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Abstract— Shared autonomous mobility-on-demand systems
hold great promise for improving the efficiency of urban
transportation, but are challenging to implement due to the
huge scheduling search space and highly dynamic nature of
requests. This paper presents a novel optimal schedule pool
(OSP) assignment approach to optimally dispatch high-capacity
ride-sharing vehicles in real time, including: (1) an incremental
search algorithm that can efficiently compute the exact lowest-
cost schedule of a ride-sharing trip with a reduced search space;
(2) an iterative online re-optimization strategy to dynamically
alter the assignment policy for new incoming requests, in order
to maximize the service rate. Experimental results based on
New York City taxi data show that our proposed approach
outperforms the state-of-the-art in terms of service rate and
system scalability.

I. INTRODUCTION

Ride-sharing is a promising solution for transportation
issues such as traffic congestion and parking land use, which
are brought about by the extensive usage of private cars. In
the near future, large-scale shared autonomous mobility-on-
demand (SAMoD) systems are expected to be deployed with
the realization of self-driving vehicles [1], [2]. An SAMoD
system consists of a fleet of shared self-driving vehicles and
a centralized dispatch server receiving on-demand requests
sent from passengers, as shown in Figure 1. The basic idea
behind an SAMoD system is to assign suitable vehicles to
each request and group multiple requests into ride-sharing
trips if they are travelling in similar directions.

However, significant adoption of SAMoD systems requires
the following technical challenges to be addressed:

1) Large-scale. A typical urban taxi system has over ten
thousands vehicles. The state space of ride-sharing
combinations and routes grows exponentially as the
number of requests or the capacity of vehicles increases.

2) Time-sensitive. Passengers are sensitive to the time of
service. Each request needs to be assigned in a few
seconds and completed as soon as possible.

3) Dynamic. Requests are received continuously through-
out the day, instead of being known in advance. An
optimal assignment at a given time may not be the best
when considering additional new requests.
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Fig. 1: Architecture of an SAMoD system with two vehicles
and four requests, where vehicle 1 is assigned to serve
requests 1&4 following schedule 1 (oi: pick up request ri,
di: drop off ri) and vehicle 2 is assigned to serve requests
2&3 following schedule 2.

Many approaches to controlling and analyzing SAMoD
systems have been studied, such as multi-commodity flow
models [3], queuing network models [4] and search-based
models [5], [6]. Due to computational complexity, most ex-
isting work is restricted to small-scale and double-occupancy
fleets for optimal assignments. Algorithms for optimal as-
signment usually formulate the problem as Mixed-Integer
Linear Programming, which is impractical when thousands
of vehicles are needed. Greedy methods have been used
to accelerate the computation for large fleet ride-sharing,
however, as the optimality of assignment is not guaranteed,
the benefit of ride-sharing cannot be fully achieved.

This paper proposes an efficient online batch assignment
scheme for dispatching high-capacity SAMoD systems in
a practical timeframe. We use an incremental computation
heuristic to reduce the search space of scheduling, and an
iterative re-optimization procedure to dynamically and effi-
ciently alter the assignment policy. The proposed approach
is executable in real-time settings and can guarantee the
optimality of the assignments at each dispatch epoch. To
summarise our contributions, we:

1) Develop an incremental search algorithm to efficiently
compute the optimal schedule of a ride-sharing trip,
which reduces the global search to local search with
heuristics while ensuring optimality (Sec. IV-A).

2) Combine the optimal schedule search algorithm with
the feasible trip search algorithm of [5] to generate all
possible ride-sharing trips for each vehicle, along with
the optimal schedule for each trip (Sec. IV-B).

3) Develop an iterative re-optimization strategy to avoid
myopic optimality, which takes into account both pre-
vious and new requests to optimize long-term system
effectiveness (Sec. IV-C, IV-D).



4) Perform simulations with large-scale taxi data and
evaluate our proposed approach, comparing to three
representative algorithms (Sec. V).

