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Seqguential decision making under uncertainty

* Sequential decision making CuSeE Ucice Deose st
» Iterative interaction with an environment to achieve a goal
» sequential process of making observations and executing actions

» applications in: health, energy, transportation, robotics, ...

* Sequential decision making under uncertainty

»  NOISYy sensors, unpredictable conditions, lossy communication, 475901 791 7.88 -7.85 782 -1.79
human behaviour, hardware failures, ...
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. . e — |
* [rustworthy, safe and robust decision making ? == ST
[time [ 1 [2[3W4[5[6 [ 7 [ 891011 [12 [ 13 [ 14 [ 15 [ 16 | 17 | 18 [ 19 | 20 |
LA | [ [ | taskl | task3 | tas I | task6 | I I I I I |
» e.Q. for safety-critical applications S - e A e i s s
. . - . . :&;rlle:1:2:3:4|tassk3|6:7:8:9:10|11tas|k412:13:14:15taS|k616:17:18:19:20:
» needs rigorous/systematic quantification of uncertainty S S S S O S S




Reasoning about uncertainty

Markov decision processes (MDPs) and variants
» standard models for sequential decision making under uncertainty

» stochastic processes quantify uncertainty

» but parameters of these often need to be estimated from data

We will distinguish between:

Aleatoric uncertainty (randomness intrinsic to environment)

» €.Qg., Sensor noise, actuator failure, human decisions

—pistemic uncertainty (quantifies lack of knowledge)
» reducible: can reduce by collecting more data/observations

» e.g., poor model quality due to low number of measurements
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»  effective navigation against

et al.’22]

* Radiation measuring

» safe navigation and task completion

IN unkNnown environments

[Budd

 Shared autonomy

» learning beliet over

uncertainty on
unobservable
human state

[Costen
et al.’22]
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1NnIS course

* Model uncertainty in sequential decision making
» model-based technigues (probabilistic planning, not reinforcement learning)
» discrete time, discrete space
» fully observable environments (mostly)

» rigorous/precise/systematic quantification of uncertainty

models + data uncertain MDPs policies + analysis & guarantees

0.4 {hazard} {goaly}




Markov decision processes (MDPs) and stochastic games
Lecture 1

» MDPs: key concepts and algorithms

» stochastic games: adding adversarial aspects
Lecture 2

Uncertain MDPs

» MDPs + epistemic uncertainty, robust control,
'obust dynamic programming, interval MDPs, | ecture 3
uncertainty set representation, challenges, tools

: ) ' D
Sampling-based uncertain MDPs L ecture 4

» removing the transition independence assumption

— . D
Bayes-adaptive MDPs L ecture 5

» maintaining a distribution over the possible models
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 Markov decision processes (MDPs)

>

standard model for sequential decision making under uncertainty

« An MDRP is of the form ./ = (9, 5y, A, P) where:

>

4

)

S is a (finite) set of states 0.5
sop € S is an initial state @ 2L
A is a (finite) set of actions 0.5
P:SXAXS — [0,1]isa transition probability function

where %.-¢ P(s,a,s’) € {0,1}
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« Foran MDP /L = (S, sy, A, P):

» the enabled actions A(s) C A in each state s
are A(s) ={a €A : P(s,a,s’) > 0 for some s’} o
» a path is a sequence @ = SydpSiay, ...

such that s; € §, a; € A(s;) and P(s;, a;,5;,1) > O forall i

e \We also use:

v P4 XS — [0,1]is the transition probability matrix for eacha € A
» P! € Dist(S) is the successor distribution for each state s and action a € A(s)

v (where Dist(S) is the set of discrete probability distributions over set S)

0.5
b
0.3
O O
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o Policies (or strategies) & resolves the choice of action in each state
» based on the execution of the MDP so far
» formally: a policy is a mapping 7 : (S X A)* X § — Dist(A)
such that z(syag.-..s,)(a,) > 0 implies a, € A(s,) 0.5 e

O
» (Spay---5,)(a,) is the probability of picking a,,
after observing MDP history syqy.. .S, 0.5

o 11, (orjustll)is the set of all (deterministic) policies for MDP ./

* Policies can be classified by (i) use of randomisation; (il) use of memory

» which matter for optimality, computation, practicality, ...

12



 Randomisation
» T IS deterministic (or pure) if it always picks a single action with probability 1
» and randomised (or probabilistic) otherwise

» for now, we’ll mostly assume deterministic policies and assume 7 : (S X A)*xX § — A

* Memory
» 7 is memoryless (or stationary, or Markovian) if z(sy, ..., s,) = w(sy, ..., S,) whens, = s,
in which case we write it in the formz : S — A
L1~ C llis the set of all memoryless policies
» otherwise x Is history dependent
» T IS finite-memory if it suffices to distinguish a finite number of “modes” based on the history

» sometimes write a (time-dependent) policy as tuple = = (&, 7y, ...) where ; : § = A

13



* A policy tor an MDP yields an induced Markov chain

» and set of (infinite) paths

(finite-memory, deterministic)

(memoryless, randomised)

14



* Example MDP: robot moving through terrain divided in to 3 x 2 grid

O.h {hazard} {goal,}
0.6 east
@ east S @‘

> south \ 0.5 stuck
0504 053 0.9

north
stuck east 0.1

SO O
west

{goal,} 0.4 {goal,}

* Objectives (or properties) define an optimisation problem for an MD

»  MaxProb: maximise the probability of reaching goal C

»  SSP (stochastic shortest path): minimise the cost of reaching goal C S

D)

j

we'll focus mainly
on these two

15



Defining objectives for MDPs

» Execution of an MDP under a policy

» for a policy # € Il on MDP /...

