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Abstract. Probabilistic timed automata, a variant of timed automata
extended with discrete probability distributions, is a specification for-
malism suitable for describing both nondeterministic and probabilistic
aspects of real-time systems, and is amenable to model checking against
probabilistic timed temporal logic properties. In the case of classical
(non-probabilistic) timed automata, it has been shown that for a large
class of real-time verification problems correctness can be established
using an integer-time model, inducing a notion of digital clocks, as op-
posed to the standard dense model of time. Based on these results, we
address the question of under what conditions digital clocks are sufficient
for the performance analysis of probabilistic timed automata. We extend
previous results concerning the integer-time semantics of an important
subclass of probabilistic timed automata to consider the computation of
expected costs or rewards. We illustrate this approach through the anal-
ysis of the dynamic configuration protocol for IPv4 link-local addresses.

1 Introduction

Network protocols increasingly often rely on the use of randomness and timing
delays, for example exponential back-off in Ethernet and IEEE 802.11, and IEEE
1394 FireWire root contention. Since these protocols execute in a distributed en-
vironment, it is important to also consider nondeterminism when modelling their
behaviour. For example, we may wish to model a system for which the likeli-
hood of a certain event occurring changes with respect to the amount of time
elapsed. A natural model for systems that exhibit nondeterminism, probability
and real-time, called probabilistic timed automata – a probabilistic extension of
timed automata [1] – has been proposed in [19]. In the probabilistic timed au-
tomata model real-valued clocks measure the passage of time and transitions can
be probabilistic, that is, be expressed as a discrete probability distribution on
the set of target states. In [19] model checking algorithms for verifying the like-
lihood of certain temporal properties being satisfied by such system models are
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introduced. However, these model checking algorithms are either based on region
equivalence [1], and hence suffer from the state-space explosion problem, or on
forwards reachability , which leads to approximate results [19,11]. An alternative
approach, based on backwards reachability , is given in [20].

When modelling real-time systems, there is often a trade-off between the
expressiveness of the model and the complexity of the associated solution al-
gorithms. A dense-time model is more expressive than an integer -time model;
however, it is often the case that an integer-time model is easier to verify, since
it can lead to a finite-state system and allows one to apply efficient symbolic
methods developed for untimed systems. We refer to the clocks of an integer-
time model as digital clocks. Henzinger et al. [15] study the question of which
real-time properties can be verified by considering system behaviours featuring
only integer durations. These results are applied to timed automata in [9,24],
and it is shown that an approach using digital clocks is applicable to the veri-
fication of closed, diagonal-free timed automata; intuitively, these are automata
whose constraints do not compare clocks or use strict comparison operators.

We have previously shown that probabilistic reachability properties, such
as ‘with probability 0.05 or less, the system aborts’, of closed, diagonal-free
probabilistic timed automata can be analysed faithfully using digital clocks [22].
The main contribution of this paper is to extend this research by showing that
digital clocks are also sufficient for verifying expected reachability properties such
as ‘the expected time until a data packet is delivered is at most 0.05 seconds’,
or ‘the expected cost of a host choosing an IP address is at most 40’.

In [12], de Alfaro presents a model-checking algorithm for verifying proba-
bilistic and expected reachability properties of finite-state models. We imple-
mented the algorithms of de Alfaro in the probabilistic model checking tool
PRISM [17,25], allowing us to automatically verify expected-cost properties of
interest for integer-time models.

The paper proceeds by revisiting the definition of probabilistic timed au-
tomata in the next section. Expected reachability properties for probabilistic
timed automata are presented in Section 3, and the correctness of the digital
clock interpretation of probabilistic timed automata with respect to these prop-
erties is stated. In Section 4, we present a case study, in which PRISM is used
to analyse the performance of the dynamic configuration protocol for IPv4 link-
local addresses. Finally, in Section 5, we conclude the paper.

2 Probabilistic Timed Automata

Time, clocks, zones and distributions. Let T ∈ {R, N} be the time domain
of either the non-negative reals or naturals. Let X be a finite set of variables
called clocks which take values from the time domain T. A point v ∈ T|X | is
referred to as a clock valuation. Let 0 ∈ T|X | be the clock valuation which
assigns 0 to all clocks in X . For any v ∈ T|X | and t ∈ T, the clock valuation v⊕ t
denotes the time increment of values in v by t. We use v[X := 0] to denote the
clock valuation obtained from v by resetting all of the clocks in X ⊆ X to 0.