II. RELATED WORK

As requests appear throughout the day, online algorithms
usually solve a static problem repeatedly in a rolling-horizon
framework. Many approaches use greedy insertion, i.e., as-
signing one request at a time to the best-matched vehicle,
to reduce the computational complexity, and most of them
focus on the efficiency of dispatch. [7] introduces a grid-
based index to accelerate the search of candidate vehicles,
where a request only checks its nearby areas. [6] argues that
the insertion of a new request into the route is the efficiency
bottleneck, and proposes a dynamic programming algorithm
to speed this up. These methods are efficient for large fleet
and even high-capacity ride-sharing systems, but the quality
of assignment cannot be guaranteed as the assignment of
each request is greedy. [8] tries to use a replace procedure to
achieve a better match quality by considering two requests at
one time, but the improvement on service rate is very limited
and the number of vehicles considered is reduced.

Batch assignment approaches collect the incoming re-
quests over a period ∆T and compute the assignment of
the collected requests simultaneously. Better performance
is achieved than greedy insertion, but at the cost of much
higher computational complexity. The simplest approach
only computes all possible insertions of each single request
to vehicles and then finds an optimal assignment of such
insertions, as in e.g. [9]. That work also limits the maximum
number of vehicles considered per request to handle thou-
sands of vehicles, but its improvement over greedy insertion
is relatively small. [10] computes an initial assignment of
requests to vehicles, then performs random searches for more
possible solutions to improve the quality of assignment.
Inserting multiple requests into one vehicle’s route is allowed
in [10], but the instance scale solved is small. [5] generates
all possible request insertions incrementally to break down
the computational burden, and is able to dispatch thousands
of high-capacity vehicles. However, a time limit is set in
order to ensure efficiency and hence the state space is not
guaranteed to be fully searched.

None of the above approaches tackle the optimal schedul-
ing problem that finds the best order for picking and dropping
multiple requests. Thus the optimality of assignment cannot
be achieved as some requests may be mistakenly rejected.
[3] develops a multi-commodity network flow model and
formulates the assignment problem as a mixed integer linear
program to get an optimal assignment. But the ride-sharing
size is limited to two and the problem instances solved in
the paper are relatively small. By contrast, we allow optimal
dispatch of thousands of vehicles with a capacity of up to
10 in order to fully utilize the benefit of ride-sharing.

To further improve the performance of ride-sharing, some
approaches work on sophisticated rebalancing method [11]
or learning predictive value functions from historical data
for better assignment [12]. They still suffer from the lack of
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Fig. 2: Framework of the dispatch logic.

an efficient and optimal generation of feasible solutions [12],
and our approach, computing all optimal schedules, can help
them have a better performance.

III. PROBLEM STATEMENT

A. Preliminaries

An instance of an SAMoD system consists of a fleet of
m vehicles V = {v1, . . . , vm} and a set of n new requests
R = {r1, . . . , rn} submitted. Each vehicle v ∈ V is defined
as a tuple 〈qv, κv, sv〉, where qv is its current position, κv
is the capacity of the vehicle and sv is a planned schedule
consisting of a sequence of pick-up and drop-off tasks. Each
request r ∈ R is defined as a tuple 〈or, dr, tr〉, where or is
its origin, dr is its destination, and tr is the time the request
is submitted. A waiting time ωr (the difference between the
actual pick-up time and the request sent time) and a total
travel delay δr (the difference between the actual drop-off
time and the travelling alone arrival time) are associated with
each request.

A set of requests that can be merged through ride-sharing
and served by a single vehicle is presented as a trip Γ =
{r1, . . . , rnΓ}. A trip might be served by more than one
candidate vehicle and vice versa.

The order for a vehicle v to pick up and drop off
requests in a trip Γ is defined as a schedule sv,Γ =
{qv, . . . , o1, . . . , d1, . . . , o2, . . . }, consisting of a sequence of
visiting positions. There might be more than one feasible
schedule for a specific combination of a vehicle v and a trip
Γ; the set of all feasible schedules is denoted by Sv,Γ and
the minimum-cost one is denoted by s∗v,Γ. A schedule must
satisfy the following constraints:
• Each request must be served by exactly one vehicle.
• The pick-up point of each request must be visited before

the drop-off point.
• The waiting time and travel delay of each request cannot

exceed two thresholds, Ω and Λ, respectively.
• The number of passengers on board cannot exceed the

capacity of the vehicle.



