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Overview

. Probabilistic model checking
s — verification vs. strategy synthesis
— Markov decision processes (MDPs)

- Application: Robot navigation
— probabilistic model checking + MDPs + LTL

Strategy synthesis techniques
— multi-objective probabilistic model checking
— partially satisfiable task specifications

AN

— uncertainty + stochastic games
— permissive controller synthesis
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- Time: delays, time-outs, failure rates, ...

Quantitative verification

Formal verification + quantitative aspects

Probability

— component failures, lossy communication,
unreliable sensors/actuators,

randomisation in algorithms/protocols

- Costs & rewards

— energy consumption, resource usage, ...

Not just about correctness...

— reliability, timeliness, performance, efficiency, ...

— “the probability of an airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— “the expected energy consumption of the sensor is...”




Probabilistic model checking

- Construction and analysis of probabilistic models

— state-transition systems labelled with probabilities
(e.g. Markov chains, Markov decision processes)

— from a description in a high-level modelling language

s - Properties expressed in temporal logic, e.g. PCTL:
— trigger — P_; 999 [ F=20 deploy ]
— “the probability of the airbag deploying within
20ms of being triggered is at at least 0.999”

— properties checked against models using
exhaustive search and numerical computation
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Probabilistic model checking

Many types of probabilistic models supported

& . Wide range of quantitative properties, expressible in
3 temporal logic (probabilities, timing, costs, rewards, ...)

- Often focus on numerical results (probabilities etc.)
— analyse trends, look for system flaws, anomalies

« P_o,[F fail] - “the probability of a
failure occurring is at most 0.1”

!

« P_,[F fail] - “what is the probability
of a failure occurring?”




Probabilistic model checking

Many types of probabilistic models supported

& . Wide range of quantitative properties, expressible in
3 temporal logic (probabilities, timing, costs, rewards, ...)

Often focus on numerical results (probabilities etc.)
— analyse trends, look for system flaws, anomalies

Provides "exact" numerical results/guarantees
— compared to, for example, simulation/heuristics
— combines numerical & exhaustive analysis

Fully automated, tools available, widely applicable

— network/communication protocols, security, biology,
robotics & planning, power management, ...

AN

Key challenge: scalability



Markov decision processes (MDPs)

Markov decision processes (MDPs)
— also widely used also in: Al, planning, optimal control, ...

- A strategy (or “policy” or “adversary”)

. — resolves choices in an MDP based
¥ on its history so far

Used to model:
— control: decisions made by a controller or scheduler
— adversarial behaviour of the environment
— concurrency/scheduling: interleavings of parallel components

AN

Classes of strategies:
— memory: memoryless, finite—-memory, or infinite—-memory
— randomisation: deterministic or randomised



Verification vs. Strategy synthesis

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_y; [ F err]: “the probability of an
error occurring is < 0.1 for all strategies”

. — applications: randomised communication {err}
protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis
— generation of "correct-by-construction” controllers

— P_y; [ F err]:"does there exist a strategy for which the
probability of an error occurring is < 0.17”

AN

— applications: robotics, power management, security, ...

- Two dual problems; same underlying computation:
— compute optimal (minimum or maximum) values
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Applications

- Examples of PRISM-based strategy synthesis

Synthesis of dynamic
power management
controllers [TACAS'11]

Sizg 0.5 50

Minimise disk drive energy
consumption, subject

to constraints on:

(i) expected job queue size;

(ii) expected number of lost jobs

Motion planning Team formation
for a service robot strategy synthesis
using LTL [IROS'14] [CLIMA'1 1, ATVA'l 2]

Ay

Pareto curve:
x="probability of
completing task 1"
y="probability of
completing task 2"
z="expected size of
successful team"
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Example MDP
— robot moving through terrain divided in to 3 x 2 grid
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Example - Reachability

Verify: P_, ¢ [ F goal, ]
or
Synthesise for: P_,, [ F goal, ]

U
Compute: P, .., [ F goal, ]

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

AN
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Example - Reachability

Optimal strategy:

So -
. south

east

. east

Verify: P_, ¢ [ F goal, ]
or
Synthesise for: P_,, [ F goal, ]

U
Compute: P, ,._,[ F goal, ]= 0.5

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value

iteration, policy iteration)
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Linear temporal logic (LTL)

Probabilistic LTL (multiple temporal operators)

— e.g. P> [ (G—hazard) A (GF goal,) ] - "maximum probability
of avoiding hazard and visiting goal, infinitely often?"