Let Zones(X ) be the set of zones over X , which are conjunctions of atomic
constraints of the form x ∼ c for x ∈ X , ∼∈ {≤,=,≥}, and c ∈ N. The clock
valuation v satisfies the zone ζ, written v |= ζ, if and only if ζ resolves to true
after substituting each clock x ∈ X with the corresponding clock value from v.
Readers familiar with timed automata will note that we consider the syntax of
closed, diagonal-free zones, which do not feature atomic constraints of the form
x > c or x < c (closed) or x− y ∼ c (diagonal free) for x, y ∈ X , c ∈ N.

A discrete probability distribution over a countable set Q is a function µ :
Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a possibly uncountable set Q′, let

Dist(Q′) be the set of distributions over countable subsets of Q′. For q ∈ Q, let
µq ∈ Dist(Q) be the distribution which assigns probability 1 to q.

Syntax of probabilistic timed automata. We review the definition of prob-
abilistic timed automata [19].

Definition 1. A probabilistic timed automaton is a tuple (L, l̄,X , Σ, I, prob)
where: L is a finite set of locations including the initial location l̄; X is a set of
clocks; Σ is a finite set of events; the function I : L → Zones(X ) is the invariant
condition; and the finite set prob ⊆ L × Zones(X ) × Σ × Dist(2X × L) is the
probabilistic edge relation.

A state of a probabilistic timed automaton is a pair (l, v) where l ∈ L and
v ∈ T|X | are such that v |= I(l). Informally, the behaviour of a probabilistic
timed automaton can be understood as follows. The model starts in the state
(l̄,0); that is, in the initial location l̄ with all clocks set to 0. In any state (l, v),
there is a nondeterministic choice of either (1) making a discrete transition or
(2) letting time pass. In case (1), a discrete transition can be made according
to any (l, g, σ, p) ∈ prob which is enabled; that is, the zone g is satisfied by the
current clock valuation v. Then the probability of moving to the location l′ and
resetting all of the clocks in X to 0 is given by p(X, l′). In case (2), the option of
letting time pass is available only if the invariant condition I(l) is satisfied while
time elapses. Note that we often refer to the model presented above as closed,
diagonal-free probabilistic timed automata, in order to distinguish the zones used
with those in previous work [19].

Semantics of probabilistic timed automata. The semantics of probabilis-
tic timed automata is defined in terms of timed probabilistic systems, which
exhibit timed, nondeterministic and probabilistic behaviour. They are a variant
of Markov decision processes [14] and Segala’s probabilistic timed automata [26].

Definition 2. A timed probabilistic system PS = (S, s̄,Act , T,Steps) consists
of a set S of states, an initial state s̄ ∈ S, a set Act of actions, a time domain
T, and a probabilistic transition relation Steps ⊆ S × (Act ∪ T)× Dist(S).

A probabilistic transition s
a,µ−−→ s′ is made from a state s ∈ S by first nondeter-

ministically selecting an action-distribution or duration-distribution pair (a, µ)



such that (s, a, µ) ∈ Steps, and second by making a probabilistic choice of target
state s′ according to the distribution µ, such that µ(s′) > 0.

We consider two ways in which a timed probabilistic system’s computation
may be represented. A path represents a particular resolution of both nondeter-
minism and probability. Formally, a path of a timed probabilistic system is a
finite or infinite sequence of probabilistic transitions ω = s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · .

A path ω is initialised in s if s0 = s. We denote by ω(i) the (i+1)th state of
ω, last(ω) the last state of ω if ω is finite, and step(ω, i) the action associated
with the i-th step. If ω is infinite, the duration up to the (n + 1)th state of ω is
defined by Dω(n+1) def=

∑
{|ai | 0 ≤ i ≤ n ∧ ai ∈ T|}. Let Pathful(s) be the set of

infinite paths initialised in s.
The second notion of a timed probabilistic system’s computations is that of

an adversary, which represents a particular resolution of nondeterminism only.
Formally, an adversary is a function A mapping every finite path ω to a pair
(a, µ) such that (last(ω), a, µ) ∈ Steps [28]. For any adversary A, let PathA

ful(s)
denote the set of infinite paths initialised in s associated with A. Then, we define
the probability measure ProbA

s over PathA
ful(s) by classical techniques [16].

