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Abstract. In this paper we introduce PRISM, a probabilistic model
checker, and describe the efficient symbolic techniques we have devel-
oped during its implementation. PRISM is a tool for analysing proba-
bilistic systems. It supports three models: discrete-time Markov chains,
continuous-time Markov chains and Markov decision processes. Analysis
is performed through model checking specifications in the probabilis-
tic temporal logics PCTL and CSL. Motivated by the success of model
checkers such as SMV, which use BDDs (binary decision diagrams), we
have developed an implementation of PCTL and CSL model checking
based on MTBDDs (multi-terminal BDDs) and BDDs. Existing work
in this direction has been hindered by the generally poor performance
of MTBDD-based numerical computation, which is often substantially
slower than explicit methods using sparse matrices. We present a novel
hybrid technique which combines aspects of symbolic and explicit ap-
proaches to overcome these performance problems. For typical examples,
we achieve orders of magnitude speed-up compared to MTBDDs and are
able to almost match the speed of sparse matrices whilst maintaining
considerable space savings.

1 Introduction

In the design and analysis of software and hardware systems it is often desirable
or even necessary to include probabilistic aspects of a system’s behaviour. Exam-
ples include representing unreliable or unpredictable behaviour in fault-tolerant
systems; deriving efficient algorithms by using electronic coin flipping in decision
making; and modelling the arrivals and departures of calls in a wireless cell.
Probabilistic model checking refers to a range of techniques for calculating
the likelihood of the occurrence of certain events during the execution of systems
which exhibit such behaviour. One first constructs a probabilistic model of the
system. Properties such as “shutdown occurs with probability 0.01 or less” and
“the video frame will be delivered within 5ms with probability 0.97 or greater”
can be expressed in probabilistic temporal logics. Model checking algorithms
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have been developed which then automatically verify whether the model satisfies
these properties.

Motivated by the success of symbolic model checkers, such as SMV [28] which
use BDDs (binary decision diagrams) [11], we have developed a symbolic proba-
bilistic model checker. In the non-probabilistic setting, model checking involves
analysing properties of state transition systems and the manipulation of sets
of states. Both these entities can be represented naturally as BDDs, often very
compactly [I3]. In the probabilistic case, since probability transition matrices
and probability vectors are required, BDDs alone are not sufficient, and hence
we also use MTBDDs (multi-terminal binary decision diagrams) [I7I3], a natural
extension of BDDs for representing real-valued functions.

Symbolic probabilistic model checking has been considered by a number of
people [B2T14126/19123I7[25127] and it has been shown that it is feasible to use
MTBDDs to construct and compute the reachable state space of extremely large,
structured, probabilistic models. In these cases, it is often also possible to ver-
ify qualitative properties, where model checking reduces to reachability-based
analysis. For example, in [19], systems with over 103 states have been verified.

Model checking quantitative properties, on the other hand, involves numerical
computation. In some cases, such as in [27], MTBDDs have been very successful,
being applied to systems with over 100 states. Often, however, it turns out that
such computation is slow or infeasible. By way of comparison, we have also im-
plemented the equivalent numerical computation routines explicitly, using sparse
matrices. In these cases, we find that sparse matrices are orders of magnitude
faster. Here, we present a novel hybrid approach which uses extensions of the
MTBDD data structure and borrows ideas from the sparse matrix techniques
to overcome these performance problems. We include experimental data which
demonstrates that, using this hybrid approach, we can achieve speeds which are
orders of magnitude faster than MTBDDs, and in fact almost match the speed
of sparse matrices, whilst maintaining considerable space savings.

The outline of this paper is as follows. Section [2| gives an overview of proba-
bilistic model checking, introducing the probabilistic models and temporal logics
we consider. In Section [3] we describe our tool, PRISM, which implements this
model checking. We then move on to discuss the implementation. Section [] in-
troduces the MTBDD data structure and explains how it is used to represent
and analyse probabilistic models. We identify a number of performance prob-
lems in this implementation and, in Section [5 describe how we overcome these
limitations. In Section 6] we present experimental results and analyse the success
of our technique. Section [7] concludes the paper.