— e.g. P .«.> [ mzone; U (zone, A (F zone,) ] - "max. probability
of patrolling zones 1 then 4, without passing through 3".

Probabilistic model checking Det. Buchi automaton A,

— convert LTL formula ¢ to forp = G-h A GF g,

deterministic automaton Aq,
(Buchi, Rabin, finite, ...)

— build/solve product MDP M®A,,
— reduction to simpler problem

— optimal strategies are:
. deterministic

. finite-memory



Example: Product MDP construction




Example: Product MDP construction




AN

- Solution:

Co-safe LTL (and expected cost)

- Often focus on tasks completed in finite time

— can restrict to co-safe fragment(s) of LTL

— (any satisfying execution has a "good prefix")

— e.g. P.«_> [ "zone; U (zone, A (F zone,) ]

— for simplicity, can restrict to syntactically co-safe LTL

Expected cost/reward to satisfy (co-safe) LTL formula

— e.g. R,_» [ "zone; U (zone, A (F zone,) ] - "minimise exp.
time to patrol zones 1 then 4, without passing through 3".

— product of MDP and DFA

— expected cost to reach
accepting states in product




Overview

- Application: Robot navigation
— probabilistic model checking + MDPs + LTL
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Application: Robot navigation

- Navigation planning:

_ _ | Task Map
= — MDP models navigation through | scheduler generator
~ an uncertain environment {> @
s s
— LTL used to formally specify .
- tasks to be executed
= P _ 1 {}
¥ — synthesise finite-memory strategies
to construct plans/controllers [ Motion planner

AN
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Application: Robot navigation

Navigation planning MDPs
— expected timed on edges + probabilities
— learnt using data from previous explorations ﬁ

LTL-based task specification © ©
— expected time to satisfy (one or more) co-safe LTL formulas

Benefits of the approach
— LTL: flexible, unambiguous property specification

— efficient, fully-automated techniques
. LTL-to-automaton conversion, MDP solution

— c.f. ad-hoc reward structures, e.g. with discounting
— meaningful properties: probabilities, time, energy,...
— guarantees on performance ("correct by construction")
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Implementation & deployment

- Implementation
— MetralLabs Scitos A5 robot
— ROS module based on PRISM

— with extensions:
= . co-safe LTL expectation
. efficient re-planning [IROS'14]

wibh 1/

Example deployment:




Probabilistic model checking

Further use of probabilistic model checking...
— (various probabilistic models, query languages)

Nested queries

‘ — e.g. R,,_, [ safe U (zone, A (F zone,) ] - "minimise exp. time
¥ to patrol zones 1 then 4, passing only through safe".

— where safe denotes states satisfying «(ctrl)) R_, [ F base ] -
"there is a strategy to return to base with expected time < 2"

- Analysis of generated controllers
— expected power consumption to complete tasks?

— conditional expectation, e.g. expected time to complete task,
assuming it is completed successfully?

— more detailed timing information (not just mean time)

WA
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Overview

".
- Strategy synthesis techniques
— multi-objective probabilistic model checking
g — partially satisfiable task specifications

22



AN

Multi-objective model checking

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives
— in PRISM, objectives are probabilistic LTL or expected costs

- Achievability queries: multi(P., 4 [ F send ], Rtime_. [ C1])

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

Numerical queries: multi(P,,,._.[ F send], Rtime_, [ C])

— e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

Pareto queries: =
— multi(P,,,_,[ F send], Rime__ .[C]) © t:__\\
— e.g. "Pareto curve for maximising o "
probability of transmission and ° ‘;\‘
expected battery life-time” [ "« WA obi, 53
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Multi-objective model checking

Optimal strategies:
— usually finite-memory (e.g. when using LTL formulae)
— may also need to be randomised

- - Computation:

— construct a product MDP (with several automata),
then reduces to linear programming [TACAS'07, TACAS'T 1]

— can be approximated using iterative numerical methods,
via approximation of the Pareto curve [ATVA'12]

Extensions [ATVA'l2]

— arbitrary Boolean combinations of objectives
. e.g. ;=\, (all strategies satisfying y, also satisfy p,)
. (e.g. for assume-guarantee reasoning)
— time-bounded (finite-horizon) properties 55
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Example - Multi-objective

I i —T— T ¥,
0.6 0.8 1

| |
0O 0.2 0.4

- Achievability query
— P.y, [ G —hazard ] A Py, [ GF goal, ] ? True (achievable)

Numerical query
— Prax_> [ GF goal, 1 such that P.,, [ G —hazard ] ? ~0.2278

Pareto query

— for P [ G —hazard ] A P,,.x» [ GF goal, ]? 26

max="?