We restrict our attention to time-divergent adversaries; a common restriction
imposed in real-time systems so that unrealisable behaviour (corresponding to
time not advancing beyond a bound) is disregarded during analysis. We say that
a path ω is divergent if for any t ∈ R, there exists j ∈ N such that Dω(j) > t.

Definition 3. An adversary A of a timed probabilistic system PS is divergent
if and only if for each state s the probability ProbA

s of the divergent paths of
PathA

ful(s) is 1. Furthermore, let AdvPS be the set of divergent adversaries of PS.

We now define the semantics of probabilistic timed automata defined in terms of
timed probabilistic systems. Observe that the definition is parameterized both
by a time domain T and time increment ⊕, and that the summation in the
definition of discrete transitions is required for the cases in which multiple clock
resets result in the same target location.

Definition 4. Let PTA = (L, l̄,X , Σ, I, prob) be a probabilistic timed automa-
ton. The semantics of PTA with respect to the time domain T and the time in-
crement ⊕ is the timed probabilistic system [[PTA]]⊕T = (S, s̄, Σ, T,Steps) where:
S ⊆ L×T|X | and (l, v) ∈ S if and only if v |= I(l); s̄ = (l̄,0); and ((l, v), a, µ) ∈
Steps if and only if one of the following conditions holds:

Time transitions. a ∈ T, µ = µ(l,v⊕a) and v ⊕ t |= I(l) for all 0 ≤ t ≤ a;
Discrete transitions. a ∈ Σ and there exists (l, g, σ, p) ∈ prob such that v |= g

and for any (l′, v′) ∈ S, we have µ(l′, v′) =
∑

X⊆X & v′=v[X:=0] p(X, l′).

Traditionally, the semantics of probabilistic timed automata assumes that the
reals form the underlying model of time, paired with a time increment which is
standard addition. The continuous semantics of a probabilistic timed automaton
is a timed probabilistic system with generally uncountably many states.

Definition 5. The continuous semantics of a probabilistic timed automaton PTA
is defined as [[PTA]]+R ; that is, T = R and ⊕ = +.



Higher-level modelling. To aid modelling, probabilistic timed automata can
be composed in parallel [22], and can feature integer variables, urgent locations
and events, and committed locations (as in UPPAAL timed automata [3]). The
techniques of [27] can be adapted to represent, syntactically, integer variables
and committed locations within our definition of probabilistic timed automata;
urgent events require a minor adjustment to the semantics of probabilistic timed
automata [21].

3 Performance Measures

In this section, we consider two performance measures for probabilistic timed
automata. The first is probabilistic reachability, namely the maximal and minimal
probability of reaching, from the initial state, a certain set of goal or target states.
For a timed probabilistic system PS = (S, s̄,Act , T,Steps), set F ⊆ S of target
states, and adversary A ∈ AdvPS, let:

pA
s̄ (F ) def= ProbA

s̄ {ω ∈ PathA
ful(s̄) | ∃i ∈ N . ω(i) ∈ F} .

Definition 6. The maximal and minimal reachability probabilities of reaching
the set of states F of the timed probabilistic system PS are defined as follows:

pmax
PS (F ) def= sup

A∈AdvPS

pA
s̄ (F ) and pmin

PS (F ) def= inf
A∈AdvPS

pA
s̄ (F ) .

This performance measure has been studied in the context of probabilistic timed
automata by Kwiatkowska et al. [19,22].

The second measure we consider is expected reachability, which allows us to
compute the expected cost (or reward) accumulated before reaching a certain
set of states. Expected reachability is defined with respect to a cost function
mapping actions and durations to real values, as well as a set F ⊆ S of target
states, and corresponds to the expected cost (with respect to the given cost
function) of reaching a state in F . More formally, for a timed probabilistic system
PS = (S, s̄,Act , T,Steps), cost function c : Act ∪ T → R, set F ⊆ S of target
states, and adversary A ∈ AdvPS, let eA

s̄ (cost(c, F )) denote the usual expectation
with respect to the measure ProbA

s̄ over PathA
ful(s̄), where for any ω ∈ PathA

ful(s̄):

cost(c, F )(ω) =


min{j |ω(j)∈F}∑

i=1

c(step(ω, i−11)) if ∃j ∈ N. ω(j) ∈ F

∞ otherwise.

