ ′), z ∈ Nn, then Mh+1 = Mh + Az ≥

~0. Since the subnet Nz has only unobservable transitions and it is cycle free, then

there exits a sequence σh such that Mh
σh→ Mh+1 with #(σh) = z. Further, since ν ′ =

(α1, . . . ,αk,αk+1, . . . ,αn, pre(p1, th), . . . , pre(pm, th)) � E, then Mh+1
th→. Consequently, there

exists a sequence σ = σ1t1 . . .σhth in N such that s = t1 . . . th. This also proves this case.

The following example explains how Proposition 6.2 can be applied to decide whether a

sequence of observable transitions has at least one corresponding sequence in a labelled Petri net.

Example 6.2. Consider the labelled Petri net of Figure. 6.1. The associated set of inequalities

E is shown in Table 6.1. Applying the IFME to E eliminates all variables corresponding to

unobservable transitions, i.e. the set of variables {x3,x4,x5,x6,x11,x13}. The resulting set of

inequalities E ′ is in the set of variables {x1,x2,x7,x8,x9,x10,x12,x14} plus the set of variables
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Table 6.1: The sets of inequalities E and E ′ of the labelled Petri net in Figure. 6.1

No. E E ′

1 x1 + y1 ≤ 1 x1 + y1 ≤ 1
2 −x1 + x2− x5 + y2 ≤ 0 −x2 + y3 ≤ 0
3 −x2 + x3 + y3 ≤ 0 −x12 + y11 ≤ 0
4 −x3 + x4 + x6 + y4 ≤ 0 −x8 + x9 + y8 ≤ 0
5 −x4 + x5 + y5 ≤ 0 −x2 + y3 + y4 ≤ 0
6 −x6 + x7 + y6 ≤ 0 −x10 + x12 + y10 ≤ 0
7 −x7 + x8− x9 + y7 ≤ 0 −x7 + x8− x9 + y7 ≤ 0
8 −x8 + x9 + y8 ≤ 0 −x2 + y3 + y4 + y5 ≤ 0
9 −x1 + x10− x11− x14 + y9 ≤ 0 −x12 + x14 + y11 + y12 ≤ 0
10 −x10 + x11 + x12 + y10 ≤ 0 −x2 + x7 + y3 + y4 + y6 ≤ 0
11 −x12 + x13 + y11 ≤ 0 −x1 + y2 + y3 + y4 + y5 ≤ 0
12 −x13 + x14 + y12 ≤ 0 −x1 + x12− x14 + y9 + y10 ≤ 0
13 −xi ≤ 0 |1≤i≤14 −x2 + x7 + y3 + y4 + y5 + y6 ≤ 0
14 −y j ≤ 0 |1≤ j≤12 −x1 + x7 + y2 + y3 + y4 + y5 + y6 ≤ 0

{y j | 1 ≤ j ≤ 12}, see Table 6.1. The set of inequalities E ′ is used to characterise the legal

sequences.

Assume that we have a sequence of observable transitions s = t1t2. To check whether this

sequence has at least one corresponding sequence in L(N ,M0), we first determine the values

of variables y2 = 1 and y j = 0 | j∈{1,...,m}\{2} based on the last transition in this sequence, i.e.

t2. Secondly, the values of the remaining variables are determined by counting the number of

occurrences of their associated transitions in s; in this case we only have one transition which

means that x1 = 1,x2 = 0,x7 = 0,x8 = 0,x9 = 0,x10 = 0,x12 = 0 and x14 = 0. Then, substituting

these values into the set of inequalities E ′, we can determine if E ′ is satisfied. According to

this example, these values satisfy E ′, i.e. there exists a corresponding sequence in the net.

On the other hand, the sequence t1t7 does not satisfy E ′ implying that there does not exist a

corresponding sequence.

6.2.3 Outline of the proposed approach

If we suppose that (N ,M0,Σ,λ ) is a labelled Petri net with an initial marking M0 and labelling

function λ ; without any loss of generality, we can assume that we have renamed the transitions
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Figure 6.2: Sketch of the proposed approach in the case of labelled Petri nets

of N such that the first k transitions are observable, i.e. To = {t1, t2, . . . , tk} with their labels

from the set Σ. The remaining transitions are unobservable, i.e. Tu = {tk+1, tk+2, . . . , tn}.

We can further suppose that the set of fault transitions in N is Tf ⊆ Tu and all faults are

of the same type. We introduce variables x1,x2, . . . ,xn representing the number of firings of

t1, t2, . . . , tn, respectively. Suppose that −Ax≤M0 plus x≥~0 represents the set of inequalities

created from the state equation, where x = (x1,x2, . . . ,xn), see Lemma 4.1. We further assume

that c is the inequality ∑
t j∈Tf

x j ≤ 0 and ¬c is the negation of c, i.e. the inequality ∑
t j∈Tf

x j > 0. For

each firing sequence σ of (N ,M0), if σ contains a fault from Tf , then x = #(σ) satisfies ¬c.

Conversely, for a firing sequence σ , if x satisfies c, then σ has no fault transition.

In Figure. 6.2, the outline of the proposed approach in this chapter is depicted. This outline

is captured as a two-step process. The offline step results in three sets of inequalities, namely

E ′, R and R′ which are obtained as follows. From a Petri net model, we first obtain a set of

inequalities I := {−Ax≤M0}∪{x≥~0} expressing the state equation. From this set, we further

create two sets I ∪{c} and I ∪{¬c}. Secondly, another set of inequalities E representing the

enabling condition in the Petri nets is obtained. Then, applying the IFME method simultaneously

to the sets I∪{c}, I∪{¬c} and E, three reduced sets R, R′ and E ′ are respectively created by
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eliminating every variable corresponding to a transition in the set Tu.

These resulting sets are employed during the online step to diagnose faults. In particular, the

set E ′ is used by the Identi f ier to recognise the legal sequences. These sequences are produced

by the Generator and they correspond to all possible sequences of observable transitions corre-

sponding to the observed sequence of events ω . However, not all of these produced sequences

have corresponding sequences in N . Thus, the identified (legal) sequences are sent to the

function D(.) in which the sets R and R′ are employed to build the set X(.) used to diagnose

faults.

The notion of creating these reduced sets can be extended to the case where there are multiple

fault types each of which represents multiple faults. This can be achieved by producing a

separated pair of sets of inequalities (Ri,R′i) for each fault type T i
f . In particular, to create a set

of inequalities for a given fault type, the transitions representing faults in the other fault types

are considered as normal unobservable transitions. We say that a fault of type T i
f , i = 1,2, . . . ,r,

occurs if and only if at least one fault transition t ∈ T i
f fires. Note that one set of inequalities E ′

is required to identify the legal sequences for all of those pairs.

In the following, we present theorems capturing the details of computing a diagnosis state

upon observing a sequence of events ω . We first introduce the following definition.

Definition 6.4. The most recent diagnosis label: suppose that s = s′t is a sequence of observable

events, where s′ ∈ T ∗o and t ∈ To, then the most recent diagnosis label allocated by D of s is

D(s′,T i
f ), i = 1, . . . ,r.

Note that the most recent diagnosis label of the empty string ε allocated by D is N because

we assume that the system starts from a non-faulty state. In addition, the sequence labelled F

has this label with all of its continuation sequences.

Theorem 6.1. Assume that (N ,M0,Σ,λ ) is a labelled Petri net satisfying the assumptions in

Section 6.1. Suppose that I is the set of inequalities −Ax≤M0 plus x≥~0 created from the state

equation of N . Assume that T = To∪Tu, To = {t1, . . . , tk}, Tu = {tk+1, . . . , tn}, Tf = T 1
f ∪·· ·∪T r

f

and Tf ⊆ Tu. The vector of variables x1, . . . ,xn corresponds to the number of firings of the
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transitions t1, . . . , tn. Assume also that ci is the inequality ∑
t j∈T i

f

x j ≤ 0 and ¬ci := ∑
t j∈T i

f

x j > 0 is its

negation. For every i ∈ {1, . . . ,r}, suppose that the set of inequalities Ri and R′i are respectively

produced from applying the IFME to both I ∪ {ci} and I ∪ {¬ci} to eliminate all variables

corresponding to transitions in Tu. Then, for any given sequence of observable transitions

s = s′t = π(σ), s′ ∈ T ∗o and t ∈ To such that there exists σ ∈ T ∗ and M0
σ→ M, D(s,T i

f ) is

determined as follows:

φ(s,T i
f ) =



N if (#(s) 2 R′i)

F if (#(s) 2 Ri)

∨((#(s) � Ri)∧ (#(s) � R′i)

∧(D(s′,T i
f ) = F))

FN if (#(s) � Ri)∧ (#(s) � R′i)

∧((D(s′,T i
f ) = N)∨ (D(s′,T i

f ) = FN))

Impossible if (#(s) 2 Ri)∧ (#(s) 2 R′i)

Proof. This proof is presented for one fault type T i
f , but to obtain a complete proof we only need

to repeat it for every single fault type. In the following, we assume that #(s) = (α1, . . . ,αk).

Proof of D(s,T i
f ) = N: by contradiction, assume that #(s) 2 R′i, but D(s,T i

f ) is not

N. If #(s) 2 R′i, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =

(α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I ∪{¬c} by Theorem 3.1. Since σ is a sequence in N , then

ν � I, see Lemma 4.1. Thus, ν 2 ¬ci, i.e. ν � c. As a result, ∀σ ′ ∈ L(N ,M0) such that

π(σ ′) = s, #(σ ′) � ci holds. Hence D(s,T i
f ) is N, see Definition 6.1. This contradicts the

assumption.

Proof of D(s,T i
f ) = F: here we have two cases to be proved.

Case i: if #(s) 2 Ri holds. Using the same argument in Proof of D(s,T i
f ) = N replacing R′i with

Ri, we can prove this case.

Case ii: if (#(s) � Ri)∧ (#(s) � R′i)∧ (D(s′,T i
f ) = F) holds. Since D(s′,T i

f ) = F holds, i.e. the

most recent diagnosis label is F , then for all sequences σ ′ ∈ L(N ,M0) such that π(σ ′) = s′,

#(σ ′) 2 ci holds. Also, since the label F associated with s′ propagates to all of its continuations,
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then s also has the diagnosis label F .

Proof of D(s,T i
f ) = FN: if we assume that s = ε , then there exists one possible case for

the most recent diagnosis label, particularly N, because we suppose that the system starts

from a non-faulty state. Now let us prove the result in this case. If #(s) � Ri, then there exists a

valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn) and ν � I∪{ci}

by Theorem 3.1. If ν � I∪{ci}, then ν � I, i.e. ν satisfies M′ = M0 +Aν ≥~0. Since s has no

observable transitions (s = ε), then the subnet Nν has only unobservable transitions. Again,

by the assumption that no cycle of unobservable transitions exists in N , then Nν is cycle free.

As a result, there exists σ ′ ∈ T ∗ν such that M0
σ ′→M′ and #(σ ′) = ν by Lemma 5.1. Hence, the

sequence σ ′ satisfies ci. Likewise, we can prove that if #(s) � R′i, there exists another sequence

satisfying ¬ci. Since there are two sequences having the same s, but one of them satisfies ci and

the other satisfies ¬ci, then we have φ(s,T i
f ) = FN, see Definition 6.1.

Now, assume that s = s′t, t ∈ To and s′ ∈ T ∗o . Then, there are two cases to be considered:

Case i: when the most recent label is N (D(s′,T i
f ) = N). If #(s) � Ri, then there exists a

valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn) and ν � I∪{ci}

by Theorem 3.1. If ν � I∪{ci}, then ν � I, i.e. M′′ = M0 +Aν ≥~0. Since D(s′,T i
f ) = N, and

t is an observable transition, then we are certain that all sequences σ ′t such that M0
σ ′t→M′ and

π(σ ′) = s′ satisfy ci. Assuming y = ν − #(σ ′t), y ∈ Nn, then M′′ = M′+Ay ≥~0. Since the

subnet Ny has only unobservable transitions, then Ny is cycle free. As a result, there exists

σ ′′ ∈ T ∗y such that M′ σ ′′→M′′ and #(σ ′′) = y by Lemma 5.1. Hence, the sequence σ ′tσ ′′ with

#(σ ′tσ ′′) = ν satisfies ci. Likewise, we can prove that if #(s) � R′i, there exists another sequence

satisfying ¬ci. Consequently, since there are two sequences σ1,σ2 ∈ L(N ,M0) having the same

s, but one satisfies ci and the other satisfies ¬ci, then we have D(s,T i
f ) = FN, see Definition 6.1.

