
Journal of Computational Science 74 (2023) 102156

A
1

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

The Hamiltonian Cycle and Travelling Salesperson problems with
traversal-dependent edge deletion
Sarah Carmesin a, David Woller b,c, David Parker d, Miroslav Kulich b, Masoumeh Mansouri a,∗

a School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
b Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 6, 160 00, Czech
Republic
c Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí13, Prague 2, 121 35, Czech Republic
d Department of Computer Science University of Oxford, Parks Road, Oxford, OX1 3QD, United Kingdom

A R T I C L E I N F O

Keywords:
Travelling Salesperson problem
Coverage planning
Metaheuristics
Combinatorial optimization

A B S T R A C T

Variants of the well-known Hamiltonian Cycle and Travelling Salesperson problems have been studied for
decades. Existing formulations assume either a static graph or a temporal graph in which edges are available
based on some function of time. In this paper, we introduce a new variant of these problems inspired
by applications such as open-pit mining, harvesting and painting, in which some edges become deleted or
untraversable depending on the vertices that are visited. We formally define these problems and provide
both a theoretical and experimental analysis of them in comparison with the conventional versions. We also
propose two solvers, based on an exact backward search and a meta-heuristic solver, and provide an extensive
experimental evaluation.
1. Introduction

Finding a closed loop on a graph where every vertex is visited ex-
actly once is a Hamiltonian Cycle Problem (HCP), and its corresponding
optimization problem in a weighted graph is a Travelling Salesperson
Problem (TSP). Variants of the HCP and the TSP have been studied for
decades. However, the wealth of research on this topic does not cover
problems where the availability of an edge in a graph depends on the
vertices already visited. This specific type of dynamic graph is relevant
to many real-world applications, such as open-pit mining, harvesting
and painting.

For instance, consider the mining inspired example shown in Fig. 1,
where the graph depicts a representation of a mining field and each
vertex is a place to be drilled by a drilling machine. The problem is to
find a route such that each vertex is visited and drilled exactly once,
i.e., an instance of a HCP/TSP. However, in this problem, drilling at a
vertex creates a pile of rubble, which not only makes traversing that
vertex again impossible but also affects the availability of some edges
around it. For example, as depicted in Fig. 1(a), when vertex 𝐶 is
drilled, indicated by a red circle, the rubble obstructs three edges, 𝐵𝐷,
𝐶𝐷 and 𝐷𝐴, which are all deleted, whereas a different traversal only
results in the removal of edge 𝐷𝐴, as shown in Fig. 1(b).

To model a graph that changes due to the path of already visited
vertices, as exemplified in the scenario above, we introduce a new class

∗ Corresponding author.
E-mail addresses: sxc1431@student.bham.ac.uk (S. Carmesin), wolledav@cvut.cz (D. Woller), david.parker@cs.ox.ac.uk (D. Parker), kulich@cvut.cz

(M. Kulich), m.mansouri@bham.ac.uk (M. Mansouri).

of graphs, called Self-Deleting (SD). Using this class, we formally define
two new problem variants: the Hamiltonian Cycle Problem with Self-
Deleting graphs (HCP-SD), and the Travelling Salesperson Problem with
Self-Deleting graphs (TSP-SD). We then compare, both theoretically and
experimentally, HCP-SD and TSP-SD with the conventional versions. In
particular, we identify how a self-deleting graph compares to a standard
graph in terms of shortest paths, and determine where HCP and HCP-SD
are equivalent. We also statistically analyse, using the graph’s average
vertex degree, the threshold point near which the most expensive
instances of HCP and HCP-SD are located. Finally, we propose two
solvers, based on an exact backward search and a meta-heuristic solver.
The performance of each is extensively evaluated through experiments
with a dataset based on standard TSPLIB instances as well as randomly
generated datasets catering for the specificity of these new variants.

The paper is structured as follows. Section 2 gives an overview
of related works. In Section 3, we formally define HCP-SD and TSP-
SD followed by formal proofs of properties of self-deleting graphs in
Section 4. We present exact and heuristic solvers for HCP-SD and TSP-
SD in Section 5. A statistical analysis of HCP-SD is given in Section 6. In
Section 7, we evaluate the proposed solvers. We give our conclusions
in the final section, Section 8.
vailable online 17 October 2023
877-7503/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jocs.2023.102156
Received 27 March 2023; Received in revised form 27 September 2023; Accepted 8
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2023

https://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:sxc1431@student.bham.ac.uk
mailto:wolledav@cvut.cz
mailto:david.parker@cs.ox.ac.uk
mailto:kulich@cvut.cz
mailto:m.mansouri@bham.ac.uk
https://doi.org/10.1016/j.jocs.2023.102156
https://doi.org/10.1016/j.jocs.2023.102156
http://creativecommons.org/licenses/by/4.0/

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.

a

𝐺

c
g
w

o
i
𝑓
r

(
p
H
c

P
C

Fig. 1. Representation of a mining example, where due to different traversals, indicated
with thicker edges, in (a) and (b) different edges are deleted.

2. Related work

There is a large body of research on the HCP, the TSP and their
variants. As mentioned, this paper focuses on a particular type of HCP
and TSP where the edges become deleted or untraversable depending
on the vertices visited. None of the existing variants of these problems
with dynamic graphs has this property. In a TSP on temporal networks,
an edge’s weight and/or availability changes with respect to some
notion of time [1,2], and the unavailable edges can reappear again,
as opposed to HCP-SD where the deleted edges are never re-enabled.
The other difference is that the weight or availability of an edge in a
temporal network changes with time and not due to the way the graph
is traversed.

The Covering Canadian Traveller Problem (CCTP) [3] is to find the
shortest tour visiting all vertices where the availability of an edge is
not known in advance. The traveller only discovers whether an edge is
available once reaching one of its end vertices. The availability of an
edge is set in advance and not dependent on the traversal.

The Sequential Ordering Problem (SOP), sometimes known as prece-
dence constraint TSP [4], is the problem of finding a minimal cost
tour through a graph subject to certain precedence constraints [5].
These constraints are given as a separate acyclic-directed graph. In the
SOP, the precedence relation is solely between vertices, however, in
our problem we have precedence relations between vertices and edges.
Therefore, SOP is a special case of our problem, and we prove this
formally in Lemma 4.

The Minimum Latency Problem (MLP) [6,7] is a variant of the TSP
where the cost of visiting a node depends on the path that a traveller
takes. Given a weighted graph and a path, the latency of a vertex 𝑣
on that path is defined as the distance travelled on that path until
arriving at 𝑣 for the first time. The goal of the MLP is to find a tour
over all vertices such that the total latencies are minimal. Similarly,
in our problem the availability of an edge depends on the path taken.
However, in a MLP, the graph never changes and the latencies are the
result of a simple sum.

On the HCP, some theoretical analysis focuses on investigating
conditions, e.g., vertex degree [8,9], under which a graph contains
a Hamiltonian cycle. For instance, Pósa [10] and Komlós and Sze-
merédi [11] proved that there is a sharp threshold for Hamiltonicity in
random graphs as the edge density increases. An intuitive approach to
finding a Hamilton cycle is to use a depth-first-search (DFS). Rubin [12]
introduced some rules to prune the search tree. His rules do not im-
prove the worst-case computation time 𝑂(𝑛!), where 𝑛 is the number of
vertices, however statistical analysis has shown that using such criteria
improves the average computation time [13,14].

In terms of applications of TSP in automated planning, different
variants have been used in coverage route planning [15], e.g., for an au-
tonomous lawnmower [16], or for autonomous drilling of a PCB [17].
Those most relevant to this paper are coverage planning problems
whose environments change due to the coverage actions by agents,
e.g., robots, that operate within them. The open-pit mining scenario
2

described earlier is an example of such a coverage planning problem for
which a specialized solver for the mining case is proposed by [18]. Au-
tonomous harvesting is another instance where heavy vehicles should
not pass through the areas already harvested to avoid soil compaction.
The harvested areas also limit the mobility of harvesting machines,
hence affecting the reachability among the nodes representing areas
to be harvested. Ullrich, Hertzberg, and Stiene [19] formulate this
application as an optimization problem for which a specialized solver is
also proposed. In both cases described above, the authors did not study
the theoretical underpinning of the problem, nor provide a general
solution that can easily be employed for other instances of problems
with traversal-dependent edge deletion.

3. Problem statement

In this section, we formally define self-deleting graphs and introduce
the corresponding notions of walks and paths. We then proceed to give
a formal definition of the HCP-SD and the TSP-SD problems.