The value of cost(c, F )(ω) equals the total cost, with respect to the cost function
c, accumulated until a state in F is reached along the path ω. Note that we define
the cost of a path which does not reach F to be ∞, even though the total cost
of the path may not be infinite. Hence, the expected cost of reaching F from s
is finite if and only if a state in F is reached from s with probability 1. Expected
time reachability (the expected time with which a given set of states can be
reached) is a special case of expected reachability, corresponding to the case
when c(a) = 0 for all a ∈ Act and c(t) = t for all t ∈ T.



Definition 7. The maximal and minimal expected costs of reaching a set of
states F under the cost function c in the timed probabilistic system PS are defined
as follows:

emax
PS (c, F ) = sup

A∈AdvPS

eA
s̄ (cost(c, F )) and emin

PS (c, F ) = inf
A∈AdvPS

eA
s̄ (cost(c, F )) .

We note that calculating expected reachability is equivalent to the stochastic
shortest path problem for Markov decision processes; see for example [6].

At the level of probabilistic timed automata, one can define a cost function
using a pair (r, cΣ), where r ∈ R gives the rate at which cost is accumulated as
time passes, and cΣ : Σ → R is a function assigning the cost of executing each
event in Σ. The associated cost function cr,cΣ

is defined by cr,cΣ
(t) = t · r for

all t ∈ T, and cr,cΣ
(σ) = cΣ(σ) for all σ ∈ Σ. A probabilistic timed automaton

equipped with a pair (r, cΣ) is a probabilistic generalisation of uniformly priced
timed automata [4].

For both probabilistic and expected reachability, we can consider reaching
a state satisfying a formula which is a conjunction of propositions identifying
locations and clock constraints of the form x ∼ c for x ∈ X , ∼∈ {≤,=,≥}
and c ∈ N. Instead of considering these cases separately, we just note that such
reachability problems can be reduced to those referring to locations only by
modifying syntactically the probabilistic timed automaton of interest (see [19]).

For examples of the types of properties of probabilistic timed automata which
can be expressed using expected reachability, consider the following: ‘the ex-
pected time until a host can use an IP address is at most 0.05 seconds’, ‘the
expected number of packets sent before failure is at least 300’ and ‘the expected
number of lost messages within the first 200 seconds is at most 10’. In the case
of the third example, we would first need to modify the probabilistic timed au-
tomaton under study by adding a distinct clock (to represent global time) and
a location such that, from all locations, once the global clock has reached 200
seconds, the only transition is to this new location. The set of target states would
then be the set containing only the new location and the cost function would
equal 0 on all time transitions and events except those events corresponding to
a message being lost; the costs for those actions would be set to 1.

Performance measures and digital clocks. We now show, under the re-
striction that the probabilistic timed automaton under study is diagonal-free
and closed, that it suffices just to consider the integer-time semantics when ver-
ifying expected reachability properties.

Definition 8. For any x ∈ X , let kx denote the greatest constant that the clock
x is compared to in the zones of PTA. Define ⊕N such that, for any clock valuation
v ∈ N|X | and time duration t ∈ N, the clock valuation v⊕Nt assigns the value
min{vx + t,kx + 1} to all clocks x ∈ X . The integer-time semantics of PTA is
then defined as [[PTA]]⊕N

N ; that is, T = N and ⊕ = ⊕N.

Let PTA = (L, l̄,X , Σ, I, prob) be a (closed, diagonal-free) probabilistic timed
automaton. For any set of locations L′ ⊆ L, we denote by FL′

T the set of all states



of [[PTA]]⊕T which correspond to these locations; that is FL′

T = {(l, v) | l ∈ L′, v ∈
T|X | ∧ v |= I(l)}.

Theorem 1. For any (closed, diagonal-free) probabilistic timed automaton PTA,
set of locations L′ ⊆ L and cost function c : Σ∪R → R which satisfies c(t+t′) =
c(t) + c(t′) for all t, t′ ∈ R:

emax
[[PTA]]+R

(c, FL′

R ) = emax

[[PTA]]
⊕N
N

(c, FL′

N ) and emin
[[PTA]]+R

(c, FL′

R ) = emin

[[PTA]]
⊕N
N

(c, FL′

N ) .

