
Stochastic Games for Verification
of Probabilistic Timed Automata

Marta Kwiatkowska, Gethin Norman, and David Parker

Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD

Abstract. Probabilistic timed automata (PTAs) are used for formal
modelling and verification of systems with probabilistic, nondeterminis-
tic and real-time behaviour. For non-probabilistic timed automata, for-
wards reachability is the analysis method of choice, since it can be im-
plemented extremely efficiently. However, for PTAs, such techniques are
only able to compute upper bounds on maximum reachability probabil-
ities. In this paper, we propose a new approach to the analysis of PTAs
using abstraction and stochastic games. We show how efficient forwards
reachability techniques can be extended to yield both lower and up-
per bounds on maximum (and minimum) reachability probabilities. We
also present abstraction-refinement techniques that are guaranteed to
improve the precision of these probability bounds, providing a fully au-
tomatic method for computing the exact values. We have implemented
these techniques and applied them to a set of large case studies. We
show that, in comparison to alternative approaches to verifying PTAs,
such as backwards reachability and digital clocks, our techniques exhibit
superior performance and scalability.

1 Introduction

Probabilistic behaviour occurs naturally in many real-time systems, either due
to the use of randomisation, or because of the presence of unreliable components.
Prominent examples include communication protocols such as Bluetooth, IEEE
802.11 and FireWire, which use randomised back-off schemes and are designed
to function over faulty communication channels. Another important class are
security protocols, such as for non-repudiation, anonymity and non-interference,
where randomisation and timing are both essential ingredients.

Probabilistic timed automata (PTAs) [9,1,16], which are finite state automata
extended with real-valued clocks and discrete probabilistic choice, are a natural
formalism for modelling and analysing such systems. Formal verification tech-
niques for PTAs can help to identify anomalies resulting from the subtle interplay
between probabilistic, real-time and nondeterministic aspects of these systems.
A fundamental property of a PTA is the minimum or maximum probability of
reaching a particular class of states in the model. This allows the expression of
a wide range of useful properties, for example, “the minimum probability that a
data packet is correctly delivered with t seconds”.

2 Marta Kwiatkowska, Gethin Norman, David Parker

There are three main existing algorithmic approaches to the verification of
PTAs: (i) forwards reachability [16,5]; (ii) backwards reachability [17]; and (iii)
digital clocks [15]. Forwards reachability is based on a symbolic forwards explo-
ration, similar to the techniques implemented in state-of-the art tools for non-
probabilistic timed automata [6,18]. This approach is appealing because it can be
implemented extremely efficiently with data structures such as difference-bound
matrices (DBMs). However, in the context of probabilistic timed automata, these
techniques yield only an upper bound on maximum reachability probabilities.

Backwards reachability [17] performs a state-space exploration in the oppo-
site direction, from target to initial states. This computes exact values for both
minimum and maximum reachability probabilities; however, the operations re-
quired to implement it are expensive, limiting its applicability. The digital clocks
technique of [15] uses an efficient language-level translation to a probabilistic
model with finite state semantics. This also gives precise values for minimum
and maximum probabilities, but is only applicable to a restricted class of PTAs.

PTAs are, because of their real-valued model of time, inherently infinite-state.
The three PTA verification techniques described above work by constructing a
finite-state Markov decision process (MDP) that can be analysed with existing
tools and techniques. This MDP can be viewed as an abstraction of the infinite-
state semantics of the PTA. In this paper, we take a new approach, using the
ideas of [13] to represent PTA abstractions as stochastic two-player games.

We first show how the forwards reachability technique of [16] can be gen-
eralised to produce a stochastic game that yields lower and upper bounds on
either minimum or maximum reachability probabilities of PTAs. Then, using
abstraction-refinement methods, we show how the stochastic game can be itera-
tively refined in order to tighten these bounds. This gives a fully automatic tech-
nique to compute exact reachability probabilities within a finite number of steps.
Finally, we present a prototype tool implementing these techniques that exhibits
significantly better performance than other PTA verification approaches. A full
version of this paper, including proofs is also available [14].

Related work. Existing PTA verification techniques are discussed above and
a detailed experimental comparison is included in Section 6. Also relevant is
[3], which presents an algorithm for computing time-abstracting bisimulation
quotients of PTAs. Abstraction-refinement approaches have been proposed for
non-probabilistic timed automata, e.g. [12] which uses bounded model checking
and SAT-based techniques, [21] which is based on the region graph construction,
and [7] for verifying PLC automata using UPPAAL [18].

2 Markov decision processes and stochastic games

Markov decision processes (MDPs) are a widely used formalism for modelling
systems that exhibit both nondeterministic and probabilistic behaviour.

Definition 1. An MDP M is a tuple (S, S,Act ,StepsM) where S is a set of
states, S ⊆ S is the set of initial states, Act is a set of actions and StepsM :
S×Act → Dist(S) is the probabilistic transition function.

Stochastic Games for Verification of Probabilistic Timed Automata 3

In each state s ∈ S of an MDP M, there is a nondeterministic choice between
one or more available actions a ∈ Act (those for which StepsM(s, a) is defined).
After the choice of an action a, a successor state is selected at random according
to the probability distribution StepsM(s, a). A path through M is a sequence of
states selected in this fashion.