2 Probabilistic Model Checking

In this section we briefly summarise the three probabilistic models and two
temporal logics that PRISM supports. The simplest probabilistic model is the
discrete-time Markov chain (DTMC), which specifies the probability P(s, s’)
of making a transition from state s to some target state s’, where the proba-
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bilities of reaching the target states from a given state must sum up to 1, i.e.
> o P(s,s") = 1. Markov decision processes (MDPs) extend DTMCs by allowing
both probabilistic and non-deterministic behaviour. More formally, in any state
there is a non-deterministic choice between a number of discrete probability dis-
tributions over states. Non-determinism enables the modelling of asynchronous
parallel composition of probabilistic systems, and permits the under-specification
of certain aspects of a system. A continuous-time Markov chain (CTMC), on the
other hand, specifies the rates R(s, s’) of making a transition from state s to ',
with the interpretation that the probability of moving from s to s’ within ¢ time
units (for positive real valued t) is 1 — e Rls:s)t,

Probabilistic specification formalisms include PCTL [20/I0I8], a probabilistic
extension of the temporal logic CTL applicable in the context of MDPs and
DTMC s, and the logic CSL [7], a specification language for CTMCs based on
CTL and PCTL.

PCTL allows us to express properties of the form “under any scheduling of
processes, the probability that event A occurs is at least p (at most p)”. By
way of illustration, we consider the asynchronous randomized leader election
protocol of Itai and Rodeh [24] which gives rise to an MDP. In this algorithm,
the processors of an asynchronous ring make random choices based on coin tosses
in an attempt to elect a leader. We use the atomic proposition leader to label
states in which a leader has been elected. Examples of properties we would wish
to verify can be expressed in PCTL as follows:

— P>1[0 leader] - “under any fair scheduling, a leader is eventually elected with
probability 17.

— P<0.5[0=F leader] - “under any fair scheduling, the probability of electing a
leader within k discrete time steps is at most 0.5”.

The specification language CSL includes the means to express both transient
and steady-state performance measures of CTMCs. Transient properties describe
the system at a fixed real-valued time instant ¢, whereas steady-state properties
refer to the behaviour of a system in the “long run”. For example, consider a
queueing system where the atomic proposition full labels states where the queue
is full. CSL then allows us to express properties such as:

— P<0.01[0=! full] - “the probability that the queue becomes full within ¢ time
units is at most 0.01”

— S>o0.98[full] - “in the long run, the chance that the queue is not full is at
least 0.98”.

Model checking algorithms for PCTL have been introduced in [20/T0] and
extended in [8f4] to include fairness. An algorithm for CSL was first proposed
in [7] and has since been improved in [6125]. The model checking algorithms for
both logics reduce to a combination of reachability-based computation (manip-
ulation of sets of states) and numerical computation. The former corresponds
to finding all those states that satisfy the formula under study with probability
exactly 0 or 1. The latter corresponds to calculating the probabilities for the re-
maining states. For DTMCs, this entails solution of a linear equation system, for
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Fig. 1. PRISM System Architecture

MDPs, solving a linear optimisation problem, and for CTMCs, either solution
of a linear equation system or a standard technique known as uniformisation.
These numerical problems are typically too large for the application of direct
methods, and instead iterative techniques which approximate the solution up to
some specified accuracy are used.

3 The Tool

PRISM is a tool developed at the University of Birmingham which supports
the model checking described in the previous section. The tool takes as input
a description of a system written in PRISM’s system description language, a
probabilistic variant of Reactive Modules [I]. It first constructs the model from
this description and computes the set of reachable states. PRISM accepts speci-
fications in either the logic PCTL or CSL depending on the model type. It then
performs model checking to determine which states of the system satisfy each
specification. All reachability-based computation is performed using BDDs. For
numerical analysis, however, there is a choice of three engines: one using pure
MTBDDs, one based on conventional sparse matrices, and a third using the hy-
brid approach we present in this paper. Figure [1| shows the structure of the tool
and Figure [2| shows a screen-shot of the graphical user interface.

