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Abstract. Inrecent papers, the partial order reduction approach has been adapted
to reason about the probabilities for temporal properties in concurrent systems
with probabilistic behaviours. This paper extends these results by presenting re-
duction criteria for a probabilistic branching time logic that allows specification
of constraints on quantitative measures given by a reward or cost function for the
actions of the system.

1 Introduction

Partial order reduction [13, 25, 32] is one of the most prominent techniques for tackling
the state explosion problem for concurrent software systems. It has been implemented
in many tools and successfully applied to a large number of case studies, see e.g. [17].
Recently, the ample-set method [24] has been extended for concurrent probabilistic
systems, both in the setting of quantitative linear time [5, 7] and branching time [4]
properties. The underlying models used in this work are Markov decision processes
(MDPs), an extension of transition systems where nondeterminism can be used e.g. to
model the interleaving of concurrent activities, to represent the interface with an un-
known system environment or for abstraction purposes, and where probability serves
e.g. to model coin tossing actions or to specify the frequency of exceptional (faulty)
behaviour (such as losing messages from a buffer). Thus, MDPs arise as natural oper-
ational models for randomized distributed algorithms and communication or security
protocols and are widely used in model checking. Equipped with reward or cost func-
tions MDPs are also standard models in many other areas, such as operations research,
reinforcement learning and robot path planning. In those fields a lot work has already
been done on reducing the state (and/or actions) space via aggregating states (and/or
actions) [2, 29, 11]. Opposed to many results in the field of machine learning that yield
only approximations to optimal solutions, the results in the field of model checking
offer some work on exact process equivalences, like (weak) bisimulation. Contrary to
those approaches that rely on partition refinement and need global knowledge of the
state space, the approach with partial order reduction can be implemented with local
conditions and therefore be intertwined with the state space search on-the-fly, provided
an appropriate high-level representation of the system is given.
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The contribution of this paper is reduction criteria which are shown to be sound
for an extension of probabilistic computation tree logic (PCTL) [6] that serves to rea-
son about rewards or costs. Our logic, called PG Hssentially agrees with the logic
suggested by de Alfaro [9, 8]. (PCTIs also similar to the logic PRCTL [1, 23] which
relies on a Markov chain semantics, while PGarmulae are interpreted over MDPs.)
PCTL, allows specifications regarding e.g. the packet loss characteristics of a queue-
ing system, the energy consumption, or the average number of unsuccessful attempts
to find a leader in a distributed system. We first explain how the ample-set conditions
suggested in [4] for PCTL can be modified to treat reward-based properties specified
in PCTL, and then identify a fragment of PCTI(which still contains a wide range of
non-trivial reward properties) where the weaker criteria of [4] are sufficient. We also
present results on a new logic PCTthat treats the rewards with a discounting seman-
tics. As in the case of previous publications on partial order reduction for probabilistic
systems, the major difficulty was to provide the proof of correctness. The general proof
technique follows the line of [12, 4] by establishing a bisimulation between the full and
the reduced system. However, we depart here from these approaches by introducing a
new variant of bisimulation equivalence for MDPs which borrows ideas from [21, 31]
and relies on the concept of norm functions [22, 14]. This new type of bisimulation
equivalence preserves PCGFproperties and might be useful also for other purposes.

Organization of the paper. Section 2 summarizes the basic definitions concerning
Markov decision processes, reward structures and RPCSéction 2 also recalls the
partial order reduction approach for MDPs without reward structure and PCTL of [4]
which we then extend to reason about rewards in Section 3. Section 4 identifies a class
of reward-based properties that are preserved when using the weaker conditions of [4].
In Section 5 we discuss our approach in the setting of discounted rewards and Section
6 concludes the paper.