To reason about the MDP M, we use the notion of an adversary, which is a
possible resolution of all nondeterministic choices in M (formally, an adversary
is a function from finite paths to actions). For a fixed adversary A, we can define
a probability measure over the set of paths from a state s and, in particular, the
probability pAs (F) of reaching a target F⊆S from s under A. We are typically
interested in the minimum and maximum reachability probabilities for F :

pmin
M (F)

def
= infs∈S infA pAs (F) and pmax

M (F)
def
= sups∈S supA pAs (F) .

These values, and an adversary of M which produces them, can be computed
with a simple numerical computation called value iteration [19].

Stochastic two-player games [20,4] extend MDPs by allowing two types of
nondeterministic choice, controlled by separate players. We use stochastic games
in the manner proposed in [13] to represent an abstraction of an MDP.

Definition 2. A stochastic game G is a tuple (S, S,Act ,StepsG) where: S is
a set of states, S ⊆ S is the set of initial states Act is a set of actions and
StepsG : S×Act → 2Dist(S) is the probabilistic transition function.

Each transition of a stochastic game G comprises three choices: first, like for an
MDP, player 1 picks an available action a∈Act ; next, player 2 selects a distri-
bution λ from the set StepsG(s, a); finally, a successor state is chosen at random
according to λ. A resolution of the nondeterminism in G (the analogue of an
MDP adversary) is a pair of strategies σ1, σ2 for the players, under which we can
define the probability pσ1,σ2

s (F) of reaching a target F⊆S from a state s.
Intuitively, the idea of [13] is that, in a stochastic game G, representing an

abstraction of an MDP M, player 2 choices represent nondeterminism present in
M and player 1 choices represent additional nondeterminism introduced through
abstraction. By quantifying over strategies for players 1 and 2, we can obtain
both lower bounds (lb) and upper bounds (ub) on the minimum and maximum
reachability probabilities of M. If G is constructed from M using the approach
of [13], then, in the case of maximum probabilities, for example:

plb,max
G (F) 6 pmax

M (F) 6 pub,max
G (F)

where, in the stochastic game G:

plb,max
G (F)

def
= sups∈S infσ1

supσ2
pσ1,σ2
s (F)

pub,max
G (F)

def
= sups∈S supσ1

supσ2
pσ1,σ2
s (F)

Using similar techniques as those for MDPs, we can efficiently compute these
values and strategies for players 1 and 2 that result in them [4].

4 Marta Kwiatkowska, Gethin Norman, David Parker

3 Probabilistic Timed Automata

Time, clocks and zones. Probabilistic timed automata model time using
clocks, variables over the set R of non-negative reals. We assume a finite set
X of clocks. A function v : X → R is referred to as a clock valuation and the set
of all clock valuations is denoted by RX . For any v ∈ RX , t ∈ R and X ⊆ X , we
use v+t to denote the clock valuation which increments all clock values in v by
t and v[X:=0] for the valuation in which clocks in X are reset to 0.

The set of zones of X , written Zones(X), is defined by the syntax:

ζ ::= true | x 6 d | c 6 x | x+c 6 y+d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. A zone ζ represents the set of clock valuations
v which satisfy ζ, denoted v / ζ, i.e. those for which ζ resolves to true by
substituting each clock x with v(x).

We will use several classical operations on zones [8,22]. The zone↗ζ contains
all clock valuations that can be reached from a valuation in ζ by letting time
pass. Conversely, ↙ζ contains those that can reach ζ by letting time pass. For
X⊆X , the zone [X:=0]ζ contains the clock valuations which result in a valuation
in ζ when the clocks in X are reset to 0, while ζ[X:=0] contains the valuations
obtained from those in ζ by resetting these clocks to 0.

Syntax and semantics of PTAs. We now present the formal syntax and
semantics of probabilistic timed automata.

Definition 3. A PTA is a tuple P=(L, l,Act , inv , enab, prob) where:

– L is a finite set of locations and l ∈ L is the initial location;
– Act is a finite set of actions;
– inv : L→ Zones(X) is the invariant condition;
– enab : L×Act → Zones(X) is the enabling condition;
– prob : L×Act → Dist(2X×L) is the probabilistic transition function.

A state of a PTA is a pair (l, v) ∈ L×RX such that v / inv(l). In any state (l, v),
a certain amount of time t ∈ R can elapse, after which an action a ∈ Act is
performed. The choice of t requires that, while time passes, the invariant inv(l)
remains continuously satisfied. Each action a can be only chosen if it is enabled,
that is, the zone enab(l, a) is satisfied by v+t. Once action a is chosen, a set
of clocks to reset and successor location are selected at random, according to
the distribution prob(l, a). We call each element (X, l′) ∈ 2X×L in the support
of prob(l, a) an edge and, for convenience, assume that the set of such edges,
denoted edges(l, a), is an ordered list 〈e1, . . . , en〉.
Definition 4. Let P=(L, l,Act , inv , enab, prob) be a PTA. The semantics of P
is defined as the (infinite-state) MDP [[P]] = (S, S,R×Act ,StepsP) where:

– S = {(l, v) ∈ L× RX | v / inv(l)} and S = {(l,0)};
– StepsP((l, v), (t, a)) = λ if and only if v+t′ / inv(l) for all 06t′6t,
v+t / enab(l, a) and, for any (l′, v′) ∈ S:

λ(l′, v′) =
∑{∣∣ prob(l, a)(X, l′) |X ∈ 2X ∧ v′ = (v+t)[X:=0]

∣∣} .