Case ii: when the most recent diagnosis label is FN (D(s′,T i
f ) = FN). If #(s) � Ri, then

there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn)

and ν � I ∪{c} by Theorem 3.1. If ν � I ∪{ci}, then ν � I, i.e. M′′ = M0 +Aν ≥~0. Since

D(s′,T i
f ) = FN, i.e. the most recent diagnosis label is FN, and t is an observable transition, then

we still have the same label for any sequence σ ′t such that M0
σ ′t→M′ and π(σ ′) = s′. Assuming
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y = ν − #(σ ′t), y ∈ Nn, then M′′ = M′+Ay ≥~0. Since the subnet Ny has only unobservable

transitions, then Ny is cycle free. As a result, there exists σ ′′ ∈ T ∗y such that M′ σ ′′→ M′′ and

#(σ ′′) = ν by Lemma 5.1. Hence, the sequence σ ′tσ ′′ with #(σ ′tσ ′′) = ν satisfies ci. Similarly,

we can prove that if #(s) � R′i, there exists another sequence satisfying ¬ci. Since there are

two sequences having the same s, but one satisfies ci and the other does not, then we have

D(s,T i
f ) = FN, see Definition 6.1.

Proof of the case Impossible: assume that #(s) 2 Ri and #(s) 2 R′i, but this case is

possible. If #(s) 2 Ri, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I ∪{ci} by Theorem 3.1. Also, if #(s) 2 R′i, then for every

valuation (βk+1, . . . ,βn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2 I∪{¬ci}

by Theorem 3.1. Rephrasing this statement, we can say that there exists a valuation (βk+1, . . . ,βn)

of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and ν � I∪{ci} taking into account that

¬ci is the negation of ci and σ is a sequence of N , i.e. #(σ) � I. Here we have contradictory

statements. Hence, this case is an impossible case. This contradicts the assumption and completes

the proof.

Remark 6.1. Similar to Remark 5.1, the proofs of the cases N and F in Theorem 6.1 can still be

applied for the Petri nets which have cycles of unobservable transitions.

Theorem 6.2. Assume that (N ,M0,Σ,λ ) is a labelled Petri net satisfying the assumptions in

Section 6.1. Suppose that I := {−Ax≤M0}∪{x≥~0} created from the state equation of N ;

and E is as defined in (6.4). Also, assume that T = To∪Tu, To = {t1, . . . , tk}, Tu = {tk+1, . . . , tn},

Tf = T 1
f ∪ ·· · ∪T r

f and Tf ⊆ Tu. The vector of variables x1, . . . ,xn corresponds to the number

of firings of the transitions t1, . . . , tn. Assume also that ci is the inequality ∑
t j∈T i

f

x j ≤ 0 and

¬ci := ∑
t j∈T i

f

x j > 0 is its negation. For every i ∈ {1, . . . ,r}, suppose that the set of inequalities E ′,

Ri and R′i are respectively produced from applying IFME to E, I∪{ci} and I∪{¬ci} to eliminate

all variables corresponding to transitions in Tu. Then, for any given sequence of observed events

ω ∈ Σ∗, considering that the set X i(ω) is such that each (s, l) ∈ X i(ω) is with s � E ′, ∆(ω,T i
f ) is
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determined as follows:

∆(ω,T i
f ) =



NoFault if ∀(s, l) ∈ X i(ω), l = N

Faulty if ∀(s, l) ∈ X i(ω), l = F

Uncertain if (∃(s, l) ∈ X i(ω) | l = FN)

∨((@(s, l) ∈ X i(ω) | l = FN)

∧(∃(s′, l′),(s′′, l′′) ∈ X i(ω) | l′ 6= l′′))

Proof. Proof of the case NoFault: by Definition 6.2 and Theorem 6.1, if all (s, l) ∈ X i(ω) are

such that l = N, then every sequence σ such that π(σ) = s satisfies ci, this implies that no fault

has occurred during observing ω .

Proof of the case Faulty: using the same argument in the proof of the case NoFault replacing

l = N with l = F , we can prove that if ∀(s, l) ∈ X i(ω), l = F , then the diagnosis state is Faulty.

Proof of the case Uncertain: we have two cases to be considered in this proof:

Case i: if ∃(s, l) ∈ X i(ω) such that l = FN, then ∆(ω,T i
f ) =Uncertain. By Definition 6.2 and

Theorem 6.1, having this condition held implies that there exists two sequences σ ,σ ′ ∈ L(N ,M0)

and s such that (s, l) ∈ X i(ω), π(σ) = π(σ ′) = s and #(σ) � ci but #(σ ′) � ¬ci. As a result, the

diagnosis state cannot be ensured, see Definition 6.3.

Case ii: if (@(s, l) ∈ X i | l = FN)∧ (∃(s′, l′),(s′′, l′′) ∈ X i | l′ 6= l′′), then ∆(ω,T i
f ) =Uncertain.

Since the diagnosis labels of the sequences s′ and s′′ are not FN and they are different, then we

necessarily have the diagnosis labels N and F . Hence, based on Definition 6.2 and Theorem

6.1, there exists two sequences σ1,σ2 ∈ L(N ,M0) such that π(σ1) = s′, π(σ2) = s′′. Further,

#(σ1) � ci but #(σ2) � ¬ci. According to Definition 6.3, we have an Uncertain state.

6.2.4 Fault diagnosis algorithms: labelled Petri nets

In this section, algorithms are written for the proposed approach for fault diagnosis in labelled

Petri nets. Algorithm 6.1 is similar to Algorithm 5.1 presented in Section 5.2.4. The only
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Algorithm 6.1 : build the diagnoser.

Input: A labelled Petri net (N ,M0,Σ,λ ),
a set of unobservable transitions Tu,
fault types set {T i

f |1≤ i≤ r}.
Output: A set of pairs (Ri, R′i)i=1,2,...,r plus the set E ′.

1: Let I←{−Ax≤M0}∪{−x j ≤ 0 | j=1,...,n}
2: Let E←−Ax+ pre(., t)≤M0
3: Let E ′← E
4: for all t j such that t j ∈ Tu do
5: E ′← IFME_method(E ′,x j)
6: end for
7: for all i such that i ∈ {1,2, . . . ,r} do
8: Let ci← ∑

t j∈T i
f

x j ≤ 0

9: Let ¬ci← ∑
t j∈T i

f

−x j ≤−1

10: Ri← I∪{ci}
11: R′i← I∪{¬ci}
12: for all t j such that t j ∈ Tu do
13: Ri← IFME_method(Ri,x j)
14: R′i← IFME_method(R′i,x j)
15: end for
16: end for

difference is in steps 2-6 in which a set of inequalities E ′ is created. The output of this algorithm

consists of sets of inequalities E ′, Ri and R′i, i = 1, . . . ,r. These sets are employed by Algorithm

6.2 to decide diagnosis states, i.e. whether a fault has occurred or may have occurred. These

states are determined based on the results obtained in Theorem 6.1 and Theorem 6.2.

The inputs of Algorithm 6.2 are the fault types set Tf and τ(e)∀e ∈ Σ, in addition to

sets of inequalities E ′, Ri and R′i. The output of the algorithm is a diagnosis state from

{NoFault,Faulty,Uncertain} (see Definition 6.3). This algorithm starts by initialising ω ′

to the empty string ε and X i(ω ′) to the empty set /0, for i = 1, . . . ,r. Then, in step 2 in particular,

the algorithm enters into a loop to estimate the system state to check whether a fault has occurred.

In step 3, the algorithm waits until a new event e is observed and then adds it to the previous

sequence ω ′, creating the sequence ω . From step 5 to step 26, the algorithm builds the set X i(ω)

for ω with respect to each fault type T i
f . First, the set of all sequences s ∈ T ∗o corresponding to ω

in N is generated in steps 6-8. Then, in step 9, each generated sequence is checked to determine
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Algorithm 6.2 : online fault diagnosis.

Input: The fault types set {T i
f |1≤ i≤ r}; τ(e),∀e ∈ Σ

and a set of pairs (Ri, R′i)i=1,2,...,r plus E ′ as defined in Algorithm 6.1.
Output: A diagnosis state {NoFault,Faulty,Uncertain}.

1: Initialise ω ′ = ε , X i(ω ′) = /0, ∀i ∈ {1, . . . ,r}
2: loop
3: if a new event e is observed then
4: Let ω ← ω ′e
5: Initialise X i(ω)← /0
6: for all t ∈ τ(e) do
7: for all s′ ∈ X i(ω ′) do
8: s← s′t
9: if #(s′) � E ′ with respect to pre(., t) then

10: for all i such that i ∈ {1,2, . . . ,r} do
11: if #(s) 2 R′i then
12: D(s,T i

f )← N
13: else if #(s) 2 Ri then
14: D(s,T i

f )← F
15: else if #(s) � Ri and #(s) � R′i then
16: if D(s′,T i

f ) = F then
17: D(s,T i

f )← F
18: else if D(s′,T i

f ) = N or D(s′,T i
f ) = FN then

19: D(s,T i
f )← FN

20: end if
21: end if
22: X i(ω)← X i(ω)∪{(s,D(s,T i

f ))}
23: end for
24: end if
25: end for
26: end for
27: for all i such that i ∈ {1,2, . . . ,r} do
28: if ∀(s, l) ∈ X i(ω), l = N then
29: ∆(ω,T i

f )← NoFault
30: else if ∀(s, l) ∈ X i(ω), l = F then
31: ∆(ω,T i

f )← Faulty
32: else
33: ∆(ω,T i

f )←Uncertain
34: end if
35: end for
36: end if
37: ω ′← ω , X i(ω ′)← X i(ω)
38: end loop
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Figure 6.3: A general labelled Petri net example of the case where |X i(ω ′)|= kn1

whether it has a corresponding sequence in the Petri net. The function φ(s,T i
f ) is computed in

steps 10-21 for each legal s and each T i
f , 1 ≤ i ≤ r based on applying Theorem 6.1. The pair

(s, φ(s,T i
f )) is added to the set X i(ω) for the current observed sequence ω in step 22. After

obtaining the whole set X i(ω) the step of computing the diagnosis state starts at step 27. By this

step, all labels l associated with the pairs in the set X i(ω) are tested to determine the state of the

system when observing the sequence ω , see Theorem 6.2.

Regarding the computational complexity, Algorithm 6.1 still has the same complexity as

Algorithm 5.1 presented in Section 5.2.4; however, Algorithm 6.2 has a slightly different

complexity from Algorithm 5.2. This complexity now relies on the number of observed events

and the size of the diagnoser. To be precise, assume that mF is the the number of inequalities

in Ri∪R′i of the fault type T i
f , then Algorithm 6.2 requires in the worst case O(|X i(ω ′)| ·mF) to

decide the diagnosis state for each fault type T i
f . Note that |X i(ω ′)| ≤ kn1 , where k = |To| and n1

is the length of the sequence ω ′.

In fact, the case where |X i(ω ′)|= kn1 arises in a very extreme example of the labelled Petri

net. Consider, for example, the general labelled Petri net of Figure. 6.3 which represents this

case where all observable transitions t1, . . . , tk share the same label e; in addition, all of these

transitions are always enabled.