PRISM is written in a combination of Java and C++ and uses CUDD [32], a
publicly available BDD/MTBDD library developed at the University of Colorado
at Boulder. The high-level parts of the tool, such as the user interface and parsers,
are written in Java. The engines and libraries are written in C++4-. The tool and
its source code, along with further information about the system description
language and case studies, is available from the PRISM web page [31].

4 An MTBDD Implementation

We now describe the implementation of the tool. The fundamental data struc-
tures in PRISM are MTBDDs and BDDs. MTBDDs can be used to represent all
three of the supported models: DTMCs, MDPs and CTMCs. Furthermore, all
algorithms for the construction and analysis of these models can be implemented



Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 5

ile Model Options Engine

Properti
Fiie: || [e) p1>9) & 2280 & 1(p178) 8 0379)) & ((p2>9) 8]
Type: Nondetemninistic (MDP) (2) (p1>9) | (p2>8) | {p3>8)=> P>=1.0[ true U (p1<10
:‘“ﬂu‘:ls Pfﬁezs‘apm“ESS2 pracessd (3) (p123) 8 (p1<14))| (P2>3) & (P2<14)) | (P38
renatiog: bl e () (p1=13=5 P=21.0 [ true U (@1=16)]

(5) P<=0.5[ {p2!=10 & p2A=10) U (p1=10)]

fE [FRIEM Options’

riterative Method——
Method:

) Power Log

@ Jacobi @) (p1=1)== P>=1.0 [ true U (p1=10)]

) Ganss-Seidel Engine: Hybrid

1 JOR

PCTL Until (with faimess),
Paramerter (JOR): R
e b1 = 2268 states, b2 = 100 states
i 120 -= p1'=0;
Flags —||poing conversion for faimess, H e
[ verbose ProboA: 27 iterat 022 @ 0.008148, set, e i
1o iterations in 0.22 seconds (@verage . s RS

[l Use Fairness

= i | some_a) -+ p1'=2;
7l Use Precom putation — - D p1gssmptod,
| 4095 | 0 p1=3-5 pi'=7;

[l p1=4 & some_ha -» p1'=5;

[] p1=4 & Isome_ha -= p1'=10;

OK Apply Cancel

Close

Fig. 2. The PRISM Graphical User Interface

using these data structures. In this section, we summarise how this is done and
discuss its performance.

Introduction to MTBDDs

Let 1 < .-+ < x, be a set of distinct, totally ordered, Boolean variables. An
MTBDD M over (x1,...,x,) is a rooted, directed acyclic graph with vertex
set V. =V, UV, partitioned into non-terminal and terminal vertices. A non-
terminal vertex v € V,, is labelled by a variable var(v) € {z1,...,2,} and has
two children then(v), else(v) € V. A terminal vertex v € V4 is labelled by a real
number val(v).

We impose the Boolean variable ordering < onto the graph by requiring that
a child w of a non-terminal vertex v is either terminal or is non-terminal and
satisfies var(v) < var(w). The MTBDD represents a function fy(z1,...,2,) :
B" — IR. The value of fm(z1,...,2,) is determined by traversing M from the
root vertex, following the edge from vertex v to then(v) or else(v) if var(v) is 1
or 0 respectively. Note that a BDD is merely an MTBDD with the restriction
that the labels on terminal vertices can only be 1 or 0.

MTBDDs are efficient because they are stored in reduced form. If vertices
v and w are identical (i.e. var(v) = var(w), then(v) = then(w) and else(v) =
else(w)), then only one is stored. Furthermore, if a vertex v satisifes then(v) =
else(v), it is removed and any incoming edges are redirected to its unique child.

One of the most important factors about MTBDDs from a practical point of
view is that their size (number of vertices) is heavily dependent on the ordering
of the Boolean variables. Although, in the worst case, the size of an MTBDD rep-
resentation is exponential and the problem of deriving the optimal ordering for
a given MTBDD is an NP-complete problem, by applying heuristics to minimise
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graph size, MTBDDs can provide extremely compact storage for real-valued
functions.