The proof of the correctness of Theorem 1 can be found in [18]. Note that any
cost functions defined by a pair (r, cΣ), where r ∈ R and cΣ : Σ → R, will satisfy
the condition c(t + t′) = c(t) + c(t′) for all t, t′ ∈ R. The analogous result for
probabilistic reachability is proved in [22] and states:

pmax
[[PTA]]+R

(FL′

R ) = pmax

[[PTA]]
⊕N
N

(FL′

N ) and pmin
[[PTA]]+R

(FL′

R ) = pmin

[[PTA]]
⊕N
N

(FL′

N ) .

4 Case study: Dynamic configuration of link-local
addresses in IPv4

In this section, we illustrate the utility of the integer-time semantics of proba-
bilistic timed automata with an analysis of the dynamic configuration protocol
for IPv4 link-local addresses [10].

The dynamic configuration protocol for IPv4 addresses offers a distributed
‘plug-and-play’ solution in which IP address configuration is managed by indi-
vidual devices connected to a local network. Upon connecting to the network, a
device, henceforth called a host, first randomly chooses an IP address from a pool
of 65024 available (the Internet Assigned Number Authority has allocated the
addresses from 169.254.1.0 to 169.254.254.255 for the purpose of such link-local
networks). The host waits a random time of between 0 and 2 seconds before
sending four Address Resolution Protocol (ARP) packets, called probes, to all of
the other hosts of the network. Probes contain the IP address selected by the
host, operate as requests to use the address, and are sent at 2 second intervals. A
host which is already using the address will respond with an ARP reply packet,
asserting its claim to the address, and the original host will restart the protocol
by reconfiguring its chosen address and sending new probes. If the host sends
four probes without receiving an ARP reply packet, then it commences to use
the chosen IP address. The host then sends confirmations of this fact to the
other hosts of the network by means of two gratuitous ARPs, also at 2 second
intervals. The protocol has an inherent degree of redundancy, for example with
regard to the number of repeated ARP packets sent, in order to cope with mes-
sage loss. Indeed, message loss makes possible the undesirable situation in which
two or more hosts use the same IP address simultaneously.

A host which has commenced using an IP address must reply to ARP packets
containing the same IP addresses that it receives from other hosts. It continues
using the address unless it receives any ARP packet other than a probe (for



example, a gratuitous ARP) containing the IP address that it is using currently,
In such a case, the host can either defend its IP address, or defer to the host
which sent the conflicting ARP packet. The host may only defend its address if
it has not received a previous conflicting ARP packet within the previous ten
seconds; otherwise it is forced to defer. A defending host replies by the sending
an ARP packet, thereby indicating that it is using the IP address. A deferring
host does not send a reply; instead, it ceases using its current IP address, and
reconfigures its IP address by restarting the protocol.

As in [29], we assume a ‘broadcast’-based communication medium with no
routers (for example, a single wire), in which messages arrive in the order in
which they are sent. In contrast to the analytic analysis of the protocol of
Bohnenkamp et al. [8], we model the possibility that a device could surrender an
IP address that it is using to another host; and in contrast to timed-automata-
based analysis of Zhang and Vaandrager [29], we model some important prob-
abilistic characteristics of the protocol, and consider parameters more faithful
to the standard (such as the maximum number of times a device can witness
an ARP packet with the same IP address as that which it wishes to use before
‘backing off’ and remaining idle for at least one minute).

In the standard [10], there is no mention of what a host should do with
messages corresponding to its current IP address (i.e. the probes and gratuitous
ARP packets specified in the standard) which are in its output buffer (i.e. those
that have yet to be sent), when it reconfigures (choses a new IP address). How-
ever, when the host does reconfigure, unless it picks the same IP address, which
happens with the very small probability 1/65024, these messages are not rel-
evant. In fact, such messages will slow down the network and may even make
hosts reconfigure when they do not need to. We therefore considered two dif-
ferent versions of the protocol: one where the host does not do anything about
these messages (no reset) and another where the host clears its buffer (removes
the messages) when it is about to choose a new IP address (reset).