6.2.5 Illustrative example

Recalling the labelled Petri net of Figure. 6.1, since we have two fault types, two pairs of sets of

inequalities are to be created to represent the diagnoser, in addition to one set representing the
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Table 6.2: The sets of inequalities resulting from applying the IFME method in the illustrative
example

No. R1 R′1 R2 R′2
1 x1 ≤ 1 x1 ≤ 1 x1 ≤ 1 x1 ≤ 1
2 −x8 + x9 ≤ 0 −x8 + x9 ≤ 0 −x8 + x9 ≤ 0 −x8 + x9 ≤ 0
3 −x2 + x7 ≤ 0 −x2 + x7 ≤ 0 −x2 + x7 ≤ 0 −x2 + x7 ≤ 0
4 −x1 + x7 ≤ 0 −x1 + x7 ≤ 0 −x1 + x7 ≤ 0 −x1 + x7 ≤ 0
5 −x7 + x8− x9 ≤ 0 −x7 + x8− x9 ≤ 0 −x7 + x8− x9 ≤ 0 −x7 + x8− x9 ≤ 0
6 −x1 + x12− x14 ≤ 0 −x1 + x12− x14 ≤ 0 −x1 + x12− x14 ≤ 0 −x1 + x12− x14 ≤ 0
7 −x12 + x14 ≤ 0 −x12 + x14 ≤ 0 −x12 + x14 ≤ 0 −x12 + x14 ≤ 0
8 x7 ≤ 0 −x2 ≤−1 −x10 + x12 ≤ 0 −x10 + x12 ≤−1
9 −x10 + x12 ≤ 0 −x1 ≤−1 −x1 + x10− x14 ≤ 0

10 −x10 + x12 ≤ 0

enabling condition. We start by extending the set of inequalities I created from the state equation

by simultaneously adding the inequalities c1 :=−x6 ≤ 0 and ¬c1 :=−x6 ≤−1. As a result, two

extended sets of inequalities are obtained, namely I∪{c1} and I∪{¬c1}. Applying the IFME

method to both sets results in the sets R1 and R′1 shown in Table 6.2. Now R1 and R′1 can be used

to diagnosis faults from type T 1
f .

Similarly, two sets of inequalities R2 and R′2 are created to express faults from type T 2
f .

Applying the IFME method to the sets I ∪ {c2} and I ∪ {¬c2}, where c2 := −x11 ≤ 0 and

¬c2 :=−x11≤−1, results in R2 and R′2, respectively as illustrated in Table 6.2. After applying the

IFME method, all variables corresponding to unobservable transitions Tu = {t3, t4, t5, t6, t11, t13}

are eliminated. The sets of inequalities in Table 6.2 are in variables representing the observable

transitions To = {t1, t2, t7, t8, t9, t10, t12, t14}. The sets R1, R′1, R2 and R′2 represent the diagnoser

used for estimating the current state of the system for a given observed sequence of events ω .

Table 6.3 shows in detail the process of estimating the diagnosis states given different

observed sequences of events. Note also that the entries of the column entitled Is s legal?

have two values: Yes and No. The value Yes implies that the possible sequence of observable

transitions has at least one corresponding sequence in the net; whereas No refers to the opposite

case. Thus, all possible sequences of observable transitions with the value No are ignored in

following steps of processing.

By looking at the labelled Petri net in Figure. 6.1, observing no sequence (ω = ε), yields

∆(ε,T 1
f ) = ∆(ε,T 2

f ) = NoFault. For ε , there exists only one possible sequence which is ε itself.

95



CHAPTER 6. FAULT DIAGNOSIS IN LABELLED PETRI NETS

Table 6.3: The whole process of estimating diagnosis states ∆(ω,T 1
f ) and ∆(ω,T 2

f ) of the
observed sequence ω

No. ω s Is s legal? #(s) � R1? #(s) � R′1? #(s) � R2? #(s) � R′2? D(s,T 1
f ) D(s,T 2

f ) X1(ω) X2(ω) ∆(ω,T 1
f ) ∆(ω,T 2

f )

1 ε ε Yes Yes No Yes No N N {(ε,N)} {(ε,N)} NoFault NoFault

2 a t1 Yes Yes No Yes No N N {(t1,N), {(t1,N), NoFault NoFault

3 ab t1t2 Yes Yes Yes Yes No FN N {(t1t2,FN), {(t1t2,N), Uncertain NoFault

t1t7 No - - - - - - - -

4 abb t1t2t2 Yes Yes Yes Yes No FN N {(t1t2t2,FN), {(t1t2t2,N), Uncertain NoFault

t1t2t7 Yes No Yes Yes No F N (t1t2t7,F)} (t1t2t7,N)}
5 abbc t1t2t2t8 No - - - - - - - - Uncertain Uncertain

t1t2t2t10 Yes Yes Yes Yes Yes FN N {(t1t2t2t10,FN), {(t1t2t2t10,N),

t1t2t2t14 No - - - - - - - -

t1t2t7t8 Yes No Yes Yes No F N (t1t2t7t8,F), (t1t2t7t8,N),

t1t2t7t10 Yes No Yes Yes Yes F FN (t1t2t7t10,F)} (t1t2t7t10,FN)}
t1t2t7t14 No - - - - - - - -

6 ac t1t8 No - - - - - - - - NoFault Uncertain

t1t10 Yes Yes No Yes Yes N FN {(t1t10,N)} {(t1t10,FN)}
t1t14 No - - - - - - - -

7 acc t1t10t8 No - - - - - - - - NoFault Faulty

t1t10t10 Yes Yes No No Yes N F {(t1t10t10,N)} {(t1t10t10,F)}
t1t10t14 No - - - - - - -

8 acd t10t9 No - - - - - - - - NoFault NoFault

t1t10t12 Yes Yes No Yes No N N {(t1t10t12,N)} {(t1t10t12,N)}

As shown in the table, since #(ε) � R1 holds, but #(ε) � R′1 does not, then D(ε,T 1
f ) yields N,

see Theorem 6.1. Similarly, since #(ε) � R2 holds, but #(ε) � R′2 does not, D(ε,T 2
f ) yields N.

As a result, both sets X1(ε) and X2(ε) have only one element with the diagnosis label N. Also,

the diagnosis state of both fault types T 1
f and T 2

f is computed as NoFault, see Theorem 6.2.

Analogously, observing ω = a results in the same diagnosis state.

If we suppose that the diagnoser observes the sequence ω = abb, then ∆(abb,T 1
f ) =

Uncertain and ∆(abb,T 2
f ) = NoFault. In which case, the sets X1(abb) and X2(abb) are not a

singleton. Since one element of the set X1(abb) has the diagnosis label FN, we are not certain

about the diagnosis state with respect to T 1
f . In contrast, all elements of the set X2(abb) have the

diagnosis label N which implies that we are certain that no fault of type T 2
f has occurred during

abb, see Theorem 6.2.

In Section 6.1 of this chapter, we assumed that the labelled Petri nets have no self-loops.

However, our approach can be applied to address the more general case, i.e. labelled Petri nets

with self-loops.
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p1t1 t2 p2 t3 p3 t4 p4 t5

t6

p5

t7

Figure 6.4: A Petri net with self-loops

6.2.6 Self-loops and the state equation

The state equation constraints, i.e. the set of inequalities I formed in Lemma 4.1, can only

describe the behaviour of pure Petri nets. In the case where there are self-loops, each entry of

the incidence matrix A has the value 0 of the corresponding self-loop transition (see Section

3.1). Consequently, the set of inequalities I has no corresponding variables of such transitions.

Hence, the state equation constraints must be extended to describe the behaviour of the Petri

nets in general. In fact, this extension has been reported by Iordache and Antsaklis [96, 97].

Essentially, the idea is based on the fact that two results can be obtained when a sequence of

transitions σ fires at the initial marking M0. First, the Parikh vector x = #(σ) of the firing

sequence satisfies I :=−Ax≤M0. The second result is that a given transition t is enabled if and

only if Q :=−A(x+ut)≤M0 holds, where ut is the firing vector of the transition t (see Section

3.1). The set of inequalities Q represents a general form by which the behaviour of Petri nets is

completely expressed regardless of whether the Petri nets are pure.

If we assume that the given transition t is on a self-loop, denoted by pt, then the enabling

condition of t depends only on the number of tokens in the place p, which represents its input and

output. Thus, we are required to add one variable to every inequality associated with a place to

which the self-loop transition connected. Each variable has the value 1 when the corresponding

transition is the current firing transition; otherwise it has the value 0. Firing any self-loop

transition t, after firing a sequence σ ∈ T ∗ ensures that Q := −A(x+ut) ≤M0 holds, where

x = #(σ).

Consider the Petri net of Figure. 6.4, we have three self-loops: p1t1, p4t5 and p5t7. Since

our concern is the self-loops, we shall construct the inequalities of Q associated to the places

on these self-loops. In which case, we have three inequalities: q1 + x2 ≤ 1, q5− x4 ≤ 0 and
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q7− x6 ≤ 0. The variables q1, q5 and q7 correspond to transitions t1, t5 and t7 respectively.

Computing the function D(.): to obtain a diagnosis label of a sequence of observable

transitions (see Definition 6.1) ending with a self-loop transition, we follow a two-phase proce-

dure:

1. Offline phase: we create additional sets of inequalities Qi and Q′i, for i = 1, . . . ,r, as

follows. We first create Q from the Petri net as described above. Then, we generate a pair

Q∪{ci} and Q∪{c′i}. Next, we apply the IFME method to this pair to create Qi and Q′i

by eliminating all variables representing the unobservable transitions.

2. Online phase: in this phase the diagnosis label is obtained. Given a sequence of observable

transitions s = s′t j, where t j is a self-loop transition, D(s,T i
f ) is computed as described in

Theorem 6.1. Replacing Ri and R′i by Qi and Q′i, respectively, D(s,T i
f ) is determined by

testing the vector (x1, . . . ,xk,q1, . . . ,q j, . . . ,qh) against Qi and Q′i, where #(s′)= (x1, . . . ,xk)

and h is the number of self-loop transitions.

Note that the results of this section can easily be proved using a direct application of Theorem

6.1. Also, from a practical complexity point of view, this relaxation requires adding 2× r sets of

inequalities to the original sets of inequalities. However, the theoretical complexity is still the

same.

6.3 Chapter summary

The problem of fault diagnosis in DES modelled by labelled Petri nets having no cycle of

unobservable transitions has been covered in this chapter. By extending the results introduced in

Chapter 5, we have shown that the IFME method can be used to diagnose faults in such nets. The

firing of the observable transitions in these Petri nets cannot be ensured, especially in the case

where there exists more than one transition which shares the same label, simultaneously enabled.
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Thus, we address this case by considering all possible sequences of observable transitions

corresponding to the observed sequence of events.

These sequences are generated online when observing a sequence of events. Then, all

generated sequences having no corresponding sequences in a labelled Petri net are ignored. This

can be performed using a single additional set of inequalities which is built based on the state

equation and the enabling condition. Then, the sets of inequalities Ri and R′i, i = 1, . . . ,r, are

used to diagnose faults.
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CHAPTER 7

DIAGNOSIS OF VIOLATIONS OF CONSTRAINTS
IN PETRI NETS

As pointed out in the previous chapters, fault diagnosis in partially-observed discrete event

systems requires modelling faults as unobservable events within the model of the system (plant).

Representing faults as events is not always realistic. For example, some classes of fault are

in the form of violations of constraints such as service-level agreement (SLA) and Quality of

Service (QoS). To model such faults as events, we need to modify the plant model which is

not always acceptable. Firstly, this may make the models large by adding more transitions and

places. Secondly, adding extra transitions and places is not always preferable from engineer’s

perspective as every modification of the constraint will modify the model of the plant.

In this chapter, the obtained results in the case where faults represent events in the systems

are applied to the case where the faults are NOT captured as events in the model of the system,

instead they represent violations of constraints. These constraints and their violations can be

written as inequalities in which there are variables corresponding to unobservable transitions,

i.e. the transitions expressed in these inequalities are partially-observed which represents the

most interesting case of the problem. Then, we show that starting from a Petri net two sets

of inequalities (diagnoser) are obtained. These sets are used to judge whether an observed

sequence may satisfy (violate) these inequalities (constraints). To the best of our knowledge, the

problem of diagnosis of violations of constraints under partial observation is first formulated and

addressed in this thesis, where it represents a generalisation of the problem of fault diagnosis.
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t1 (Arrival of a task)

p1

t2 (Allocation of tasks)
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Job completed
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Job completed
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Job completed

p9

t15 (Completion of the task)

p10

Customer service

Department 1 Department 2 Department 3

Figure 7.1: A problem of the Resolve System

7.1 Faults in the form of violations of constraints

Some faults represent no events in the plant of the system, instead they are a form of violations

of constraints. The SLA and QoS violations are examples of such faults. Many SLA and QoS

statements are defined to restrict the SLA and QoS such as the error rate, the percentage of

service availability and the ratio of message loss in communication channels. These statements

are termed as constraints within an agreement between providers and customers. The violations

of these constraints can be seen as faults which implies that the provided services are going

below the acceptable level according to the agreement.