MTBDD Represention of Probabilistic Models

From their inception in [I703], MTBDDs have been used to encode real-valued
vectors and matrices. An MTBDD M over variables (z1,...,2,) represents a
function fi : IB™ — IR. Observe that a real vector v of length 2" is simply a
mapping from {1,...,2"} to the reals IR. Hence, if we decide upon an encoding of
{1,...,2"} in terms of {z1,...,2,} (for example the standard binary encoding),
then an MTBDD M can represent v.

In a similar fashion, we can consider a square matrix M of size 2™ by 2"
to be a mapping from {1,...,2"} x {1,...,2"} to IR. Taking Boolean variables
{z1,...,z,} to range over row indices and {y1,...,yn} to range over column in-
dices, we can represent M by an MTBDD over {z1,...,Zpn, Y1, .,Yn}. DTMCs
and CTMCs are described by such matrices, and hence are also straightfor-
ward to represent as MTBDDs. The case for MDPs is more complex since we
need to encode the non-deterministic choices. If the maximum number of non-
deterministic choices in any state is bounded by 2* for some integer k, we can
view the MDP as a function from {1,...,2"} x {1,...,2"} x {1,...,2"} to IR.
By adding k extra Boolean variables to encode this third index, we can represent
the MDP as an MTBDD.

Figure |3 shows an example of a CTMC and its rate matrix. The CTMC
includes one state which is unreachable. This is explained in Section [5] Figure []
gives the MTBDD which represents this CTMC and a table explaining its con-
struction. For clarity, in our notation for MTBDDs, we omit edges which lead
directly to the zero terminal vertex.

2 5 5
(éf\q 25 -0
257
2 —_ — = —

7 7
07 -0

Fig. 3. A CTMC and its rate matrix

Transition|z1 z2|y1 y2|T1 y1 T2 y2| R z1
2 /
O?OOMOOMOQ e
021 |0 o0fl0o1/000 1|5 N
120 [0 1|0 0l0010|2 z2 O
5 |
171 0 1/0 1{0 0O 1 1|5 y2
153 o 1|1 1]o11 1|7 )
/
351 |1 1]o 1101 1|7 2151[7]

Fig. 4. An MTBDD representing the CTMC in Figure [3]
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Observe that, in Figure [d] row and column variables are ordered alternately.
This is one of the most common variable ordering heuristics to minimise MTBDD
size. To achieve compact MTBDD representations of probabilistic systems, how-
ever, we must also consider the actual encoding of row and column indices to
Boolean variables. A well known rule of thumb is to try and preserve structure
in the entity being represented [23]. In practice, this can be accomplished by
performing a direct translation from a high-level description of the model (in
our case the PRISM system description language) to MTBDDs. We presented
such a scheme in [I9] which is not only fast but can lead to a very compact
encoding of probabilistic systems. The resulting variable ordering encodes un-
reachable states, as well as reachable states, and hence reachability analysis (via
a simple BDD fixpoint calculation) must be performed to identify them.

Our experimental data is presented in Section [6} For reasons of space we
only include statistics for two typical examples: firstly, an MDP model of the
coin protocol from Aspnes and Herlihy’s randomized consensus algorithm [2],
parameterised by N (the number of processes) and an additional parameter K
fixed at 4; secondly, a CTMC model of a Kanban manufacturing system [16]
parameterised by N (the number of pallets in the system). Figure [8| gives the
memory requirements for storing these models. Compare the ‘MTBDD’ and
‘Sparse’ columns: significant savings in memory can be achieved using the sym-
bolic scheme described above over an explicit storage method. For other examples
which demonstrate this result, see the PRISM web page [31].

Probabilistic Model Checking with MTBDDs

We have implemented the entire model checking procedure for PCTL and CSL in
MTBDDs and BDDs. As we saw in Section [2] essentially this reduces to a combi-
nation of reachability-based computation and numerical calculation. The former
can be performed with BDDs and forms the basis of non-probabilistic symbolic
model checking which has been proven to be very successful [13I28]. The latter
involves iterative numerical methods, based on matrix-vector multiplication, an
operation for which efficient MTBDD algorithms have been introduced [3/I7].
In fact, alternative, direct, methods such as Gaussian elimination and Simplex
could be applied to some of these problems, but have been shown to be unsuit-
able for an MTBDD implementation [3I26]. They rely on modifying the model
representation through operations on individual rows, columns or elements. This
is not only slow, but leads to a loss in regularity and a subsequent explosion in
MTBDD size.