2 Preliminaries

Markov decision processes (MDPs), see e.g. [2&h MDP is a tupleM = (S Act, P,
S.i» AP, L, rew) whereSis a finite state spacs,, € Sis the initial stateActa finite set of
actions, AP a set of atomic propositionk,: S— 24P a labelling functionP : Sx Act x
S— [0, 1] the three-dimensional transition probability matrix such fhaisP(s, o, u) €
{0, 1} for all statessand actionsr, and a functiomew that assigns to each actiare Act
arewardrew(a) € R.

Action a is calledenabledin statesif 5 ,csP(s,a,u) = 1. We writeAct(s) for the
set of actions that are enabledsiThe stateswith P(s, a,t) >0 are calledx-successors
of s. For technical reasons, we require tAat(s) # 0 for all statess. Action a is called
astutter actioniff for all s€ Swherea is enabled irs, L(s) = L(u) for all a-successors
uof s. That is, stutter actions do not change the state labelling. Actisncallednon-
probabilisticiff for all statess, there is at most one-successor. That is, f is enabled
in sthen there is a statg with P(s,a,5,) = 1, while P(s,a,u) = 0 for all other states
u. In particular, ifa € Act(s) is a non-probabilistic stutter action the(s) = L(sq).

An infinite pathin an MDP is a sequence= % A5 225, B L such that
a; € Act(s_1) andP(s_1,0qj,s) > 0 foralli > 1. We denote byirst(g) = s the starting



state of¢ and writestate€g, i) for the (i+1)th state ing andp(¢,i) for the cumulative
reward obtained through the fiisaictions. That is, if; is as above thestatd¢,i) = 5
andp(¢,i) = rew(01...0;) whererew(d...0;) = rew(0q)+---+rew(a;). If TC S

is a set of states theRew(¢, T) denotes the reward that is earned until state is
visited the first time. Formally, itat€¢,i) € T andstatdc, j) ¢ T for all j <i then
Rew(¢, T) = p(q,i). If statd¢,i) ¢ T for all i > 0 we setRew(g, T) = . Finite paths
(denoted by) are finite prefixes of infinite paths that end in a state. We use the notations
first(o), stateo,i) andp(o,i) as for infinite paths angbs| for the length (number of
actions) Paths,(s) (resp.Pathg,(s)) denotes the set of all finite (resp. infinite) paths of
M with first(-) = s. Given a pathg = 5 -5 51 22 5, 22 ... we denote byrace(¢) =
L(s0),L(s1),L(s2),... the word over the alphabef? obtained by the projection @fto
the state labels. Two infinite pathsand¢, in an MDP are calledtutter equivaleniff
there is an infinite wordy, £», . . . over the alphabet’® such thatrace(¢y) = 4';1,652, ...
andtrace(Gp) = (1%, 652, ... wherek;, nj > 1.

A scheduler also often called policy, strategy or adversary, denotes an instance
that resolves the nondeterminism in the states, and thus yields a Markov chain and
a probability measure on the paths. We shall use hitery-dependent randomized
schedulersn the classification of [27]. They are defined as functidiisat take as input
a finite patho and return a distribution over the actioms= Act(last(a)).> A scheduler
A'is called deterministic if it chooses a unique action (with probability 1) for all finite
paths. AnA-path denotes an infinite or finite patithat can be generated By Given a
states and a schedulék, the behaviour ofM underA can be formalised by a (possibly
infinite-state) Markov chain. P# denotes the standard probability measure on the Borel
field of the infinite A-pathsg with first(¢) = s. If T C Sthen EAS(OT) denotes the
expected value undex with starting states for the random functiorg, — Rew(¢, T).
Recall thatRew(¢, T) denotes the reward that is earned by the prefix tfat leads
from the starting stateto a state inT and thatRew(¢, T) equalsx if ¢ does not reach
T. Thus, if there is a positive probability of not reachifigunder scheduleA (from
states), thenEAS(OT) = w. If s=s,,, we simply write Pf andEA.