7.1.1 A running example

To describe the problem that has motivated the work in this chapter, we shall make use of a

simplified business process used within a typical telecommunication company [32, 98]. Suppose

the scenario that a domestic customer telephones to report a malfunction such as the broadband
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connection being slow. We refer to such problems and malfunctions as "tasks" or "jobs". The

following example describes a simplified business process from the arrival of the job to its

completion.

In the Petri net of Figure. 7.1, when the tasks arrive (firing of t1), depending on the nature of

the problem which is reported, every task is allocated to one of three departments. Within each

department, there are a few large and complex workflows which we have simplified to two cases.

Either the problem is resolved (transitions labelled R1,R2,R3) or the engineers discover that

the allocated jobs cannot be resolved (transitions labelled N1,N2,N3) within their department.

This would be a case of wrong allocation of jobs and can arise from a multitude of reasons,

among them wrong information from the customers or wrong assignment of jobs or the case

that one fault triggers another. In the case that the job is resolved, the department declares the

job completed by firing of t12, t13 or t14, which ultimately results in the firing of t15 marking the

completion of the (overall) task. In the case that a department is not able to complete the job

(firing of t6, t8 or t10), further investigation is required. As a result, a token is placed in p1 so that

the job is reallocated by the customer service department.

We assume that transitions t1 and t15, which mark arrival and completion of jobs, are

observable. In addition, transitions that mark the arrival of the jobs in each department (t3, t4

and t5) are also observable, as they are used by the department to inform the customers of the

progress of the job. For example, if a customer is accessing through a browser to make an online

report, they are informed that the relevant department will deal with the problem. Note that the

observable transitions in Figure. 7.1 are depicted by solid rectangles, while empty rectangles

represent unobservable transitions.

In the above example, firing of t6, t8 or t10 results in a repetition of a chain of activities

that indicates a wrong allocation of jobs to the departments. Since the activities are repeated,

the job is not completed right first time. In this case, we say a right-first time (RFT) fault has

occurred. The RFT faults are becoming increasingly important in the Telecom industry [32, 98].

Occurrences of RFT faults may result in unhappy customers; they increase the cost of resolving

the problems and may entail financial penalties. As a result, the development of methods to
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discover RFT faults so that remedial actions can be adopted is essential. In addition, in large

organisations such methods must be automated to cope with large systems.

In Figure. 7.1, transition t2 marks the allocation of jobs and transition t15 marks the comple-

tion of these jobs. Ideally, to ensure no RFT fault occurs, we would wish that every allocated

job is completed. In other words, for each execution sequence σ of the Petri net, the following

equation holds:

#(t2,σ) = #(t15,σ) (7.1)

If (7.1) holds, we have no RFT fault. However, it is often not possible to completely eliminate

the RFT fault. As a result, the management sets SLA such as the number of faults should be

below a value δ ≥ 0 to specify acceptable levels of fault. Then, an SLA is satisfied if and only if

for each execution sequence, (7.2) is evaluated to True.

#(t2,σ)−#(t15,σ)≤ δ (7.2)

The Petri net N of Figure. 7.1 represents a model of a system and (7.2) represents a

constraint (an SLA), which if violated, indicates a fault has occurred. This Petri net has no fault

transitions, thereby the existing fault diagnosis techniques cannot directly be applied. One can

argue that the RFT fault could be modelled by modifying the Petri net of Figure. 7.1; this would

mean adding extra transitions and places to simulate violation of (7.2). Firstly, this is not an easy

task. In addition, modifying the Petri net of Figure. 7.1 may result in a cumbersome and large

Petri net which will be hard to understand. Thirdly, advocates of modelling faults must modify

the design as soon as the SLA changes. Thus, there is clear scope for developing fault diagnosis

techniques in Petri nets for the case where the fault is associated to a violation of constraints

such as SLA and QoS.

Violation of (7.2) can be represented as an inequality: each sequence σ in N that violates

(7.2) satisfies (7.3). Hence if (7.2) is evaluated to False, then (7.3) will be evaluated to True.

#(t2,σ)−#(t15,σ)> δ (7.3)
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Conversely, if σ satisfies (7.2), then (7.3) is evaluated to True. Also, (7.3) can be rewritten as:

#(t15,σ)−#(t2,σ)≤−(δ +1) (7.4)

The inequalities in (7.2) and (7.4) capture the general form e in Definition 4.2. For example,

assuming x2 = #(t2,σ),x15 = #(t15,σ) and b =−(δ +1) or δ ; and the remaining coefficients

are equal to zero, then both (7.4) and (7.2) correspond to e.

7.1.2 Common examples of SLA and QoS constraints

A wide range of SLA and QoS statements can be expressed as inequalities. For example,

consider the ratio of message loss in communication channels. In this example, let us assume

that t1 represents the sending of a message to a channel and t2 represents the arrival of the

message at the other end. It is required that the ratio of the loss be #(t1,σ)
#(t2,σ) ≤

p
q which means

q×#(t1,σ)− p×#(t2,σ)≤ 0. This inequality represents the constraint whose violation, written

as q×#(t1,σ)− p×#(t2,σ)> 0, is seen as a fault, where p
q > 1 and q 6= 0.

Another example is called accuracy (success rate) [99] in which the ratio of completed jobs

to the total number of allocated jobs is constrained. Assume that the transition t1 models the

allocation of a job and t2 models the completion of this job. Then, the accuracy constraint is

expressed as:

1− #(t1,σ)−#(t2,σ)

#(t1,σ)
(7.5)

where σ represents an execution sequence of events in the system. We aim to have the value 1

for accuracy, but this is not possible. Thus, the accuracy is tolerated to be below 1. Based on

that, an SLA to ensure this constraint is:

1− #(t1,σ)−#(t2,σ)

#(t1,σ)
≥ p

q
(7.6)
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where p
q < 1 and q 6= 0. Simplifying this formula yields:

#(t2,σ)

#(t1,σ)
≥ p

q
(7.7)

which means that the ratio of the completion to allocation should be greater than p
q and q 6= 0.

The violation of this constraint occurs when (7.7) is evaluated to False for a sequence σ .

Furthermore, using Internet Protocol (IP) there is no guarantee that the packets sent on the

network arrive at their destination in the sequence in which they were sent [100]. In which case,

we say that the packet received in a different order is out-of-order. For instance, if a stream of

packets have been received in the sequence 1, 4, 3, 2, 5, then packets 2 and 4 are out-of-order.

This requires reordering them to read the sent message. The number of packets which are

out-of-order can simply be measured using the reording ratio which represents the number of the

packets which are not in their order over the total number of received packets. Assume that the

transition t represents receiving the packets at the destination part, then the out-of-order ratio can

be expressed as follows:
Nout

#(t,σ)
(7.8)

where Nout represents the total number of packets which are out-of-order. The ideal case arises

when (7.8) equals zero. However, the SLA constraints permit this ratio to be higher than zero,

but within an acceptable level as shown in the following formula:

Nout

#(t,σ)
≤ p

q
(7.9)

where p
q ≥ 0. Similarly, (7.9) can be rewritten as an inequality of the form q×Nout− p×#(t,σ)≤

0. Since these SLA and QoS statements and their violations (seen as faults) can be written as

inequalities in which one or more variables correspond to unobservable transitions, the IFME

approach is applicable to diagnose such faults as shown in the next sections.
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7.2 The IFME approach to diagnose violations of constraints

To simplify the presentation, the problem of diagnosing violations of constraints will be studied

in the context of free labelled Petri nets, i.e. the results of Chapter 5 are applied to address this

problem. However, the results of this chapter can still be applied to the case of labelled Petri

nets.

7.2.1 Problem definition

Consider a Petri net (N ,M0) as defined in Section 4.1, where N has no cycle of unobservable

transitions. Note that the notion of fault transitions does not exist in this Petri net; however, we

assume that there is a constraint, denoted φ , which if violated means a fault has occurred. Thus,

a sequence of events σ for which #(σ) 2 φ contains a fault. Conversely, a given sequence σ

contains no fault if #(σ) � φ .

To begin, assume that the system has a single constraint φ whose violation, denoted ¬φ ,

is seen as a fault. Further, assume that φ := ∑
n
j=1 a jx j ≤ b and ¬φ := ∑

n
j=1 a jx j > b, where

x1, . . . ,xn corresponds to the number of firing the transitions t1, . . . , tn and a1, . . . ,an,b ∈ Z. In

effect, the inequalities c and ¬c, previously described, represent special cases of the inequalities

φ and ¬φ , respectively. Thus, the problem of fault diagnosis in partially-observed systems where

faults are events can be considered as a special case of the problem of diagnosing violations of

constraints.

To extend this notion to the case where there is a set of constraints Φ = {φ1, . . . ,φr}, then

we can say that a fault ti, i = 1, . . . ,r, has occurred if a constraint φi is violated. Accordingly,

the diagnoser and diagnosis states previously defined (see Definition 5.1) can be redefined as

follows:

Definition 7.1. A diagnoser is a mapping ∆ : T ∗o ×Φ→ {NoFault,Faulty,Uncertain} that

associates to each observed sequence s, with respect to the constraint φi, one of the following

diagnosis states:
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• ∆(s,φi) = NoFault if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � φi holds. This state

shows that there is no sequence having the same observation as s violates φi.

• ∆(s,φi) = Faulty if ∀σ ∈ L(N ,M0) such that π(σ) = s, #(σ) � ¬φi holds. This state

implies that all sequences having the same observation as s violate φi.

• ∆(s,φi) =Uncertain if there exists two sequences σ1, σ2 ∈ L(N ,M0) such that π(σ1) =

π(σ2) = s, but #(σ1) � φi and #(σ2) �¬φi hold. In which case, the behaviour of the system

is ambiguous because of the possibility of both NoFault and Faulty states existing during

the observed sequence. In other words, the violation of constraint may have occurred.

Note that having ∆(s,φi) = NoFault arisen for all constraints in the set Φ implies that the

system state is normal.

7.2.2 The proposed solution using the IFME method

Suppose that N = (P,T, pre, post) is a Petri net with initial marking M0 and no cycle of unob-

servable transitions exists. Let Φ= {φ1, . . . ,φr} be the set of constraints and Φ′= {¬φ1, . . . ,¬φr}

be the set of their negations. Each constraint and its negation are represented as inequalities. In

this new formalism, we do NOT have any concept of fault transitions and the systems under

study are partially-observed.

The outline of the solution can be summarised as follows. We introduce variables x1,x2, . . . ,xn

representing the number of firing of t1, t2, . . . , tn, respectively. Suppose that −Ax ≤ M0 with

x≥~0 is a set of inequalities expressing the state equation, where x = (x1,x2, . . . ,xn). We further

assume that φi ∈Φ is the inequality ∑
n
j=1 a jx j ≤ b and ¬φi ∈Φ′ is its negation, i.e. the inequality

∑
n
j=1 a jx j > b. For each firing sequence σ of (N ,M0), if σ violates φi, then x = #(σ), the

Parikh vector of σ , satisfies ¬φi. Conversely, for a firing sequence σ , if x satisfies φi, then σ

does not violate φi.

From a Petri net model, we first obtain a set of inequalities I := {−Ax ≤ M0}∪{x ≥~0}.

Then, we create two sets of inequalities I ∪{φi} and I ∪{¬φi} for each constraint φi and its

violation ¬φi, respectively. Applying the IFME method simultaneously to both I ∪{φi} and
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I∪{¬φi} for i = 1, . . . ,r, two reduced sets Ri and R′i are created by eliminating every variable

corresponding to a transition in the set Tu. We use these reduced sets to diagnose the occurrences

of violations of constraints as stated in the following.

Note that Definition 5.2 is still the same, but it is now with regards to the constraint φi, 1≤

i≤ r, and not the fault type. Also, the most recent diagnosis state of the empty string ε is still

NoFault because we assume that the system starts from a non-faulty state. Then, the following

theorem extends the previous work presented in Chapter 5 to the case where the faults are not

captured as events, instead they are captured as violations of constraints.

Theorem 7.1. Assume that (N ,M0) is a Petri net with no cycle of unobservable transitions. Let

I be the set of inequalities −Ax≤M0, created from the state equation of N , along with x≥~0.