Definition 1. A self-deleting graph 𝑆 is a tuple 𝑆 = (𝐺, 𝑓) where
𝐺 = (𝑉 ,𝐸) is a simple, undirected graph and 𝑓 ∶ 𝑉 → 2𝐸 . The function
𝑓 specifies for every vertex 𝑣 ∈ 𝑉 which edges 𝑓 (𝑣) are deleted from 𝐸
if the vertex 𝑣 is processed. We refer to 𝑓 as the delete-function.

If a vertex 𝑣 is processed, we delete edges 𝑓 (𝑣) from 𝐺. For a self-
deleting graph 𝑆 and set 𝑋 ⊂ 𝑉 of vertices, the residual graph 𝐺𝑋 of 𝑆
fter processing 𝑋 is defined as:

𝑋 = 𝐺 ⧵
⋃

𝑣∈𝑋
𝑓 (𝑣).

We call a simple path 𝑝 = (𝑣1,… , 𝑣𝑥) in a self-deleting graph 𝑓 -
onforming if for every 1 ≤ 𝑖 < 𝑥 the edge 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} is in the residual
raph 𝐺{𝑣1 ,…,𝑣𝑖}. An 𝑓 -conforming simple path 𝑝 traverses the graph 𝐺
hile processing every vertex on 𝑝 when it is visited.

In contrast to a path, vertices on a walk can be visited more than
nce. For a walk on a self-deleting graph, a vertex is processed when
t is visited for the last time. Formally, we call a walk 𝑤 = (𝑣1,… , 𝑣𝑥)
-conforming if for every 1 ≤ 𝑖 < 𝑥 the edge 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} is in the
esidual graph 𝐺{𝑣1 ,…,𝑣𝑖}⧵{𝑣𝑖+1 ,…,𝑣𝑥}.

Following standard terminology we call a sequence of vertices 𝑐 =
𝑣1,… , 𝑣𝑥, 𝑣1) an 𝑓 -conforming cycle if (𝑣1,… , 𝑣𝑥) is an 𝑓 - conforming
ath and the edge {𝑣𝑥, 𝑣1} exists in the residual graph 𝐺𝑐 . Then, a
amiltonian cycle of self-deleting graph 𝑆 is an 𝑓 -conforming cycle that
ontains all vertices of 𝑆 exactly once.

roblem 1. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the Hamiltonian
ycle Problem on Self-Deleting graphs (HCP-SD) is to find a Hamiltonian

cycle on 𝑆.

Problem 2. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the weak Hamilto-
nian Cycle Problem on Self-Deleting graphs (weak HCP-SD) is to find an
(𝑓 -conforming) closed walk on 𝑆 that contains every vertex at least
once.

Observation 1. Every Hamiltonian cycle of 𝑆 is a Hamiltonian cycle of
𝐺.

This implies that the HCP-SD is at least as hard as finding a Hamil-
tonian path.

Using a weighted graph as the underlying graph of a self-deleting
graph we can define optimization problems on self-deleting graphs as
follows.

Problem 3. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), where 𝐺 is a
weighted graph, the Travelling Salesperson Problem on self-deleting graphs
(TSP-SD) is to find a shortest Hamiltonian cycle on 𝑆.

Problem 4. Given a self-deleting graph 𝑆 = (𝐺, 𝑓), the weak Travelling
Salesperson Problem on self-deleting graphs (weak TSP-SD) is to find a
shortest (𝑓 -conforming) closed walk on 𝑆 that contains every vertex

at least once.

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.
Fig. 2. Illustrations for the proof of Lemma 2: If the path 𝑤 is shorter than the path
𝑝̂𝑖, then 𝑝 was not a shortest path.

4. Properties of self-deleting graphs

In this section, we provide some formal analysis of self-deleting
graphs, in comparison to static graphs. First, we analyse path segments
in self-deleting graphs.

Lemma 1. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph and 𝑝 = (𝑣1,… , 𝑣𝑥) be
an 𝑓 -conforming path of 𝑆. For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑥 it holds that the path
segment 𝑝𝑖,𝑗 = (𝑣𝑖,… , 𝑣𝑗) is an 𝑓 -conforming path of 𝑆𝑖,𝑗 = (𝐺′, 𝑓) where
𝐺′ is the induced subgraph of 𝐺 on the vertices (𝑣𝑖,… , 𝑣𝑗).

Proof. Let 𝑝 = (𝑣1,… , 𝑣𝑥) be an 𝑓 -conforming path of 𝑆 and let
1 ≤ 𝑖 < 𝑗 ≤ 𝑥. By definition, the path segment 𝑝𝑖,𝑗 = (𝑣𝑖,… , 𝑣𝑗) is
an 𝑓 -conforming path of 𝑆𝑖,𝑗 = (𝐺′, 𝑓) if for every 𝑖 ≤ 𝑘 < 𝑗 it holds
that the edge 𝑒𝑘 = {𝑣𝑘, 𝑣𝑘+1} is in the residual graph 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
. We now

show that, for every 𝑖 ≤ 𝑘 < 𝑗, the edge 𝑒𝑘 = {𝑣𝑘, 𝑣𝑘+1} is in the residual
graph 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
.

Assume for a contradiction there is a 𝑘 with 𝑖 ≤ 𝑘 < 𝑗 where
𝑒𝑘 ∉ 𝐺′

{𝑣𝑖 ,…,𝑣𝑘}
. There are two possible reasons for this.

1. 𝑒𝑘 ∉ 𝐸(𝐺′): Since 𝑒𝑘 is in 𝐸(𝐺), 𝐺′ cannot be an induced
subgraph of 𝐺 and we have a contradiction.

2. 𝑒𝑘 gets deleted by some 𝑓 (𝑣𝑦), 𝑖 ≤ 𝑦 ≤ 𝑘: If 𝑒𝑘 ∈ ∪𝑖≤𝑦≤𝑘𝑓 (𝑣𝑦)
then 𝑒𝑘 ∈ ∪1≤𝑦≤𝑘𝑓 (𝑣𝑦) and therefore 𝑒𝑘 ∉ 𝐺{𝑣1 ,…,𝑣𝑘}. Since 𝑒𝑘 ∉
𝐺{𝑝1 ,…,𝑝𝑘} the path 𝑝 is not 𝑓 -conforming and we again arrive at
a contradiction.

Since both cases yield a contradiction, the lemma holds. □

Let 𝑝 = (𝑣1,… , 𝑣𝑥) be an 𝑓 -conforming path from the vertex 𝑣1 to
the vertex 𝑣𝑥 and let |𝑝| denote the length of the path 𝑝. We call 𝑝 a
shortest 𝑓 -conforming path from 𝑣1 to 𝑣𝑥 if for every other 𝑓 -conforming
path 𝑝̂ = (𝑣1,… , 𝑣𝑥) from 𝑣1 to 𝑣𝑥 it holds that |𝑝| ≤ |𝑝̂|.

Lemma 2. Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a shortest 𝑓 -conforming path from 𝑣1 to
𝑣𝑘 on a self-deleting graph 𝑆 = (𝐺, 𝑓). The following two statements hold:

1. For every 1 < 𝑖 < 𝑘 it holds that the path 𝑝𝑖 = (𝑣1,… , 𝑣𝑖) is not
necessarily a shortest 𝑓 -conforming path in 𝑆.

2. It further holds that the path 𝑝̂𝑖 = (𝑣𝑖,… , 𝑣𝑘) is a shortest 𝑓 -
conforming path from 𝑣𝑖 to 𝑣𝑘 in the self-deleting graph 𝑆′ =
(𝐺{𝑣1 ,…,𝑣𝑖}, 𝑓).

Proof. Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a shortest 𝑓 -conforming path from 𝑣1 to
𝑣𝑘 on a self-deleting graph 𝑆 = (𝐺, 𝑓). For any 1 < 𝑖 < 𝑘 we denote the
path segment of 𝑝 from 𝑣1 to 𝑣𝑖 by 𝑝𝑖 and the path segment from 𝑣𝑖 to 𝑣𝑘
by 𝑝̂𝑖. Due to Lemma 1, the path segments 𝑝𝑖 and 𝑝̂𝑖 are 𝑓 -conforming.
We now prove the two statements separately.