» Pr is a probability measure over all (infinite) paths from state s of #

»  [ET(X) is the expected value of X (with respect to Pry)

where X : (§ X A)* — R is a random variable over (infinite) paths

 Value function: V*: § — |
» glves the value of an objective under & starting from each state of the MDP
» define optimal value, e.g.: V¥(s) = max_. V*(s)

» and optimal policy, e.g.: #* = argmax_ . V”(sp)

106



« MaxProb: Maximise the probability of reaching a target state set goal C S

» maximise V*(s) = Pr({sydps1a(5,... : §; € goal for some i})

« SSP: Minimise the expected cost of reaching a target state set goal C §

» foracost function C: § XA = R,

, minimise V*(s) = E*(X®) where X“(syagsa;...) = 22, C(s;,a;)

 Assumptions for SSP
»  goal states are absorbing and zero-cost
» there is a proper policy (i.e., which reaches goal with probability 1 from all states)

» every improper policy incurs an infinite cost from every state
from which it does not reach goal with probability 1

17



* What is the optimal policy for objective MaxProb(goal+)?

04/_\ {hazard} {goaIZ}

east
east S1 @‘

stuck

05204 055 0.9

north
east
QO O @

west

{goaly} 0'4 {goal;}

18



* Some other common objectives for MDPs:

* Finite-horizon variants, e.qg., of MaxProb:
»  MaxProb=k: Maximise the probability of reaching goal C § within time horizon k

» maximise V*(s) = Pr({syags;a;5,... : §; € goal forsome i < k})

* Discounting infinite-horizon objectives
»  DiscSum: Maximise the expected discounted total reward sum

» for areward function R : § X A — R and discount factor y € (0,1)

, maximise V*(s) = EX(X") where X"(soags,a;...) = 220 y'R(s;, a;)

=




e Specification languages from formal veritication

{goal,}

»  probabillistic extensions of temporal logics, e.g., PCTL, PLTL o.h thazard)
0.6
e Examples south \ 2] stuck
P o5 500 N5
»  Pmax=2 [ F goali | - “probabilistic reachability” | - ;
N
stuck east
»  Prax=2 [ F=10 goalt | - “probabilistic bounded reachability” ‘@ 0.6 west @
» Prax=2 [ G =hazard ] - “probabilistic safety/invariance” 04 west
{goal,} {goal;}

»  Prax=2 | =hazard U goali | - “probabilistic reach-avoid”

»  Pmax=2 [ (G=hazard) A (GF goali) | - “maximise probability of avoiding hazard and also visiting
goal 1 infinitely often”

»  Pmax=2 | =zones U (zone1 A (F zones)) | - "maximise probability of patrolling zone 1 (whilst avoiding
zone 3) then zone 47

> Riime,min=2 [ mzones U (zone1 A (F zones)) | - "minimise the expected time to patrol zone 1 (whilst
avoiding zone 3) then zone 4

20



We will mainly focus on MaxProb (techniques are very similar for 5SS

Key result: memoryless (deterministic) policies suffice

max e V*(s) = max, o V*(s)

he optimal value function satisfies the

Bellman equation:

if s € goal

1
x —
o {maxam %, e PES) - V() otherwise

Solution methods
» value iteration (dynamic programming)

» linear programming

» and many more (e.qg., policy iteration, Monte Carlo tree search, BRTDP, ...)

21



* Optimal values can be obtained using dynamic programming
» from the limit of the vector sequence defined below

y VE(s) = limk_)ooxsk where:

1 f s € goal
xk=230 f s & goal and k=0 ao'5
MaX e (s) 2eg P (8) - xk~1 otherwise @ 0 5

Bellman backup operator

 Known as value iteration (VI)

» the Bellman operator is (1) monotonic (ii) a contraction in the L. norm

» optimal values are the least fixed point of the Bellman operator

22



e Optimise via graph-based pre-computation
» potentially improves accuracy / convergence, resolves uniqueness
» compute state sets:
S = (all) states for which all policies reach goal with probability O (i.e., max = 0)
St goal = (some) states for which a policy reaches goal with probability 1 (i.e., max = 1)
St =85\$ush

| | Implementation detalls:
* [hen value iteration becomes:

» Extract optimal policy after/during:

1 if s € S () = argmax 4y ZS’ES P{(s’) - xf,—l
0 if s € SY
k - k+1 k
XN = . e Jerminate when || x — x| < €
S 0 fseS andk=0 | |

MaX e a(s) 2o P58 - xk=1 otherwise * Choose order to update states s

23



Running example: Value iteration

Examp‘e Max DI’Ob(QOaH) e FiX X4:X5:1 and XZZXSZO, jUSt SOlve fOI’ X0, X1
south :
s o - « lteration k=1: xo := max(0.4:0+ 0.6:0, 0.1-0+0.5:0+0.4-1)
| ' = max(0, 0.4)
] ; -
GOt OO
TR B N oS WESt X1 := max(1-0, 0.5:0+0.5-1)
1goak} {goaly} — max(0, 0.5)
= 0.5
_______ K X i X
T BT B + Iteration k=2: xo 1= max(0.4:0.4+ 0.6:0.5, 0.1:0.5+0.5:0+0.4-1)
....... 2 o D46 05 — max(0.46, 0.45)
_______ S i....Baga i 0o
_______ 4 043 05 = 0.46
_______ 5.1 049744 1 05
7 oo 05 xi := 0.5 (as before)
_______ 8....049983616 | 05
....... 9 .1.0499934464 | 05 e Finally: x0=0.5, x1=0.5

