Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Dave Parker

University of Birmingham

(joint work with Bruno Lacerda, Nick Hawes)

AIMS CDT, Oxford, May 2015

Overview

- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

Quantitative verification

- Formal verification + quantitative aspects
- Probability
 - component failures, lossy communication, unreliable sensors/actuators, randomisation in algorithms/protocols
- Time: delays, time-outs, failure rates, ...
- Costs & rewards
 - energy consumption, resource usage, ...
- Not just about correctness...
 - reliability, timeliness, performance, efficiency, ...
 - "the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
 - "the expected energy consumption of the sensor is..."

- Construction and analysis of probabilistic models
 - state-transition systems labelled with probabilities (e.g. Markov chains, Markov decision processes)
 - from a description in a high-level modelling language
- Properties expressed in temporal logic, e.g. PCTL:
 - trigger \rightarrow P_{≥ 0.999} [F^{≤ 20} deploy]
 - "the probability of the airbag deploying within 20ms of being triggered is at at least 0.999"
 - properties checked against models using exhaustive search and numerical computation

0.5 0.4

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
 - P_{≤0.1} [F *fail*] "the probability of a failure occurring is at most 0.1"

 P_{=?} [F fail] – "what is the probability of a failure occurring?"

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
 - compared to, for example, simulation/heuristics
 - combines numerical & exhaustive analysis

- Fully automated, tools available, widely applicable
 - network/communication protocols, security, biology, robotics & planning, power management, ...
- Key challenge: scalability

Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - also widely used also in: AI, planning, optimal control, ...
- A strategy (or "policy" or "adversary")
 - resolves choices in an MDP based on its history so far
- Used to model:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
- Classes of strategies:
 - memory: memoryless, finite-memory, or infinite-memory
 - randomisation: deterministic or randomised

{succ}

{err}

09

0.1

S₁

{init}

a 1

0.3

0.7

Verification vs. Strategy synthesis

• 1. Verification

- quantify over all possible strategies (i.e. best/worst-case)
- $P_{\leq 0.1}$ [F *err*]: "the probability of an error occurring is ≤ 0.1 for all strategies"

 applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis

- generation of "correct-by-construction" controllers
- $P_{\leq 0.1}$ [F *err*]: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1 ?"
- applications: robotics, power management, security, ...
- Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values

Applications

Examples of PRISM-based strategy synthesis

Synthesis of dynamic power management controllers [TACAS'11]

Motion planning for a service robot using LTL [IROS'14]

Minimise disk drive energy consumption, subject to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs

Team formation strategy synthesis [CLIMA'11, ATVA'12]

Pareto curve: x="probability of completing task 1"; y="probability of completing task 2"; z="expected size of successful team"

Example

• Example MDP

- robot moving through terrain divided in to 3 x 2 grid

Example – Reachability

Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] \Downarrow Compute: $P_{max=?}$ [F goal₁]

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

Example – Reachability

Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] \downarrow Compute: $P_{max=?}$ [F goal₁] = 0.5

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

Linear temporal logic (LTL)

• Probabilistic LTL (multiple temporal operators)

- e.g. $P_{max=?}$ [(G¬hazard) \land (GF goal₁)] "maximum probability of avoiding hazard and visiting goal₁ infinitely often?"
- e.g. $P_{max=?}$ [$\neg zone_3$ U ($zone_1 \land (F zone_4)$] "max. probability of patrolling zones 1 then 4, without passing through 3".

Probabilistic model checking

- convert LTL formula ψ to deterministic automaton A_{ψ} (Buchi, Rabin, finite, ...)
- build/solve product MDP $M \otimes A_{\psi}$
- reduction to simpler problem
- optimal strategies are:
 - deterministic
 - finite-memory

Det. Buchi automaton A_{ψ} for $\psi = G \neg h \land GF g_1$

Example: Product MDP construction

Example: Product MDP construction

Co-safe LTL (and expected cost)

- Often focus on tasks completed in finite time
 - can restrict to co-safe fragment(s) of LTL
 - (any satisfying execution has a "good prefix")
 - e.g. $P_{max=?}$ [$\neg zone_3 U (zone_1 \land (F zone_4)]$
 - for simplicity, can restrict to syntactically co-safe LTL
- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{min=?}$ [$\neg zone_3 U (zone_1 \land (F zone_4)]$ "minimise exp. time to patrol zones 1 then 4, without passing through 3".
- Solution:
 - product of MDP and DFA
 - expected cost to reach accepting states in product

16

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

Application: Robot navigation

- Navigation planning:
 - MDP models navigation through an uncertain environment
 - LTL used to formally specify tasks to be executed
 - synthesise finite-memory strategies to construct plans/controllers

Application: Robot navigation

- Navigation planning MDPs
 - expected timed on edges + probabilities
 - learnt using data from previous explorations
- LTL-based task specification

- expected time to satisfy (one or more) co-safe LTL formulas

Benefits of the approach

- LTL: flexible, unambiguous property specification
- efficient, fully-automated techniques
 - · LTL-to-automaton conversion, MDP solution
- c.f. ad-hoc reward structures, e.g. with discounting
- meaningful properties: probabilities, time, energy,...
- guarantees on performance ("correct by construction")

Implementation & deployment

Implementation

- MetraLabs Scitos A5 robot
- ROS module based on PRISM
- with extensions:
 - · co-safe LTL expectation
 - efficient re-planning [IROS'14]
- Example deployment:

G4S Technology, Tewkesbury (STRANDS)

- Further use of probabilistic model checking...
 - (various probabilistic models, query languages)
- Nested queries
 - e.g. $R_{min=?}$ [safe U (zone₁ \land (F zone₄)] "minimise exp. time to patrol zones 1 then 4, passing only through safe".
 - where safe denotes states satisfying $\langle\langle ctrl \rangle\rangle R_{<2}$ [F base] "there is a strategy to return to base with expected time < 2"
- Analysis of generated controllers
 - expected power consumption to complete tasks?
 - conditional expectation, e.g. expected time to complete task, assuming it is completed successfully?
 - more detailed timing information (not just mean time)

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected costs
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time}_{>10} [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"

Pareto queries:

- multi(P_{max=?}[F send], R^{time}max=?[C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, piectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F *sind*], R^{time}>10 [C])
 - e.g. "maximum probability of mess e transmission, assuming expected battery life-tim s > 10 hrs?"

• Pareto queries:

- multi(P_{max=?} [F **9***end*], R^{time}_{max=?} [C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

obj₁

Multi-objective model checking

Optimal strategies:

- usually finite-memory (e.g. when using LTL formulae)
- may also need to be randomised

Computation:

- construct a product MDP (with several automata), then reduces to linear programming [TACAS'07,TACAS'11]
- can be approximated using iterative numerical methods, via approximation of the Pareto curve [ATVA'12]

• Extensions [ATVA'12]

- arbitrary Boolean combinations of objectives
 - · e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 - (e.g. for assume-guarantee reasoning)
- time-bounded (finite-horizon) properties

Example - Multi-objective

- Achievability query
 - $P_{\geq 0.7}$ [G ¬hazard] \land $P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query

- $P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard]? ~0.2278

- Pareto query
 - for $P_{max=?}$ [G ¬hazard] \land $P_{max=?}$ [GF goal₁]?

26

Example – Multi–objective

Strategy 1 (deterministic) s_0 : east s_1 : south s_2 : s_3 : s_4 : east s_5 : west

27

Example – Multi–objective

Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

Example – Multi–objective

Optimal strategy: (randomised) $s_0 : 0.3226 : east$ 0.6774 : south $s_1 : 1.0 : south$ $s_2 :$ $s_3 :$ $s_4 : 1.0 : east$ $s_5 : 1.0 : west$

Application: Partially satisfiable tasks

- Partially satisfiable task specifications
 - via multi-objective probabilistic model checking [IJCAI'15]
 - e.g. $P_{max=?}$ [$\neg zone_3 U (room_1 \land (F room_4 \land F room_5)] < 1$
- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required
- Progress metric constructed from DFA
 - (distance to accepting states, reward for decreasing distance)
- Encode prioritisation using multi-objective queries:
 - $-\mathbf{p} = \mathbf{P}_{\max=?}$ [task]
 - $\mathbf{r} = \text{multi}(\mathbf{R}_{\text{max}=?}^{\text{prog}} [C], \mathbf{P}_{>=p} [task])$
 - multi($R_{min=?}^{time}$ [C], $P_{>=p}$ [task] $\land R_{>=r}^{prog}$ [C])

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

MDPs + uncertainty

- Modelling uncertainty
 - e.g., transitions probabilities (or costs) specified as intervals
- Worst-case analysis
 - i.e. adversarial choice of probability values
 - stochastic game: controller vs. environment
 - "min-max" analysis

MDPs + uncertainty

- Modelling uncertainty
 - e.g., transitions probabilities (or costs) specified as intervals
- Worst-case analysis
 - i.e. adversarial choice of probability values
 - stochastic game: controller vs. environment
 - "min-max" analysis
- PRISM-games [FMSD'13]
 - stochastic multi-player games
 - temporal logic queries (rPATL)
 - e.g. $\langle \langle ctrl \rangle \rangle P_{max=?} [Fgoal_1]$
 - reduces to solving 2-player game

Permissive controller synthesis

- Multi-strategy synthesis [TACAS'14]
 - for Markov decision processes and stochastic games
 - choose sets of actions to take in each state
 - controller is free to choose any action at runtime
 - flexible/robust (e.g. actions become unavailable or goals change)
- Example

Permissive controller synthesis

- Multi-strategies and temporal logic
 - multi-strategy Θ satisfies a property $P_{>p}$ [F goal] iff any strategy σ that adheres to Θ satisfies $P_{>p}$ [F goal]
- We quantify the permissivity of multi-strategies
 - by assigning penalties to each action in each state
 - a multi-strategy is penalised for every action it blocks
 - static and dynamic (expected) penalty schemes
- Permissive controller synthesis
 - \exists a multi-strategy satisfying $P_{\leq 0.6}$ [F goal₁] with penalty < c?
 - what is the multi-strategy with optimum permissivity?
 - reduction to mixed-integer LP problems
 - other applications: energy management, cloud scheduling, ...

Conclusion

- Probabilistic model checking & strategy synthesis
 - Markov decision processes, temporal logic, PRISM
- Robot navigation using MDPs & LTL
 - PRISM extension embedded in ROS navigation stack
- Recent extensions
 - multi-objective probabilistic model checking
 - uncertainty & stochastic games, permissive controller synthesis
- Challenges & directions
 - partial information/observability, e.g. POMDPs
 - probabilistic models with continuous time (or space)
 - scalability, e.g. symbolic methods, abstraction