1. A shortest 𝑓 -conforming path from 𝑣1 to 𝑣𝑖 could contain a
vertex 𝑣𝑗 for which 𝑓 (𝑣𝑗) deletes an edge needed in the second
part 𝑝̂𝑖 of the 𝑓 -conforming path 𝑝. So, 𝑝𝑖 is not necessarily a
shortest 𝑓 -conforming path from 𝑣 to 𝑣 .
3

1 𝑖
2. We now prove that the path 𝑝̂𝑖 = (𝑣𝑖,… , 𝑣𝑘) is a shortest 𝑓 -
conforming path from 𝑣𝑖 to 𝑣𝑘 in the self-deleting graph 𝑆′ =
(𝐺{𝑣1 ,…,𝑣𝑖}, 𝑓). For a contradiction assume there is a vertex 𝑣𝑖,
with 1 < 𝑖 < 𝑘, such that there is a 𝑓 -conforming path 𝑤 from
𝑣𝑖 to 𝑣𝑘 in 𝑆′ that is shorter than 𝑝̂𝑖. We consider the following
two cases.

(a) The paths 𝑤 and 𝑝𝑖 do not share a vertex, as depicted in
Fig. 2(a). If this is the case, then the path from 𝑣1 to 𝑣𝑘
that consists of the path 𝑝𝑖 and the path 𝑤 is shorter than
the path 𝑝. This is a contradiction.

(b) The paths 𝑤 and 𝑝𝑖 share a vertex 𝑣𝑥, as depicted in
Fig. 2(b). Since by assumption 𝑤 is 𝑓 -conforming and
|𝑤| < |𝑝̂𝑖|, the walk from 𝑣1 to 𝑣𝑘 consisting of 𝑝𝑖 and
𝑤 is shorter than 𝑝. We can create an even shorter simple
path form 𝑣1 to 𝑣𝑘 by omitting the circle that is created
by going from 𝑣𝑥 to 𝑣𝑖 via 𝑝 and then returning to 𝑣𝑥 via
𝑤. This is a contradiction to the assumption that 𝑝 is a
shortest path from 𝑣1 to 𝑣𝑘. □

Lemma 2 indicates the inherent difference between static and self-
deleting graphs. In static graphs, every segment of a shortest path is a
shortest path. This fact is exploited by different algorithms, often based
on dynamic programming, for path finding in static graphs, e.g. Di-
jkstra’s algorithm [20]. As a consequence, these types of algorithms
cannot easily be applied to self-deleting graphs.

Lemma 3. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph, where for every
vertex 𝑣 ∈ 𝑉 (𝐺), 𝑓 (𝑣) deletes only edges that are incident to 𝑣, then
the Hamiltonian path problem on self-deleting graphs is equivalent to the
Hamiltonian path problem on directed graphs.

Proof. We construct a corresponding directed graph 𝐷 = (𝑉 ,𝐴), to a
self-deleting graph 𝑆 = (𝐺, 𝑓), where 𝑓 (𝑣) deletes only edges incident
to 𝑣, as follows.

𝑉 (𝐷) = 𝑉 (𝐺),

𝐴(𝐷) = {(𝑣,𝑤) ∣ {𝑣,𝑤} ∈ 𝐸(𝐺) ∧ {𝑣,𝑤} ∉ 𝑓 (𝑣)}

(Here (𝑣,𝑤) describes the directed arc from 𝑣 to 𝑤, while {𝑣,𝑤}
describes the undirected edge between 𝑣 and 𝑤.)

Another way to explain this construction is as follows. We make
𝐺 a directed graph in which each edge is replaced by two arcs in
opposite directions. For every vertex 𝑣 we then delete all outgoing arcs
corresponding to an edge in 𝑓 (𝑣).

We now prove that a path 𝑝 is 𝑓 -conforming in 𝑆 if and only if 𝑝 is
a path in 𝐷.

⇒: If the path 𝑝 = (𝑣1,… , 𝑣𝑘) is 𝑓 -conforming, it holds by definition
that for every 1 ≤ 𝑖 < 𝑘 the edge {𝑣𝑖, 𝑣𝑖+1} is in the residual graph
𝐺{𝑣1 ,…,𝑣𝑖}. Since {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺{𝑣1 ,…,𝑣𝑖} it holds that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸(𝐺).
Also since {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺{𝑣1 ,…,𝑣𝑖} it holds that the edge {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑥)
with 1 ≤ 𝑥 ≤ 𝑖, so the edge {𝑣𝑖, 𝑣𝑖+1} is in particular not in 𝑓 (𝑣𝑖).
Therefore the arc (𝑣𝑖, 𝑣𝑖+1) is in 𝐴(𝐷).

⇐: Now, let 𝑝 = (𝑣1,… , 𝑣𝑘) be a simple path in 𝐷. So, for every
1 ≤ 𝑖 < 𝑘 the arc (𝑣𝑖, 𝑣𝑖+1) is in 𝐴(𝐷). For every arc 𝑎 = (𝑣,𝑤) ∈ 𝐴(𝐷) it
holds that the edge 𝑒 = {𝑣,𝑤} is in 𝐸(𝐺) and 𝑒 ∉ 𝑓 (𝑣). Since (𝑣𝑖, 𝑣𝑖+1) is
in 𝐴(𝐷), it follows that {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑖). Since no other vertex 𝑣𝑛 with
𝑛 < 𝑖 is incident to 𝑒 it follows that {𝑣𝑖, 𝑣𝑖+1} ∉ 𝑓 (𝑣𝑚) for every 𝑚 ≤ 𝑖.
So {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐺𝑣1 ,…,𝑣𝑖 . Therefore 𝑝 is 𝑓 -conforming in 𝑆.

Every path through 𝐷 is an 𝑓 -conforming path through 𝑆 and vice-
versa. So the Hamiltonian path problem on 𝑆 is equivalent to the
Hamiltonian path problem on 𝐷. □

A sequential ordering problem (SOP) is defined as a graph 𝐺 = (𝑉 ,𝐸)
accompanied by a precedence graph 𝑃 . The precedence graph 𝑃 is a
directed graph defined on the same set of vertices 𝑉 . It represents the
precedence relation between the vertices of 𝐺. An edge from 𝑣𝑖 to 𝑣𝑗 in
𝑃 implies that 𝑣𝑖 must precede 𝑣𝑗 in any path through 𝐺. The problem
is to find a Hamiltonian path in 𝐺 that does not violate the precedence

relation given by 𝑃 .

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.

a

F

1
1
1
1
1
1
1
1
1
1
2
2
2

c
a
(
v
p
b
I
i
a

L
o

r
H

i

Lemma 4. For every sequential ordering problem 𝑆𝑂𝑃 there is a corre-
sponding self-deleting graph 𝑆𝑆𝑂𝑃 such that a path 𝑝 is a solution to 𝑆𝑂𝑃
if and only if 𝑝 is a Hamiltonian path of 𝑆𝑆𝑂𝑃 .

Proof. Let a SOP be given by the graph 𝐻 and the precedence graph
𝑃 . Let 𝑝𝑟𝑒(𝑣) ⊆ 𝑉 (𝐻) be the set of vertices that precede 𝑣 in 𝑃 ,
formally 𝑝𝑟𝑒(𝑣) = {𝑤 ∣ (𝑤, 𝑣) ∈ 𝐴(𝑃)}. We construct the corresponding
self-deleting graph 𝑆𝑆𝑂𝑃 = (𝐺, 𝑓) as follows.

𝐺 = 𝐻,

𝑓 (𝑣) =
⋃

𝑤∈𝑝𝑟𝑒(𝑣)
{𝑒 ∈ 𝐸(𝐺) ∣ 𝑒 incident to 𝑤}

⇒: Let 𝑝 = (𝑣1,… , 𝑣𝑘) be a path in 𝐻 that satisfies the precedence
relations given in 𝑃 . So, for every 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 the vertices 𝑣𝑗 and 𝑣𝑗+1
re not required to precede 𝑣𝑖. Thus, the edges (𝑣𝑗 , 𝑣𝑖) and (𝑣𝑗+1, 𝑣𝑖) are

not in 𝑃 and 𝑣𝑗 , 𝑣𝑗+1 ∉ 𝑝𝑟𝑒(𝑣𝑖). So by construction of 𝑓 the edge (𝑣𝑗 , 𝑣𝑗+1)
does not get deleted by any 𝑓 (𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑗. This implies that the edge
(𝑣𝑗 , 𝑣𝑗+1) is in the residual graph 𝐺{𝑣1 ,…,𝑣𝑗}. Thus, 𝑝 is 𝑓 -conforming in
𝑆𝑆𝑂𝑃 .