4.1 Modelling the dynamic configuration protocol

Preliminaries. We consider in detail one concrete host, which is attempting to
configure an IP address for a network in which, as in [8], there are 1000 abstract
hosts (they are called abstract because we do not study their behaviour in depth)
which have already configured IP addresses. Therefore, when the concrete host
picks an address, the probability of this address being fresh (not in use by an
abstract host) is 64024/65024. We also assume that the concrete host never picks
the same IP address twice, as this happens only with a very small probability.

Following the above assumptions, we require only three abstract IP addresses:
0 – an address of an abstract host which the concrete host previously chose;
1 – an address of an abstract host which is the concrete host’s current choice;
2 – a fresh address which is the concrete host’s current choice.

As in the standard [10], we suppose that it takes between 0 and 1 second to
send a packet between hosts (where the choice of the exact time delay is non-
deterministic). Since the abstract hosts have already picked their IP address, by



variable description range

coll the number of address collisions detected by the concrete host 0 . . . 10

iph the current address of the concrete host 1 . . . 2

defend equals 1 when the host is defending its address (0 otherwise) 0 . . . 1

probes the number of probes/ARPs sent by the concrete host 0 . . . N

ip the address of the ARP packet currently being sent 0 . . . 2

n the number of packets in the concrete host’s output buffer 0 . . . 8

b[i] the address of packet i in the concrete host’s output buffer 0 . . . 1

m0 the number of packets containing an IP address 0 . . . 20
of type 0 in all of the buffers of the abstract hosts

m1 the number of packets containing an IP address 0 . . . 8
of type 1 in all of the buffers of the abstract hosts

Table 1. Integer variables used in the probabilistic timed automata

supposing that they always defend their addresses, the concrete host will never
receive probes. It then follows that we do not need to record the type of message
being sent, but instead only the IP address in the message, and whether it is
sent from the concrete host to the abstract hosts or vice versa.

As in [29], we consider the case in which hosts use output buffers to store
the packets they want to send. We have chosen the size of the buffers such that
the probability of any buffer becoming full is negligible. We suppose that the
concrete host can send a packet to all the abstract hosts at the same time and
only one of the abstract hosts can send a packet to the concrete host at a time.

The set of variables of our probabilistic timed automata includes both clocks
(x, y and z) and integer variables which are described in Table 1. Note that the
range of the integer variable probes is changed for different verification instances,
and since the abstract IP address 2 corresponds to a fresh address chosen by the
concrete host we need only two buffers for the abstract hosts (corresponding to
addresses of type 0 and 1).

Probabilistic timed automata for the protocol. In the following, we de-
scribe the modelling of the reset version of the protocol only. We use two prob-
abilistic timed automata, one to model the concrete host and one to model the
environment (the abstract hosts and the output buffers of all hosts).

The model for the concrete host is shown in Figure 1. The host commences in
the location RECONF (the double border indicates it is the initial location); this
is a committed location, and therefore must be left immediately. In RECONF,
the host chooses a new IP address by moving to the location CHOOSE if it has
experienced less than ten address collisions, and to CHOOSE WAIT otherwise.
These transitions are labelled with the event reset to inform the environment
that the host’s buffer is to be reset (all messages in its buffer are to be removed).

In both CHOOSE and CHOOSEWAIT, the address selection is represented
by the assignment iph:=RAND(1, 2), which corresponds to the host randomly
selecting an IP address (using the probabilities given at the start of this section).
The assignment to the clock x (a uniform choice between {0, 1, 2}) approximates



RECONF
committed

WAITSP
x ≤ 2

x ≤ 60
CHOOSEWAITCHOOSE

urgent

WAITSG
x ≤ 2

RESPOND
urgent USE

x=2∧probes<N
send

probes:=probes+1

x:=0

rec

ip 6=iph

rec

ip = iph

coll:= min(coll+1, 10)

rec

rec

reset

coll<10
coll=10

reset

iph:=RAND(1, 2)

probes:=0

x=60
iph:=RAND(1, 2)

x:=RAND(0, 1, 2)
probes:=0

x:=0

y:=0, x:=2

coll:=0, probes:=0

x=2∧probes=N

x:=RAND(0, 1, 2)

send

x=2∧probes<1

x:=0
rec

ip6=iph

ip=iph

rec send

send

defend:=1, y:=0

defend:=0
defend=0∨y≥10

x=2∧probes=1

Fig. 1. Probabilistic timed automaton for the concrete host

the random delay of between 0 and 2 made by the host before sending the first
probe. Note that, in CHOOSEWAIT, since the host has already experienced at
least ten address collisions, it waits 60 seconds before choosing a new address.