Example - Multi-objective

Strategy 1
| (deterministic)
i Sy - east

S, : south

..." 52 N
~ 53 —
S, . east
St . west
Y,
. 51 Y, = G —hazard
; 0.4 .. W2 =GFgoal
0.3- T
0.1-
0 I A B B B m B
0 02 04 06 0.8 1

27



Example - Multi-objective

Strategy 2
| (deterministic)
i Sy - south

S, : south

—.“ 52 N
~ 53 i —
S, . east
St . west
Y,
0.51 Y, = G —hazard
. 0.4 TT>.. W2 =CFgoal
~ 03_ \\\\\
0.14 :
0 I A B B B m B
0 0.2 04 06 0.8 1
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Example - Multi-objective

Optimal strategy:
| (randomised)
: So - 0.3226 : east
»
0.6774 : south
i s; : 1.0 : south
~ 52 -
53 .
S, : 1.0 : east
) S; : 1.0 : west
. Si P, = G —hazard
‘ 0.4 .. W2 =GFgoal
0.3- RV
0.1-
0 I S e e m w V)
0 0.2 04 06 0.8 1
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Application: Partially satisfiable tasks

Partially satisfiable task specifications
— via multi-objective probabilistic model checking [IJCAI'15]
—e.g. P .., [ 7zone; U (room; A (F room, A F room;) ] <1

- Synthesise strategies that, in decreasing order of priority:

— maximise the probability of finishing the task;
— maximise progress towards completion, if this is not possible;
— minimise the expected time (or cost) required

Progress metric constructed from DFA
— (distance to accepting states, reward for decreasing distance)

Encode prioritisation using multi-objective queries:
— p =P, [ task]
— r=multi(R},;;, [C1, P._, [ task ])

m

— multi(Riyn, [C1, P._, [task 1 A RZP[C ) 20



Overview

— uncertainty + stochastic games
— permissive controller synthesis
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MDPs + uncertainty

- Modelling uncertainty
— e.g., transitions probabilities (or costs) specified as intervals

0.4 {hazard} {goaly}

- Worst-case analysis

- — i.e. adversarial choice
of probability values

— stochastic game:
controller vs. environment  stuck

— "min-max" analysis

AN



MDPs + uncertainty

- Modelling uncertainty

— e.g., transitions probabilities (or costs) specified as intervals

- Worst-case analysis

— i.e. adversarial choice
of probability values

— stochastic game:
controller vs. environment  stuck

— "min-max" analysis

- PRISM-games [FMSD'l 3]
— stochastic multi-player games

AN

— temporal logic queries (rPATL)

— e.g. («ctrh) P, [ Fgoal, ]
— reduces to solving 2-player game

0.5

0.4
0.3
0.2
0.1

0

{hazard} {goaly}

[p,a] =

] east [0.5-A, 0.5+A]
south

1
0 0.10

— T A
.20.30.40.5



Permissive controller synthesis

+ Multi-strategy synthesis [TACAS'14]
— for Markov decision processes and stochastic games
— choose sets of actions to take in each state
— controller is free to choose any action at runtime
8 — flexible/robust (e.g. actions become unavailable or goals change)

- Example

Multi-strategy:
Sy - east or south
s, : south

5PN —

AN

Sy 1 -
s, . east

S : west
34




Permissive controller synthesis

Multi-strategies and temporal logic

— multi-strategy O satisfies a property P_, [ F goal ] iff
any strategy o that adheres to O satisfies P_, [ F goal ]

- We quantify the permissivity of multi-strategies
— by assigning penalties to each action in each state
— a multi-strategy is penalised for every action it blocks
— static and dynamic (expected) penalty schemes

Permissive controller synthesis
— d a multi-strategy satisfying P_, ¢ [ F goal, ] with penalty < ¢?
— what is the multi-strategy with optimum permissivity?

AN

— reduction to mixed-integer LP problems

— other applications: energy management, cloud scheduling, ...
35



Conclusion

Probabilistic model checking & strategy synthesis
— Markov decision processes, temporal logic, PRISM

= . Robot navigation using MDPs & LTL
| — PRISM extension embedded in ROS navigation stack

Recent extensions
— multi-objective probabilistic model checking
— uncertainty & stochastic games, permissive controller synthesis

— Challenges & directions
— partial information/observability, e.g. POMDPs
— probabilistic models with continuous time (or space)
— scalability, e.g. symbolic methods, abstraction

WA

www.prismmodelchecker.orqg
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