⇐: If the path 𝑝 = (𝑣1,… , 𝑣𝑘) is 𝑓 -conforming in 𝑆𝑆𝑂𝑃 it holds per
definition that for every 1 ≤ 𝑖 < 𝑘 the edge (𝑣𝑖, 𝑣𝑖+1) is in the residual
graph 𝐺{𝑣1 ,…,𝑣𝑖}. Thus, it holds that the edge (𝑣𝑖, 𝑣𝑖+1) has not been
deleted by any vertex 𝑣𝑥 with 1 ≤ 𝑥 ≤ 𝑖. It follows that 𝑣𝑖 and 𝑣𝑖+1 are
not in 𝑝𝑟𝑒(𝑣𝑥) with 1 ≤ 𝑥 ≤ 𝑖. Thus, 𝑣𝑖 and 𝑣𝑖+1 are not required to be
visited before 𝑣𝑥 with 1 ≤ 𝑥 ≤ 𝑖 and the path 𝑝 satisfies the precedence
conditions in 𝑃 . It is therefore a valid path in 𝐻 .

We proved that any valid path in a SOP is 𝑓 -conforming in the cor-
responding self-deleting graph and vice-versa. This holds in particular
for Hamiltonian paths. □

5. Exact and heuristic solvers

Next, we describe two solvers for the HCP-SD and TSP-SD problems:
one that produces an exact solution and one which relies on heuristics.

5.1. Exact solvers

An intuitive approach to solving the HCP on a self-deleting graph
𝑆 is to employ a DFS in a forward-search manner: starting with some
vertex 𝑝1, we delete all edges in 𝑓 (𝑝1) in 𝐺, then choose a neighbour
𝑝2 of 𝑝1 as the next vertex on the path and repeat until the path is a
Hamiltonian cycle or the current path cannot be extended, in which
case we backtrack. This approach can be improved with methods used
in algorithms for Hamiltonian cycles in conventional graphs, namely
graph/search-tree pruning, as introduced by [12,21]. Their algorithms
identify edges that must be in a Hamiltonian cycle, e.g., edges incident
to a vertex of degree 2, and employ these required edges to improve the
average runtime of a forward DFS. However, even with these pruning
rules, the algorithm fails to detect paths that cannot be extended to a
Hamiltonian cycle early. This is due to the fact that the edge deletion
is traversal dependent.

Since failures occurring at a late stage are often due to the choices at
an earlier stage of the search, we propose a backward search algorithm,
shown in Algorithm 1. This takes advantage of the late failures to
greatly reduce the size of the search tree. Instead of exploring the
path from a start vertex and deleting edges subsequently, Algorithm
1 starts by deleting all edges that would get deleted at some point. It
then explores the graph in a backward fashion, adding edges according
to visited vertices as follows. During this backward exploration of the
graph, edges are added, so searching for required edges, as is done in
conventional forward DFS for Hamiltonian cycles, is not possible.

The first call of 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ receives a single start vertex as
the path and the self-deleting graph. During the repeated calls of
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ, the path grows backwards, so the first call will be
with 𝑝𝑎𝑡ℎ = (𝑣1), the next with 𝑝𝑎𝑡ℎ = (𝑣𝑛, 𝑣1), then 𝑝𝑎𝑡ℎ = (𝑣𝑛−1, 𝑣𝑛, 𝑣1)
4

and so forth. During each call of 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ the residual graph
Algorithm 1 Backward search algorithm for finding a Hamiltonian
cycle in a self-deleting graph
Input: Current path, the self-deleting graph
Output: Hamiltonian cycle of 𝑆 or failure
unction: backwardSearch (𝑝𝑎𝑡ℎ, 𝑆 = (𝐺, 𝑓))
1: 𝑅 ← 𝐺 ⧵ {𝑒 ∈ 𝑓 (𝑣) ∣ 𝑣 ∉ (𝑝𝑎𝑡ℎ ⧵ 𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡)}
2: if |𝑝𝑎𝑡ℎ| = |𝑉 (𝐺)| then
3: if (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡) ∈ 𝐸(𝑅) then
4: return [𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡] + 𝑝𝑎𝑡ℎ
5: else
6: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
7: end if
8: else
9: 𝑆𝑉 ← {𝑣 ∈ 𝑉 (𝐺)|(𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑣) ∈ 𝐸(𝐺) ∧ (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡, 𝑣) ∉

𝑓 (𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡)}
0: if 𝑆𝑉 ⧵ 𝑝𝑎𝑡ℎ = ∅ then
1: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
2: else
3: 𝑁 ← {𝑣 ∣ (𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡, 𝑣) ∈ 𝐸(𝑅) ∧ 𝑣 ∉ 𝑝𝑎𝑡ℎ}
4: for 𝑣 ∈ 𝑁 do
5: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ([𝑣] + 𝑝𝑎𝑡ℎ, 𝑆)
6: if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then
7: return 𝑟𝑒𝑠𝑢𝑙𝑡
8: end if
9: end for
0: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
1: end if
2: end if

𝑅 with respect to 𝑝𝑎𝑡ℎ is calculated (line 1). In line 2 follows a goal
heck where it is first verified whether the path has the correct length
nd if so, whether the missing edge between both end vertices exists
line 3). If the initial check fails, the algorithm calculates the set 𝑆𝑉 of
ertices that are candidates for the second vertex in the Hamiltonian
ath in line 9. If all the candidates are already on 𝑝𝑎𝑡ℎ the path cannot
e extended to a Hamiltonian cycle. We check this condition in line 10.
n line 13 the set 𝑁 of neighbours of the first vertex of the current 𝑝𝑎𝑡ℎ
n 𝑅 is calculated. For every neighbour, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ is called with
n extended path until one of them returns a Hamiltonian cycle.

emma 5. Let 𝑆 = (𝐺, 𝑓) be a self-deleting graph. If there exists at least
ne Hamiltonian cycle in 𝑆, then the backward search finds a Hamilton
cycle.

Proof. We prove by contradiction: Assume there exists a Hamiltonian
self-deleting graph 𝑆 = (𝐺, 𝑓), where the algorithm returns 𝑓𝑎𝑖𝑙𝑢𝑟𝑒. Let
𝑛 = |𝑉 (𝐺)| and 𝑃 = (𝑝1,… , 𝑝𝑛+1) with 𝑝1 = 𝑝𝑛+1 a Hamilton cycle of 𝑆.
We analyse certain function calls to prove the lemma.

If 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝2,… , 𝑝𝑛+1), 𝑆) is called, line 1 calculates the
residual graph 𝑅 = 𝐺 ⧵ 𝑓 (𝑝1). Since |(𝑝2,… , 𝑝𝑛+1)| = 𝑛, line 3 triggers.
The algorithm then checks whether the edge (𝑝1, 𝑝2) exists in 𝑅. If so,
𝑃 is returned, which is a contradiction since we assumed 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is
eturned. However, if there is no edge (𝑝1, 𝑝2) in 𝑅 then 𝑝 is not a
amiltonian cycle, contradicting the assumption.

Therefore 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝2,… , 𝑝𝑛+1), 𝑆) is never called. So there
s a largest number 2 ≤ 𝑥 ≤ 𝑛 for which 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝𝑥,… , 𝑝𝑛+1),
𝑆) is never called. We analyse the call 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑝𝑥+1,… , 𝑝𝑛+1),
𝑆).

In line 1 the residual graph 𝑅 = 𝐺𝑉 (𝐺)⧵{𝑝𝑥+1 ,…,𝑝𝑛} is calculated. Since
|(𝑝𝑥+1,… , 𝑝𝑛+1)| < |𝑉 (𝐺)|, the algorithm continues in line 8. In line
9 the set 𝑆𝑉 of candidates for the second vertex on the Hamiltonian
cycle starting in 𝑝1 is calculated. Since 𝑃 is a Hamiltonian cycle the
set contains at least 𝑝2. And since the current path is 𝑝𝑥+1,… , 𝑝𝑛 with
𝑥 ≥ 2, 𝑝 is not in path and the if-condition in line 10 fails.
2

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.

t
p
S

(

a
h

d
c
s

e
d
w
e
i

5

w
A
a
t
d
p
a
b
o

l
a
i

Fig. 3. Explored nodes in the forward-DFS and backward-DFS on the dataset
random24-100.

We continue in line 13. Here, the list of neighbours 𝑁 of current
first vertex in 𝑅 that are not already on the path is calculated. We now
consider two cases:

(a) 𝑝𝑥 ∉ 𝑁 : 𝑁 contains all neighbours of 𝑝𝑥+1 in 𝑅. So if 𝑝𝑥 ∉ 𝑅
hen there is no edge between 𝑝𝑥 and 𝑝𝑥+1 in the residual graph after
rocessing 𝑝1,… , 𝑝𝑥. Thus, 𝑝 is no Hamiltonian cycle, a contradiction.
o (b) must hold.