10 § 0.4999737856 i 0.5
24



 Optimal values can be computed using linear programming (LP):

* . .
»  V*(s) equals the solution x, to: 04 (hazardy ~{90al}

minimise 2 ¢ X, subject to the constraints:

x, =1 for s € S!
x, =0 for s € SY
Xy 2 Zoeg PY(s) - X forse S, a e A(s)
X1
1 A
X0 2 X1 / Lo
' Minimise xo+x1 S.t.:
. » ' . . .
(SO.SOUth) - / 4n )I\(/IOIZII’;ISG Xo+X1 S.1.: X0 > 0.4%0 +0.6X
. ~ {— X0 > 0.1x14+0.5x3+0.4x
x+> 0.5 Xo=0.1x1+0.4 x? > % | ) ’
(s1:east) ~~—— - x12 0.0 x1> 0.5%2 +0.5x4
: / S R > 0. .
0 :



e Value Iteration:

0 f s € goal

S
1

min,e ) |Cls,a) + 2 Pi(s) . xX=11 otherwise

* Linear programming

4

maximise 2 ¢ X, subject to the constraints:

x, =0 for s € goal
X, < C(s,a) + Zyes PI(s) - Xy for s € So, a € A(s)

Pre-computation:

we can also use graph-based pre-computation
to identify/collapse states and relax SSP assumptions

oal
O'h {hazard} wgoalz)
0.6 east
east S
south 0.1 stuck
’ south \ o5
05/°Q4 05/ 0.9
north
stuck east 0.1
SORSSO
west
0.4
{goaly} {goal;}
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Solving MaxProb (or SSP) on MDPs (focusing on “exact” algorithms):

Value iteration (VI)
» simple, and effective in practice, but care needed with convergence detection

» complexity unclear (depends on accuracy)

Linear programming
» polynomial complexity

» N principle, can yield exact (arbitrary precision) optimal values; likely scales worse than V|

Various other algorithms / optimisations
» Policy iteration, VI + prioritisation, topological partitioning, parallelisation, ...

» Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), ...



-inite-horizon variant solvable with value iteration (without pre-computation)

>

VE(s) = xf where: i f s € goal

k=120 f s & goal and n =0
MaX e () 2 es Ps () xk=1 otherwise

0.4 {hazard} {goal:}

>

4

Running example
MaxProb<k({s4,ss})

optimal policy Is not memoryless

k Xo X1
0o 0o 0
o4 05

2 o046 05
"""" 3 | 0484 . 05

28
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How do we go beyond the assumptions made so far?

—ull observabillity (of state, costs, ...)

partially observable MDPs, beliets over hidden state

FInite state spaces, action spaces

continuous state/action, dynamic systems

~ull knowledge of the model

epistemic uncertainty, also sampling-based models

~ully controllable model

adversarial (or collaborative) scenarios: stochastic game models

29



e |ntroduction

» aleatoric vs. epistemic uncertainty

 Markov decision processes (MD

=

» sequential decision making under uncertainty

» policies and objectives

MaxProb, SSP, finite-horizon, temporal logic

» solving MDPs (optimal policy generation)

inear programming (PTIME)

or dynamic programming (value iteration)

30



Stochastic games



Interaction with a second robot

{hazard}

Player 2

32



 MDPs model sequential decision making
» for a single agent, under stochastic uncertainty
» we may need adversarial (uncontrollable) decisions

» Or collaborative decision making for multiple agents

* A (turn-based, two-player) stochastic game
» takes the form & = ({1,2}, 5, (S}, 5,), 50, A, P) where:
» states S, initial state s, and actions A are as for MDPs
v 51,9, € § are the (disjoint) states controlled by players 1 and 2
» transition function P : S X A X S — [0,1] is also as for MDPs

* Another possibility: concurrent stochastic games
» with P: S X (A XA, XS = [0,1]

turn-based
stochastic

game

concurrent
stochastic
game

33



uncontrollable/unknown interference
shared autonomy:

{hazard} human-robot control

0.4 06 9 east {goal,}
] o9

stuck

0.9
north 0.1

34



Strategies for stochastic games

e Strategies (policies) tor turn-based stochastic games
» a strategy for player i is a mapping 7; : (S X A)* X S, = Dist(A)

» a strategy profile (;, m,) defines strategies for both players

» For state s of game & and strategy profile (7, 7,):

» we can define probability space Pr, "™,
random variables E""(X)
and value functions V"*1""2(s)

e Strategies
» can again be deterministic / randomised or memoryless / history-dependent

» 11 is the set of all strategies for playeri € {1,2}

35



Objectives V1, Vo for players 1 and 2 can be distinct
» simple, useful scenario: zero-sum (directly opposing), i.e., V1 = -Vo

» SO We assume a single objective V which one player maximises and the other minimises

Consider MaxProb for player 1 (other cases are similar);

° T\, 7T .
max, cry, M, o, V2(s)  where V™™ s exactly as for MDP MaxProb

Games are determined, i.e., for all states s:

max, oy min, o VA7%(s) = min, o max, o V77R(s)
SO we define:
, optimal value: V*(s) = max, oy, minﬂzenz Vi(s)

, optimal strategy (for player 1): 7 = argmax . cry. minﬂzen2 V*(s,)