Probabilistic computation tree logicPCTL is a probabilistic variant of CTL which has
been introduced first for Markov chains [15] and then for Markovian models with non-
determinism [6, 31]. We follow here the approach of de Alfaro [9, 8] and extend PCTL
with an operatof®_ to reason about expected rewards. As partial order reduction relies
on identifying stutter equivalent paths which might be distinguishable by the next step
operator, we do not include the next step operator in the logic. PGHte formulae

are therefore given by the grammar:

® = true | a [PAD| D | By(PU D) | R (D)

Here,a € AP is an atomic proposition]) C [0,1] is a probability interval and C
RU {—, o} a reward interval. We refer to the terrigU, d, as PCTl.-path formu-
lae.U, denotes the standard until operator with a reward bound. The meaning of the

1 By a distribution on a finite se&X we mean a functior : X — [0,1] such thaty yex V(X) = 1
and refer toy(x) as the probability fox.



path formulap = ®,U, @, is that ad,-state will be reached via a finite pathwhere
the cumulative reward is ih, while all states iro, possibly except the last one, fulfil
®;. The state formulaP;(¢) holds for states if for each scheduleA the probability
measure of all infinite paths starting snand fulfilling the path formulap meets the
probability bound given byl. On the other hand® | () asserts that for any sched-
uler A the expected reward that is earned untibatate has been reached meets the
reward bound given by. For instanceR o17(goal) asserts that independent of the
scheduling policy the average costs to reach a goal state do not exceed 17. The formula
P0.9,1)(true Ujg 4 delivered) requires that the probability of a message being delivered
with at most 4 retransmissions is greater than 0.9.

If & is an MDP ands a state in then we writes = ® to denote that state-
formula® holds in states, and similarly,¢ = ¢ to denote that path formuliaholds for
the infinite path;. The formal semantics of the propositional logic fragment is standard
and the semantics of th2- and R -operator is formalised by :

S| Py(P1U, ,) « for all schedulers\: Pri3{ ¢ € Paths,(s) : ¢ = ®1U ®2} €J
sk=Ri(P) « for all schedulerd: EAS(0Sa(®)) € |

fo=s 55 25 2 ... theng = PUd, iff T > 0st.s =Dy A pGi) €
| A Vj<i.sj = ®1. The satisfaction set @b in M is Sa{®) = {s€ S: s}= ®}. State
formula® is said to hold for an MDP if the initial state satisfi@s
Note that one could also give thR, operator a different semantics as follows.
sE R (@) if and only if for all schedulerg\, such that the probability to rea8at )
from sequals 1, it holds thdEAS(OSal®)) € |. But this is irrelevant for our purposes.
Derived operatorsOther Boolean connectives, such as disjunctioimplication
—, can be derived as usual. The temporal operator eventiadlypbtained in the stan-
dard way by)| ® = true U, ®. The always-operator can be derived as in PCTL by the du-
ality of lower and upper probability bounds. For the trivial reward-intehal(— oo, o),
we obtain the standard eventually, always and until operator. We simplyWripeand
O rather tharJ( _e «), (e w) @NAL(_w «), respectively.
PCTL denotes the sublogic of PCTthat does not use th® -operator and where
the path-formulae have the trivial reward interval. Since the reward structure is irrele-
vant for PCTL-formulae, they can be interpreted over MDPs without reward structure.

The ample set method for PCTL [4]Before presenting the partial order reduction
citeria for PCTL in Section 3, we briefly summarize the results of [4] for applying
the ample-set method to PCTL model checking. The starting point is an MDP

(S Act P,s,;,AP,L), without reward structure, to be verified against a PCTL-formula.
Following Peled’'s ample-set method [24], the idea is to assign to any reachable state
a nonempty action-s@mple's) C Act(s) and to construct a reduced MDH by using

the action-setamples) instead ofAct(s). Formally, given a functiommple: S—>A2ACt
with 0 # amplgs) C Act(s) for all statess, the state space of the reduced MBP=

(S Act,P,s,.,AP,L) induced byampleis the smallest se C Sthat containss,, and
any stataiwhereP(s,a,u) > 0 for somes € Sanda € amplgs). The labelling function

[ : §— 2P is the restriction of the original labelling functidnto the state-seb The



Al (Stutter-condition) If amples) # Act(s) then all actions € amplgs) are stutter actions.