The results of this implementation in MTBDDs can be summarised as fol-
lows. There is a clear distinction between the two different aspects of model
checking. Reachability-based computation, which is sufficient for model check-
ing qualitative properties, can be implemented efficiently with BDDs, as is shown
in [T9127]. Numerical computation, which is required for checking of quantitative
properties, is more unpredictable. This is the problem we focus on here.

We have found a number of case studies for which MTBBDs outperform
explicit techniques on numerical computation. One such example is the coin
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protocol, introduced previously. We include results for this model in the top
half of Figure [0] Compare the columns for ‘MTBDD’ and ‘Sparse’: it would be
impossible to even store the sparse matrix for the larger examples, assuming a
reasonable amount of memory. We have found this pattern to hold for several of
the other MDP case studies we have considered. Other examples which illustrate
this can be found on the PRISM web site [31], and include a Byzantine agreement
protocol and the IEEE 1394 FireWire root contention protocol.

For a second class of models, namely CTMCs, we find that the symbolic
implementation of numerical iterative methods is far from efficient. Despite a
compact MTBDD representation of the model, the process is generally very slow
or infeasible. This inefficiency is caused by the MTBDD representation of the
iteration vectors becoming too large. For vectors to be represented compactly
by MTBDDs the main requirement is a limited number of distinct elements.
However, in general, when performing numerical analysis, the iteration vector
quickly acquires almost as many distinct values as there are states in the system
under study. Figure [9] shows the contrast in performance of MTBDDs between
the Kanban CTMC and the coin protocol MDP. The sparse matrix based im-
plementation is much faster.

5 A Hybrid Approach

We now present a method to overcome the inefficiencies with MTBDDs outlined
in the previous section. Recall that sparse matrix techniques can yield extremely
fast numerical computation. Since the iteration vector is stored in a full array, it
remains a constant size. A single matrix-vector multiplication is carried out by
traversing the sparse matrix and extracting all the non-zero entries, each of which
is needed exactly once to compute the new iteration vector. Unfortunately, since
the probabilistic model is also stored explicitly, application to large examples is
often limited by memory constraints.

The approach taken here is to a use a hybrid of the two techniques: MTBDDs
and sparse matrices. We store the transition matrix in an MTBDD-like data
structure but use a full array for the iteration vector. We can then perform
matrix-vector multiplication, and hence iterative methods, using these two data
structures. The key difference in this hybrid approach is that we need to extract
the non-zero matrix entries from an MTBDD rather than a sparse matrix. For
clarity, this presentation focuses on the case of CTMCs, where we solve a linear
equation system by iterative methods to compute the steady-state probabilities.
We have also applied these techniques to DTMC and MDP models.

If we restrict ourselves to certain iterative methods, namely Power, Jacobi
and JOR, then the matrix entries can be extracted in any order to perform
an iteration. This means that we can can proceed via a recursive traversal of
the MTBDD: it does not that matter that this will enumerate the entries in
an essentially random order, rather than row-by-row (or column-by-column) as
with a sparse matrix.
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Since the matrix indices are encoded with the standard binary representation
of integers, it is trivial to keep track of the row and column index during traversal
by noting whether a then or else edge is taken at each point and summing the
appropriate powers of 2. Unfortunately, there are a number of problems with
this naive approach. To resolve these, we make a number of modifications to the
MTBDD data structure.

Modifying the MTBDD Data Structure

First, recall from Section [4] that to get an efficient MTBDD representation of
our transition matrix, it must contain unreachable states. Performing matrix-
vector multiplication as just described on such an MTBDD would require the
vector array to store entries for all states, including those that are unreachable.
The number of unreachable states is potentially very large, in some cases orders
of magnitude larger than the reachable portion. This puts unacceptable limits
on the size of problem which we can handle.