B. System Framework

Requests are collected periodically every ∆T (e.g., 30
seconds). Considering the current positions and schedules of
the vehicle fleet, the dispatch server will search all possible
ride-sharing trips for each vehicle. For each combination, the
server verifies whether it is feasible, computes the optimal
schedule and adds it to the optimal schedule pool. The opti-
mal schedule pool is generated incrementally for increasing
ride-sharing trip sizes. Then the server assigns each vehicle
a schedule to serve requests. The assignment considers both
new and previous received requests to maximize the system
performance. A previous optimal schedule pool is maintained
to save redundant computation. The details of the dispatch
logic are shown in Figure 2.

IV. OPTIMAL ONLINE DISPATCH SCHEME

To tackle the optimal schedule search problem, we intro-
duce an incremental search algorithm to reduce the schedul-
ing space. It is further coupled with the possible trip search
algorithm of [5] to efficiently generate the optimal schedule
pool. A re-optimization strategy with speed-up heuristic is
then presented to improve the long-term system performance.

A. Optimal Schedule

Computing the optimal schedule for a vehicle serving all
requests in a trip is computationally expensive in general, as
it is a generalization of the Travelling Salesman Problem with
Precedence Constraints [13]. The following observation leads
to the idea of incrementally searching all feasible schedules
of a large trip.

Lemma 1: A schedule sv,Γ can be feasible only if any
sub-schedule sv,Γ\{or, dr} (obtained by removing one re-
quest) of it is feasible, where sv,Γ\{or, dr} ∈ Sv,Γ\r.
Therefore, a schedule sv,Γ only needs to be checked for
satisfaction if, for any r in the schedule, the schedule set
Sv,Γ\r is not empty.

Using Lemma 1, it is found that all sv,Γ ∈ Sv,Γ can be
obtained through inserting a request r into some sv,Γ\r ∈
Sv,Γ\r. We propose Algorithm 1 to efficiently compute
the exact minimum-cost schedule of a high capacity ride-
sharing trip Γ by only searching potentially feasible sched-
ules instead of all schedule permutations. It generates the
feasible schedule set Sv,Γ incrementally by extending the
initial schedule set and returns the optimal schedule s∗v,Γ
or an empty schedule if there is no feasible schedule. Sav
and Sbv are define as two sets of all feasible schedules of
vehicle v serving size k− 1 and size k trips. In lines 6-7, it
computes the set all the feasible schedules Sbv by extending
schedules in Sav . The function InitScheduleSet(v) returns all
the feasible schedules for the vehicle dropping passengers
on board or {{qv}} if the vehicle is idle. The function
ScheduleInsersion(schedule, r) tries to insert or and dr into
all possible places to obtain new schedules and returns a set
of all feasible new schedules or an empty set.

By pruning the infeasible subset of all possible schedules,
finding the optimal schedule of a vehicle serving a trip is
reduced from enumeration to a couple of basic schedule

Algorithm 1 Optimal Schedule Computing

Input : a vehicle v and a trip Γ
Output: the new optimal schedule s∗v,Γ for the vehicle v

1: Sav ← InitScheduleSet(v);
2: k ← 1;
3: while Sav 6= ∅ and k <= nΓ do
4: Sbv ← ∅;
5: r ← Γ.pop();
6: for each schedule ∈ Sav do
7: Sbv ← Sbv ∪ ScheduleInsersion(schedule, r);

8: Sav ← Sbv;
9: k ← k + 1;

10: s∗v,Γ ← the minimum-cost schedule from Sbv;

Algorithm 2 Optimal Schedule Pool Generating

Input : a vehicle v and a set of requests R
Output: the optimal schedule pool z∗v for the vehicle v

1: zkv ← ∅,∀k ∈ {0, 1, . . . , κv};
2: Sv,{∅} ← InitScheduleSet(v);
3: z0

v ← z0
v ∪ {Sv,{∅}};