(b) 𝑝𝑥 ∈ 𝑁 : The only reason for not calling 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ
(𝑝𝑥,… , 𝑝𝑛+1), 𝑆) is that another call like 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ((𝑦, 𝑝𝑥+1,… ,
𝑝𝑛+1), 𝑆) with 𝑦 ∈ 𝑁 does not return failure. Thus the algorithm finds
another Hamilton cycle, this again is a contradiction.

Since we always arrive at a contradiction, the assumption does
not hold. Thus, if 𝑆 is Hamiltonian the algorithm finds a Hamiltonian
cycle. □

In order to investigate the behaviour of both exact algorithms, we
first need to define the Average Vertex Degree (AVD) for a self-deleting
graph. AVD is a metric commonly used in the analysis of static graphs
for the HCP. Let 𝑘 be the number of times an edge 𝑒 appears in the
delete function 𝑓 . The probability that the edge will be deleted after
processing any 𝑙 vertices from 𝑉 in arbitrary order is given by 𝑝(𝑒, 𝑙) =
1 −

∏𝑘−1
𝑖=0

(𝑛−𝑙)−𝑖
𝑛−𝑖 . Then, the expected ‘‘static’’ AVD of 𝑆 after processing

ny 𝑙 vertices can be determined as 𝛿(𝑙) = (𝑛 − 1) − 2
𝑛
∑

𝑒∈𝐸 𝑝(𝑒, 𝑙). From
ere, we can define the AVD of 𝑆 as 1

𝑛
∑𝑛

𝑙=1 𝛿(𝑙).
A dataset random24-100 of 14 400 random self-deleting graphs

with 24 vertices was generated in order to compare both exact algo-
rithms. The delete function 𝑓 was sampled uniformly randomly with
overlapping of 𝑓 (𝑣) for two distinct 𝑣 allowed. I terms of AVD, the
ataset uniformly covers the interval from 0 to 12. In an experimental
omparison between backward and forward search, both solving the
ame dataset random24-100 and capped at 10 000 expanded search

nodes, the backward search performs much better. It was able to solve
all instances and on average was able to identify a Hamiltonian instance
after 27.9 explored nodes and a non-Hamiltonian instance after 1.6
explored nodes. The forward search failed to find a solution within
the limit for most instances. The diagrams in Fig. 3 show the average
explored nodes by which either algorithm was able to decide the
instance or the limit was reached.

Fig. 4(a) shows the percentage of infeasible instances decided by
the backward search at various search depths while using the same
5

random24-100 dataset. Infeasible instances with AVD less than 3 are l
Fig. 4. Backward search behaviour.

detected instantly at depth 1. The hardest instances to detect are
located between AVDs 6 and 7. Above 7, the dataset does not contain
any infeasible instances. Finally, more than 80% of infeasible instances
are detected at depth 10, less than half of |𝑉 |.

Fig. 4(b) illustrates how the percentage of detected infeasible in-
stances at various depths depends on |𝑉 |. At a fixed depth, the percent-
age unsurprisingly decreases with increasing |𝑉 |, but even for |𝑉 | =
200 about 50% instances are detected at depth 10. Interestingly, the
percentage increases when using a relative depth and close to 100%
infeasible instances are detected at depth 0.2|𝑉 |, when |𝑉 | > 100. This
xperiment indicates that the backward search algorithm’s ability to
etect infeasible instances of HCP-SD early on in the search improves
ith increasing |𝑉 | and, consequently, the algorithm may be scalable
nough to find feasible solutions even for instances with |𝑉 | of practical
nterest.

.2. Heuristic solver

The proposed exact solver is likely to provide limited scalability
hen addressing optimization problems due to its exhaustive nature.
lso, finding near-optimal solutions is often sufficient in practical
pplications, therefore, heuristic algorithms may be the only compu-
ationally feasible approach to obtain them. A common procedure is to
esign a problem-specific metaheuristic algorithm, that is tailored to a
articular application. Various heuristic approaches were successfully
pplied to problems related to the TSP-SD, such as metaheuristics
ased on local search [22], evolutionary optimization [23] or swarm
ptimization [24].

In this paper, we use a generic metaheuristic solver for prob-
ems with permutative representation [25], so that we can remain
pplication agnostic regarding multiple variants of TSP-SD. The solver
mplements several high-level metaheuristics and also a bank of low-

evel local search operators, perturbations and construction procedures.

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.

𝑔

E

p
t

These can be readily applied to various problems, whose solution can
be encoded as a sequence of potentially recurring nodes. The only user
requirement is to specify a set of nodes 𝐴, lower and upper bounds
𝐿,𝑈 of the frequency of their occurrence in a solution sequence 𝑥 =
(𝑥1, 𝑥2,… , 𝑥𝑛), where 𝑥𝑖 ∈ 𝐴; a fitness function 𝑓 (𝑥) and an aggregation
of penalty functions 𝑔(𝑥). The bounds are always respected by the
solver, whereas the penalty functions are treated as soft constraints.
Their purpose is to direct the search process towards valid solutions.
TSP-SD can be described in the solver formalism as follows:

𝐴 = {𝑣1, 𝑣2,… , 𝑣𝑛} = 𝑉 (𝐺),

𝐿 = (1, 1,… , 1) = 𝑈,

𝑓 (𝑥) =
𝑛
∑

𝑖=1
‖𝑒𝑖‖,

𝑔(𝑥) =
𝑛
∑

𝑖=1
𝑔𝑖(𝑥), where

𝑖(𝑥) =

{

0, if 𝑒𝑖 ∈ 𝐸(𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖}),
𝑀, otherwise.

Here, the set of nodes to visit 𝐴 corresponds to the set of vertices 𝑉 (𝐺).
ach node 𝑣𝑖 has to be processed exactly once, thus 𝐿𝑖 = 𝑈𝑖 = 1. Then,

𝑒𝑖 is the edge {𝑥𝑖, 𝑥𝑖+1 mod 𝑛}, 𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖} is the residual graph after
processing first 𝑖 nodes in 𝑥 and 𝑀 is a large constant introduced to
enalize using an already deleted edge 𝑒𝑖 in 𝑥. The goal is to minimize
he total length of the cycle given by 𝑥 and force all penalties 𝑔𝑖(𝑥) to

zero, if possible.
For the weak TSP-SD, both the set of nodes 𝐴 and the respective

bounds 𝐿,𝑈 are defined in the same way as in the TSP-SD, but the
definition of 𝑓 (𝑥) and 𝑔𝑖(𝑥) differs:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
‖𝑝𝑖‖,

𝑔𝑖(𝑥) =

{

0, if 𝑝𝑖 exists in 𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖},
𝑀, otherwise.

Here, 𝑝𝑖 is the shortest path from 𝑥𝑖 to 𝑥𝑖+1 mod 𝑛 in the residual graph
𝐺{𝑥1 ,𝑥2 ,…,𝑥𝑖}, which is found using the A* algorithm [26]. Thus, the time
complexity of weak TSP-SD fitness evaluation is higher than TSP-SD by
(|𝐸|). Only the first and last vertex of 𝑝𝑖 are processed. If 𝑝𝑖 does not
exist, a large constant 𝑀 is added to the penalty 𝑔(𝑥) via 𝑔𝑖(𝑥). The goal
is to minimize the total length of the closed walk given by 𝑥.

6. Statistical analysis of HCP-SD

In this section, we investigate properties analogous to those pre-
viously studied in the literature for HCP, since they are crucial for
understanding behaviour and evaluating the performance of the pro-
posed solvers. For the HCP, the probability density function of a ran-
domly generated graph being Hamiltonian was experimentally shown
to be sigmoidally shaped around a certain threshold point [14]. This
threshold corresponds to the graph’s AVD, for which the probability is
approximately 0.5. Their experiments indicate that HCP instances close
to this boundary are the most expensive to decide for various exact
algorithms in terms of computational cost, although isolated clusters
of hard instances were also identified far away from it. The location of
this threshold has been proved to be 𝑙𝑛(𝑉) + 𝑙𝑛(𝑙𝑛(𝑉)), which is called
the Komlós–Szemerédi bound [11].