The solution we adopt is to augment the MTBDD with vertex labels: integer
offsets which can be used to compute the actual indices of the matrix elements (in
terms of reachable states only) during our recursive traversal. Figure illustrates
this idea on the example from Section [ which included an unreachable state.
On the left is the modified MTBDD representing the transition matrix R of the
CTMC. The table on the right explains how the traversal process works. Each
row corresponds to a single matrix entry (transition). The first five columns
describe the path taken through the MTBDD. The next four columns give the
vertex offsets along this path. The last column gives the resulting matrix entry. In
Figure[f] we give the actual traversal algorithm. This would be called as follows:
TRAVERSEREC(r00t, 0, 0), where root is the top-level vertex in the MTBDD.

Path Offsets |Transition
1 y1 T2 y2| R |T1 y1 22 ¥2
0000[2]----]02
000 1|5|- - - 1] 0>
0010[2/--1-|]12
001 1(5]--11] 1%
011 1|7/-210] 1%
1o11(7(2-01| 25

Fig. 5. The modified MTBDD representing the CTMC in Figure

The key idea is that indices are computed by summing offsets. A vertex’s
offset is only added when leaving the then edge of that vertex. Note that row
and column indices are computed independently, rows from offsets on x; vertices,
and columns from offsets on y; vertices. As an example, consider the last line of
the table. We take the path 1,0,1,1 through the MTBDD which leads to the 7
terminal vertex. We only use the offsets at levels x1, x2 and y, where we exited
via then edges. The row index is 2+ 0 = 2, the column index is 1 and we obtain
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TRAVERSEREC(v, row, col)
if (v is a non-zero terminal vertex) then
found matrix element (row, col) = val(v)
elseif (v is a row vertex) then
TRAVERSEREC (else(v), row, col)
TRAVERSEREC(then(v), row + offset(v), col)
elseif (v is a row vertex) then
TRAVERSEREC(else(v), row, col)
TRAVERSEREC(then(v), row, col + offset(v))
endif
end

Fig. 6. Hybrid Traversal Algorithm

the matrix entry (2,1) = 7. Note that references to state 3 in Figure 4| have
changed to state 2 in Figure [f] since we only have three reachable states.

There are two further points to consider about the conversion of the MTBDD
(Figure to its new form (Figure |5). First, note that some vertices in an
MTBDD can be reached along several different paths. These shared vertices
correspond to repeated sub-matrices in the overall matrix. Consider the matrix
in Figure [3] and its MTBDD representation in Figure [d] The bottom-left and
top-right quadrants of the matrix are identical (since rows and columns of un-
reachable states are filled with zeros). This is reflected by the fact that the o
vertex in the MTBDD has two incoming edges. The two identical sub-matrices
do not, however, share the same pattern of reachable states. This means that
there is a potential clash as to which offset should label the vertex.

We resolve this by adding extra copies of the vertex where necessary, labelled
with different offsets. Note the additional two vertices on the right hand side in
Figure 5| Effectively, we have modified the condition under which two MTBDD
vertices are merged, requiring not only that are they are on the same level and
have identical children, but also that they have the same offset label. It should
be noted here that we transform the MTBBD once, use it for as many iterations
are required, and then discard it. Hence, we only need to be able to traverse the
data structure, not manipulate it in any way.

The second point to make about the conversion involves skipped levels. In an
MTBDD, if a vertex has identical children, it is omitted to save space. This causes
potential problems, because we must be careful to detect this during traversal. In
fact, the solution we adopt is to perform this check only once, during the initial
conversion, and replace skips with extra vertices. This allows us to ignore the
issue entirely during traversal and makes the process faster. There is an example
of this in Figure[5]— note the extra o vertex on the left hand side. The exception
to this rule is that we do allow edges to skip from any vertex directly to the zero
terminal vertex, since we are only interested in the non-zero entries.
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Optimising the Approach

We can optimise our method considerably via a form of caching. MTBDDs ex-
ploit structure in the model being analysed giving a significant space saving.
This is achieved by identical vertices (representing identical sub-matrices) being
merged and stored only once. During traversal, however, each of these shared
vertices will be visited several times (as many times as the sub-matrix occurs
in the overall matrix) and the entries of the sub-matrix will be computed every
time. By storing and reusing the results of this computation, we can achieve a
significant speed-up in traversal time.