Stochastic Games for Verification of Probabilistic Timed Automata 5

Each transition of the semantics of the PTA is a time-action pair (t, a), represent-
ing time passing for t time units, followed by a discrete a-labelled transition. If
StepsP((l, v), (t, a)) is defined and edges(l, a) = 〈(l1, X1), . . . , (ln, Xn)〉, we write

(l, v)
t,a−−→ 〈s1, . . . , sn〉 where si = (li, (v+t)[Xi:=0]) for all 1 6 i 6 n.

We make several standard assumptions about probabilistic timed automata.
Firstly, we restrict our attention to structurally non-Zeno automata [23]. This
class of models, which can be identified syntactically and in a compositional fash-
ion [24], guarantees time-divergent behaviour. Secondly, for technical reasons, we
assume all zones appearing in a PTA are diagonal-free [2].

Probabilistic Reachability. The minimum and maximum probabilities of
reaching, from the initial state of a PTA P, a certain target F ⊆ L are:

pmin
P (F) = pmin

[[P]] (SF) and pmax
P (F) = pmax

[[P]] (SF)

where SF = {(l, v) | v / inv(l) ∧ l ∈ F}. We can easily consider more expressive
targets, that refer to both locations and clock values, through a simple syntactic
modification of the PTA [16].

Symbolic states and operations. In order to represent sets of PTA states,
we use the concept of a symbolic state: a pair z = (l, ζ), comprising a location l
and a zone ζ over X , representing the set of PTA states {(l, v) | v / ζ}. We use
the notation (l, v) ∈ (l, ζ) to denote inclusion of a PTA state in a symbolic state.

We will use the time successor and discrete successor operations of [8,22].
For a symbolic state (l, ζ), action a, and edge e = (X, l′) ∈ edges(l, a), we define:

– tsuc(l, ζ)
def
= (l, inv(l)∧ ↗ζ) is the time successor of (l, ζ);

– dsuc[a, e](l, ζ)
def
= (l′, (ζ∧enab(l, a))[X:=0]∧inv(l′)) is the discrete successor

of (l, ζ) with respect to e;

– post[a, e](l, ζ)
def
= tsuc(dsuc[a, e](l, ζ)) is the post of (l, ζ) with respect to e.

The c-closure of a zone ζ is obtained by removing any constraint that refers to
integers greater than c. For a given c, there are only a finite number of c-closed
zones. For the remainder of this paper, we assume that all zones are c-closed
where c is the largest constant appearing in the PTA under study.

4 Forwards Reachability for PTAs

In this section, we begin by describing the approach of [16], which we will refer
to as MDP-based forwards reachability. This computes only upper bounds on
maximum reachability probabilities of a PTA. Subsequently, we will propose a
new algorithm, based on stochastic games, which addresses these limitations.

4.1 MDP-based forwards reachability

The MDP-based forwards reachability approach of [16] works by building an
abstraction of a PTA P. This abstraction is represented by an MDP M whose

6 Marta Kwiatkowska, Gethin Norman, David Parker

BuildReachGraph(P, F)

1 Z := ∅
2 Y := {tsuc(l,0)}
3 while Y 6= ∅
4 choose (l, ζ) ∈ Y

5 Y := Y \ {(l, ζ)}
6 Z := Z ∪ {(l, ζ)}
7 for a ∈ Act such that enab(l, a) ∧ ζ 6= ∅
8 for ei ∈ edges(l, a) = 〈e1, . . . , en〉
9 (l′i, ζ

′
i) := post[(l, a), ei](l, ζ)

10 if (l′i, ζ
′
i) 6∈ Z and l′i 6∈ F then Y := Y ∪ {(l′i, ζ′i)}

11 R := R ∪ {((l, ζ), a, 〈(l′1, ζ′1), . . . , (l′n, ζ
′
n)〉)}

12 return (Z, R)

BuildMDP(Z, R)

1 Z := {(l, ζ) ∈ Z | l = l}
2 for (l, ζ) ∈ Z and θ ∈ R(l, ζ)
3 StepsM((l, ζ), θ) := λθ
4 return M = (Z, Z, R,StepsM)

Fig. 1. Algorithm for MDP-based forwards reachability, based on [16]

state space is a set Z of symbolic states, i.e. each state of M represents a set of
states of the infinite-state MDP semantics [[P]]. The algorithm of [16] is shown
in Figure 1. For the purposes of this presentation, we have reformulated the
algorithm into: (i) the construction of a reachability graph over the set of symbolic
states Z; and (ii) the construction of an MDP M from this graph.

The algorithm to build this reachability graph is based on the well-known
forwards reachability algorithm for non-probabilistic timed automata [6,18]. It
performs a forwards exploration through the automata, successively computing
symbolic states using the post operation. One important difference is that, in
the probabilistic setting, on-the-fly techniques cannot be used: the state-space
exploration is exhaustive. This is because the aim is to determine, not just the
existence of a path to the target, but the probability of reaching the target. For
this, an MDP containing all such paths is constructed and analysed.

A reachability graph captures information about the transitions in a PTA. It
comprises a multiset1 Z of symbolic states and a set R ⊆ Z×Act×Z+ of symbolic
transitions. Each symbolic transition θ ∈ R takes the form:

θ =
(
(l, ζ), a, 〈(l1, ζ1), . . . , (ln, ζn)〉

)
where n = |edges(l, a)|. Intuitively, θ represents the possibility of taking action
a from a PTA state in (l, ζ) and, for each edge (Xi, li) ∈ edges(l, a), reaching a
state in (li, ζi). A key property of symbolic transitions is the notion of validity :

valid(θ)
def
= ζ ∧ ↙

(
enab(l, a)∧ (∧ni=1 ([Xi:=0]ζi))

)
1 The use of a multiset is a technical requirement, later used for abstraction refinement.