36



>

 Memoryless deterministic strategies suffice (for both players)

o Complexity worse than for MDPs: NP N co-NP, rather than P

» P approach does not adapt (but strategy improvement is possible)

* |n practice: dynamic programming (value iteration) works well

» e.g., for MaxProb:

1 if s € goal
) 0 f s & goal and k=0
Xy = MaX, e zs,es P(s’y - x51 if s & goal,s € S; and k > 0

min, e 2 o PO - xg7! it s & goal,s € S, and k> 0

eSS v



 Optimal player 1 strategy changes:

{hazard}

Player 2

33



e Concurrent stochastic games: strategies, value functions defined similarly

» games are still determined: max, oy min, o V"%(s) = min, o max, o VA7(s)

» but optimal strategies still memoryless but now randomised

e \alue iteration can be extended:

1 ]

0 |

s € goal

fs & goaland k=0

val(Z) otherwise

1:1!1:2 @--

Wi ,t2

W1, Wo

»where val(Z) is the value of the matrix game with payoffs: 7z , = 2 SPf’b(s’) - xsk,_l
’ s'e

» solved via the linear prog

» P, gives the probability o
picking action a in its opt

ram

- player -

mal strat

cgy

Maximise game value v subject to;

Zap =V forb € A,

fora e A,

39



Sequential decision making with stochastic games

« UAV road survelllance e [Futures market investment  Multi-robot control
»  with partial human control » market is part stochastic, » adversarial (worst-case)
(varying operator accuracy) part adversarial vS. collaborative
27.5
RN . e 25| Jv | | | I :
TOZS%@T iy E 22.5 |- T
i 140
lg 17.5 |- v
o) 1—4 ql—q q
O 15 | 2 2 2
s -+
s 12.51 —m— CSG (i1, i2)) ‘
10 —0—| | TSG| <<z'1,|7;2>>
7 ; 5 6 7 8 9
#Number of months > 1 * o
1.0 Turn-based game too pessimistic :§ 0.8
82 (unrealistic adversary) a
0.7 é 0.6
g0.6- g
0.5 f
mj0.4- ‘ ;gc st —— FEquilibria
0.3 § —@— Zero-sum
0.2 <
0.1 PRISM-games 029 10 11 12 13 14
0'0450 500 550 600 650 700 k

time|[s]



Uncertain MDPs



 We can use MDPs for sequential decision making under (aleatoric) uncertainty

>

modelled here using transition probabilities (often learnt from data)

42



 We can use MDPs for sequential decision making under (aleatoric) uncertainty

» modelled here using transition probabilities (often learnt from data)

e Policies can be sensitive to small perturbations in transition probabillities

» S0 “optimal” policies can in tfact be sub-optimal

|
@‘ (5, =2 > 0.7 east
c
stuck S 0.6
south X v south 0.5-e S
0.5-e/4 0.4+e/4 [ 0.9 = 0-5south
0.5+€ north 0.1 © 04
stuck east ' D.
‘@ 0.6 west @ x 0.3
west = 0.2 o
{goal;y {goal,) 02 -01 0 0.1 0.2

43



We can use MDPs tor sequential decision making under (aleatoric) uncertainty

» modelled here using transition probabilities (often learnt from data)

Policies can be sensitive to small perturbations in transition probabilities

» S0 “optimal” policies can in tfact be sub-optimal

Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)

» we focus here on uncertainty in transition probabilities

Key guestions:

» how to model (and solve for) epistemic uncertainty?
» what guarantees do we get”

» |s It statistically accurate?

»  how computationally efficient is it?

44



e An uncertain MD

v P is the transition function uncertainty set

2 (UM

D

P) takes the form = (S, sy, A, &) where:

» states 3, initial state s, and actions A are as for MDPs

.e., each P € £ is a transition function P : S X A X S — [0,1]

« The uncertainty set ¢ C Dist(S)

v foreachs € 5, a € A(s)

> iS@?: {PSa

» similarly: ¢ =

» (9P sometimes “ambiguity sets”)

{PY :

. P e &)

P e &}

[0.7,0.8] 0

[0.4,0.0] < 0.2,0.3]

[0.4,0.6] é\

45



 Semantics of a uMDP A = (S, sy, A, )
v M can be seen as a (usually infinite) set of MDPs: | /]| = { #]|P] : P € &}
» where J|P| = (S, sy, A, P) is M instantiated with P € &

e But other views are possible

» dynamic, Bayesian, ...

 Some examples of uMDPs

Interval MDPs (IMDPs) Likelihood MDPs Sampled MDPs




 Can we allow dependencies between uncertainty sets?

» implications for computational tractability and modelling accuracy

* Rectangularity

v transition function uncertainty set & is (s,a)-rectangular
fwe have &P = X nesxa P

.e., If there are no dependencies between uncertainty sets for each s, a
» interval MDPs are (s,a)-rectangular (“sampled MDPs” might not be)

» - we will assume (s,a)-rectangularity for now (and later relax it)

 We can also define s-rectangularity [Wiesemann et al. |
o« P =X, ¢ P where L. = {(P))cn : PE P}

47



Non-rectangular uMDPs

 When might dependences between uncertainties arise?

Underwater vehicle control

IN unkNown ocean currents

(@))]
N~
N~
~~ '
N
| —
N
o ¢
= ™
< 0
m o)
3 N
>
—
(e 0]
S s
= N
-
O -
)
N~
]
—
»
00 o) Ty) o — o
© © © © © n
N~ N~ N~ N~ N~ N~
< < <t < <t <

task5
I

Task scheduling in the
presence of faulty processors

task2
I
task2
I

3W4 [ 567891081l [12 [ 13 14 [ 15 ] 16 | 17 | 18 [ 19 | 20 |

?