A2 (Dependence-condition}-or each patly = s, ... O, S Yo inwm whereyis depen-
dent onamplégs) there exists an indeixe {1,...,n} such thatyj € amplgs).

A3 (Cycle-condition) On each cycls %5 s; %2, ... 9%, 5, — siin 9/ there exists a sta®
which is fully expanded, i.eamplds) = Act(s)).

A4 (Branching condition) If amples) # Act(s) thenamplgs) is a singleton consisting of a
non-probabilistic action.

Fig. 1. Conditions for the ample-set method for PCTL [4]

transition probability matrix ofV is given byP(s,a,t) = P(s,a,t) if a € amplgs) and
0 otherwise. Stateis called fully expanded iémples) = Act(s).

The main ingredient of any partial order reduction technique in the non-probabilistic
or probabilistic setting is an adequate notion for the independence of actions. The defini-
tion for the independence of actioasandf3 in the composed transition system (which
captures the semantics of the parallel composition of all processes that run in paral-
lel) relies on recovering the interleaving ‘diamonds’. Formally, two distinct actions
andp are calledndependentin /) iff for all statess € Swith {a,B} C Act(s), (11)

a € Act(u) for eachB-successou of s, (12) B € Act(u) for eacha-successou of s, and
(13) P(s,aB,w) = P(s, Ba,w) for all w e SwhereP(s,yd,w) = 5 ,csP(s, Y, u) - P(u,d,w)
for y,0 € Act Two different actionsx and are calleddependeniff a andf are not
independent. ID C Actanda € Act\ D thena is called independent d iff for all
actionsf3 € D, a andp are independent. Otherwise s called dependent dp.

To preserve PCTL properties, [4] use the four conditions in Fig. 1. These rely on a
slight modification of the conditions by Gerth et al [12] for preserving CTL-properties
and can be implemented in an on-the-fly state space exploration [25, 3].

Theorem 1 ([4]). If (AL1)-(A4) hold thert and 1 fulfil the samePCTL-formulae.

3 Reduction Criteria for Rewards

In the sequel, we assume that we are given an MBRnd discuss the partial order
reduction approach for properties specified in PCMe first show that (A1)-(A4) are
not sufficient to preserve PCTlproperties with nontrivial reward bounds. To treat full
PCTL,, we shall need a modification of the branching condition (A4).

Example 1.We begin with a simple example illustrating that (A1)-(A4) cannot ensure
that all PCTL-formulae are preserved. Consider the following MDP with the actions
a,B,ythat are all non-probabilistic and whekev(a) = rew(p) = rew(y) = 1.



Sincea andp are independent aradis a stutter action, (Al)-
(A4) allow for a reduction obtained througtmple's)={a}.
Thus,S={st,u}. Consider the PCTLormula®=2% 5., (a).
Then, the reduced systef satisfies®, while the original
systemM does not, becaus® might choose actiof§ in s
which yields the expected reward 1 to reachasstate. [

We now discuss how to strengthen conditions (A1)-(A4) such that reward-based prop-
erties are preserved. We start with some simple observations. Fifif g sub-MDP
of the original systenfi, any schedulef for A is also a scheduler fa#f. Thus:

Lemma 1. Let®;, d, be PCTl-formulae with Saf (®;) NS= Sat; (®i),i=1,2.

() MERI(®) = M =R (Py),
(II) M '= TJ(¢1U|¢’2) = M ': ?J(¢1U|¢‘2).

