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Introduction



Sequential decision making under uncertainty
• Sequential decision making

‣ iterative interaction with an environment to achieve a goal

‣ sequential process of making observations and executing actions

‣ applications in: health, energy, transportation, robotics, …


• Sequential decision making under uncertainty

‣ noisy sensors, unpredictable conditions, lossy communication, 

human behaviour, hardware failures, …


• Trustworthy, safe and robust decision making

‣ e.g. for safety-critical applications

‣ needs rigorous/systematic quantification of uncertainty
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Reasoning about uncertainty
• Markov decision processes (MDPs) and variants

‣ standard models for sequential decision making under uncertainty

‣ stochastic processes quantify uncertainty

‣ but parameters of these often need to be estimated from data


• We will distinguish between:


• Aleatoric uncertainty (randomness intrinsic to environment) 

• Epistemic uncertainty (quantifies lack of knowledge)

‣ reducible: can reduce by collecting more data/observations
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‣ e.g., sensor noise, actuator failure, human decisions 

‣ e.g., poor model quality due to low number of measurements



Applications & challenges
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• Shared autonomy

‣ learning belief over 

uncertainty on 
unobservable 
human state

• Autonomous underwater vehicle

‣ effective navigation against 

unknown ocean currents

• Unmanned aerial vehicle

‣ robust control in the  

presence of turbulence

• Mine exploration

‣ Safe exploration 

and mapping 
(avoiding 
radiation)

• Radiation measuring

‣ safe navigation and task completion 

in unknown environments

[Budd 
et al.’22]

[Costen 
et al.’22]

[Budd 
et al.’22]

[Badings 
et al.’23]



This course
• Model uncertainty in sequential decision making

‣ model-based techniques (probabilistic planning, not reinforcement learning)

‣ discrete time, discrete space

‣ fully observable environments (mostly)

‣ rigorous/precise/systematic quantification of uncertainty
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Course contents
• Markov decision processes (MDPs) and stochastic games

‣ MDPs: key concepts and algorithms

‣ stochastic games: adding adversarial aspects


• Uncertain MDPs

‣ MDPs + epistemic uncertainty, robust control, 

robust dynamic programming, interval MDPs, 
uncertainty set representation, challenges, tools


• Sampling-based uncertain MDPs

‣ removing the transition independence assumption


• Bayes-adaptive MDPs

‣ maintaining a distribution over the possible models
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Markov decision 
processes
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Markov decision processes
• Markov decision processes (MDPs)

‣ standard model for sequential decision making under uncertainty 

• An MDP is of the form  where:


‣  is a (finite) set of states


‣  is an initial state


‣  is a (finite) set of actions


‣  is a transition probability function


- where  

ℳ = (S, s0, A, P)
S
s0 ∈ S
A
P : S × A × S → [0,1]

Σs′￼∈S P(s, a, s′￼) ∈ {0,1}
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Markov decision processes
• For an MDP : 

‣ the enabled actions  in each state 


- are 


‣ a path is a sequence 


- such that ,  and  for all 


• We also use: 

‣  is the transition probability matrix for each 


‣  is the successor distribution for each state  and action 


‣ (where  is the set of discrete probability distributions over set S)

ℳ = (S, s0, A, P)

A(s) ⊆ A s
A(s) = {a ∈ A : P(s, a, s′￼) > 0 for some s′￼}

ω = s0a0s1a1, …
si ∈ S ai ∈ A(si) P(si, ai, si+1) > 0 i

Pa : S × S → [0,1] a ∈ A
Pa

s ∈ Dist(S) s a ∈ A(s)
Dist(S)
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Policies for MDPs
• Policies (or strategies)  resolves the choice of action in each state

‣ based on the execution of the MDP so far


‣ formally: a policy is a mapping 


- such that  implies 


‣  is the probability of picking  
after observing MDP history 


•  (or just ) is the set of all (deterministic) policies for MDP 


• Policies can be classified by (i) use of randomisation; (ii) use of memory

‣ which matter for optimality, computation, practicality, …

π

π : (S × A)* × S → Dist(A)
π(s0a0…sn)(an) > 0 an ∈ A(sn)

π(s0a0…sn)(an) an
s0a0…sn

Πℳ Π ℳ
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Classes of policies for MDPs
• Randomisation

‣  is deterministic (or pure) if it always picks a single action with probability 1


‣ and randomised (or probabilistic) otherwise


‣ for now, we’ll mostly assume deterministic policies and assume 


• Memory

‣  is memoryless (or stationary, or Markovian) if  when 


- in which case we write it in the form 


-  is the set of all memoryless policies


‣ otherwise  is history dependent


‣  is finite-memory if it suffices to distinguish a finite number of “modes” based on the history