4: for each r ∈ R do
5: Sv,{r} ← ScheduleSearch(Sv,{∅}, r);
6: z1

v ← z1
v ∪ {Sv,{r}};

7: k ← 2;
8: while zk−1

v 6= ∅ and k <= κv do
9: for all Sv,Γi , Sv,Γj ∈ zk−1

v with |Γi ∪ Γj | = k do
10: Denote Γi ∪ Γj = Γk = Γi ∪ {rnew};
11: Sv,Γk ← ScheduleSearch(Sv,Γi

, rnew);
12: zkv ← zkv ∪ {Sv,Γk};
13: k ← k + 1;

14: zv ← z1
v ∪ · · · ∪zκv

v ;
15: z∗v ← ExtractOptimalSchedule(zv);

insertion processes. The tight constraints on maximum travel
delay of SAMoD naturally narrows the solution space [2],
which means that the size of any schedule set Sv,Γ is
normally small. Thus, the search space of possible schedules
is significantly reduced.

B. Optimal Schedule Pool

Borrowing the algorithmic idea of trip group feasibility
from [5], we develop a procedure that can truly compute
all feasible trips of a vehicle, along with the optimal
schedule for each trip. It is illustrated in Algorithm 2,
where zv = {Sv,Γ1

, Sv,Γ2
, Sv,Γ3

, . . . } is defined as the
feasible schedule pool, containing all feasible schedule sets
for vehicle v. Algorithm 2 incrementally computes zv in
increasing trip size and outputs the optimal schedule pool
z∗v = {s∗v,Γ1

, s∗v,Γ2
, . . . }, which contains all candidate op-

timal schedules of vehicle v serving all trips Γi ⊆ R. The
function ScheduleSearch(Sv,Γ, r) in lines 5 and 12, as in
lines 6-7 of Algorithm 1, tries to compute schedules of trip
Γ∪{r} and returns the set of feasible schedules Sv,Γ∪{r} if
possible. Algorithm 2 can be parallelized among the vehicles.



Algorithm 2 further reduces the computation of s∗v,Γ to
|Sv,Γ\r| calls to function ScheduleInsersion(schedule, r).
Many redundant computations are saved, as the feasible
schedule set Sv,Γ does not need to be computed completely
from scratch on each request in trip Γ. By considering all
feasible schedules for each trip, no trip would be mistakenly
ignored and more feasible trips could be found than [5].

C. Iterative Updating

Although batch assignment approaches consider multiple
requests simultaneously, there may still be cases where a later
request, that can be served if the batch period is larger, will be
mistakenly rejected. Therefore, re-optimization is introduced
in order to escape from of a local minimum by removing
the past assignment and computing a new one based on
all known requests. However, this is too computationally
expensive if we simply compute the optimal schedule pool
for all received requests. So, we design an updating heuristic
to reduce computation by generating the optimal schedule
pool from previous schedules z∗v,prev.

The procedure is shown in Algorithm 3, where Rprev
is defined to be the previous received requests and
Rnew is defined to be the new submitted ones. Function
UpdatePreviousSchedule(z∗v,prev, v) updates schedules in
z∗v,prev based on the current status of the vehicle, removes
the infeasible ones and outputs the feasible ones in the same
format as zv,prev. Function Size1ScheduleSet(v,Rnew) is
equivalent to lines 4-6 in Algorithm 2 and computes the opti-
mal schedule set z1

v for Rnew. Only computing combinations
between the new requests and the previous ones, not among
all known unpicked-up requests, makes the algorithm more
efficient. Suppose we have nall requests in the pool and nnew
of them are newly submitted; the number of combinations for
naive computation is 1/2 · nall(nall − 1), while the number
with the updating heuristic is 1/2 · (2nall − nnew − 1)nnew.
We define z = nnew/nall, as normally nnew � 1, then:

1/2 · (2nall − nnew − 1)nnew
1/2 · nall(nall − 1)

=
2nnew
nall

− nnew(nnew − 1)

nall(nall − 1)

= 2z − z nnew − 1

nall − 1

≈ 2z − z2

In our experiments (see the next section), the number of
new requests is normally less than 500 while the number of
all unpicked-up requests is up to 2600. There are significantly
fewer combinations between 500 and 2600 requests than
among 2600 requests. Based on the following observation,
z∗v , as generated by Algorithm 3, still contains all possible
optimal schedules.