Rather than store these results in a cache, which would need to be searched
through frequently, we simply attach the information directly to MTBDD ver-
tices. We select some subset of the vertices, build explicit (sparse matrix) rep-
resentations of their associated sub-matrices and attach them to the MTBDD.
There is an obvious trade-off here between the additional space required to store
the data and the resulting improvement in speed. The space required and time
improvement both depend on how many vertices (and which ones) we attach
matrices to. From our experiences, a good policy is to replace all the vertices in
one (fairly low) level of the MTBDD. In Figure |7} we demonstrate this technique
on the running example, replacing all vertices on the x5 level with the matrices
they represent.

In practice, we find that caching can improve traversal speed by an order
of magnitude. In the next section, we give experimental results from our imple-
mentation which includes all the techniques described here.

T

() 6 ©

Fig. 7. The modified MTBDD labelled with explicit sub-matrices

6 Results

In this section, we present our experimental results, obtained from the PRISM
tool. We compare the performance of the three implementations discussed in
this paper: pure MTBDDs, sparse matrices, and our hybrid approach, focusing
on the problem of iterative numerical computation.

In Figure [§] we give storage requirements for the coin protocol and Kanban
models introduced earlier. We compare the size of the MTBDD, the sparse ma-
trix and the modified MTBDD used in the hybrid approach, with and without
optimisation. In Section [} we observed the significant advantage of MTBDDs
over sparse matrices. Note that, even when storing offset information, extra ver-
tices and explicit sub-matrices, the hybrid approach remains memory efficient.
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Model | N States Memory (KB)
MTBDD Sparse | Hybrid | Hybrid Opt.
2 528 6.4 16.5 10.4 12.3
Coin | 4 43,136 28.5 2,265 56.7 69.8
protocol | 6 2,376,448 61.2 173,424 93.3 314
8| 114,757,632 109 10,673,340 | 171 1,669
10|5,179,854,848 | 170 |584,181,500| 275 3,600
3 58,400 48.3 5,459 86.0 99.9
Kanban | 4 454,475 95.7 48,414 171 231
system | 5 | 2,546,432 123 296,588 219 337
6| 11,261,376 154 1,399,955 272 486
7| 41,644,800 186 5,441,445 327 685

Fig. 8. Storage requirements for the coin protocol and Kanban examples

Model | N States Iter.s Time per iteration (sec.)
MTBDD | Sparse | Hybrid | Hybrid Opt.
2 528 1,740 | 0.008 |0.0002| 0.001 0.0006
Coin | 4 43,136 6,133 | 0.173 | 0.034 | 0.07 0.039
protocol | 6 | 2,376,448 [12,679| 1.01 | 1.741 | 5.58 3.02
8| 114,757,632 |21,110| 3.17 . . -
10|5,179,854,848 | 31,255| 8.38 - - -
3 58,400 300 41.7 0.044 | 0.451 0.052
Kanban | 4 454,475 466 - 0.436 | 6.09 0.502
system | 5| 2,546,432 | 663 - 2.76 | 33.4 3.150
6| 11,261,376 891 - - 146 14.76
7| 41,644,800 | 1,148 - - 558 58.87

Fig. 9. Model checking times for the coin protocol and Kanban examples

Furthermore, the time for adding this information to the MTBDD was in all
cases negligle compared to that for model checking.