The converse directions in Lemma 1 do not hold in generalfamight have “more”
schedulers thafif. To get a feeling of how to modify the reduction criteria for PG;TL
let us first give some informal explanations. In [4], the soundness proof of (Al)-(A4)
for PCTL establishes a kind of bisimulation between the full M®#and the reduced
MDP M which allows one to transform any schedukefor M into a scheduleB
for M such thatA andB yield the same probabilities for PCTL-path formulae. As in
the case of the ample-set method for verifying linear time properties (where (A1)-(A3)
and a weaker form of (A4) are sufficient [5, 7]) this scheduler-transformation yields a
transformation of thé\-paths into “correspondingB-paths. Let us look at this path-
transformation “patlg in M ~ pathcin M:’ which, in fact, is already known from the
non-probabilistic case [24]. The pathin 9/ is obtained through a sequence of paths
Go,C1,Co,. .. inAM such that the first-steps ing and¢.1 agree and are composed of
transitions inM . The switch fron to ¢, 1 is performed as follows.

Letmi=g &, S G—ZZ --- be the suffix ofg; starting with the(i+1)th step (by the
above,s; is a state in). Our goal is to construct a stutter equivalent patfrom
s that starts with an action iamplds;). We then may compose the prefix @ffrom
first(g) to s; with Trto obtain the patlg 1. If a; € ampl€s;) then we may putt= ft
Let us now assume that; ¢ amples;). Then, by (A4),amples;) consists of a single
non-probabilistic action.

(T1) If there is some index > 2 such thatij € amplgs;) then choose the smallest
such indexj and replace the action sequerce .. oj_10j0j1... With ajay...
Oj_1 Qj41.... Thisis possible since by (A2) the actioms,...,a;_1 are indepen-
dent ofa . The resulting patfitis stutter-equivalent taby condition (A1).

(T2) If aj ¢ amplgs;) for all j > 1 andamplgs;) = {B} then replace the action se-
guencen;0;. .. with Ba;0». ... Again, (A2) ensures that eactj is independent of
B. (A1) yields the stutter-equivalence mfand the resulting patfi

Note, that the insertion of the additional action in transformation (T2) possibly changes
the cumulative reward. Since we are interested in the cumulative reward that is gained
until a certain state labelling is reached, the action permutation in transformation (T1)



@ (b) (©

Fig. 2. Mutual exclusion example: (a) components, (b) full system and (c) reduced MDP

possibly changes this reward, as can be seen in Example 1 (note that a stutter action is
permuted to the front of the action sequence).

To establish the equivalence 8f and M for PCTL, it seems to be sufficient to
ensure that, in transformation (T2), the additional acfiohas zero reward, and in
transformation (T1), the stutter actian, that is permuted to the front of the action
sequence, has zero reward. This motivates the following stronger branching condition:

A4’ (New branching condition) If amplégs) # Act(s) thenamplds) = {3} for some
non-probabilistic action withew(f3) = 0.

Theorem 2. If (AL)-(A3), (A4) hold then and M satisfy the same PCTlformulae.

Example 2.To illustrate our approach we consider a simple mutual exclusion protocol

in which the processd® andP, attempt to access a common resource controlled by

a resource manager. A shared variablis used to guarantee mutual exclusion and

we assume that the communication is unreliable (requests to the resource manager are
corrupted/lost with probability 0.1). Fig. 2(a) presents the different components of the
system. Associating a reward of 1 with the actioeg; andreq, and 0 with all other
actions, using PCTLone can, for example, specify:

— R<1.a(crity Veritp) : the expected number of requests before a process enters the
critical section is at most.4;

— Pog7(true Ujog Crita V critp): the probability that a process enters its critical section
after at most 6 requests have been issued is strictly greater than 0.7.