Lemma 2: A schedule sv,Γ can be feasible at time t only
if it is feasible at t−∆T . Thus, a feasible optimal schedule
s∗v,Γ (∀ Γ ⊆ Rprev) at time t must is included in z∗v,prev.

With re-optimization, the SAMoD system can find a
balance between the response time for requests and the opti-
mality of the system. A small period yields a short response
time, whereas considering all known requests makes the
assignment policy optimal at any given time.

Algorithm 3 Schedule Pool Updating

Input : a vehicle v with its previous optimal schedule pool
z∗v,prev and a set of new requests Rnew

Output: the new schedule pool zv
1: zv,prev ← UpdatePreviousSchedule(z∗v,prev, v);
2: zkv ← ∅,∀k ∈ {0, 1, . . . , κv};
3: z1

v ← Size1ScheduleSet(v,Rnew) ∪z1
v,prev;

4: k ← 2;
5: while zk−1

v 6= ∅ and k <= κv do
6: nnew trip = len(zk−1

v )− len(zk−1
v,prev);

7: for Sv,Γi
∈ zk−1

v [0 : nnew trip] do
8: for Sv,Γj

∈ zk−1
v [1 :] do

9: Denote Γi ∪ Γj = Γk = Γi ∪ {rnew};
10: zkv ← zkv ∪ ScheduleSearch(Sv,Γi

, rnew);

11: zkv ← zkv ∪zkv,prev;
12: k ← k + 1;

13: zv ← z1
v ∪ · · · ∪zκv

v ;

D. Constrained Optimization

Given a vehicle fleet V , a set of previous received yet not
served requests Rprev and a batch of new incoming requests
Rnew, we define Rall = Rnew ∪Rprev and RH representing
the previous assigned requests. After an optimal schedule
pool z∗v has been computed for each vehicle, the goal is
to assign each vehicle v a particular schedule s to serve as
many requests as possible and minimize the overall travel
cost raised by ride-sharing. This can be formulated as the
solution of the following integer linear program (ILP):

argmin
xv,s,εr

∑
v∈V

∑
s∈z∗

v

xv,s · c(s) +
∑
r∈RH

εr · prH (1)

s.t.
∑
s∈z∗

v

xv,s = 1, ∀v ∈ V (2)∑
v∈V

∑
s∈z∗

v

xv,s ·Θs(r) + εr = 1, ∀r ∈ Rall (3)

where c(s) is the cost of the planned schedule s, prH is
a very larger penalty for rejecting a request in RH and
Θs(r) is an indicator function, i.e., Θs(r) = 0 if r /∈ s and
Θs(r) = 1 otherwise. Binary variable xv,s ∈ {0, 1} indicates
whether a schedule is ignored or assigned to vehicle v and
binary variable εr ∈ {0, 1} indicates whether a request is
assigned or ignored. Constraint (2) enforces that each vehicle
is assigned exactly one optimal schedule and constraint (3)
enforces that each request can only be assigned to at most
one vehicle. The cost of a schedule can be the mileage driven,
the travel time or the revenue [6]. In this paper, the cost is
defined as c(s) =

∑
r∈s(ωr + δr − pr) to maximize the

service rate as a priority, where pr is a penalty smaller than
RH for rejecting a request.

E. Optimality

The generation of the optimal schedule pool exhaustively
explores all combinations of currently received requests and
vehicles. The saving of redundant computations makes it



TABLE I: Parameter settings (defaults in bold).