First, we replicated the experiment from [14], showing the proba-
bility density function of Hamiltonicity for a randomly generated graph
with 24 vertices. For this purpose, we generated a dataset of 100
random graphs for every number of edges from 1 to 144, resulting in
14 400 graphs with AVD ranging from 0 to 12. The HCP was decided for
the whole dataset using the Concorde TSP solver and the result of the
experiment is shown in Fig. 5(a) - HCP (exact). The dataset random24-
100 of 14 400 random self-deleting graphs with 24 vertices was created
6

analogously, covering the same range of AVDs. On this dataset, HCP-SD
was decided with both an exact and heuristic solver and weak HCP-
SD with a heuristic solver described in Section 5. The exact solver was
always terminated after successfully deciding the problem, whereas the
heuristic solver was terminated either after finding a feasible solution,
or reaching a time budget of |𝑉 | seconds. Therefore, the heuristic
solver’s results are suitable for assessing the solver’s properties, rather
than reasoning about the problem itself. Fig. 5(a) indicates that the
probability density function of HCP-SD is shaped similarly to that of
HCP but is steeper and the threshold point is located further to the
right.

The weak HCP-SD appears to have similar properties, but there is
no exact solver available, and using the heuristic solver may affect
the location of the threshold point, as it may label a feasible instance
as infeasible. We can see that instances with AVD less than 3 that
were shown to be easy to decide for the exact solver in Fig. 4(a),
actually have zero probability of being Hamiltonian. Instances with
AVD between 6 and 7, which were shown to be the hardest to decide,
are located close to the HCP-SD Hamiltonicity threshold point. Thus, in
a similar fashion to HCP, HCP-SD instances close to the threshold point
are computationally harder for the exact solver.

Second, 12 more datasets of random self-deleting graphs with 10
to 200 vertices and uniformly randomly sampled 𝑓 were generated
to investigate the Hamiltonicity bound w.r.t. to |𝑉 | for both variants
of HCP-SD. Each of these datasets was generated to cover an interval
that contains the threshold point of both problems and consisted of
2500 instances, evenly distributed across the interval into groups of
50 instances with the same AVD. Again, the HCP-SD was decided with
an exact and heuristic solver and the weak HCP-SD with a heuristic
solver, and the location of the threshold point was determined for each
dataset and problem. The locations of the threshold points are shown
in Fig. 5(b), thus showing a bound analogous to the Komlós–Szemerédi
bound. The bound HCP-SD (exact) follows a sublinear, presumably
logarithmic trend, similar to the Komlós–Szemerédi bound but faster
growing. As for the weak HCP-SD, the heuristic data evidently do not
provide an accurate estimate of the bound.

The threshold points should never be higher than for the HCP-SD
because all self-deleting graphs feasible in HCP-SD are also feasible
in weak HCP-SD. The bound HCP-SD (heuristic) illustrates that the
heuristic solver consistently struggles with finding feasible solutions
close to the real Hamiltonicity bound, found by the exact solver.

7. TSP-SD solvers evaluation

So far, we have focused only on the results relevant to decision prob-
lems, but both proposed solvers are designed to address the formulated
optimization problems as well. Each solver has unique properties that
are investigated in a series of eight experiments on a newly created
dataset.1 The dataset consists of 11 instances of self-deleting graphs
with a size ranging from 14 to 1084 vertices. The instances are selected
from the TSPLIB library [28], but a uniformly randomly generated
delete function 𝑓 is added. To give an idea about the delete function,
Fig. 6 shows the sets of edges deleted by processing four different nodes
in the instance berlin52-13.2. In terms of the AVD, most of the instances
are generated close to the HCP-SD Hamiltonicity bound of the heuristic
solver so that they could be solved by the heuristic solver alone. The
following naming format is used: original_name|𝑉 |-AVD.

The heuristic solver offers a portfolio of alternative components,
each suitable for a different set of problems with permutative represen-
tation. The solver must be tuned to achieve the best performance for
a specific problem. The tuning was carried out using the irace pack-
age [29] with a tuning budget of 2500 experiments. The configuration
obtained is shown in Table 1. The tuner selected the Basic Variable

1 All datasets and codes are publicly available at [27].

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.

w

Fig. 5. Comparison of Hamiltonicity bounds.

Table 1
Heuristic solver - tuned configuration.

Component Value

Metaheuristic basicVNS (𝑘𝑚𝑖𝑛 = 7, 𝑘𝑚𝑎𝑥 = 10)
Construction nearestNeighbor
Perturbation randomMoveAll (𝑎𝑙𝑙𝑜𝑤𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒)
Local search pipeVND (𝑓𝑖𝑟𝑠𝑡𝐼𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒)
Operators centeredExchange (𝑝 ∈ {1, 2, 3, 5}), moveAll (𝑝 ∈ {2, 10})

relocate(𝑝 ∈ {1, 2, 3, 4, 5}), exchangeIds
exchange(𝑝, 𝑞 ∈ {(1, 2), (2, 4), (3, 4)})
reverseExchange(𝑝, 𝑞 ∈ {(1, 2), (2, 2), (3, 3), (3, 4), (4, 4)})

Neighborhood Search (VNS) [30] to use as a high-level metaheuristic
and the Pipe Variable Neighborhood Descent (VND) [31] to control
the local search. The results of the exact solver were generated on a
dedicated machine with Ubuntu 18.04 OS, Intel Core i7-7700 CPU.
Experiments using the heuristic solver were generated on an AMD EPYC
7543 CPU cluster. Each instance was solved once by the exact solver
and 50 times by the heuristic solver, since it is stochastic. The heuristic
solver always had a time budget of 10|𝑉 | seconds per single run. We
present the results in Tables 2, 3 and 4. Individual experiments are
referred to by the column letter of the corresponding table. Finally, the
relative improvement brought by an experiment B relative to an earlier
experiment A in a particular instance 𝑖 is calculated as 100×(1− 𝑜𝑏𝑗𝑖(𝐵)

𝑜𝑏𝑗𝑖(𝐴)
),

here 𝑜𝑏𝑗𝑖(𝐴) is the objective value on 𝑖 in 𝐴. This value is eventually
averaged across the entire dataset.

The proposed backward search is introduced as a decision algorithm
for the HCP-SD in Algorithm 1. To address the optimization problem
TSP-SD, only a slight modification is required. The algorithm does
not stop when the first valid solution is found (line 4). Instead, it
continues to search until a given time limit is reached while storing
the best solution found so far. Another minor modification is the order
7

of expansion at line 14. In the default variant, the nodes 𝑣 ∈ 𝑁 are
traversed in arbitrary order, determined by the iterator implementation
of the set 𝑁 . In the following experiments, a greedy expansion is also
tested. In this variant, nodes 𝑣 ∈ 𝑁 are sorted according to their
distance from 𝑝𝑎𝑡ℎ.𝑓 𝑖𝑟𝑠𝑡 and expanded from closest to farthest.

Table 2 documents the performance of the exact TSP-SD solver.
The backward search performs the path expansion in default order in
experiments in columns A and B, whereas greedy expansion is used
in experiments in columns C and D. Column A presents the objective
values and computation times needed to find the first valid solution of
TSP-SD while using the default expansion. A solution is found within
one second for instances with up to |𝑉 | = 202 and within one minute
for all instances in the dataset. The dataset contains two variants of
the berlin52 instance with different values of AVD, from which the
berlin52-10.4 instance is closer to the Hamiltonicity bound. Finding
a valid solution for berlin52-10.4 requires 10 times more time than
berlin52-13.2. Thus, AVD seems to be an important factor playing
against the backward search. The scalability of the exact solver in this
experiment is surprisingly good, as was already indicated in Fig. 4(b).

In Table 2, column B, the exact solver was given a budget of 12 h
to solve the TSP-SD for each instance. The first three were solved to
optimality, but the remaining eight reached the time limit. On average,
the first valid solution was improved by 9.75%, but the improvement
decreases with increasing instance size. In the case of the three largest
instances, the improvement is only 1%. This experiment only confirms
the expectation of poor scalability when using an exact approach in
an optimization problem due to its exhaustive nature. Unlike in the
previous experiment, the berlin52-10.4 variant was actually easier to
solve when addressing the optimization problem, as the backward
search tree is presumably pruned more with a lower AVD.