In Figure [ we present model checking times for the same two case studies.
For the coin protocol, we verify a quantitative PCTL property which requires
solution of a linear optimisation problem. For the Kanban system, we model
check a quantitative CSL property which requires computation of the steady-
state probabilities via the solution of a linear equation system. We use the JOR
iterative method. All experiments were run on a 440 MHz Sun Ultra 10 work-
station with 1 GB memory. The iterative methods were terminated when the
relative error between subsequent iteration vectors was less than 1076,

As we remarked in Section [4], the coin protocol model, and many of our other
MDP models, are efficient for MTBDDs. The problem we try to address with our
hybrid approach is typified by the Kanban example, where MTBDDs alone are
inefficient. By using the techniques presented in this paper, we were able to con-
sider larger models than with sparse matrices. Furthermore, using the optimised
version, we can almost match the speed of sparse matrices. Other CTMC case
studies we have considered, such as queueing networks and workstation clusters,
confirm these results. Details can be found on the PRISM web page [31].
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Related Work: We are aware of three other probabilistic model checking tools.
ProbVerus [21] is an MTBDD-based model checker which only supports DTMCs
and a subset of PCTL. The tool EFMC? [22] supports model checking of CTMCs
against CSL specifications using sparse matrices. The tool described in [I8] uses
abstraction and refinement to perform model checking for a subset of PCTL
over MDPs. There are a number of sparse-matrix based DTMC and CTMC
tools, such as MARCA [33], which do not allow logic specifications but support
steady-state and transient analysis.

An area of research which has close links with our work is the Kronecker
approach [30], a technique for the analysis of very large, structured CTMCs and
DTMCs. The basic idea is that the matrix of the full system is defined as a
Kronecker algebraic expression of smaller matrices, which correspond to sub-
components of the overall system. It is only necessary to store these small ma-
trices and the structure of the Kronecker expression. Iterative solution methods
can be applied to the matrix while in this form. As with our approach, storage
requirements for the matrix are relatively small, but ingenious techniques must
be developed to minimise the time overhead required for numerical solution.
Tools which support Kronecker based methods include APNN [9] and SMART
[14].

In particular, SMART incorporates matrix diagrams [I5], a data structure
developed as an efficient implementation of the Kronecker techniques. The ma-
trix diagram approach has much in common with the hybrid method we present
in this paper. In particular, both methods use a decision-diagram like data struc-
ture for storing matrices and full array to store vectors. The key difference is that
matrix diagrams are tied to the Kronecker representation and as such require
more work to extract the transition matrix entries. In addition to traversing the
data structure, as we do, computation of matrix elements requires multiplication
of entries from the smaller matrices.

Another important difference is that Kronecker and matrix diagram ap-
proaches permit the use of more efficient iterative methods, such as Gauss-Seidel.
Our approach does not presently support these. Hence, although we have less
work to do per iteration, we may require more iterations using our methods.
In addition, Gauss-Seidel can be implemented with a single iteration vector,
whereas methods such as Jacobi and JOR require two.

One issue that unites the Kronecker approach, matrix diagrams and our
method is that their limiting factor is the space required to store the iteration
vector. However compact the matrix representation is, memory proportional to
the number of states is required for numerical solution. Buchholz and Kemper
consider an interesting technique in [12] using PDGs (Probabilistic Decision
Graphs). This attempts to store the iteration vector in a structured way, as is
done with the matrix. More investigation is required to discover the potential of
this approach.
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7 Conclusion

We have introduced PRISM, a tool to build and analyse probabilistic systems
which supports three types of models (DTMCs, MDPs and CTMCs) and two
probabilistic logics (PCTL and CSL). As well as MTBDD and sparse matrix
based model checking engines, PRISM includes a novel, hybrid engine which
combines symbolic and explicit approaches. We have shown that very large prob-
abilistic systems can be constructed and analysed using MTBDDs, but that,
often, numerical computation is very inefficient. Our hybrid approach addresses
these performance problems, allowing verification, at an acceptable speed, of
much larger systems than would be feasible using sparse matrices. Further de-
tails of this will be available in [29].

One problem with our current techniques is that they presently only support
the Power, Jacobi and JOR iterative methods. We plan to extend the work
to allow more rapidly converging alternatives such as Gauss-Seidel or Krylov
methods to be used.

The development of PRISM is an ongoing activity. In the near future we
intend to consider extensions of PCTL for expressing expected time and long
run average properties and of CSL to include rewards, expand the PRISM input
language to allow process algebra terms, and develop model checking engines for
PRISM which work in a parallel or distributed setting.
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