Fig. 2(b) gives the full MDP for the system and (assumiiy= {crity, crit2}) one can
construct the reduced system given in Fig. 2(c) satisfying conditions (A1)-(A4 O



4 Preservation Result for (A1)-(A4) and Reward-Based Properties

We now turn to the question of which properties with nontrivial reward bounds are
preserved by (Al)-(A3) and the original branching condition (A4) in Fig. 1. Let us
again look at the path transformation described in (T1) and (T2) where, given a path
in M a pathiftis generated, where either the action sequendeisfa permutation

of the action sequence of (T1) or ft starts with a non-probabilistic stutter action and
then performs the same action sequence as the originaty{at). As the rewards are

in R we do not know, how the cumulative rewardfohas changed compared to that
of 1. If we however require that the rewards of all actionsr@ma-negativealong the
modified pathita reward equal or greater will be earned than that atonthis yields

an informal explanation why the additional power®f can lead to smaller minimal
expected rewards, but the maximal expected rewards agfeand M . Similarly, we
might expect that the minimal probabilities for events of the faiilg a2 agree under

M andM . The same holds for maximal probabilities for events of the fakgya. This
motivates the definition of the following sublogic of PGTL

Let PCTL, be the sublogic of PCTLwhich only uses theR -operator with upper
reward bounds, i.e., formulae of the forRyg 1 (®), and where the probabilistic oper-
ator is only used in combination with PCTL-path formukagU ®, or with the until-
operator in combination with upper reward and lower probability bounds or in combi-
nation with lower reward and upper probability bounds or with the always-operator in
combination with upper reward and upper probability bounds or in combination with
lower reward and lower probability bounds, eRjg p (Lo, P) OF P(p.1(P1UjgP2).
Note that PCTL is contained in PCTL(The result stated in Theorem 3 would still hold
when dealing with a release- or weak until operator rather than the always-operator.)

Theorem 3. If (A1)-(A4) hold andrew(a) > 0 for all a € Act thenM and & satisfy
the samd>CTL, formulae.

Proof. (sketch As is the case for many other types of (bi)simulation relations for prob-
abilistic systems, our notion of bisimulation equivalence will use the concepeigiht
functions[18, 19]. LetS, S be finite sets an®R C Sx S. If v andV’ are distributions

on SandS respectively then a weight function fév,v’) with respect tdR denotes a
functionw: Sx S — [0,1] such that{(s,s') : w(s,S) >0} C R, S ycgW(s,u') = Vv(s)
andy csw(u,s) =V/(s) forallse S s € S. We writev Cr V' iff there exists a weight
function for (v,v’) with respect tdR and refer to_r as the lifting ofR to distributions.

Definition 1 (Normed (bi)simulation). Let M = (S, Act Py, S, AP, Ly, rew) and

N = (Sy,Act, Py, S, AP, Ly, rew) be two MDPs with the same set of atomic proposi-
tions, the same action sittand the same reward structueev : Act— Rx>g. A normed
reward simulation fo{ M, A\) with respect taew is a triple(R,n1,n2) consisting of a
binary relationR C S;, x S, and functions)1,n2 : R— N such thaf(s;,s),) € Rand
for each pair(s,s') € Rthe following conditions hold.

(N1) Las(s) =La(s)
(N2) If o € Acty,(s) then at least one of the following conditions holds:
(N2.1) ais enabled irs (i.e.,a € Acty () andPy(s,a,-) Cr Py (S, a, ),



(N2.2) ais a non-probabilistic stutter action s. fsg,S) € Randni(sy,s) <Nni(s,9).
(N2.3) There is a non-probabilistic stutter actifire Act, (s') with (s,s’ﬂ) € Rand

ﬂ2(575'g) < WZ(S,SI)-

A normed bisimulation fo{ M, () is a tuple(R,n1,N2,n;,N, ) such thatR,n1,n2)
and(R™1,ny,n,) are normed simulations gt , \(), resp.(A,, M). O

We write M ~np A iff there exists a normed bisimulation faf and (.

A forming path froms to § means a path = 5 Po, S B B“—’1> sy = Swhere

Bo,- - ., Bn—1 are non-probabilistic stutter actions, and for < n, the singleton action-
set{p;} fulfils the dependence condition (A2) for stafeA shortest forming path from
sto$means a forming path frosto Swhere the cumulative reward is minimal under all
forming paths fronsto Sand where the length (humber of actions) is minimal under all
forming paths with minimal cumulative reward. We will writgés, ) for the cumulative
reward of all/lsome shortest forming path fr@to $. s~ § denotes the existence of a
forming path fromsto $and we puR= {(s,$) € Sx S: s~ §}.