Suppose that T = To∪Tu, To = {t1, . . . , tk} and Tu = {tk+1, . . . , tn}, in addition, the faults are not

captured as events. The vector of variables x1, . . . ,xn corresponds to the number of firings the

transitions t1, . . . , tn. Suppose also that Φ = {φ1, . . . ,φr} is the set of constraints and ¬Φ is the set

of their negations. Assume that the set of inequalities Ri and R′i are respectively resulting from the

application of the IFME to both I∪{φi} and I∪{¬φi} to eliminate all variables corresponding

to transitions in Tu. Then, for any given sequence of observed events s = π(σ), where s = s′t,

s ∈ T ∗o , t ∈ To and σ is a firing sequence in N , ∆(s,φi) is determined as follows:

∆(s,φi) =



NoFault if (#(s) 2 R′i)

Faulty if (#(s) 2 Ri)

∨((#(s) � Ri)∧ (#(s) � R′i)

∧(∆(s′,φi) = Faulty))

Uncertain if (#(s) � Ri)∧ (#(s) � R′i)

∧((∆(s′,φi) = NoFault)∨ (∆(s′,φi) =Uncertain))

Impossible if (#(s) 2 Ri)∧ (#(s) 2 R′i)

Proof. This proof is presented for a single constraint φi, i = 1, . . . ,r; however, obtaining a

complete proof requires only repeating the same proof for every single constraint in the set Φ. In

the following, we assume that #(s) = (α1, . . . ,αk).
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Proof of the case NoFault: using contradiction, assume that #(s)2 R′i, but the diagnosis state

is not NoFault. If #(s) 2 R′i, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I∪{¬φi} by Theorem 3.1. Since σ is a firing sequence, we

are certain that ν � I, see Lemma 4.1. Hence, ν 2 {¬φi}, i.e. ν � φi. As a result, ∀σ ′ ∈ L(N ,M0)

such that π(σ ′)= s, #(σ ′)�¬φi. Hence a violation of constraint φi has occurred during observing

s. This contradicts the assumption.

Proof of the case Faulty: here we have two cases to be proved.

Case i: if #(s) 2 Ri holds. Using the same argument in proof of the case NoFault replacing R′i

with Ri, we can prove this case.

Case ii: if (#(s) � Ri)∧ (#(s) � R′i)∧ (∆(s′,φi) = Faulty) holds. Since ∆(s′,φi) = Faulty holds,

i.e. the most recent diagnosis state is Faulty, then a violation of φi has occurred during the

observed sequence s′. Since the fault (the violation of constraint) propagates to all the states

following the Faulty state, then s = s′t has also violated φi.

Proof of the case Uncertain: we first assume that s = ε , then there exists one possible case

for the most recent diagnosis state, particularly NoFault, because we suppose that the system

starts from a non-faulty state. Now let us prove the result in the case of s = ε . If #(s) � R, then

there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn)

and ν � I ∪{φi} by Theorem 3.1. If ν � I ∪{φi}, then ν � I, i.e. ν satisfies M′ = M0 +Aν ≥

~0. Since s has no observable transitions (s = ε), then the subnet Nν has only unobservable

transitions. Again, by the assumption that no cycle of unobservable transitions exists in N , then

Nν is cycle free. As a result, there exists σ ′ ∈ T ∗ν such that M0
σ ′→M′ and #(σ ′) = ν by Lemma

5.1. Hence, the sequence σ ′ does not violate the constraint φi. Likewise, we can prove that if

#(s) � R′i, there exists another sequence violating the constraint. Since there are two sequences

having the same s, but one satisfies φi and the other satisfies ¬φi, then we have an Uncertain

state, see Definition 7.1.

Now, assume that s = s′t, t ∈ To and s′ ∈ T ∗o . Then there are two cases to be considered:

Case i: when the most recent diagnosis state is NoFault (∆(s′,φi) = NoFault). If #(s) � Ri, then

there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,αk+1, . . . ,αn)
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and ν � I∪{φi} by Theorem 3.1. If ν � I∪{φi}, then ν � I, i.e. M′′ = M0 +Aν ≥~0. Since no

violation has occurred during observing ω , and t is an observable transition, then we are certain

that all sequences σ ′t such that M0
σ ′t→M′ and π(σ ′) = s′ satisfy φi. Assuming y= ν−#(σ ′t), y∈

Nn, then M′′ = M′+Ay ≥~0. Since the subnet Ny has only unobservable transitions, then Ny

is cycle free. As a result, there exists σ ′′ ∈ T ∗y such that M′ σ ′′→M′′ and #(σ ′′) = y by Lemma

5.1. Hence, the sequence σ ′tσ ′′ with #(σ ′tσ ′′) = ν satisfies φi. Likewise, we can prove that if

#(s) � R′i, there exists another sequence violating φi. Since there are two sequences having the

same s, but one satisfies φi and the other satisfies ¬φi, then we have an Uncertain state.

Case ii: when the most recent diagnosis state is Uncertain (∆(s′,φi) = Uncertain). If

#(s) � Ri, then there exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =

(α1, . . . ,αk,αk+1, . . . ,αn) and ν � I ∪ {φi} by Theorem 3.1. If ν � I ∪ {φi}, then ν � I, i.e.

M′′ = M0 +Aν ≥~0. Since we have Uncertain state during observing s′, i.e. the most recent

diagnosis state is Uncertain, and t is an observable transition, then we still have the same state

for any sequence σ ′t such that M0
σ ′t→M′ and π(σ ′) = s′. Assuming y = ν−#(σ ′t), y ∈Nn, then

M′′ = M′+Ay≥~0. Since the subnet Ny has only unobservable transitions, then Ny is cycle free.

As a result, there exists σ ′′ ∈ T ∗y such that M′ σ ′′→M′′ and #(σ ′′) = ν by Lemma 5.1. Hence, the

sequence σ ′tσ ′′ with #(σ ′tσ ′′) = ν satisfies φi. Similarly, we can prove that if #(s) � R′i, there

exists another sequence violating φi. Since there are two sequences having the same s, but one

satisfies φi and the other satisfies ¬φi, then an Uncertain state has arisen.

Proof of the case Impossible: assume that #(s) 2 Ri and #(s) 2 R′i, but this case is

possible. If #(s) 2 Ri, then for every valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that

ν = (α1, . . . ,αk,αk+1, . . . ,αn), ν 2 I∪{φi} by Theorem 3.1. Also, if #(s) 2 R′i, then for every

valuation (βk+1, . . . ,βn) of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2 I∪{¬φi}

by Theorem 3.1. Rephrasing this statement, we can say that there exists a valuation (βk+1, . . . ,βn)

of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and ν � I ∪{φi} taking into account

that ¬φi is the negation of φi and σ is a firing sequence of N , i.e. #(σ) � I. Here we have

contradictory statements. Consequently, this case is an impossible case. This contradicts the

assumption and completes the proof.
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Table 7.1: The sets of inequalities resulting from applying the IFME method in Example 7.1

No. R R′

1 x1− x15 ≤ 1 x1− x15 ≤ 1
2 −x1 + x15 ≤ 0 −x1 + x15 ≤ 0
3 −x1− x4 + x15 ≤ 0 −x1− x4 + x15 ≤ 0
4 −x1− x3 + x15 ≤ 0 −x1− x3 + x15 ≤ 0
5 −x1− x5 + x15 ≤ 0 −x1− x5 + x15 ≤ 0
6 −x1− x4− x5 + x15 ≤ 0 −x1− x4− x5 + x15 ≤ 0
7 −x1− x3− x5 + x15 ≤ 0 −x1− x3− x5 + x15 ≤ 0
8 −x1− x3− x4− x5 ≤ 0 −x1− x3− x4− x5 ≤ 0
9 −x1− x3− x4 + x15 ≤ 0 −x3− x4− x5 + x15 ≤ 0
10 x3 + x4 + x5− x15 ≤ 2 2x1− x3− x4 +2x15 ≤ 0
11 −x3− x4− x5 + x15 ≤ 0 −x1− x3− x4− x5 +2x15 ≤−3
12 −x1− x3− x4− x5 + x15 ≤ 0 −2x1−2x3−2x4−2x5 +3x15 ≤−6
13 −x1 ≤ 0 −x1 ≤ 1

Remark 7.1. As previously remarked in Chapter 5, the proofs of the diagnosis states NoFault

and Faulty in theorem 7.1 are still valid for the Petri nets having cycles of unobservable

transitions.

Theorem 7.1 provides a systematic procedure to detect the occurrences of violations of

constraints. Note that the case where the observed sequence does not satisfy both Ri and R′i for a

given constraint φi is not possible.

Remark 7.2. The shape of each individual inequality that expresses the constraint and its

violation is important. For example, a less interesting special case appears when all the non-zero

coefficients in the inequality belong to observable transitions. For example, when in ∑
n
i=1 aixi,

we have ai = 0 if xi represents an unobservable transition. In such a case, the sum ∑
n
i=1 aixi

can easily be calculated after counting the number of occurrences of observable events. This is

similar to the case of classic fault diagnosis, where some fault transitions are observable. A more

interesting case arises when ai 6= 0 for one or more unobservable transitions.

Example 7.1. Consider the Petri net N of Figure. 7.1 of the running example. A special case

of an RFT fault is described using (7.2) of Section 7.1.1. Assuming that δ = 2, the constraint

φ is written as φ := x2− x15 ≤ 2 and its violation as ¬φ := x15− x2 ≤ −3 (Note that ¬φ has
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Table 7.2: Diagnosis state estimations

No. s = π(σ) #(s) � R? #(s) � R′? Diagnosis state

1 ε Yes No NoFault

2 t1 Yes No NoFault

3 t1t3 Yes No NoFault

4 t1t3t3 Yes Yes Uncertain

5 t1t3t3t3 No Yes Faulty

6 t1t3t3t3t15 Yes No NoFault

7 t1t3t3t3t3t15 No Yes Faulty

8 t1t3t15 Yes No NoFault

9 t1t3t15t1 Yes No NoFault

10 t1t3t15t1t3 Yes No NoFault

11 t1t3t15t1t3t15 Yes No NoFault

been rewritten in the standard form of I). Adding these inequalities simultaneously to the set of

inequalities I derived from (3.1), two sets I∪{φ} and I∪{¬φ} are obtained. Then, using the

IFME method to eliminate all variables corresponding to unobservable transitions produces the

sets of inequalities in Table 7.1. The resulting sets of inequalities R and R′ have only variables

corresponding to observable transitions {t1, t3, t4, t5, t15}. These two sets are used for estimating

the current state of the system for a given observed sequence of events.

Table 7.2. shows different observed sequences and the diagnosis state estimated in each case.

By looking at the Petri net in the figure, when the diagnoser observes no sequence (s = ε), the

diagnosis state is NoFault, i.e. no violation of the constraint φ has occurred. In which case, the

diagnoser is certain that for all sequences having no observable transitions, φ is evaluated to

True as x2 = 0 and x15 = 0 for these sequences.

The same diagnosis state is estimated when observing the sequences 2, 3, 6, 8, 9, 10 and 11

shown in Table 7.2. For instance, in the case of s = t1, only two sequences, namely σ1 = t1 and

σ2 = t1t2, have π(σ1) = π(σ2) = s. However, for both of them φ is evaluated to True because

x2 = #(t2,σ1) = 0,x15 = #(t15,σ1) = 0 and x2 = #(t2,σ2) = 1,x15 = #(t15,σ2) = 0. In other

words, #(σ1),#(σ2) � φ . Thus, the diagnosis state is NoFault.

On the other hand, suppose that sequence 5 is observed. In that case, there exist three
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sequences σ1 = t1t2t3t6t2t3t6t2t3t6t2, σ2 = t1t2t3t6t2t3t6t2t3t7 and σ3 = t1t2t3t6t2t3t6t2t3t7t12 with

π(σ1) = π(σ2) = π(σ3) = t1t3t3t3. By looking at x2 = #(t2,σi) and x15 = #(t15,σi), we find that

#(σi) � ¬φ for i = 1,2,3. As a result, a violation of φ has certainty occurred.