In the location WAITSP the host sends N probes at 2 second intervals (the
self-loop labelled with send). The host may also receive packets by means of
the event rec. If it receives a packet which has a different IP address (ip 6=iph),
then the host ignores the packet (and remains in WAITSP); however, if it has
the same address, the host immediately reconfigures (moves to RECONF). When
sending the Nth probe, the host proceeds to location WAITSG, waits 2 seconds
and then sends two gratuitous ARPs (re-using the variable probes to count these
ARPs). After these ARPs have been sent, the host moves to USE. However, if
while in WAITSG the host receives a packet with the same IP address, it moves
to RESPOND. In this location, the host can decide to reconfigure (return to
RECONF), or defend its IP address (by sending an ARP packet) if it has either
not yet defended the address (defend=0) or 10 seconds have passed since it
previously defended the address (y≥10). This defence takes the form of sending
of a defending packet, as denoted by the send labelled transition from RESPOND
to WAITSG.

The model for the environment is shown in Figure 2. The dotted box labelled
with three transitions which surrounds the model denotes that these transitions
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Fig. 2. Probabilistic timed automaton for the environment

are available in all of the locations of the model. More precisely, in all locations,
the environment may: receive a send event from the concrete host and, if the
host’s buffer is not full (n < 8), the corresponding packet is added to the buffer
(otherwise it is lost); receive a reset event and clear the buffer of the concrete
host (n:=0) and, since we assume that the concrete host will never choose the
same IP address twice, sets the IP address in any packet being sent or to be sent
to type 0 (i.e. ip:=0, m1:=0 and m0:=min(m0+m1, 20)).

The behaviour of the environment commences in the location IDLE. The
transition which probabilistically moves to either IDLE or CONC SEND corre-
sponds to the environment sending a packet from the concrete host’s buffer.
The urgent labelling denotes that the transition should be taken as soon as it
is enabled, i.e. it should be taken as soon as there is something to send. Simi-
larly, the transitions which move probabilistically to either IDLE or ENV SEND
correspond to an abstract host sending a packet, and are again urgent. There
are two such transitions, since the address in the packet can either be of type
0 (m0>0) or 1 (m1>0). For each of these transitions, the loop (remaining in
IDLE) corresponds to the packet being lost by the medium, while the other edge
corresponds to the packet being sent correctly (therefore the required buffers are
updated when one of these transitions is taken). Note that, since each of these
transitions corresponds to a message from a different host, when more than one
of these transitions is enabled, there is a nondeterministic choice as to which one
is taken. We vary the probability of message loss depending on the verification
instance. Once in either CONC SEND or ENV SEND, after a delay of between
0 and 1 seconds, the model returns to IDLE; this corresponds to the message
taking between 0 and 1 seconds to send.

4.2 Verification using PRISM

In this section, we outline our results of using PRISM [17] to verify the integer-
time model of the probabilistic timed automata of the dynamic configuration
protocol given in Section 4.1. In the experiments, we fixed the number of hosts at



number probability of message loss
of probes 0 0.1 0.01 0.001

sent no reset reset no reset reset no reset reset no reset reset
1 0.01538 0.01538 0.01538 0.01538 0.01538 0.01538 0 .01538 0.01538
2 8.0e-5 0 0.00298 0.00296 3.8e-4 3.1e-4 1.1e-4 3.1e-5
3 1.2e-6 0 5.6e-4 5.6e-4 7.2e-6 6.2e-6 1.3e-6 6.2e-8
4 4.2e-7 0 1.1e-4 1.1e-4 5.0e-7 1.2e-7 4.1e-7 1.2e-10
5 8.5e-9 0 2.0e-5 2.0e-5 9.8e-9 2.4e-9 8.4e-9 2.5e-13
6 2.2e-9 0 3.9e-6 3.9e-6 1.9e-9 4.9e-11 2.2e-9 4.9e-16

Table 2. Maximum probabilistic reachability results for the IPv4 protocol

1000 and varied both the number of probes a host sends (N), and the probability
of message loss. Further details, including analysis for a network of 20 hosts, can
be found at the PRISM web page [25]. The algorithms used by PRISM for
both probabilistic and expected reachability are taken from the literature; for
probabilistic reachability see [7], and for expected reachability see [12,13].