Stochastic Games for Verification of Probabilistic Timed Automata 7

which gives precisely the set of clock valuations satisfying ζ from which it is
possible to let time pass and perform the action a such that taking the ith edge
(Xi, li) gives a state in (li, ζi). A symbolic transition θ is valid if the zone valid(θ)
is non-empty. This leads to the following formal definition of a reachability graph.

Definition 5. A reachability graph for a PTA P=(L, l,Act , inv , enab, prob) and
target F , is a pair (Z, R) where:

– Z ⊆ L×Zones(X) is a multiset of symbolic states where {s ∈ z | z ∈ Z} = S;
– R ⊆ Z×Act×Z+ is a set of valid symbolic transitions;

and, if z = (l, ζ) ∈ Z, l 6∈ F , s ∈ z and s
t,a−−→ 〈s1, . . . , sn〉, then R contains a

symbolic transition (z, a, 〈z1, . . . , zn〉) such that si ∈ zi for all 1 6 i 6 n.

For any PTA P and target F , it follows from the definition of post that algo-
rithm BuildReachGraph(P, F) in Figure 1 returns a (unique) reachability graph
for (P, F). However, the above conditions do not imply the uniqueness of reach-
ability graphs, and there may exist many other such graphs for (P, F).

Given a reachability graph (Z, R) we can construct an MDP M with state
space Z using the symbolic transitions in R to build the transitions of M. More
precisely, a symbolic transition θ = ((l, ζ), a, 〈(l1, ζ1), . . . , (ln, ζn)〉) induces a
probability distribution λθ over symbolic states Z where for any (l′, ζ ′) ∈ Z:

λθ(l
′, ζ ′)

def
=
∑
{| prob(l, a)(ei) | ei ∈ edges(l, a) ∧ ζi=ζ ′ |} .

Using these distributions, the algorithm BuildMDP(Z, R) in Figure 1 constructs
an MDP M, analysis of which yields bounds on the behaviour of P.

Theorem 1. Let P be a PTA with target F . If (Z, R) is a reachability graph
for (P, F) and M is the MDP returned by BuildMDP(Z, R) (see Figure 1), then
pmin
M (ZF) 6 pmin

P (F) and pmax
P (F) 6 pmax

M (ZF) where ZF = F×Zones(X).

This theorem extends [16], by establishing the result for any reachability graph,
not just that returned by BuildReachGraph and, by restricting to structurally
non-Zeno PTAs, also yields lower bounds on minimum reachability probabilities.

Example 1. We illustrate these ideas using the simple PTA P in Figure 2(a).
We use the standard graphical notation for PTAs and omit probability 1 labels.
Applying BuildReachGraph(P, {l3}) (see Figure 1) yields the symbolic states:

Z = {(l0, x=y), (l1, x=y), (l1, y<x−2), (l2, x6y), (l3, x=y)}

and the set of symbolic transitions R. From the first two symbolic states, for
example, we have R(l0, x=y) = {θa} and R(l1, x=y) = {θb, θc} where:

θa =
(
(l0, x=y), a, 〈(l1, x=y), (l2, x6y)〉

)
θb =

(
(l1, x=y), b, 〈(l1, x=y)〉

)
, θc =

(
(l1, x=y), c, 〈(l3, x=y)〉

)

8 Marta Kwiatkowska, Gethin Norman, David Parker

l3, true

l0, true

a true

0.40.6
x:=0

l1, true l2, true

b

x>2

by:=0

y>2
y:=0

c c x=0∧y=1
y:=0x=0

(a) PTA

0.6 0.4

(l1, x=y) (l2, x6y)

(l1, y<x−2)

(l0, x=y)

(l3, x=y)

(b) MDP

Fig. 2. Analysis of a PTA through MDP-based forwards reachability

BuildGame(Z, R)

1 Z = {(l, ζ) ∈ Z | l = l}
2 for (l, ζ) ∈ Z

3 for Θ ⊆ R(l, ζ) such that Θ 6= ∅ and valid(Θ)
4 StepsG((l, ζ), Θ) := {λθ | θ ∈ Θ}
5 return G = (Z, Z, 2R,StepsG)

Fig. 3. Algorithm to construct a stochastic game from a reachability graph

The resulting MDP is shown in Figure 2(b). The maximum probability of reach-
ing location l3 in the PTA is 0.6, which results from taking action a in l0 imme-
diately and, if l1 is reached, proceeding straight to l3. An alternative is to wait
for 1 time unit in l0 and then take a, reaching l3 via l2, however, this results
in a lower probability of 0.4. An upper bound on the maximum probability for
the PTA is obtained from the maximum probability of reaching (l3, x=y) in the
MDP. The resulting value is 1. This is because the symbolic states for locations
l1 and l2 are too coarse to preserve the precise time that action a is taken.

4.2 Game-based forwards reachability

The main limitation of the MDP-based forwards reachability algorithm is that
it only provides lower bounds for minimum and upper bounds for maximum
reachability probabilities. We now describe how to construct, from a reachability
graph, a stochastic game G that yields both lower and upper bounds. The game
G is, like the MDP in the previous section, an abstraction of the infinite-state
MDP semantics of the PTA, whose state space is the symbolic states Z.