Parameters Settings

Instance Scale (|R|, |V |) (400k, 2000), (500k, 2300), (600k,
2600), (700k, 2900), (800k, 3200)

Capacity κ 2, 4, 6, 8, 10
Maximum Waiting Time Ω (s) 120, 180, 240, 300, 360, 420

Batch Period ∆T (s) 2, 5, 10, 30, 60, 120

possible to do this generation in real time. The computation
of the optimal schedule for each trip ensures that no trip is
mistakenly ignored. Then, solving the ILP presented above
considers all possible assignment policies and returns the one
that produces the minimal value of the objective function (1).

V. EXPERIMENTAL STUDY

In this section, our method is evaluated and compared to
the leading online dispatch algorithm in [5] and two other
representative algorithms [6], [9]. Since existing implemen-
tations are unavailable, we reimplement all algorithms and
run them on the same machine to ensure a fair comparison.

A. Dataset

The experiments are conducted on the the largest public
taxi dataset from New York City [14]. , which has been
widely used in existing ride-sharing studies [2], [5], [6],
[15], [11], [12]. We extracted requests data from three
Wednesdays: 11th, 18th and 25th May in 2016. These have
similar characteristics and we use them to synthesize five
scenarios of varying size (400,000–800,000 requests) to test
the scalability of algorithms.

B. Simulation Details

We simulate a ride-sharing environment following the
settings in [5]. The initial locations of vehicles are uniformly
distributed over the road network at the start of the experi-
ment. The shortest paths among all nodes in the road network
are pre-computed, using the daily mean travel time. Table I
summarizes the major experimental parameters. As well as
increasing the number of requests, we also increase the fleet
size to have instances of realistic scale. The maximum travel
delay is set to twice the maximum wait time. For various
different capacities, we simulate the entire day. Then, for
other parameters, we run the simulation for the hour with
peak demand (19:00-20:00). This is the most challenging part
and is enough to show the characteristics of the algorithms.
The simulation implementation is single-threaded and the
results are the averages of five experiment runs.

C. Algorithm Comparison

Our OSP algorithm is compared with the following rep-
resentative algorithms:
• GI [6]: Greedy Insertion. This assigns requests sequen-

tially to the best available vehicle in a first-in-first-out
manner (i.e., an exhaustive version of [7]).

• SBA [9]: Single-Request Batch Assignment. This takes
the new requests for a batch period and assigns them
together in a one-to-one match manner, where at most
one new request is assigned to a single vehicle.
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Fig. 4: Performance comparison during the peak hour for
varying maximum waiting time Ω.

• RTV [5]: Request Trip Vehicle Graph. This is a more
sophisticated batch assignment algorithm that copes
with multiple request assignments during the same batch
period. It uses ad hoc heuristics (e.g., only 30 candidate
vehicles for each request, finding optimal schedules
trips up to size 4 and a timeout of 0.2 s per vehicle
to search feasible trips) to make it run in real-time.

All algorithms are equipped with the same simple rebalanc-
ing method from [5]. Our comparison focuses mainly on the
service rate (percentage of requests served) and the response
time (mean computational time of every batch period).

D. Results

Fig. 3 shows the results of varying vehicle capacity. As
the capacity increases, all algorithms provide better service
rates. Compared to double-occupancy, high-capacity ride-
sharing significantly increases the service rate. All batch
assignment methods outperform GI. Our OSP algorithm has
the highest service rate and shows a 3.85% improvement
over SBA at capacity 10. RTV is marginally worse than
OSP when the capacity is less than 6, but it only achieves
a 1.99% higher service rate than SBA at 10-capacity, which
is only around half of the improvement brought by OSP.
SBA outperforms GI more at double-occupancy than high
capacity, because two seats would rarely let multiple request
assignments happen during the same batch period. The gap
between SBA and RTV/OSP at double-occupancy is mainly
caused by re-optimization. The response times of GI and
SBA are almost unchanged at varying capacity, while that of
RTV and OSP linearly increase.