If (s,$) € Rthen

PAS(M(s,r+u(s,9),C1,...,Cn)) > PES(M(51,Cy,...,Cn)) (%)

and PPS(N(s,Cy,...,Cp)) = PPS(N(§,Cy,...,Cp)). Here, we used the following nota-
tion. Letu € S C1,Cy,...,Cy be a sequence afn,-equivalence classes wi # Ciy 1

for 1 <i<nandr > 0. Then,M(u,r,Cy,...,Cy) denotes the set of all infinite paths
that have a finite prefix of the formpy —¢ Uy 1w —¢, Uz LN T —Co 4
Un—1 Rl un, whereug = u and the total reward is r anduy, € C,. The actionsy; are
arbitrary. In this contexty —& ¥ means a finite path built out of non-probabilistic stutter
actions such that, Vand all intermediate states of that path belon@.ta (u,Cs, . ..,Cp)
stands for the union of the path-s€tau, r,Cy, ..., C,) for arbitraryr > 0. Fors=s,, =$§

we haveu(s, §) = p—(SninSnn) =0.

_ The above yields that for each schedufefor M there exists a schedul& for
M such that P¥(s,,r,C1,...,Cn)) > PB(M(Sy,1,C1,...,Cpn)) for all r >0 and all
~np-equivalence classés, ..., Cy. From this we can derive thay/ and 9/ fulfil the
same PCT[ formulae. O

Example 3.Let us return to Example 2 and redefine the rewards such that the only
nonzero rewards are for actiodemand anddemand which have reward 1. Now, in
this situation the reduced MDP in Fig. 2(c) can no longer be constructed using (Al)-
(A4"). However, this construction is still possible under (A1)-(A4).

This is demonstrated by the fact that both the reduced and full MDP satisfy the
PCTL; propertyR oz (crity V critz) (the maximum expected number of processes that
can attempt to enter the critical section before one of them does so is at most 2), while
only the reduced model satisfies the PEPLopertyR | . (crity \V critz) (the minimum
expected number is at least 2). O



5 Reward Properties w.r.t Discounted Rewards

In many research areas (e.g. economics, operations research, control theory) rewards are
treated with a different semantics, namely as so-calledounted rewardR27], where
given a discount factor & c < 1, the reward of thé-th action of a path is multiplied
with ¢~1. This interpretation of rewards reflects the fact that a reward (e.g. a payment)
in the future is not worth quite as much as itis now (e.g. due to inflation). In this Section
we investigate our partial order approach for discounted rewards.

Given a pathg = 5 -5 5, —% 5, 93, ... and a discount factar € (0,1), we de-
note bypc(G,i) = rewg(dy...a;) = - rew(a)-+ct - rew(oz)+---+¢ 1 rew(a;) the
cumulative discounted reward obtained through theifiastions.

With this on hand we can define the logic PGTlwhich is a variant of PCTL
In PCTLc, we use the new operatddy and X § instead ofU; and R |, where instead
of the cumulative rewarg(q, i) the cumulative discounted rewapg(c, i) is used in the
semantics of those new operators. The semantics &f ttwperator is as follows. Given
apatm:sou—1>sla—2>szd—3>---,wesaythat|:q>1U,°tD2 iff Ji>0stsE=Pr AVj<
i:Sj=P1 A pe(G i) €l. Similarly, given a set of statdsC Swe denote byRew¢(¢, T)
the discounted reward that is earned unfil-gtate is visited the first time. Formally, if
statgc,i) ¢ T for alli > 0 thenRew¢(¢, T) = 0. If statd¢,i) € T andstatdc, j) ¢ T for
all j <ithenRewc(q,T) = pe(G,i). ForT C Sand a schedule, E@7S(<>T) denotes the
expected value undex with starting states for the random functiorg — Rew¢(¢, T).
Thens = RE(®) iff V schedulers\: E&3(0Sa(®)) €.