We utilise the approach of [13] to represent an abstraction of an MDP as a
stochastic two-player game. The basic idea is that the two players in the game
represent nondeterminism introduced by the abstraction and nondeterminism
from the original model. In a symbolic state (l, ζ) of the game abstraction of a
PTA, player 1 first picks a PTA state (l, v) ∈ (l, ζ) and then player 2 makes a
choice over the actions that become enabled after letting time pass from (l, v).

In order to construct such a game from a reachability graph (Z, R), we first
extend the notion of validity to sets of symbolic transitions with the same source.

Stochastic Games for Verification of Probabilistic Timed Automata 9

(l0, x=y)

(l3, x=y)

(l2, x6y)(l1, x=y)

0.40.6

(l1, y<x−2)

(a) From reachability graph

(l2, x6y)(l1, x=y>0)(l1, x=y=0)

(l1, y<x−2)(l3, x=y)

(l0, x=y)

0.6
0.4

0.40.6

(b) After one refinement

Fig. 4. Stochastic games for the PTA example of Figure 2

For any symbolic state (l, ζ) ∈ Z and set of symbolic transitions Θ ⊆ R(l, ζ), let:

valid(Θ)
def
= (∧θ∈Θvalid(θ)) ∧

(
∧θ∈R(l,ζ)\Θ¬valid(θ)

)
.

By construction, valid(Θ) identifies precisely the clock valuations v / ζ such
that, from (l, v), it is possible to perform a transition encoded by any symbolic
transition θ ∈ Θ, but it is not possible to perform a transition encoded by any
other symbolic transition of R(l, ζ).

The algorithm BuildGame in Figure 3 describes how to construct, from a
reachability graph R, a stochastic game with symbolic states Z. In a state z

of the game, player 1 chooses between any non-empty valid set of symbolic
transitions Θ ⊆ R(z). Player 2 then selects a symbolic transition θ ∈ Θ. As the
following result demonstrates, this game yields lower and upper bounds on either
minimum or maximum reachability probabilities of the PTA.

Theorem 2. Let P be a PTA with target F . If (Z, R) is a reachability graph for
(P, F) and G is the stochastic game returned by BuildGame(Z, R) (see Figure 3),

then plb,?
G (ZF) 6 p?P(F) 6 pub,?

G (ZF) for ? ∈ {min,max}.

Example 2. We return to the PTA from Figure 2 and the reachability graph
constructed in Example 1. The corresponding stochastic game is shown in Fig-
ure 4(a). As for PTAs and MDPs, we draw probability distributions as arrows
grouped by an arc, omitting the labelling of probability 1 transitions. A set
of distributions emanating from a black circle indicates a player 2 choice; the
outgoing edges from each symbolic state represent a player 1 choice.

Consider, the symbolic state (l1, x=y), for which there are two symbolic tran-
sitions θb and θc (see Example 1). Since valid(θb)=(x=y) and valid(θc)=(x=y=0),
we have valid({θb})=(x=y>0), valid({θc})=∅ and valid({θb, θc})=(x=y=0). This
tells us that there are two classes of PTA states in (l1, x=y): those in which both
actions b and c become enabled, and those in which only b becomes enabled.
Thus, in the game state (see Figure 4(a)), we see that player 1 chooses between
these two classes and then player 2 chooses an available action.

Using Theorem 2, the stochastic game in Figure 4(a) gives bounds on the
maximum probability of reaching l3 in the PTA. The upper bound (as for the

10 Marta Kwiatkowska, Gethin Norman, David Parker

Refine(Z, R, (l, ζ), Θlb , Θub)

1 ζlb := valid(Θlb)
2 ζub := valid(Θub)
3 Znew := {(l, ζlb), (l, ζub), (l, ζ∧¬(ζlb∨ζub))} \ {∅}
4 Zref := (Z \ {(l, ζ)})] Znew

5 Rref := ∅
6 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

7 if (l, ζ) 6∈ {z0, z1, . . . , zn} then
8 Rref := Rref ∪ {θ}
9 else

10 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | z′i ∈ Znew if zi = (l, ζ) and z′i = zi o/wise}
11 for θnew ∈ Θnew such that valid(θnew) 6= ∅
12 Rref := Rref ∪ {θnew}
13 return (Zref, Rref)

Fig. 5. Algorithm to refine symbolic state (l, ζ) in reachability graph (Z, R)

MDP) is 1 as, after either branch of the initial probabilistic choice, player 1 can
make a choice which allows l3 to be reached with probability 1. The lower bound,
however, is 0 because player 1 can also, in both cases, make l3 unreachable.

As the above example illustrates, it is possible that the difference between the
lower and upper bounds from the game is too great to provide useful information.
In the next section, we will address this issue by introducing a way to refine the
abstraction to reduce the difference between the bounds.

5 Abstraction Refinement

The game-based abstraction approach of [13] has been extended with refinement
techniques in [10,11]. Inspired by non-probabilistic counterexample-guided ab-
straction refinement, the idea is that an initially coarse abstraction is iteratively
refined until it is precise enough to yield useful verification results. Crucial to
this approach is the use of the lower and upper bounds provided by a stochastic
game abstraction as a quantitative measure of the preciseness of the abstraction.