Fig. 4 plots the results of varying maximum waiting time.
With a larger waiting time, the service rate of all algorithms
increases. The reason is that a longer waiting time and travel
delay allows a larger detour, and thus more requests are
served. Batch assignment approaches achieve significantly
higher service rates than GI when the maximum waiting
time is low. But, when the tolerance to delay increases, the
ability to leverage complex combinations of requests and
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their optimal schedules is needed to maintain this advantage.
The response time of GI and SBA is still stable. While the
running time of OSP grows almost linearly, that of RTV
increases exponentially. The rate of growth in RTV’s running
time decreases when Ω > 300 s because the time limit slows
down the increase in computational time.

Fig. 5 shows the results of varying batch period. With
a larger period, more requests are processed at one epoch
and thus the response time of batch approaches grows.
Considering more requests in one period could theoretically
have a better matching quality. However, a longer period
yields a longer waiting and a lower detour tolerance, and
results in a lower service rate. When the batch period is
longer than 60 s, the service rates decrease significantly.

Fig. 6 plots the results of varying instance scale. All
algorithms scale well to large problem instances with a
linear increase in response time. However, the service rate
of RTV has a considerable decrease compared to others. The
difference between OSP and RTV is expanded from 2.04%
to 3.21%. This indicates that, although the ad hoc heuristics
used by RTV ensure a good scalability on response time,
as optimality cannot be guaranteed, they also bring a worse
matching performance at large instance scale.

Fig. 7 shows the total number of feasible trips found and
the number of matched new requests by different algorithms
from 19:30 to 20:00, where the average number of incoming
new requests is 438 per 30 s. In each dispatch period, all
algorithms are fed with the exact same requests and vehicles
to remove other distractions (e.g. the position distribution
of requests). RTV-FULL, without time limit and allowed to
keep every feasible vehicle for each request, is introduced to
have a comprehensive comparison between OSP and RTV.
It can be seen that OSP has the best performance at each
dispatch epoch, as it finds every feasible trip with the optimal
schedule and makes the best match based on them. The
difference between OSP and RTV-FULL is caused by the
fact that RTV-FULL only does exhaustive search for trips
up to size 4. Despite this, the response time of RTV-FULL
is 763.98 s, while that of RTV and OSP are 65.48 s and
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Fig. 7: Number of feasible trips found for all vehicles
(upper plot) and number of matched new submitted requests
(lower plot) at different dispatch epochs (|R| = 800k, |V | =
3200, κ = 8,Ω = 300 s,∆T = 30 s).

TABLE II: Number of schedules searched by algorithms

Trip Size 3 4 5 6 7
Exhaustive Search 54 1150 6983 53,110 272,810

OSP (ours) 11 50 159 433 595

45.38 s. If we allow RTV-FULL to do exhaustive search for
size 5 trips, the response time increases to 3,734.77 s.

We further investigate the number of possible schedules
considered by OSP to see how much of the search space is
pruned compared to exhaustive search. Table II shows the
counts from trips of size 3 to 7. Exhaustive search is unable
to complete the search when the trip size is larger than 7,
while OSP only considers 1,920 schedules for size 10 trips.

E. Summary

Batch assignment provides better performance than GI for
assigning requests together. Additionally, our OSP’s optimal
scheduling can achieve twice the improvement of RTV
over SBA. The improvement of OSP relative to RTV also
rises with the complexity of the instance. The incremental
schedule search method and the iterative re-optimization
strategy together reduce the scheduling space to less than one
percent of that of exhaustive search, when the ride-sharing
size is larger than six. The computation of the schedule pool
is naturally parallelized among the vehicles, thus OSP is able
to be deployed in real-time with even larger instance scale.

VI. CONCLUSION

In this paper, we have proposed an optimal online schedul-
ing algorithm (OSP) for high capacity SAMoD systems
incorporating an incremental schedule search algorithm and
an iterative re-optimization strategy. Numerical experiments
on real large-scale datasets show the proposed method im-
proves the state-of-the-art in terms of service rate (up to
3.21% at peak hour) and system scalability. Typically, a 1%
improvement is considered significant on real taxi systems
[12], [16]. Our work aims to study reactive optimal batch
assignment for SAMoD systems running in real time, and
tries to reach the upper-bound of performance for reactive
dispatch. Future work will investigate the combination of
complete feasible trip search and predictive control.
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