In the case where sequence 4 is observed, we again have three sequences σ1 = t1t2t3t6t2t3t6t2,

σ2 = t1t2t3t6t2t3t7 and σ3 = t1t2t3t6t2t3t7t12 with π(σ1) = π(σ2) = π(σ3) = t1t3t3. Obviously,

#(σ1) � ¬φ , but #(σ2),#(σ3) � φ . This is an Uncertain state because the diagnoser cannot

decide whether a violation of φ occurred. Note that the same results shown in Table 7.2 can be

obtained by replacing the transition t3 by t4 or t5. For instance, the observed sequences t1t4 and

t1t5 do not violate φ as t1t3 does not.

7.3 Chapter summary

A different form of faults in partially-observed discrete event systems modelled using Petri nets

has been presented in this chapter. According to this form, the faults are not captured as events,

but as violations of constraints. Since such violations can be written as inequalities, the IFME

approach can also be applied to diagnose them.

Using the IFME approach, the diagnoser is represented by two sets of inequalities in variables

corresponding to observable transitions. These sets are obtained as follows. First, two sets of

inequalities, derived from the state equation, are augmented by the inequalities expressing

the constraint and its violation. Then, the IFME method is applied to eliminate the variables

corresponding to unobservable transitions. The resulting sets represent the diagnoser. The notion

presented in this chapter has been explained with the aid of a running example representing a

real problem in a telecommunication company.
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IMPLEMENTATION AND EVALUATION

In this chapter, the implementation details of the IFME approach for fault diagnosis are given. In

addition, an evaluation of this approach is presented and compared with the diagnoser automata

approach [4] extended to Petri nets, as discussed in Section 2.2.1. This evaluation is performed

based on two criteria: 1) the size of the diagnoser; and 2) the time for computing the diagnosis

states.

We start the chapter by presenting the architecture of the software tool which has been

developed to implement both the offline and online steps of the proposed approach, i.e. creating

the diagnoser (the sets of inequalities Ri and R′i, i = 1, . . . ,r) offline and using Esper CEP to

build an application to diagnose faults in a stream of observed events online. This stream of

events is generated by the simulation step based on a Petri net model.

The last part of the chapter focuses on conducting some computational experiments to

evaluate the performance of the IFME approach. These experiments are carried out to analyse

the space requirements of the offline step and the time requirements of the online step in the fault

diagnosis process.

8.1 The architecture of the software tool

The software tool has been developed using Java. Figure. 8.1 depicts an architectural view of the

tool which mainly consists of three parts. The first part is concerned with creating pairs of sets
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Simulation part:

Diagnoser part: Esper CEP part:

Construct pre,
post, A and
M0 matrices

Petri net
simulator

Projector

Generate matrix
representations:

C and C′
IFME method

Esper CEP
implementation

Events

Observed
events

C, C′ R, R′

Diagnosis state
(Faulty,NoFault,
Uncertain)

Petri net file

Figure 8.1: The main components of the software tool for fault diagnosis

of inequalities (the diagnoser), where each pair is associated with one fault type. The second

part represents the Esper CEP application which uses these sets in order to diagnose faults. This

part receives its input from the results of the simulation; the third part, on a Petri net model.

8.1.1 Creating the diagnoser: the offline step

The steps required to create the diagnoser (sets of inequalities R and R′) are described in the

flowchart shown in Figure. 8.2. These steps can be explained as follows. The input of this

flowchart is a file representing a given Petri net. The header of the file has four fields: the number

of places, the number of transitions, the number of fault types, in addition to a vector of values

corresponding to the number of faults in each fault type. The data part of this file is structured

into m lines, where m is the number of places in the Petri net. Each line contains all information

related to a place in a Petri net. In particular, each line has the following fields in the order:

1. The initial marking.

2. Number of input transitions.

3. List of input transitions each of which is formatted as a record having, in order:

• transition ID

• weight of the edge between the transition and the place and
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End
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Figure 8.2: Flowchart for creating the sets of inequalities offline
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• input transition status (observable (0), unobservable (-1) and fault (fault type number,

i.e. if the fault in type 1, then this field has the value 1).

4. Number of output transitions.

5. List of output transitions each of which captures the same format defined for input transi-

tions.

For example, considering the Petri net of Figure. 5.1, then the file associated is illustrated

below:

7 7 2 1 2

#1 1 1 6 1 0 2 1 1 1 2 1 2

#2 1 1 7 1 -1 3 1 0

#3 0 1 1 1 1 1 4 1 0

#4 0 1 2 1 2 1 5 1 2

#5 0 1 3 1 0 2 4 1 0 5 1 2

#6 0 2 4 1 0 5 1 2 1 6 1 0

#7 0 2 4 1 0 5 1 2 1 7 1 -1

As shown in the flowchart, a matrix B representing the set of inequalities I := −Ax ≤M0

equipped with x≥~0 is generated from this file. This matrix has m+n rows and n+1 columns.

The m×n submatrix of B represents −A; the non-negative constraints on x are represented by

rows m+1 to m+n. The last column of B corresponds to the initial marking, where each entry

of this column corresponds to a place in the Petri net. Let us consider the Petri net of Figure. 5.1,

then the matrix B of this net is described in (8.1).
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B =

t1 t2 t3 t4 t5 t6 t7 | M0



p1 −1 −1 0 0 0 1 0 | 1

p2 0 0 −1 0 0 0 1 | 1

p3 1 0 0 −1 0 0 0 | 0

p4 0 1 0 0 −1 0 0 | 0

p5 0 0 1 −1 −1 0 0 | 0

p6 0 0 0 1 1 −1 0 | 0

p7 0 0 0 1 1 0 −1 | 0

x1 ≥ 0 −1 0 0 0 0 0 0 | 0

x2 ≥ 0 0 −1 0 0 0 0 0 | 0

x3 ≥ 0 0 0 −1 0 0 0 0 | 0

x4 ≥ 0 0 0 0 −1 0 0 0 | 0

x5 ≥ 0 0 0 0 0 −1 0 0 | 0

x6 ≥ 0 0 0 0 0 0 −1 0 | 0

x7 ≥ 0 0 0 0 0 0 0 −1 | 0

(8.1)

We then simultaneously augment the matrix B by adding rows representing ci and ¬ci, i =

1, . . . ,r. Suppose that rowi
1 and rowi

2 represent ci and ¬ci, respectively, then rowi
1 and rowi

2 has

non-zero values in the entries corresponding to the fault transitions with respect to a given fault

type T i
f . With a slight difference of rowi

1, rowi
2 has also the value -1 in the last entry.

Consider again the Petri net of Figure. 5.1. Then, the individually added rows to B represent-

ing c1, ¬c1, c2 and ¬c2 are respectively:

row1
1 =

( t1 t2 t3 t4 t5 t6 t7

1 0 0 0 0 0 0 | 0

)
(8.2)

row1
2 =

( t1 t2 t3 t4 t5 t6 t7

−1 0 0 0 0 0 0 | −1

)
(8.3)
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row2
1 =

( t1 t2 t3 t4 t5 t6 t7

0 1 0 0 1 0 0 | 0

)
(8.4)

row2
2 =

( t1 t2 t3 t4 t5 t6 t7

0 −1 0 0 −1 0 0 | −1

)
(8.5)

After obtaining these augmented matrices, the IFME method described in Section 3.3 is

applied to them. In our implementation of the method, an elimination of a variable representing

an unobservable transition corresponds to making all entries in the associated column equal to

zero. This can be fulfilled as follows.

Let C be an augmented matrix inputting to the IFME method. First, all rows of this matrix

are normalised by obtaining the GCD between the values of entries in C, and then dividing each

value by the obtained GCD. Secondly, the variable in question is eliminated. By doing so, all

entries in the column representing this variable in the augmented matrix C become zero. To carry

out this elimination according to the IFME method, the set of rows of C is first divided into three

subsets, say C0, C+ and C−. Assume that the variable x1 is to be eliminated, i.e. all entries of the

first column are to be zero, then C0, C+ and C− have all rows in C with the first entry equal to

0, > 0 and < 0, respectively. All rows in the matrix C0, if any, are copied into the new matrix

representing the produced set of inequalities after the elimination of x1. Also, it is possible that

either C− or C+ is empty. In this case, no new rows are generated.

Assuming that both C− and C+ are not empty, then each row of C− is summed to each row

in C+. After each summation operation, a new row (new inequality) results and also the entries

of two rows constituting this row become zeros. Furthermore, this new row is manipulated

to ensure two cases. The first case is to obtain the integer solutions and the second case is to

minimise the redundancy resulting from the nature of the elimination by the IFME method. We

implement the rule of minimising the redundancy stated in Section 5.2.6.

As illustrated in the flowchart of Figure. 8.2, the sets of inequalities produced from elimina-

tions R1, . . . ,Rr,R′1, . . . ,R
′
r are sent to the console screen. Also, for a better understanding, the
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following example is presented to illustrate the outputs at different stages of the implementation.

Example 8.1. In this example, we explain the application of the IFME method to the matrix

in (8.1) augmented by the row row1
1 in (8.2); one iteration of the IFME method is applied. In

this iteration, assume that the variable x1 corresponding to the unobservable transition t1 is to be

eliminated.

Since all values in the matrix are 0, -1 or 1, normalisation will not change the matrix values.

Thus, the next step is to partition the set of rows in the augmented matrix into three subsets C0,

C− and C+ shown respectively in (8.6), (8.7) and (8.8):

C0 =

t1 t2 t3 t4 t5 t6 t7



0 0 −1 0 0 0 1 | 1

0 1 0 0 −1 0 0 | 0

0 0 1 −1 −1 0 0 | 0

0 0 0 1 1 −1 0 | 0

0 0 0 1 1 0 −1 | 0

0 −1 0 0 0 0 0 | 0

0 0 −1 0 0 0 0 | 0

0 0 0 −1 0 0 0 | 0

0 0 0 0 −1 0 0 | 0

0 0 0 0 0 −1 0 | 0

0 0 0 0 0 0 −1 | 0

(8.6)

C− =


t1 t2 t3 t4 t5 t6 t7

−1 −1 0 0 0 1 0 | 1

−1 0 0 0 0 0 0 | 0

 (8.7)
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C+ =


t1 t2 t3 t4 t5 t6 t7

1 0 0 −1 0 0 0 | 0

1 0 0 0 0 0 0 | 0

 (8.8)

If we assume that R represents the matrix holding the result of the elimination, then all the

rows of the matrix C0 are copied to R. Next, the first row of C− is summed to both the first and

second rows of C+. Similarly, the second row of C− is summed to both the first and second rows

of C+. As a result, four rows are added to the matrix R as shown in the following matrix:

R =

t1 t2 t3 t4 t5 t6 t7



1 0 0 −1 0 0 0 1 | 1

2 0 1 0 0 −1 0 0 | 0

3 0 0 1 −1 −1 0 0 | 0

4 0 0 0 1 1 −1 0 | 0

5 0 0 0 1 1 0 −1 | 0

6 0 −1 0 0 0 0 0 | 0

7 0 0 −1 0 0 0 0 | 0

8 0 0 0 −1 0 0 0 | 0

9 0 0 0 0 −1 0 0 | 0

10 0 0 0 0 0 −1 0 | 0

11 0 0 0 0 0 0 −1 | 0

12 0 −1 0 −1 0 1 0 | 1

13 0 −1 0 0 0 1 0 | 1

14 0 0 0 −1 0 0 0 | 0

15 0 0 0 0 0 0 0 | 0

(8.9)

Note that the first column of the matrix R has only zeros. Also, the rows 12-15 represent the

rows resulting from the elimination by summing each row of C− to each row of C+; the last row

can be deleted because all of its entries have the value 0.
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Figure 8.3: Esper CEP application architecture for implementing online fault diagnosis

8.1.2 Esper CEP application: the online step

We have used the facilities of Esper CEP to develop an application for implementing Algorithm

5.2 described in Chapter 5 to perform online fault diagnosis. The architecture of the developed

application is depicted in Figure. 8.3, where the main components of the application and their

interactions in order to compute the diagnosis are shown. The details of these components can

be explained in the following:

Event representation: Esper provides different methods to model events in a form suitable

for processing by its engine. In our application, the events are represented as Plain-Old Java

Object (POJO) classes. The following code represents a POJO class for the observed events,

where a single property and two methods are declared:

class ObservedEvents{

private int ID;

public void setID(int ID){this.ID=ID;}

public int getID(){return ID;}

}
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Creating the Esper engine instance: to access the facilities provided by Esper, an

engine instance needs to be created. Engine instances are represented by the interface

EPServiceProvider. To create an instance of Esper engine, the getDefaultProvider

method is invoked on the EPServiceProviderManager as shown in the following code:

EPServiceProvider epService=EPServiceProviderManager.getDefaultProvider();

The object epService represents an Esper engine instance which can be used to access more

services provided by the engine.