The refinement algorithm. Our refinement algorithm takes a reachability
graph (Z, R), splits one or more of the symbolic states in Z and then modifies the
symbolic transitions of R accordingly. This process is guided by the analysis of
the stochastic game constructed from (Z, R), i.e. the bounds for the probability
of reaching the target and player 1 strategies that attain these bounds.

We now outline the refinement of a single symbolic state (l, ζ) for which
the bounds differ and for which distinct player 1 strategies yield each bound.2

A player 1 strategy chooses, for any state in the stochastic game, an action
available in the state. By construction, an available action in (l, ζ) is a valid set

2 From the results of [13] such a state exists when the bounds differ in some state.

Stochastic Games for Verification of Probabilistic Timed Automata 11

AbstractRefine(P, F, ?, ε)

1 (Z, R) := BuildReachGraph(P, F)
2 G := BuildGame(Z, R)

3 (plb,?
G , pub,?

G , σlb
1 , σ

ub
1) := AnalyseGame(G, F, ?)

4 while pub,?
G −plb,?

G > ε
5 choose (l, ζ) ∈ Z

6 (Z, R) := Refine(Z, R, (l, ζ), σlb
1 (l, ζ), σub

1 (l, ζ))
7 G := BuildGame(Z, R)

8 (plb,?
G , pub,?

G , σlb
1 , σ

ub
1) := AnalyseGame(G, F, ?)

9 return [plb,?
G , pub,?

G]

Fig. 6. Abstraction-refinement loop to compute reachability probabilities

of symbolic transitions from R(l, ζ). We let Θlb , Θub ⊆ R(l, ζ) denote the distinct
player 1 strategy choices for the lower and upper bound respectively. Since the
validity conditions for Θlb and Θub identify precisely the clock valuations in ζ
for which the corresponding transitions of [[P]] are possible, we split (l, ζ) into:(

l, valid(Θlb)
)
,
(
l, valid(Θub)

)
and

(
l, ζ ∧ ¬(valid(Θlb) ∨ valid(Θub))

)
.

By construction, valid(Θlb) and valid(Θub) are both non-empty. Furthermore,
since Θlb 6= Θub , from the definition of validity, we have valid(Θ)∧valid(Θ′) = ∅,
and hence the split of (l, ζ) produces a strict refinement of Z.

The complete refinement algorithm is shown in Figure 5. Lines 1–4 refine Z,
as just described, and lines 5–12 update the set of symbolic transitions R. The
result is a new reachability graph, for which the corresponding stochastic game
is a refined abstraction of the PTA, satisfying the following properties.

Theorem 3. Let P be a PTA with target F and (Z, R) be a reachability graph
for (P, F). If (Zref, Rref) is the result of applying algorithm Refine (see Figure 5)
to (Z, R), G = BuildGame(Z, R) and Gref = BuildGame(Zref, Rref), then:

(i) (Zref, Rref) is a reachability graph for (P, F);

(ii) plb,?
G (ZF) 6 plb,?

Gref (ZF) and pub,?
Gref (ZF) 6 pub,?

G (ZF) for ? ∈ {min,max}.

This refinement scheme, applied in a iterative manner, provides a way of comput-
ing exact values for minimum or maximum reachability probabilities of a PTA.
This algorithm, outlined in Figure 6, starts with the reachability graph con-
structed through forwards reachability and then repeatedly: (i) builds a stochas-
tic game; (ii) solves the game to obtain lower and upper bounds; and (iii) refines
the reachability graph, based on an analysis of the game. The iterative process
terminates when the difference between the bounds falls below a given level of
precision ε. In fact, as the following result states, this process is guaranteed to
terminate, in a finite number of steps, with the precise answer.

Theorem 4. Let P be a PTA with target F and ? ∈ {min,max}. The algorithm
AbstractRefine(P, F, ?, 0) (see Figure 6) terminates after a finite number of steps

and returns [plb,?
G , pub,?

G] where plb,?
G = p?P(F) = pub,?

G .

12 Marta Kwiatkowska, Gethin Norman, David Parker

Example 3. We return to our running example (see Figures 2 and 4) and con-
sider the refinement of (l1, x=y), from which the lower and upper bounds on the
maximum probability of reaching location l3 are 0 and 1. The player 1 strategies
(see Example 2) to achieve these bounds select Θlb = {θb} and Θub = {θb, θc},
respectively. The validity conditions for these choices are (x=y>0) and (x=y=0),
and hence (l1, x=y) is divided into z1 = (l1, x=y>0) and z2 = (l1, x=y).

We then update the set R, as described in Figure 5, splitting symbolic tran-
sitions whose source or target is (l1, x=y). For example, θa, θb and θc (see Ex-
ample 1) are split into, for i = 1, 2:

θia=
(
(l0, x=y), a, 〈zi, (l2, x6y)〉

)
, θib=

(
zi, b, 〈zi〉

)
and θic=

(
zi, c, 〈(l3, x=y=0)〉

)
.

After removing θ2
c , which is not valid, the resulting stochastic game is shown

in Figure 4(b). While this still yields bounds of [0, 1] for the initial state, two
subsequent refinement tighten this to [0.6, 1.0] and then [0.6, 0.6].