P
P

[tme [ 1 [ 2 [ 3 [ 4 5[ 6] 7 89 10W11 [ 12 [ 13 [ 14 [ 15 | 16 | 17 | 18 | 19 | 20 |

[tme | 1 [ 2 |3 |4 |56 7 8] 910 11 [ 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

[ time | 1 | 2 |
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 Example MDP (in fact, just a single policy) with parameter p

1 -
(st
0 € [0.4,0.6] 1 @

* Worst-case probability to reach v'7
» min{p(l —p) : p€[04,06]} =04-(1-04)=0.24

* Worst-case probability to reach v under rectangularity assumptions?
» min{p;(1 —p,) : p;,pr €10.4,0.6]} =04 -(1 —0.6) =0.16 (too conservative)

49



-or uUMDPs, as for MDPs, we can define
» policiest: (S XA)* XS > A, or
» memoryless policies,, : § = A

» (depending on the set &, some care is
needed to make sure policies can be applied)

~or policy & € II and transition probabilities P € &

» we can define probability space PrS”’P,
random variables -Pf’P(X) and
value functions V()

» which correspond to the MDP.Z | P]

50



-0or now, we consider a robust view of uncertainty

» |.e., we focus on worst-case (adversarial, pessimistic) scenarios

Robust policy evaluation:

» worst-case scenario for (maximising) policy z, i.e.: mMiNp. g VEE(s)

Robust control (policy optimisation):
, optimal worst-case value V*(s) = max,__qminp_g V7™ (s)

» optimal worst-case policy 7 = argmax . miNp. o VEE(s)

Other cases:
» for a minimising objective (e.g. SPP), we use: V¥(s) = min__maxp. 4 VEE(s)

» We may also consider optimistic scenarios, e.g. V*(s) = max . maxpc g VEE(s)

51



An IMDP for the robot example

» uncertainty added to two state-action pairs

oal
“ 0.6 east
east S+
0.1*xe/4 ek
south X < south 0.5+ stuc
0.5 ' 0.9
+e/4 0.4 5+
+e/4 e north 0.1
stuck east '
(Loa)e8 = @
west
{goal,} {goal}

» Note: the degree of uncertainty (e)
N states s1 and s Is correlated here
(but the actual transition probabilities are not)

>

Robust control

for any e, we can pick a “robust”

(optimal worst-case) policy

and give a safe lower bound
on its performance

0.7

0.6
0.5 east

04 south

0.3
0.2 e

Max. prob. reach goalj
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e Stochastic games

>

4

<

>

4

unknown parts of the system can be modelled adversarially

Zero-sum turn-based (or concurrent) stochastic games

dynamic programming (value iteration) generalises

Uncertain MDPs
MDPs plus epistemic uncertainty: set of transition functions
each P € & is a transition function P : S X A X § — [0,1]
rectangularity (dependencies)

control policies + robust control V*#(s) = max min V=(s)

mell Per

=
o
(@)
c
O
©
)
—
0
O
bt
o
>
©
=

>

0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2

east

\

south
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Uncertain MDPs



« Now we consider a more dynamic approach to resolving uncertainty

» (which we will need to extend dynamic programming to this setting)

 An environment policy (or nature policy, or adversary) 7 € &
v isamapping7: (S XA)* X (SXA)— Dist(S)

» such that 7(sy, ag, - .., S,, a,) € P}

» note: this assumes (s,a)-rectangularity!

e Policies &, T yield

» a probability space Pr**

» random variables E*(X)

v and value functions V**
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 Quantifying over environment policies T € I is more exhaustive

[0.7,0.8] @
» than quantifying over transition probabilities P € 0.4.0.6] < 0.2,03]

, {Pr*" Pe Py C P 1€ T ) @ @
. . . G [0.4,0.6] @
« Memoryless (stationary) environment policies 7, € 7,

» are mappings 7,, : S X A — Dist(S) such that 7, (s, a) € 9

» INn this case, the semantics now coincide:
, {Pr*" P e Py ={(PrF:t € T,)

« We call this dynamic uncertainty (z € ) vs. static uncertainty (P € &)
» which to use is a modelling decision (e.g., on the timing of events)
» but there are also implications for tractability

» similar situation to rectangularity (uncertainty set independence)
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>

* Robust control S 07-
S 0.6-
» but quantitying over policies (rather than uncertainty sets) S )5t
8 0_4_\ south‘
g 0.3 -
* Now we have S ood4——— 5
0 0.1 0.2

» optimal worst-case value

V#(s) = VI (5) = max min VZ(s)

V&\ nell €9

notation for optimal value for sets of control/environment policy sets I, &

» optimal worst-case policy

7 = argmax min V**(s)
rell €9

* Note that we may want to quantify over mismatching sets of policies, e.g.:

V!L7n(s) = max min V7%(s) = max min V*(s) e.g. for static uncertainty

rell 7, €5, rell P

57



UMDPSs vs stochastic games

[0.7,0.8] a f
d
0.4,0.6 Q L0203
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>

Let’'s again focus on optimising MaxProb (the situation is similar for SSP)

and recall: we need to assume (s,a)-rectangularity

Memoryless policies suffice, for pboth the controller and the environment

VL7 (59) = Vien(sg) = V7 (s50) = VI n(s)