EPL and pattern statements: EPL and pattern statements can be imagined as SQL queries.

These statements are built via the administrative interface EPAdministrator, by first

creating an instance of the interface EPAdministrator and then writing the EPL statement

as shown in the following code:

EPAdministrator

admin=EPServiceProviderManager.getDefaultProvider().getEPAdministrator();

EPStatement

eplstate=admin.createEPL("insert into Parikh select ID, count(ID) as mycount

from kk.ObservedEvents group by ID");

An instance of type EPStatement is returned by invoking the method createEPL on

the interface EPAdministrator instance, admin. Simply, the EPL statement eplstate

defined above instructs the engine to do three operations: 1) group the events according to their

ID; 2) count the number of appearances of each event in each group and save it in the variable

mycount; and 3) insert the ID and the appearance frequency of these events into a new stream

called Parikh.

Adding listeners: the results generated by the EPL statement are posted to listeners. One or

more listeners can be added to each EPL statement. The Esper engine continuously submits the

results of an EPL statement to its listener(s) as soon as they are produced by the statement. In our

implementation, as many listeners as fault types are added to the statement eplstate. Adding
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Figure 8.4: Main steps used to build our Esper CEP application

a listener to an EPL statement can be achieved using the addListener() method. For

example, to add the listener listener to the EPL statement eplstate created previously,

the following code line is used:

eplstate.addListener(listener);

where listener represents an instance of the user-defined class Online_diagnosis

which implements the UpdateListener interface provided by the Esper engine. This

interface contains the method Update whose implementation is provided by our application.

class Online_diagnosis implements UpdateListener{

...

public void update(EventBean[] newEvent,EventBean[] oldEvent){

...

int ID= (int) newEvent[0].get("ID");

long D= (long) newEvent[0].get("mycount");

...

}

}

The listeners receive the output of the EPL statement via the Update method parameters

EventBean[]. Once a listener obtains the statement results, these results are processed by the

code provided in the Update method.

The Runtime Interface: the mechanism of sending events to the Esper engine is im-
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Figure 8.5: Petri nets simulation

plemented by the interface EPRuntime. To obtain an instance of this interface, the method

getEPRuntime is invoked on the engine instance of type EPServiceProvider mentioned

previously. Then, the obtained instance is used to invoke the method sendEvent() whose

function is to send events to the engine for processing. Figure. 8.4 depicts the main steps

included in our implementation.

8.1.3 Petri net simulator

The aim of this section is to present the main components of the Petri net simulator with a

description of the function of each component. These components and their interactions are

depicted in Figure. 8.5. The purpose of the simulation is to produce sample paths representing

different observed execution sequences of the system modelled by a Petri net. Obtaining these

paths enables us to compute the diagnosis states made by our approach when an event is observed.

To generate an observed sample path, two lists are to be first defined. The first list is called

the firable transitions list and is used to track the transitions enabled on marking M, see Figure.

8.5. The second list is allocated for events associated with fired observed transitions. Assuming

that the initial marking M0 is given, we can initialise the list of firable transitions by all transitions
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enabled at M0. Then, the steps of the simulation procedure is continuously iterated as follows:

1. Select randomly a transition from the firable transitions list.

2. Fire this transition and update the current marking accordingly.

3. Add the event associated with the fired transition to the observed events list if the transition

is an observable transition.

4. Update the firable list according to the new updated marking.

Initially, the marking M receives the values of the initial marking M0. Note that filtering the

unobservable transitions shown in Figure. 8.5 simulates the projection operation on observable

transitions in the context of partially-observed DES. During this filtration, firing any unobservable

transition is ignored, while firing the observable transition results in adding the associated event

to the observed events list.

8.2 Evaluation

In this section, we establish a comparison between the IFME approach presented in Chapter 5

and the diagnoser automata approach of [4] for fault diagnosis in Petri nets. The goal of this

comparison is to evaluate the performance of our approach against the standard approach and

also to provide some experimental results supporting the theoretical results given in the previous

chapters. Two criteria for comparison are adopted, namely the size of the diagnoser and the

diagnosis computation time (the time for online fault diagnosis). By choosing the diagnoser

automata approach to compare with, we can demonstrate how efficient the IFME method could

achieve the compromise between the space and time as both approaches adopt the idea of the

compiled diagnoser. On the contrary, the ILP approach is not strictly comparable with our

approach since it implements the notion of the interpreted diagnoser as opposed to the compiled

diagnoser. In addition, the difference in time complexity between the diagnoser approach

(constant complexity) and our approach (polynomial complexity) is less than the difference
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Figure 8.6: The benchmark example representing a manufacturing system

between our approach and the ILP approach (exponential complexity). Thus, empirical results

from the ILP approach are not included in this comparison. However, a theoretical point of view

comparison is provided in Section 9.2 to discuss the differences between the IFME approach and

the ILP approach for fault diagnosis.

To this end, we conduct some computational experiments on a DES benchmark example

[40–42], which is widely used, by applying both the IFME and diagnoser automata approaches

to different instances of the general Petri net given in this example.

8.2.1 The benchmark example

We use the benchmark example presented in [40–42] and depicted in Figure. 8.6. The Petri

net example of this benchmark models a general class of manufacturing systems. This Petri
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net model can be extended in different ways using three control parameters: N, M and K. By

modifying the values of these parameters, different instances of the Petri net in 8.6 can be

obtained. This is an important requirement to observe the change in the size of the diagnoser for

different numbers of unobservable transitions (changing K) and different sizes of the state space

(changing M), and then measure the time accordingly. The parameters N and K are about the

size of the system as a two-dimensional grid, see Figure. 8.6. Let N and M respectively denote

the number of production lines and the number of units composing the final product. These units

are simultaneously produced where each unit passes through a number of operations, K, in each

production line.

Obtaining one unit of the final product requires sending N orders (firing the transition ts),

each of which is allocated to one production line. The output of each line is one part (all parts

are identical) which is finally put in a buffer (places pi,K+2, i = 1, . . . ,N). From these buffers, the

assembly station takes each part (firing transition te) to produce the final product. Before sending

the completed parts to the buffers, each part in line i (i = 1, . . . ,N) is processed by a series of

operations modelled by transitions ti, j ( j = 1, . . . ,K). After finishing this stage, two states are

possible: either the part in line i is sent to the right buffer (firing transition ti,K+1) or a fault has

occurred (firing transition fi, i = 1, . . . ,N−1).

In fact, the fault in this case expresses the state where the part i moves from line i to i+1

at the same processing stage which it has already been through. For simplicity, these faults are

assumed to be of the same type. As previously highlighted, all observable transitions in Figure.

8.6 are depicted by solid rectangles, while empty rectangles represent unobservable transitions.

8.2.2 Results and discussion

This section presents and analyses the experimental results obtained from implementing the two

different approaches: for both creating the diagnoser and the online diagnosis computations. The

language used for the purpose of the implementation is Java 1.7.0. All experiments described in

this section have been run on a PC Intel processor with a clock of 3.40GHz and 8GB of RAM.

The implementation of the IFME approach has been described in detail in the first part of
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Table 8.1: The diagnoser size using the diagnoser automata approach and the IFME approach.
The results are obtained using different values of the parameter N when K = 1, M = 1.

Example parameters Diagnoser automata IFME
N |To| |Tu| RG size Diagnoser size Diagnoser size

2 3 4 15 4 23
3 4 5 80 10 27
4 5 6 495 29 56
5 6 7 3295 91 82
6 7 8 ∞ ∞ 124
7 8 9 ∞ ∞ 198
8 9 10 ∞ ∞ 336
9 10 11 ∞ ∞ 602

10 11 12 ∞ ∞ 1124

this chapter. On the other hand, even though the diagnoser automata approach has already been

implemented in the tool described in [101], the source code is not publicly available. In addition,

most of the functions and data structures developed in this tool are not particularly self-contained.

Thus, we also developed our own code to implement this approach. Previously, code to produce

the reachability graph (RG) from the Petri net model was developed. Then, the generated graph

is used as an input to the diagnoser automata approach.

Three experiments have been conducted with different values of the parameters N, K and

M. The purpose of the experiments is to study the impact of these parameters on the size of

the diagnoser created using both approaches. The numerical results of these experiments are

summarised in Tables 8.1, 8.2 and 8.3. Columns |To| and |Tu| represent the number of observable

and unobservable transitions, respectively. Also, the diagnoser size in the case of the IFME

approach represents the number of inequalities in R plus the number of inequalities in R′. Note

that some fields of the tables are labelled by ∞. This symbol implies that we could not obtain the

corresponding results due to exceeding the limit of heap space (even with 4GB heap size).

From Table 8.1, we observe that the IFME approach relatively outperforms the diagnoser

automata approach when the value of N increases. Apparently, the impact of change of the

parameter N on the size of the diagnoser is significantly larger in the case of the diagnoser

automata approach, where the size of the diagnoser changes from 4 to 91 nodes by only changing

N from 2 to 5. Furthermore, building these graphs can only be performed for small values of N.
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Table 8.2: The diagnoser size using the diagnoser automata approach and the IFME approach.
The results are obtained using different values of the parameter K when N = 2, M = 1.

Example parameters Diagnoser automata IFME
K |To| |Tu| RG size Diagnoser size Diagnoser size

1 3 4 15

4

23
2 3 6 24 27
3 3 8 35 31
4 3 10 48 35
5 3 12 63 39
6 3 14 80 43
7 3 16 99 47
8 3 18 120 51
9 3 20 143 55

10 3 22 168 59

In the case of the IFME approach, this impact is relatively less and we can even produce sets of

inequalities (diagnoser) for large values of N, e.g. N = 10. We can also observe that increasing

the values of N results in approximately an equivalent increase in both the number of observable

and unobservable transitions, as illustrated in Table 8.1. This slight increase results in a fast

growth of the number of nodes in the reachability graph (the number of states in the system

being analysed). Consequently, the size of the diagnoser increases significantly. On the other

hand, the increase of the number of observable and unobservable transitions has an impact on

the size of the diagnoser; however, it does not cause a fast growth in the number of inequalities.

In Table 8.2, the results illustrate that the size of the diagnoser with respect to the parameter

K is fixed (4 nodes) in the case of diagnoser automata approach. This result is expected due to

the number of observable transitions being fixed. Looking at the results obtained by applying the

IFME approach, we notice that there is an impact of changing K on the size of the diagnoser.

Since increasing K leads to an increase in the number of unobservable transitions, the size of

the diagnoser increases accordingly. This increase tends to be linear according to the number of

unobservable transitions in this benchmark example.

The purpose of the last experiment is to study the change of parameter M on the size of the

diagnoser of both approaches. Fixing the number of observable and unobservable transitions,

Table 8.3 shows that the parameter M has no impact on the obtained size values using the IFME
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Table 8.3: The diagnoser size using the diagnoser automata approach and the IFME approach.
The results are obtained using different values of the parameter M when N = 2, K = 1.

Example parameters Diagnoser automata IFME
M |To| |Tu| RG size Diagnoser size Diagnoser size

1 3 4 15 4

23

2 3 4 96 23
3 3 4 377 124
4 3 4 1133 314
5 3 4 2855 934
6 3 4 6341 1840
7 3 4 ∞ ∞

8 3 4 ∞ ∞

9 3 4 ∞ ∞

10 3 4 ∞ ∞

approach. Using the diagnoser automata approach, this change draws an exponential relationship

for the numerical results representing the size of reachability graph and diagnoser automata, as

illustrated in the fourth and fifth column of Table 8.3. Clearly, the change of the parameter M has

a different impact compared with the impact of the change of parameters N and K on the size

of the produced diagnoser. In Table 8.3, the sizes of both reachability graph and the diagnoser

dramatically increase when the value of the parameter M slightly increases; while this change

draws a constant time relationship in the case of the IFME approach. In other words, the number

of tokens in the initial marking has no effect on the number of inequalities resulting from the

IFME approach.