Table 2, column C, depicts the benefit of using the greedy expansion
in the backward search. The computation times needed to find the first
valid solution are slightly, but consistently better than with the default
expansion. More importantly, the objective values are frequently more
than ten times better than with the default expansion, which is a consid-
erable improvement brought by a simple heuristic rule. On average, the
first valid solutions found with the greedy expansion are better by 56%
than with the default expansion. The improvement increases with in-
creasing instance size and is around 90% for the four largest instances.
Fig. 7(a) shows the best solution obtained by the exact solver with
default expansion, while Fig. 7(b) with greedy expansion. The figures
illustrate that using the default expansion is equivalent to generating a
random valid solution, whereas the greedy solution behaves reasonably
in less dense areas. As shown in Table 2, column D, increasing the time
budget to 12 h further improves the objective by 6% on average relative
to the first valid greedy solutions. Similarly to random expansion, this
improvement decreases with increasing instance size and is less than
1% for the largest instance.

Table 3, column A, presents the results of the heuristic solver alone
on the TSP-SD. Each instance was solved 50 times with a time budget
of 10|𝑉 | seconds, e.g. 140 s for the burma14-3.1 instance. The optimal
solution was found for the two smallest instances. However, the solver
cannot find a valid solution every time and fails entirely to provide any
valid solutions in all 50 runs for the berlin52-10.4 instance. In terms of
solution quality, the best solutions found by the heuristic solver alone
are worse by 26% on average than the first valid solutions found by
the greedy exact solver. Furthermore, the mean success rate is only
62%. The heuristic solver is expected to converge faster than the exact
solver, but presumably spends a large portion of the time budget on
finding a valid initial solution instead. This assumption is confirmed
in Table 3, column B, where the heuristic solver is initialized with
the first valid solution found by the exact solver (Table 2, column C).
Here, the best solutions found by the warm-started heuristic solver
in 10|𝑉 | seconds are better by 5% on average than those obtained
by the greedy exact solver in 12 h and by 11.3% than the first valid
solutions. Most importantly, the improvement does not decrease with

increasing instance size and is consistent across the entire dataset. The

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.
Fig. 6. Berlin52-13.2 - delete function 𝑓 for different nodes; |𝑓 (𝑣)| is the number of edges removed by processing 𝑣.
Table 2
TSP-SD optimization results - exact solver.
Expansion Default Greedy

Stop condition First valid 12 h First valid 12 h

Instance ↓ obj. Time (s) obj. Time (s) obj. Time (s) obj. Time (s)

burma14-3.1 55 <0.01 52 <0.01 52 <0.01 52 <0.01
ulysses22-5.5 174 <0.01 141 0.02 173 <0.01 141 0.02
berlin52-10.4 33 388 0.37 23 866 2942 29 302 0.16 23 866 2858
berlin52-13.2 28 470 0.03 19 417 43 200 18 461 <0.01 17 938 43 200
eil101-27.5 3 447 0.10 3 128 43 200 1 715 0.01 1 642 43 200
gr202-67.3 3 073 0.48 2 954 43 200 934 0.08 862 43 200
lin318-99.3 576 916 1.43 560 322 43 200 116 719 0.25 115 058 43 200
fl417-160.6 510 858 3.23 493 671 43 200 31 387 1.05 29 747 43 200
d657-322.7 872 446 8.85 860 343 43 200 98 599 4.41 93 668 43 200
rat783-481.4 174 085 14.30 172 727 43 200 15 652 8.39 15 300 43 200
vm1084-848.9 8 616 499 45.46 8 527 195 43 200 349 923 35.81 348 304 43 200

A B C D
Table 3
TSP-SD optimization results - heuristic solver.
Setup Heuristic only, 10|𝑉 | seconds Exact init., 10|𝑉 | seconds

Instance ↓ min mean ± stdev Valid (%) min mean ± stdev

burma14-3.1 52 52 ± 0 100 52 52 ± 0
ulysses22-5.5 141 144 ± 8 47 141 166 ± 5
berlin52-10.4 – – 0 24 456 25 741 ± 861
berlin52-13.2 18 304 19 192 ± 648 40 17 263 17 835 ± 277
eil101-27.5 1 532 1728 ± 87 51 1 394 1513 ± 55
gr202-67.3 1 184 1352 ± 87 78 812 849 ± 11
lin318-99.3 189 225 198 324 ± 8171 11 110 698 110 888 ± 355
fl417-160.6 57 686 68 736 ± 4830 95 27 162 27 259 ± 140
d657-322.7 141 030 150 185 ± 5227 100 85 054 85 347 ± 162
rat783-481.4 21 069 22 078 ± 619 100 13 753 13 833 ± 115
vm1084-848.9 489 491 513 769 ± 9452 100 325 218 326 067 ± 503

A B
8

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.
Fig. 7. Berlin52-13.2 - best TSPSD solutions of different solvers and setups.
Table 4
Weak TSP-SD optimization results - heuristic solver.
Setup Heuristic only, 10|𝑉 | seconds TSP-SD best init., 10|𝑉 | seconds

Instance ↓ min mean ± stdev Valid (%) min mean ± stdev

burma14-3.1 52 52 ± 0 100 52 52 ± 0
ulysses22-5.5 129 129 ± 1 100 129 129 ± 0
berlin52-10.4 18 701 20 328 ± 1174 100 18 354 19 740 ± 480
berlin52-13.2 14 579 15 760 ± 593 100 14 838 16 320 ± 585
eil101-27.5 1 313 1442 ± 69 100 1 240 1295 ± 23
gr202-67.3 886 1060 ± 122 100 779 790 ± 2
lin318-99.3 135 965 143 259 ± 5488 100 104 422 104 945 ± 204
fl417-160.6 26 035 26 891 ± 733 100 25 976 26 001 ± 33
d657-322.7 96 213 99 730 ± 1527 100 83 402 83 534 ± 44
rat783-481.4 15 072 15 409 ± 174 90 13 599 13 620 ± 5
vm1084-848.9 352 794 360 779 ± 3296 76 319 335 319 481 ± 112

A B
t
h
h
o
T
h
e
w
i
t

8

e
d
f

previous two experiments reveal the drawbacks of both approaches:
the exact solver scales poorly in the optimization problem, whereas
the penalty-based heuristic solver does not provide a valid solution
reliably. On the other hand, the exact solver provides valid solutions
to all instances very fast, and the heuristic solver is much better at
refining good-quality solutions. Therefore, using both solvers sequen-
tially, i.e., implementation of a warm start optimization, combines the
advantages of both. Fig. 7(c) shows the best solution of berlin52-13.2
obtained by the heuristic solver alone while Fig. 7(d) the best-known
solution, obtained by the warm-started heuristic solver. Both solutions
remain entangled in the centre area with the most vertices, which
may be attributed to the naturally denser randomly generated delete
function 𝑓 in this area, as indicated in Fig. 6.

Table 4 illustrates the benefit of relaxing TSP-SD to weak TSP-SD.
Every solution to the TSP-SD is also valid for the weak TSP-SD, but
the weak formulation might yield a better optimal value. On the other
hand, the fitness evaluation in weak TSP-SD calculates the shortest
paths 𝑝 instead of reading the edge weights. Thus, the time complexity
9

𝑖 b
of the evaluation is higher by (|𝐸|), and the heuristic solver is dras-
ically slower when solving the weak TSP-SD. The performance of the
euristic alone is shown in Table 4A. Regarding the success rate, the
euristic is significantly more successful than with TSP-SD, as the space
f valid solutions in the weak TSP-SD formulation is much larger. In
able 4, column B, the best-known TSP-SD solution from the initialized
euristic solver (Table 3, column B) was used as an initial solution. The
xperiment shows that only the TSP-SD solution of the smallest instance
as not improved in the weak TSP-SD formulation. In the remaining

nstances, the weak TSP-SD solution is better by 7% on average than
he best-known TSP-SD solution, so the relaxation is highly beneficial.

. Conclusions

We introduce new variants of the Hamiltonian Cycle and the Trav-
lling Salesperson Problems with self-deleting graphs, for which formal
efinitions, theoretical analyses and two solvers were proposed. In the
uture, we intend to investigate general heuristics for the proposed
ackward search. We also want to develop a new solver which works in

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.
the space of feasible solutions. Finally, we intend to study how to derive
self-deleting graphs using motion planning techniques to determine
which edges should be deleted.

CRediT authorship contribution statement

Sarah Carmesin: Methodology, Software, Formal analysis, Investi-
gation, Writing – original draft. David Woller: Methodology, Software,
Formal analysis, Investigation, Writing – original draft. David Parker:
Conceptualization, Methodology, Writing – review & editing, Super-
vision. Miroslav Kulich: Conceptualization, Methodology, Software,
Writing – review & editing, Supervision. Masoumeh Mansouri: Con-
ceptualization, Methodology, Software, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data and code are publicly available and referenced in the
manuscript.