Perfect duality:

yiLs (8p) = max min V**(s,) = min max V”**(s,)
rell €T €I nell

he optimal value function satisties the Bellman equation:

1 f s € goal

Vi(s) = VB (s) = {

MaX,, 5 iNfpic o 3 Pi(s) - VB (s")  otherwise
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* Optimal values for uMDPs can be obtained using robust value iteration (robust VI)

» from the limit of the vector sequence defined below

. VE(s) = lim,_, _ x* where:

1
0

k _
Xy = 0

We will re-use graph-based
¢~ pre computation for MDPs

fs e S!
if s € SO
fseS’ andk=0

MaX (s ifpoc g X o PE(s") - x5~ otherwise

* Again, this Bellman operator is (i) monotonic (i) a contraction in the L. norm

» needs (s-a)-rectangularity, but no assumptions on convexity

» (it suffices to take convex hull of each &%)
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The core step of robust VI comprises two nested optimisation problems:

max ing P(s) - x, » Outer problem (optimal control action)
acA(s) P/eS; © . _
S'ES * |Inner problem (worst-case transition probabilities)

where x IS some vector of values

Computational cost: robust VI potentially not much more expensive than VI for MDPs
» If the inner problem can solved efticiently

» note: uncertainty sets 9P are usually infinite

Definition/representation of uncertainty sets?

» trade off statistical accuracy vs. computation efficiency”

First example: intervals, a simple uncertainty set representation

» which suit statistical estimates of confidence intervals for individual transition probabillities
o1



INnterval MDPS



e An interval MD

> (IM

D

P) is of the form = (S, sy, A, P, P) where:

» states 3, initial state s, and actions A are as for MDPs

» S XAXS — [0,1] gives transition probability lower bounds

» P:SXAXS — |0,1] gives transition probability upper bounds 0108 @

such that P(s, a, s") < P(s,a, s’) for all s, a, s’

* IMDP uncertainty sets

[0.4,0.6] ﬂ 0.2,0.3]

[0.4,0.6] é\

, P4 = {P% € Dist(S) | P(s,a,s’) < PXs") < P(s,a,s’) for all s'}

probabilities are independent (except for the need to sum to 1)

» P = ><(S,a)ESXA ‘@?

e., IMDPs are (s-a)-rectangular
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e Interval uncertainty sets @g’ are convex subsets of [0,1]‘5 |

A Do

1
e (1/2,1/2) = (1/6,1/6) e (1/3,1/3,1/3) + (1/6,1/6,1/6)

= | )I \ =

1 P3

e \We can delimit the intervals

» 1.e., trim the Iinterval bounds such that at least one
possible distribution takes each extremal value

, e.g., P(s) := max[P(s"),] — Z . P(s)]

e.g. [0.1,0.4], [0.5,0.8] = [0.2,0.4], [0.6,0.8]
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 Assumption: IMDPs have a fixed underlying transition graph

» i.e., for each s,a,s" either: (i) P(s, a, s") > 0; or

(i) P(s,a,s) = P(s,a,s") =0

 Otherwise behaviour can be qualitatively different for small changes in P(s, a, s')

b b

[801] 9’ @. [0,€] 9.

[0.9,1-€] {goal; [1-€,1] wgoaly

»  For e > (), the probability to reach goal is always 1
» For € = 0, the probability to reach goal can be 0

» (contrast to, e.q., a finite-horizon property MaxProb=k(goal)



. The inner problem for each iteration, and each (s, a) is: 10t ZS,ESPf(S') + Xy

P!e%

* Can be solved via a linear programming problem:

» let p be| S |variables for the chosen probabilities P;'(s’)

minimise 2. p/ - X, such that:

Pi(s") < py < PY(s") forall s’and Z ypy = 1

 \We can also solve this more directly by sorting

» sort the values X, into ascending order

» for increasing values x; assign the maximum possible value to p.
l l

, which is bounded by 1 - (the sum of actual/min values for otherpsj)

W
1
P1
——C— P
1
A P>
’
P1
—>
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Running example: IMDPs and robust Vi

» Example: MaxProb(goal)

oal
0.6 east

east S @'
A 0.1*e/4 ek

sout Stuc

e=0.04 ’ 0.5*e
0.5 ' 0.9

el 22, 05+ north [N 5

stuck east '

west

Qo
0.4

{goal,; {goal}



Running example: IMDPs and robust Vi

e=0.04

—xample: MaxProb(goalh)
0.4 {hazard} ~1goaly}
0-6 east
east S ; @ﬂ
[0.09,0.11 :
souh IS 1039, 50[352 046054 ... 2R StUck
[0.49, 0.41
0.51] ! 0.54] 0.9
s N PO e

ﬁ@ 0.6 west @

{goa'lz} 0.4 =
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RuNNiNg example

-xample: Max

Prob(goals)

[0.4,0.4]
Xo=0 X1=0 Xo=()
[0.6,0.6] oast
@ east oy W\ 1) @
south \ ©2=
<7 south \[0.46,0.54]
[0.49, [> /0.0@ 0.46, 1~
0.51] ‘0_ 0.54]
%

X3=0 @ @ Xq=1

- IMDPs and robust VI

e Fix x4u=1 and x»>=x3=0, jUSt solve for Xo, X1

e [teration k=0: xo=x1=0

e [teration k=1:

Xo 1= max(min(0-0.4 + 0-0.6),

subject to:

min(O-p1 + 0-ps + 1-p4)) 4~ 828?;;8;
= max(0, 0.39) 0 39<01<0.4-
= 0.39 P4 =999, - D1+P3+P4=11

X1 := max(min(0-1), ~ subject to:
min(0-p2 + 1:p4)) 4~ 46<p,<0.54
= max(0, 0.46) 0.46<p4<0.54
— 046 04 =0.46, ... po+pa=1
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Running example: IMDPs and robust Vi

» Example: MaxProb(goal)

(0.4,0.4]
X0=0.39 X1=0.46  x»=0
[0.6,0.6] cast
@ east o) @
south \ ©
<7 south \[0.46,0.54]
(X,

7

X3=0 @ @ Xq=1

[0.49, [0.46,
0.51] “?0,7 0.54] »
2

lteration k=2:

%o = max(min(0.39:0.4 + 0.46-0.6) Suobéi(;t L% N
min(0.46-p+1 + O- 1:pg)) 4= ~HI=PI=Y
( DT b P4) 0.49<p3<0.5°
’ 0.39<p4<0.4
- max(0.432, 0.436) D=
— 0.436 ’
X3:O P3 = 0.51

«1=0 46 P+ =min(0.11, 1-(0.51+0.39)) = 0.1
04 = 1-(0.51+0.1) = 0.39

X4=1

(47

X1 := 0.46 (as before)




Max. prob. reach goal;

Running example: IMDPs and robust Vi

» Example: MaxProb(goal:) * lteration k=2:

m4oq

—(s2) Xo '= max(min(0.39:0.4 + 0.46-0.6) éuobéi(;t L% N
\009 u 0.46,0.54 | . ° ¥ & ' =pM1=Y.
N south \o.¢6022 min(0.46-p1 + 0-p3 + 1:p4)) 0.49<05<0 5
| . | 0.39<p4<0.41
N - max(0.432, 0.436) D=
= 0.436 '
________ K (X% X
O 0 0 |
e X3=0 p3 = 0.51
4 e=004 ; --------------- 0043396 ---------- 822 ----------- x1=0.46 P1=min(0.11, 1-(0.51+0.39)) = 0.1 @
P 3 oasos 046 X4=1 p4=1-(0.51+0.1) = 0.39
4 045616 046
________ ° .. 0Dasgaed ¢ 046
________ 6 1.0499386 | 046
7 | 045975424 | 0.46 X1 :=0.46 (as before)

2. 04590000784 | 048 + Finally: xo=0.46, x1=0.46

10 | 0.45998427136  0.46



* Robust control is computationally efficient (robust value iteration)

» (s,a)-rectangular and inner problem is easy to solve

» another possibility not discussed here: convex optimisation [Puggelli et al.’13]

e For Max

Prob (and SS

P), optimal policies are memoryless (and deterministic)

» SO computed policies are optimal worst case with respect to static uncertainty

What about objectives that need memory? (e.g. finite horizon, or temporal logic)

* Intervals are a simple, natural way to model transition probability uncertainty

How do we generate the intervals?

Are there better models of uncertainty sets”

/2



* Quantitying over memoryless environment policies

» gives us worst-case behaviour over static uncertainty

Vi-7n(s) = max min V% (s) = max min V*/(s)
rell 7,€5, rnell PEY

e But for objectives that require non-memoryless control policies

» computation methods typically also assume non-memoryless environment policies

VL7 (5) = max min V%(s)
rell 7,€T

» |.e., worst-case behaviour over dynamic uncertainty

» which is often (but not always) unrealistic (depends on time-scales)

* This however gives a conservative bound over static uncertainty

VL7 () < max min VA(s)
rell Pe&
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L . . |
* Objective: MaxProb=2(goal), i.e., get to goal in exactly 2 steps - ¥ ) 190
0/ a (040
» SO we need time-dependent strategies for the controller " '040@
» computable via k steps of value iteration . 0.2 .
* Worst-case probabilities (time-dependent environment strategies) ) - <
. 2 3

» “b,b" 0.2 (optimal)
» "a,b": 0
» "a,a: mingp (1 —p,) : pr.p, €10.4,0.6]} =0.4-(1 —0.6) =0.16 (too conservative)

from value iteration; dynamic uncertainty; maybe unrealistic

* Worst-case probabilities (memoryless environment strategies)
» bbb 0.2
» "a,n”: 0
» “g,a”min{p(l —p) : p€[04,0.6]} =04-(1—-0.4)=0.24 (better bound) (now optimal)

static uncertainty; may be more realistic; hard to compute
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* Temporal logic (in particular LTL) allows more complex objectives, e.Q.:

»  Pmax=2 [ (G=hazard) A (GF goali) | - “maximise probability of avoiding hazard and also visiting
goal 1 infinitely often”

»  Pmax=2 | =zones U (zone1 A (F zones)) | - "maximise probability of patrolling zone 1 (whilst avoiding
zone 3) then zone 47

 For MDPs, we generate optimal policies by:
» converting the LTL formula to a deterministic automaton
» building a product of the MDP and the automaton

» optimising a simpler objective (e.g. MaxProb) on the product MDP

* The techniques extend to uMDPs/IMDPs [Wolff et al.”12]

»  but (like for MDPs), optimal policies need memory

/9



-0or co-safe LTL (satisfaction occurs

in finite time), we use finite automata

-zones U (zone+t A (F zones))

(avoiding hazard and also
visiting goal 1 infinitely often)

-or general LTL, we use e.g.