As it appeared that the diagnoser automata approach has a scalability problem, i.e. we cannot

apply the approach for large Petri nets models, we shall test our approach on large examples of

Petri nets. Working on these examples can help to draw a clear relationship of the performance

with respect to the example parameters.

Table 8.4 summarises the performance of the IFME approach of both creating the diagnoser

and computing the diagnosis. Since the complexity of creating the diagnoser using the IFME

approach relies on the number of unobservable transitions, the performance is tested using

different values of this number. According to the structure of the Petri net in Figure. 8.6, the

change of the parameter K is only required to change the number of unobservable transitions.
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Table 8.4: The diagnoser size (|R|+ |R′|) and diagnosis time (the worst case) for different values
of parameter K when N = 10, M = 1 and |To|= 11 using the IFME approach.

Example parameters IFME approach
K |P| |T | |Tu| Diagnoser size Diagnosis time[ms] Optimal diagnoser size Optimal diagnosis time[ms]

5 71 71 80 1025 0.0543 1114 0.0509
10 121 121 110 1305 0.0975 1164 0.0900
15 171 171 160 1405 0.1476 1214 0.1273
20 221 221 210 1505 0.1964 1264 0.1635
25 271 271 260 1605 0.2491 1314 0.2022
30 321 321 310 1705 0.3188 1364 0.2419
35 371 371 360 1805 0.3703 1414 0.2854
40 421 421 410 1905 0.4599 1464 0.3360
45 471 471 460 2005 0.5877 1514 0.3866
50 521 521 510 2105 0.6524 1564 0.4418

The numerical results in Table 8.4 is visibly reflected in Figure. 8.7 below. Note that the optimal

diagnoser size corresponds to the number of common inequalities of R and R′ plus the number

of different inequalities in both R and R′. It appears that the IFME approach can be applied for

larger Petri nets than the diagnoser automata approach. Therefore, the scalability of the IFME

approach is higher than the scalability in the diagnoser automata approach.

Regarding the diagnosis computation, it is known that the diagnoser automata approach

requires a constant time in terms of the diagnoser size to make diagnosis decisions online,

whereas the IFME approach has a linear complexity in the worst case. Thus, we focus on

measuring the worst case time of computing the diagnosis states for different diagnoser sizes. In

this experiment, two cases of results are reported. The first case represents the original results
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respect to number of unobservable transitions in Petri net models
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of diagnosis time without considering the common inequalities in the diagnoser. In the second

case, we show the optimal results obtained by taking into account the common inequalities and

using the minimum number of inequalities which are necessary to make diagnosis decisions, as

discussed in Section 5.2.6. In either case, the results shown in Table 8.4 indicate that the time

spent to compute the diagnosis is reasonable, e.g. less than one second (0.4418 milliseconds)

is required to compute the diagnosis state in the worst case when the diagnoser size is 2015

inequalities. These results approximately draw a linear relationship with regards to the diagnoser

size, as illustrated in Figure. 8.8. In addition, considering the common inequalities could further

improve the efficiency of our approach, as stated in Table 8.4 and Figure. 8.8.

In fact, all results obtained in the previous experiments are based on the application of

the original IFME method without considering the redundancy of the inequalities generated.

Removing the redundant inequalities reduces the number of inequalities considerably. For

example, the application of the rule of Section 5.2.6 to the results described in Table 8.8 results

in smaller diagnoser sizes, in particular a diagnoser size of 360 inequalities is obtained for

all different values of |Tu| shown in the table. Consequently, the time required to compute the

diagnosis is reduced accordingly. One observation for these results with regards to the benchmark

example, is that, while there is a fixed number of observable transitions, the IFME approach

could produce the same diagnoser size after removing the redundancy, regardless of the number

of the unobservable transitions.
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8.3 Chapter summary

The content of this chapter has focused on describing the implementation details of the IFME

approach presented in Chapter 5. In addition, using a benchmark example, the evaluation of our

approach compared with the standard approach in the field of fault diagnosis has been covered.

The implementation task has been divided into two parts. In the first part, Java has been used

to develop a software tool to create the diagnoser offline. Then, using the facilities presented by

an emergent technology, CEP, the created diagnoser is implemented in order to diagnose faults

online.

The experimental results show that the scalability of the IFME approach can be better in the

cases where the size of the Petri net is large. By contrast, the diagnoser automata approach can

only be applied to relatively small Petri net models. With respect to computing the diagnosis

online, it is known that the diagnoser automata approach requires constant time requirements

in terms of the size of the diagnoser; while the IFME approach requires at most linear time

requirements.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarise the main contributions achieved in this thesis reflecting the research

questions. In addition, a comparison between the IFME approach for fault diagnosis and the

most relevant work is presented. Finally, several directions for future work are discussed.

9.1 Summary of contributions

Considering the research questions stated in Chapter 1, we have introduced a new approach to

address the problem of fault diagnosis in discrete event systems modelled by Petri nets. The

systems under study are partially-observed where faults are not observable. In this new approach,

a different technique to produce the diagnoser based on the IFME method is presented. In fact,

the diagnoser is no longer represented as an automaton; instead a pair of sets of inequalities in

variables representing the number of firing of the observable transitions is used. To produce this

pair of sets, the elimination method is applied to drop the variables representing unobservable

transitions from a set of inequalities created from the state equation in Petri nets. We first

create two sets after adding the constraint (representing the normal behaviour) and its negation

(representing the faulty behaviour) to the original set of inequalities. The two resulting sets are

used for fault diagnosis. In short, the approach is based on two algorithms. The first algorithm

employs the IFME method to eliminate the variables representing unobservable transitions. As

a result, a set of inequalities in variables representing the observable transitions is built. The
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second algorithm subsequently uses these reduced sets of inequalities (the diagnoser) resulting

from the elimination to diagnose faults online.

Additionally, the proposed approach has been applied to diagnose a different complex form

of faults in partially-observed DES. In this form, faults are not events in the model of the system

to be diagnosed, instead they represent violations of constraints. Two common examples of

this form of faults are service-level agreement and Quality of Service violations. In effect,

the existing approaches are not directly capable of diagnosing such faults. Hence, the IFME

approach represents a generalization to the existing approaches. This has required extending the

definition of the diagnoser to cope with this different form of faults.

Under the assumption that the unobservable subnets of Petri nets are cycle free, we have

shown that the IFME-based fault diagnosis method can be applied to both finite and infinite

systems. In addition, the notions introduced in this thesis have been formulated in the form of

pseudo-code algorithms supported by a detailed analysis of their complexities. These complexi-

ties have been measured in terms of both the size of the diagnoser created offline and the time of

computing the diagnosis online. Also, these complexities have pointed out that the size of the

diagnoser heavily relies on the number of the unobservable transitions in the Petri net models.

This could be very useful in cases where the state space of the systems to be diagnosed is large,

as has appeared through the empirical results.

The algorithms developed for the present approach have been implemented using Java and the

facilitation of events processing provided by Esper CEP. This represents an emerging technology

to build event-driven applications to process large streams of events received from different

sources in real time. The built software tool has been used to evaluate the performance of the

proposed approach. The experimental results obtained by applying this tool on a benchmark

example reveal that our approach outperforms existing approaches. These results point out high

scalability of the IFME approach, allowing its application to large Petri net models.

It is worth mentioning that even though the results obtained in this thesis have primarily

focused on the systems modelled by Petri nets, they are still applicable in automata models as

Petri nets extend automata. A direct application can be made by transforming automata models
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into Petri net models (see as an example the procedure described in [6]) and then applying the

proposed approach to the resulting Petri net.

9.2 A comparison with previous work

Based on the contributions discussed in the previous section, a comparison between our approach

and strongly relevant previous work is provided in this section. In particular, we consider

three different methods mentioned previously to establish this comparison; namely diagnoser

automata [4], basis marking and justifications [8], and ILP approach [10].

• The diagnoser automata approach for fault diagnosis in Petri nets requires transforming a

Petri net to an automaton from which the diagnoser is constructed. This method can only be

applied for bounded Petri nets. Also, the size of the diagnoser grows exponentially with the

size of the state space of the system, and this limits its application to small systems. Since

this approach precompiles all diagnosis information into a single machine (the diagnoser),

the computation of the diagnosis is then just the trigger of a set of transitions every time

an event is observed. Thus, a constant time complexity in terms of the diagnoser size is

required to make the diagnosis decisions. The IFME approach has a major advantage

where the space complexity is exponential in the number of the unobservable transitions

and not the number of states. Also, the time complexity is still reasonable in the worst case

as shown through the empirical results. In addition, The IFME approach can be applied to

unbounded systems with the same computational requirements.

• The basis marking and justifications approach has been proposed for both bounded,

unbounded, labelled and unlabelled Petri nets. For bounded systems, a basis reachability

graph (BRG) is generated. The size of this graph is less than the size of the reachability

graph in Petri nets as not all markings are enumerated. However, the size of the graph

may still grow exponentially with the number of states in the system being analysed. On

the other hand, in unbounded Petri nets, the BRG cannot be built because the number of
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states is infinite, i.e. the computational requirements are moved online. Consequently, to

address the fault diagnosis problem in these nets, this method requires solving a set of

linear inequalities every time an event is observed. This means running an exponential

time complexity algorithm. In addition, the number of inequalities grows with the length

of the observed sequence. The IFME approach has an advantage over the basis marking

and justifications approach in that it neither requires different procedures to address each

of the bounded and unbounded Petri net cases, nor does it need to solve a set of inequalities

when observing the sequence of events.

• Techniques involving ILP have been used in fault diagnosis in the past as previously

mentioned. Traditionally, ILP is used to conduct a computation which involves creating the

diagnoser and performing the process of diagnosis online. These techniques are applied for

bounded, unbounded, labelled and unlabelled Petri nets. All computations for diagnosis

are moved online, where they require an exponential time in the worst case. In addition, the

structure of the constraints required to formulate the ILP problem grows with the number

of observed events, adding further space complexity. From this point of view, the IFME

approach is fundamentally different from the ILP as we separate between creating the

diagnoser (performed offline) and computing the diagnosis (performed online). In addition,

the structure of the constraints is fixed and does not rely on the length of the observed

sequence. Another difference is that the ILP approach assumes that all sequences in the

language of Petri nets end with observable transitions, i.e. no unobservable transitions

fire after the last observable transition in any sequence. In our approach, we have no such

restricted assumption.

The discussion in this section is concluded by mentioning that the IFME approach is similar

to the diagnoser approach in that the IFME method creates the diagnoser offline (compiled

diagnoser). Moreover, it resembles the basis marking and justifications approach and ILP

approach as the state equation and enabling constraints are used to describe the behaviour of the

systems. However, our approach has a fundamental difference demonstrated in the manner by

which these constraints are adopted to address the fault diagnosis problem.
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9.3 Future work

In this section, a two-fold future plan is proposed following the results obtained in this thesis.

In the first place, relevant directions to improve the IFME approach itself are considered. The

other part focuses on addressing a wider class of Petri nets and some other related work which

includes addressing the diagnosability problem.

Almost all discrete event system methods aim to reduce the size of the diagnoser and the

time of computing the diagnosis. The IFME approach balances between these two factors giving

an improved scalability of the approach over the existing approaches. This scalability can further

be improved considering the redundancy of the inequalities resulting from the nature of the

elimination adopted using the FME method. A variety of modifications to the FME method has

been proposed in the literature (see [102] for a survey). A study needs to be made to decide

which modification can be useful in the fault diagnosis context. This can further improve the

performance of the present approach in both memory and time requirements.

The focus of this thesis is on the untimed systems driven by discrete events. In real systems,

timing information is important for two reasons. First, this information can be used to identify

the time of occurrences of faults, thereby we can express the diagnosis delay in terms of time

elapsed after the fault occurs, rather than the number of the events that occur before the fault

is diagnosed. The second reason is that some faults occur as a result of exceeding time limits

capturing the form of violations of constraints. Such examples can be found in development

environments such as service-oriented architecture (SOA) and cloud computing [103, 104]. For

such diagnosis goals, it is necessary to express the time in the model of the system in order to

diagnose such violations.

Finally, a study of the diagnosability problem in the context of the IFME method is one future

direction. Specifically, we could attempt to answer the following question: under what conditions

is the system diagnosable based on the set of inequalities created from the state equation? Thus,

we could investigate whether it is possible to conclude a relationship between these inequalities

to define these conditions.
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