To apply model-checking methods we must ensure that the model under
study has only finitely-many states and is finitely branching. From the construc-
tion given in Section 3, the integer-time model will have finitely many states. To
ensure finite branching, we restrict the delays from N to some finite set. More
precisely, we allow delays of duration 1 only. Then, since any transition of du-
ration t ∈ N can be modelled by a sequence of transitions of duration 1 and we
restrict our attention to divergent adversaries, nothing is lost by omitting delays
greater than 1 or equal to 0.

Note that, because we have abstracted certain aspects of the network (for
example, the time taken to send a message), the presented results will give
upper and lower bounds on the performance of the protocol, for example the
actual reachability probability will lie in between the minimum and maximum
reachability probabilities computed for the model under study.

Probabilistic Reachability. The probabilistic reachability property we con-
sider is the (minimum and maximum) probability of the host using an IP ad-
dress which is already in use by another host. The results obtained in the case of
maximum probabilistic reachability are given in Table 2. For results concerning
minimum reachability probabilities see the PRISM web page [25].

The results obtained show the expected result: increasing the number of
probes sent decreases the probability of the host using an IP address which is
already in use (recall that the number specified by the standard is four). When
the probability of message loss is 0, Table 2 shows that the maximum probability
is 0 for the the model reset (the model where the host clears its buffer) provided
the host sends more than one probe. On the other hand, for the model no reset
(when the host does not clear its buffer), even if the host sends more than one
probe, this maximum reachability probability is greater than 0. To understand
this result, consider the fact that, if a host does not clear its buffer, then there
is a chance that the probes corresponding to its new IP address will get delayed,
and hence the host will not receive a reply to these probes until after it starts
using the address (as the probability is 0, the host will eventually get a reply).
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Fig. 3. Expected cost results for the IPv4 protocol

In the cases when message loss is greater than 0, the results again demon-
strate that, by allowing the host to clear its buffer, the performance of the
protocol improves; that is, the maximum reachability probability decreases (our
experiments also show that the minimum probability increases, see [25]).

Expected Reachability. We consider the expect cost of a host choosing an IP
address and using it. As in [8], the cost is defined as the time to start using an IP
address plus an additional cost (106) associated with the host using an address
which is already in use. Note that the choice of the value of this additional cost
will depend on how damaging it is for two hosts to use the same IP address,
which in turn depends on the network and the nature of its devices.

The results for the model reset are presented in Figure 3. Note that, the model
no reset produced similar results, although the minimum costs are smaller and
the maximum costs are larger (see [25] for further details). This is to be expected,
since the results for probabilistic reachability show that, when the host does not
clear its buffer, there is a greater chance of it using an IP address which is already
in use, and hence of incurring a greater cost.

These results are similar to those of [8]: as the message loss probability in-
creases, one must increase the number of probes sent in order to reduce the
expected cost; however, by sending too many probes the expected cost may then
start to increase. The rationale for this is that, although increasing the number
of probes sent decreases the probability of the host using an IP address which is
already in use (that is, decreases the chance of incurring the additional cost), it
increases the expected time to choose an IP address (sending more probes takes
more time).

5 Conclusions

We have presented results demonstrating that digital clocks are sufficient for
analysing a large class of probabilistic timed automata and performance prop-
erties. Since many of today’s protocols include both timing and probabilistic
behaviour, this approach is widely applicable, a fact which we illustrate by
analysing the performance of the IPv4 dynamic configuration protocol.

Future work could consider extending the cost functions in order to vary
the rate of cost accumulation in different locations, as in priced or weighted



timed automata [5,2]. There are still limitations as to the size of the models that
can be considered using digital clocks. In the case of probabilistic reachability,
a generally more efficient approach is to consider zones, and in particular the
backwards reachability approach introduced in [20]. The application of zones to
the verification of priced timed automata [23] may be instructive to this line of
research.
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