6 Experimental Results

Implementation. We have implemented a prototype PTA model checker based
on the techniques in this paper. It uses difference-bound matrices (DBMs) to rep-
resent zones. Since refinement can introduce non-convex zones, we also employ
lists of DBMs. Our tool takes a textual description of a PTA (or the parallel
composition of several PTAs) and a set of target locations. It then executes
the abstraction-refinement loop described in Section 5 to compute either the
minimum or maximum reachability probability.

Several aspects of the abstraction-refinement implementation merit further
discussion. In particular, the refinement process presented in Section 5 discusses
the refinement of a single symbolic state. Because each refinement requires a po-
tentially expensive numerical solution phase, an efficient scheme to select which
state (or states) are to be split is essential. In fact, we found it possible to obtain
very good performance with relatively simple heuristics. In the results presented
here, we simply refine all states for which the lower and upper bounds differ.

Our implementation includes several useful optimisations. Firstly, we modify
the BuildGame algorithm so that it only rebuilds states of a stochastic game that
have actually been modified during refinement. Secondly, we use the techniques
described in [10] to re-use numerical results between refinement iterations, re-
ducing the amount of numerical solution required.

Experimental results. We evaluate our implementation on 7 large PTA case
studies from the literature: (i) csma and csma abst, two models of the IEEE 802.3
CSMA/CD protocol; (ii) firewire and firewire abst, two models of the IEEE 1394
FireWire root contention protocol; (iii) zeroconf, the Zeroconf network configura-
tion protocol; and (iv) nrp honest and nrp malicious, two model of Markowitch
& Roggeman’s non-repudiation protocol. Full details of all these case studies,
their parameters, and the properties checked are available.3

3 http://www.prismmodelchecker.org/files/formats09/

Stochastic Games for Verification of Probabilistic Timed Automata 13

Case study Game-based Backwards Digital clocks Min/Max
(parameters) verification reachability [17] [15] reachability
[min /max] Iters States Time (s) States Time (s) States Time (s) probability

csma
(max backoff

collisions)
[max]

2 4 10 6,476 3.9 243 20.7 n/a n/a 0.143555
2 8 10 18,196 8.9 575 77.8 n/a n/a 0.005259
4 4 10 34,826 20.5 303 1443.7 n/a n/a 0.076904
4 8 10 239,298 431.4 time out time out n/a n/a 1.65e-5

csma
abst

(deadline)
[min]

∞ 0 117 0.2 0 8.7 5240 21.2 1.0
1000 0 6,392 1.9 366 68.2 1,876,105 71.2 0.0
2000 37 24,173 20.7 722 367.8 6,570,692 651.8 0.869791
3000 76 79,608 448.0 1,736 1436.3 11,780,692 1951.9 0.999820

firewire
(deadline)

[min]

∞ 0 257 0.7 127 26.4 212,268 39.7 1.0
25 0 1,369 2.0 1,004 839.5 14,089,691 324.6 0.5
50 17 4,215 10.6 3,096 3149.9 time out time out 0.78125
75 34 10,252 83.4 time out time out mem out mem out 0.931641

firewire
abst

(deadline)
[min]

∞ 0 10 0.03 0 1.0 776 0.3 1.0
50 7 205 0.25 63 2.4 298,010 14.5 0.78125
100 19 1,023 1.76 180 3.8 686,008 36.4 0.974731
200 40 9,059 26.1 640 26.4 1,462,010 149.2 0.999630

zeroconf
(deadline)

[max]

∞ 0 26 0.17 19 0.22 357 1.69 0.001302
100 0 132 0.16 15 0.32 8,423 0.93 6.52e-4
150 13 380 0.44 101 0.72 23,888 1.71 0.001073
200 17 670 0.73 274 4.77 41,713 2.92 0.001222

nrp
honest

(deadline)
[min]

∞ 0 5 0.04 0 0.70 n/a n/a 1.0
40 19 428 1.80 33 5.25 n/a n/a 0.612580
80 39 1,448 3.56 63 6.18 n/a n/a 0.864915
100 49 2,183 5.35 78 6.97 n/a n/a 0.920234

nrp
malicious
(deadline)

[max]

∞ 11 351 1.3 62 1.5 n/a n/a 0.105658
5 3 1,663 1.5 75 2.9 n/a n/a 0.1
10 15 8,080 11.1 408 117.3 n/a n/a 0.105444
20 7 49,622 218.1 1,108 1606.5 n/a n/a 0.105657

Table 1. Performance statistics and comparisons for game-based PTA verification

We present a comparison of our implementation with the two other exist-
ing techniques for reachability analysis of PTAs: backwards reachability [17] and
digital clocks [15]. For the former, we use the implementation of [17] which uses
PRISM as a back-end to analyse MDP. For the latter, we use a simple language-
level translation. We do not consider the MDP-based forwards reachability al-
gorithm [16,5] since this does compute exact probability values and is thus not
directly comparable. All experiments were run on a 2GHz PC with 2GB RAM.
Any run exceeding a time-limit of 1 hour was disregarded.

Table 1 summarises the experimental results. We give, for each PTA and
each applicable analysis technique,4 the total time required and the size of the
probabilistic model constructed. For backwards reachability and digital clocks,
this model is an MDP; for our approach, it is a stochastic game (we give the
size of the final game constructed during abstraction-refinement). For backwards
reachability, the time given includes both generation of an MDP and its solution
in PRISM; for digital clocks, the value is just the solution time in PRISM. For
our game-based verification approach, we give the total time for all steps: reach-
ability graph generation and multiple iterations of game construction, solution
and analysis. The number of refinement steps required is also shown; in all cases,
we refine until precise values are obtained (i.e. ε=0). Finally, Table 1 also gives

4 The digital clocks approach is not applicable to several of the case studies since the
PTAs contain zones with strict constraints.