Rabin automata

(G=hazard) A (GF goal4)

(visit zone 1 (whilst avoiding
zone 3) then zone 4)

/0



MDP M 0.4 {hazard} {goal,} Automaton & for

0.6 east (G—nhazard) A (GF goah)
OB ORSO®
0.1
south south \ .5 stuck

</
0.5 o.ti gsA—h
nor
stuck east 0.1
SO O
west
{goal,} 0.4

{goali}

Product MDP M & <f

Optimal memoryless
policy of M @ A
corresponds to
finite-memory optimal
policy of MDP M
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Generating IMDP intervals

Some examples of IM

@@ Low turbulence
2888 High turbulence

Unmanned aerial vehicle

DD

»  robust control In turbulence

» continuous-space dynamic
model with unknown noise

al

» discrete abstraction + finite

“scenarios” of sampled noise

vields IMDP abstraction
[Badings et al.’23]

generation

Deep reinforcement learning

worst-case analysis of
abstractions of probabilistic
policies tfor neural networks

Intervals between IMDP
abstract states constructed
by sampling the policy

[Bacci&Parker'20]

Estimation Error

Bandit

109 10! 102 103 10 10° 108
Trajectory

Robust anytime MDP learning

v

sampled MDP trajectories

»  IMDPs constructed and solved
periodically to yield robust
predictions on current model

»  PAC or Bayesian interval learning

[Suilen et al.’22]
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 One approach: sampling from the (fixed, but unknown) “true™ MDP

» generate sample paths and keep separate counts of transition frequencies

» Gives confidence intervals around point estimates for transition probabilities Py'(s;)
» using probably approximately correct (PAC) guarantees
» we fix an error rate y and compute an error 0

» standard method of maximum a-posteriori probability (MAP) estimation
to infer point estimates of probabilities

» For each state s, we have sample counts N = #(s, a) and k; = #(s, a, s;)

. point estimate of the transition probability P4(s;) is: P/(s.) ~ k./N

, confidence interval for the transition probability: ]3?(51-) + 0 where 0 = \/log(Z/y)/ZN

» then we have: P’”(Pf(si) c P?(Si) to)=1-y (via Hoetftding's inequality)



It desired, we can lift the PAC guarantee from individual transitions to the uMD

Distribute the chosen error rate y across all transitions:
v yp=7y/(Z(s,a) € S X A|Succ, ((s,a)|)
» where Succ, ((s,a) = (s € S5 :0<P/(s) <1} [0.7,0.8] @

s the set of successor states of each (s, a) 10.4,0.6] <
[0.2,0.3]

with more than one successor
0 construct the IMDP, we use:
| § ps0a (=)

, PYs) = min(ﬁ?(sl-) + 0p,1)

Thenwe have: Pr(P € ) >1—vy

[Suilen et al.’22]




[NIlim&Ghaoui’05]

e [ kellhood models suit experimentally determined transition probabilities

» and are less conservative than interval representations

* Uncertainty sets are :

» are derived from empirical frequencies F{'(s’) of a transition to s’ after action a in state s

, are described by likelihood regions: & = { P € Dist(S) | Z F{(sHlog(P(s") = pg)}
\)

» where [ is the uncertainty level (can be estimated for a desired confidence level)

B < B Where B2 = ZS, F4(s"log(F%s") is the optimal log-likelihood

* Inner optimisation problems Inf Z Pe(s’) - xg
Pie g s'ES

» can be solved (approximately) using a bisection algorithm

» to within an accuracy 0 in time O(log(x,,,.,/0)) where x_.. is the maximum value in vector x

aXx
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* |ntervals & likelihood models
» pboth quite computationally tractable and statistically meaningful

» interval models are more conservative (sometimes projected to as an estimate)

. Finite scenarios (“sampled”): P¢ = { P, Pl

. a /
» inner optimisation is simple (min over finite set) Pigga ZS’ES Pg(s’) - xg

» but worst-case choice can be very conservative

* Many other possibilities, e.g.:
»  maximum a posteriorl models, entropy models, ellipsoidal models, ...
» most have similar (approximate) optimisation approaches to likelihood models

v see: [NiIlim&Ghaoui’'05] for details
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 PRISM: probabilistic model checking tool
» formal modelling and analysis (using temporal logic properties) of:
Markov chains, Markov decision processes,
interval Markov chains, interval Markov decision processes,

stochastic games (via PRISM-games), and much more...

e See: www.prismmodelchecker.org

» download, documentation, tutorials, papers, case studies, ...

* Supporting files for ESSAI examples here:

www.prismmodelchecker.org/courses/essai?23/
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https://www.prismmodelchecker.org/courses/essai23/

>

Uncertain MDPs

environment policies - static vs dynamic uncertainty
robust value iteration (robust dynamic programming)
implementation with interval MDPs (IMDPs)
non-memoryless policies (static uncertainty)
generating / learning intervals

uncertainty set representations

tool support: PRISM
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4

RC-tfunded project

~UN2MO

lead by Marta Kwiatkowska

-, based at Oxford

model-based reasoning for learning and uncertainty

4

<

Postdoc position available now

http://www.fun2model.org/

hitp://www.prismmodelchecker.org/news.php

European Research Council

Established by the European Commission

—maill:

david.parker@cs.ox.ac.uk

marta.kwiatkowska@cs.ox.ac.uk
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» 1. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N. Jansen,
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Journal of Artificial Intelligence Research, 76, pages 341-391, 2023
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e Stochastic games
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* [earning and using IMDPs

>

>
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