A simple example shows that theorem 2 does not hold for RG&ten if all rewards
are nonnegative). Consider the MDWP in example 1 on page 5. We assign the follow-
ing rewards rew(a) = 0,rew(f) = rew(y) = 1. Choosingamplds) = {a}, conditions
(A1)-(A3) and (A4’) are satisfied. However, if we consider the formbla i&c[oq (a),

we gain that the reduced system satisfies while the original systen/ does not,
becauseM might choose actiofd in states which yields the expected discounted re-
ward to reach aa-state to b - rew(B) = 1> c.

The reader should notice that due to the discounting, the transformations (T1) and
(T2) described in Section 3 on page 6 change the reward of a given path, even under
condition (A4") which requires the ample set of a non-fully expanded state to be a
singleton consisting of a non-probabilistic action with zero reward. Nevertheless, the
following holds: given an MDPAM with only non-negativerewards, ample-sets that
satisfy (A1)-(A3) and (A4’) and a pathin M, let¢ be a path that emanates fraphy
applying transfomation (T1) or (T2). Then(G,i) < pc(g,i). Similarly as in Section
4 this informally explains that the additional power®f can lead to greater maximal
expected rewards, but the minimal expected rewards agreé iand M. Also, the
maximal probabilities for events of the foraau[‘ar]az agree undetM and M. This
motivates the definition of the following sublogic BET L.

Let PCTL; be the sublogic oPCT L; which uses theR ¢ operator only with lower
reward bounds (i.é{,{ﬁm)@) and where the probabilistic operator is only used in combi-
nation with PCTL-path formula®;U ®, or with the until-operator in combination with
lower reward and lower probability bounds or in combination with upper reward and



upper probability bounds or with the always-operator in combination with upper reward
and lower probability bounds or in combination with lower reward and upper probabil-
ity bounds, .92 p)(Cjr,0)®) OF Pjo 5 (P1Ujg,P2). Note that PCTL is contained in
PCTL;.

Theorem 4. If (A1)-(A3) and (A4’) hold andew(a) > O for all a € Act then?/ and
M satisfy the samBCTL; formulae.

6 Conclusion

The goal of this paper was to study the theoretical foundations of the ample-set approach
for the logic PCTl, a variant of PCTL with reward-bounded temporal modalities and

an expectation operator. The main results of this paper are that the ample-set conditions
presented in [4] for PCTL preserve a class of non-trivial reward-based properties (The-
orem 3) and that a slight modification of the conditions of [4] are sufficient to treat full
PCTL; (Theorem 2). The proofs of these results have been established by means of a
new notion of weak bisimulation for MDPs which preserves PCahd — since it is
simpler than other notions of weak bisimulation equivalence for MDPs — might also
be useful for other purposes. Moreover we investigated the logic RGiNariant of

PCTL, where the rewards are given a discounting semantics. We presented ample-set
conditions that preserve a non-trivial subset of PE€Pptoperties if all given rewards

are non-negative (Theorem 4).

Besides being of theoretical interest, the results of this paper also have a practical
impact. First experimental results on the ample set approach for MDPs (without reward
structure) with the forthcoming model checker LiQuor [3] show that although the cri-
teria needed for probabilistic systems are stronger than in the non-probabilistic case,
good reductions can be obtained. Furthermore, the bottleneck in analysis of probabilis-
tic systems modelled by MDPs are the required techniques for solving linear programs.
Since the amount of time required for the construction of the reduced MDP is negligi-
ble compared to the running time of linear program solvers, even small reductions can
increase the efficiency of the quantitative analysis.

In future work, we plan to integrate the partial order reduction techniques suggested
here in the symbolic MTBDD-based model checker PRISM [16] by constructing a syn-
tactic representation of the reduced MDP at compile time, in the style of static partial
order reduction [20] which permits a combination of partial order reduction with sym-
bolic BDD-based model checking.
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