14 Marta Kwiatkowska, Gethin Norman, David Parker

the actual reachability probability for each model checking query and whether
this a minimum or maximum value.

Analysis of the results. Our game-based approach to PTA verification per-
forms extremely well. In all cases, it is faster than both backwards reachability
and digital clocks, often by several orders of magnitude. We are also able to
analyse PTAs too large to be verified using the digital clocks approach.

In terms of the size of the probabilistic models generated by the three tech-
niques, we find that backwards reachability usually yields the smallest state
spaces. This is because it only considers symbolic states for which the required
probability is greater than 0. Thanks to the fact that our approach avoids some of
the complex zone operations required for backwards reachability, we are able to
consistently outperform it, despite this fact. On PTAs with a very small number
of clocks (e.g. firewire abst has only 2), the overhead of these complex operations
is reduced and backwards reachability performs better. By contrast, for PTAs
with more clocks (firewire has 7 and csma has 5), the opposite is true.

The reason that our game-based technique outperforms the digital clocks
approach is that the latter generates models with much larger state spaces, which
are slow to analyse, even with the efficient symbolic techniques of PRISM.

7 Conclusions

We have presented a novel technique for the verification of probabilistic au-
tomata, based on the use of two-player stochastic games to represent abstractions
of their semantics. Our approach generates lower and upper bounds for either
minimum or maximum reachability probabilities and then iteratively refines the
game to compute the exact values in a finite number of steps. We have imple-
mented this process and shown that it outperforms existing PTA verification
techniques on a wide range of large case studies.

Our approach can easily be extended to compute expected-reward properties
for the case where rewards are associated with transitions of a PTA. Furthermore,
we plan to adapt our techniques to compute lower and upper bounds on more
general classes of rewards properties. Another direction of future work is the
investigation of improved abstraction-refinement schemes. The simple approach
adopted in this paper works very well but we anticipate that there is considerable
scope for improving performance further in this way. Finally, we also plan to
apply this approach to the verification of real-time properties of software.

Acknowledgments. The authors are supported in part by EPSRC grants
EP/D07956X and EP/D076625.

References

1. D. Beauquier. Probabilistic timed automata. Theoretical Computer Science,
292(1):65–84, 2003.

2. P. Bouyer. Untameable timed automata! In Proc. STACS’03, volume 2607 of
LNCS, pages 620–631. Springer, 2003.

Stochastic Games for Verification of Probabilistic Timed Automata 15

3. T. Chen, T. Han, and J.-P. Katoen. Time-abstracting bisimulation for probabilistic
timed automata. In Proc. TASE’08, pages 177–184. IEEE CS Press, 2008.

4. A. Condon. The complexity of stochastic games. Inf. and Comp., 96(2):203–224,
1992.

5. C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. International Journal
on Software Tools for Technology Transfer (STTT), 5(2–3):221–236, 2004.

6. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid
Systems III, volume 1066 of LNCS, pages 208–219. Springer, 1996.

7. H. Dierks, S. Kupferschmid, and K. Larsen. Automatic abstraction refinement for
timed automata. In Proc. FORMATS’07, volume 4763 of LNCS, pages 114–129.
Springer, 2007.

8. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Inf. and Comp., 111(2):193–244, 1994.

9. H. Jensen. Model checking probabilistic real time systems. In Proc. 7th Nordic
Workshop on Programming Theory, pages 247–261, 1996.

10. M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. A game-based
abstraction-refinement framework for Markov decision processes. Technical Re-
port RR-08-06, Oxford University Computing Laboratory, February 2008.

11. M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refine-
ment for probabilistic software. In Proc. VMCAI’09, volume 5403 of LNCS, pages
182–197. Springer, 2009.

12. S. Kemper and A. Platzer. SAT-based abstraction refinement for real-time systems.
In Proc. FACS 2006, volume 182 of ENTCS, pages 107–122, 2007.

13. M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov
decision processes. In Proc. QEST’06, pages 157–166. IEEE CS Press, 2006.

14. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verication
of probabilistic timed automata. Technical Report RR-09-05, Oxford University
Computing Laboratory, 2009.

15. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design, 29:33–78, 2006.

16. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

17. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. Inf. and Comp., 205(7):1027–1077, 2007.

18. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

19. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

20. L. Shapley. Stochastic games. In Proc. National Academy of Science, volume 39,
pages 1095–1100, 1953.

21. M. Sorea. Lazy approximation for dense real-time systems. In Proc. FORMAT-
S/FTRTFT’04, volume 3253 of LNCS, pages 363–378. Springer, 2004.

22. S. Tripakis. The formal analysis of timed systems in practice. PhD thesis, Univer-
sité Joseph Fourier, 1998.

23. S. Tripakis. Verifying progress in timed systems. In Proc. ARTS’99, volume 1601
of LNCS, pages 299–314. Springer, 1999.

24. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata empti-
ness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

	Stochastic Games for Verification of Probabilistic Timed Automata
	Introduction
	Markov decision processes and stochastic games
	Probabilistic Timed Automata
	Forwards Reachability for PTAs
	MDP-based forwards reachability
	Game-based forwards reachability

	Abstraction Refinement
	Experimental Results
	Conclusions