Acknowledgements

The research was supported by Czech Science Foundation Grant No.
23-05104S. The work of David Woller has also been supported by the
Grant Agency of the Czech Technical University in Prague, grant No.
SGS23/122/OHK3/2T/13. Computational resources were provided by
the e-INFRA CZ project (ID:90140), supported by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic. Masoumeh Mansouri is
a UK participant in Horizon Europe Project CONVINCE, and her work
is supported by UKRI grant number 10042096.

References

[1] E. Aaron, D. Krizanc, E. Meyerson, DMVP: foremost waypoint coverage of time-
varying graphs, in: International Workshop on Graph-Theoretic Concepts in
Computer Science, Springer, 2014, pp. 29–41.

[2] O. Michail, P.G. Spirakis, Traveling salesman problems in temporal graphs,
Theoret. Comput. Sci. 634 (2016) 1–23.

[3] C.-S. Liao, Y. Huang, The covering Canadian traveller problem, Theoret. Comput.
Sci. 530 (2014) 80–88.

[4] D. Chan, Precedence constrained TSP applied to circuit board assembly and no
wait flowshop, Int. J. Prod. Res. 31 (9) (1993) 2171–2177.

[5] L.F. Escudero, An inexact algorithm for the sequential ordering problem,
European J. Oper. Res. 37 (2) (1988) 236–249.

[6] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan,
The minimum latency problem, in: Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 1994, pp. 163–171.

[7] J. Mikula, M. Kulich, Solving the traveling delivery person problem with limited
computational time, CEJOR Cent. Eur. J. Oper. Res. (2022) 1–31.

[8] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 3 (1)
(1952) 69–81.

[9] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1) (1960) 55, URL
http://www.jstor.org/stable/2308928.

[10] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (4) (1976)
359–364.

[11] J. Komlós, E. Szemerédi, Limit distribution for the existence of Hamiltonian
cycles in a random graph, Discrete Math. 43 (1) (1983) 55–63.

[12] F. Rubin, A search procedure for Hamilton paths and circuits, J. ACM 21 (4)
(1974) 576–580.

[13] B. Vandegriend, Finding Hamiltonian Cycles: Algorithms, Graphs and Perfor-
mance, University of Alberta, 1999.

[14] J. Sleegers, D.v.D. Berg, Backtracking (the) algorithms on the Hamiltonian cycle
problem, Int. J. Adv. Intell. Syst. 14 (1–2) (2022) 1–13.

[15] D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman
Problem, Princeton University Press, 2011.
10
[16] E.M. Arkin, S.P. Fekete, J.S. Mitchell, Approximation algorithms for lawn mowing
and milling, Comput. Geom. 17 (1–2) (2000) 25–50.

[17] M. Grötschel, M. Jünger, G. Reinelt, Optimal control of plotting and drilling
machines: a case study, Z. Oper. Res. 35 (1) (1991) 61–84.

[18] M. Mansouri, F. Lagriffoul, F. Pecora, Multi vehicle routing with nonholonomic
constraints and dense dynamic obstacles, in: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, pp.
3522–3529.

[19] A. Ullrich, J. Hertzberg, S. Stiene, ROS-based path planning and machine
control for an autonomous sugar beet harvester, in: Proceedings of International
Conference on Machine Control & Guidance, (MCG-2014), 2014.

[20] E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1
(1959) 269–271.

[21] B. Vandegriend, J. Culberson, The Gn, m phase transition is not hard for the
Hamiltonian Cycle problem, J. Artificial Intelligence Res. 9 (1998) 219–245.

[22] K. Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-
strained Traveling Salesman and Vehicle Routing Problems, Tech. rep., Roskilde
University, Roskilde, 2017, pp. 24–50.

[23] N.R. Sabar, A. Bhaskar, E. Chung, A. Turky, A. Song, A self-adaptive evolutionary
algorithm for dynamic vehicle routing problems with traffic congestion, Swarm
Evol. Comput. 44 (2019) 1018–1027.

[24] X. Xiang, J. Qiu, J. Xiao, X. Zhang, Demand coverage diversity based ant colony
optimization for dynamic vehicle routing problems, Eng. Appl. Artif. Intell. 91
(2020) 103582.

[25] D. Woller, J. Hrazdíra, M. Kulich, Metaheuristic solver for problems with
permutative representation, in: Intelligent Computing & Optimization, Springer
International Publishing, Cham, 2022, pp. 42–54.

[26] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100–107,
http://dx.doi.org/10.1109/TSSC.1968.300136.

[27] D. Woller, TSP-SD resources, http://imr.ciirc.cvut.cz/Research/TSPSD, Last
accessed: 18.10.2023.

[28] G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA J. Comput. 3
(4) (1991) 376–384.

[29] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, The
irace package: Iterated racing for automatic algorithm configuration, Oper. Res.
Perspect. 3 (2016) 43–58, http://dx.doi.org/10.1016/j.orp.2016.09.002.

[30] P. Hansen, N. Mladenović, J. Brimberg, J.A.M. Pérez, Variable neighborhood
search, in: Handbook of Metaheuristics, Springer, 2019, pp. 57–97.

[31] A. Duarte, J. Sánchez-Oro, N. Mladenović, R. Todosijević, Variable neighborhood
descent, in: Handbook of Heuristics, Springer International Publishing, 2018, pp.
341–367.

Sarah Carmesin is currently a Ph.D student at the Uni-
versity of Birmingham. She received her M.Sc. degree
in Computer Science from the Fernuniversität Hagen in
2021. Her research interests lie in the intersections of
combinatorics, algorithms and robot coverage planning.

David Woller, M.Sc., received his M.Sc. degree in Cyber-
netics and Robotics from the Czech Technical University
(CTU) in Prague in 2019. He is currently a Ph.D. student
at the Czech Institute of Informatics, Robotics, and Cyber-
netics, CTU. He spent 3 months at a research internship at
the Avignon University, Laboratory of Informatics, France.
His research interests include Combinatorial Optimization
methods, especially metaheuristics for large-scale planning
and scheduling optimization problems.

David Parker is a Professor of Computer Science at the
University of Oxford. His research is in formal verification,
with a particular focus on the analysis of probabilistic
systems, and he leads the development of the widely used
probabilistic verification tools PRISM and PRISM-games.
His current research interests include the development of
verification techniques for applications in AI and machine
learning, and the use of game-theoretic methods for formal
verification.

http://refhub.elsevier.com/S1877-7503(23)00216-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb6
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb6
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb6
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb6
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb6
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb8
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb8
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb8
http://www.jstor.org/stable/2308928
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb21
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb21
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb21
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb22
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb22
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb22
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb22
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb22
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb25
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb25
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb25
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb25
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb25
http://dx.doi.org/10.1109/TSSC.1968.300136
http://imr.ciirc.cvut.cz/Research/TSPSD
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb28
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb28
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb28
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb30
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb30
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb30
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb31
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb31
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb31
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb31
http://refhub.elsevier.com/S1877-7503(23)00216-8/sb31

Journal of Computational Science 74 (2023) 102156S. Carmesin et al.
Miroslav Kulich is currently an assistant professor at the
Czech Institute of Informatics, Cybernetics, and Robotics,
Czech Technical University (CTU) in Prague. He received
his Ph.D. degree in Artificial Intelligence and Biocybernetics
at CTU in Prague, Faculty of Electrical Engineering in
2004, and RNDr. degree at Charles University in Prague,
Faculty of Mathematics and Physics in 2005. He spent 6
months at a research fellowship at the Helsinki University
of Technology, Automation Technology Laboratory, Finland.
His research interests include planning for single and multi-
robot systems, especially in exploration and search&rescue
scenarios and data fusion and interpretation.
11
Masoumeh Mansouri is currently an associate professor
in the School of Computer Science at the University of
Birmingham, UK. Previously, she was a researcher at the
Center for Applied Autonomous Sensor Systems at Öre-
bro University, Sweden, where she received her Ph.D.
as well. She was also a visiting researcher at the Ox-
ford Robotics Institute and had a research stay in Sven
Koenig’s lab at the University of Southern California. Her
research interest includes hybrid methods that integrate
automated task/motion/coverage planning, scheduling, as
well as temporal and spatial reasoning.

	The Hamiltonian Cycle and Travelling Salesperson problems with traversal-dependent edge deletion
	Introduction
	Related Work
	Problem statement
	Properties of self-deleting graphs
	Exact and heuristic solvers
	Exact solvers
	Heuristic solver

	Statistical analysis of HCP-SD
	TSP-SD solvers evaluation
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