‣ sometimes write a (time-dependent) policy as tuple  where 

π

π : (S × A)* × S → A

π π(s0, …, sn) = π(s′￼0, …, s′￼n) sn = s′￼n

π : S → A

Πm ⊆ Π
π

π
π = (π0, π1, …) πi : S → A
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MDPs and policies
• A policy for an MDP yields an induced Markov chain

‣ and set of (infinite) paths
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Running example (and objectives)
• Example MDP: robot moving through terrain divided in to 3 x 2 grid 

 
 
 
 
 
 
 
 

• Objectives (or properties) define an optimisation problem for an MDP

‣ MaxProb: maximise the probability of reaching 


‣ SSP (stochastic shortest path): minimise the cost of reaching 

goal ⊆ S
goal ⊆ S
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Defining objectives for MDPs
• Execution of an MDP under a policy

‣ for a policy  on MDP …


‣  is a probability measure over all (infinite) paths from state  of 


‣  is the expected value of  (with respect to )


- where  is a random variable over (infinite) paths


• Value function: 

‣ gives the value of an objective under  starting from each state of the MDP


‣ define optimal value, e.g.: 


‣ and optimal policy, e.g.: 

π ∈ Π ℳ
Prπ

s s ℳ
𝔼π

s(X) X Prπ
s

X : (S × A)ω → ℝ≥0

Vπ : S → ℝ
π

V*(s) = maxπ∈Π Vπ(s)
π* = argmaxπ∈Π Vπ(s0)
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MaxProb & SSP (stochastic shortest path)
• MaxProb: Maximise the probability of reaching a target state set 

‣ maximise 


• SSP: Minimise the expected cost of reaching a target state set 


‣ for a cost function 


‣ minimise  where 


• Assumptions for SSP

‣  states are absorbing and zero-cost


‣ there is a proper policy (i.e., which reaches  with probability 1 from all states) 


‣ every improper policy incurs an infinite cost from every state 
from which it does not reach  with probability 1

goal ⊆ S
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i})

goal ⊆ S
C : S × A → ℝ≥0

Vπ(s) = 𝔼π
s(XC) XC(s0a0s1a1…) = Σ∞

i=0 C(si, ai)

goal
goal

goal
17



Running example: MaxProb
• What is the optimal policy for objective MaxProb(goal1)?
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Other objectives
• Some other common objectives for MDPs:


• Finite-horizon variants, e.g., of MaxProb:

‣ MaxProb≤k: Maximise the probability of reaching  within time horizon 


‣ maximise 


• Discounting infinite-horizon objectives

‣ DiscSum: Maximise the expected discounted total reward sum


‣ for a reward function  and discount factor 


‣ maximise  where 

goal ⊆ S k
Vπ(s) = Prπ

s ({s0a0s1a1s2… : si ∈ goal for some i ≤ k})

R : S × A → ℝ γ ∈ (0,1)
Vπ(s) = 𝔼π

s(XR) XR(s0a0s1a1…) = Σ∞
i=0 γiR(si, ai)
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Temporal logic objectives
• Specification languages from formal verification

‣ probabilistic extensions of temporal logics, e.g., PCTL, PLTL


• Examples

‣ Pmax=? [ F goal1 ] - “probabilistic reachability”

‣ Pmax=? [ F≤10 goal1 ] - “probabilistic bounded reachability”

‣ Pmax=? [ G ¬hazard ] - “probabilistic safety/invariance”

‣ Pmax=? [ ¬hazard U goal1 ] - “probabilistic reach-avoid”

‣ Pmax=? [ (G¬hazard) ∧ (GF goal1) ] - “maximise probability of avoiding hazard and also visiting 

goal 1 infinitely often”

‣ Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “maximise probability of patrolling zone 1 (whilst avoiding 

zone 3) then zone 4”

‣ Rtime,min=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “minimise the expected time to patrol zone 1 (whilst 

avoiding zone 3) then zone 4”
20
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Solving MDPs
• We will mainly focus on MaxProb (techniques are very similar for SSP)


• Key result: memoryless (deterministic) policies suffice 
 

• The optimal value function satisfies the Bellman equation:


• Solution methods

‣ value iteration (dynamic programming)

‣ linear programming

‣ and many more (e.g., policy iteration, Monte Carlo tree search, BRTDP, …)

21

V*(s) = {
1 if s ∈ goal
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ V*(s′￼) otherwise

maxπ∈Π Vπ(s) = maxπ∈Πm
Vπ(s)



MaxProb via value iteration
• Optimal values can be obtained using dynamic programming

‣ from the limit of the vector sequence defined below


‣  where:


• Known as value iteration (VI)

‣ the Bellman operator is (i) monotonic (ii) a contraction in the L∞ norm

‣ optimal values are the least fixed point of the Bellman operator

V*(s) = limk→∞ xk
s

22

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

Bellman backup operator
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MaxProb via value iteration
• Optimise via graph-based pre-computation

‣ potentially improves accuracy / convergence, resolves uniqueness

‣ compute state sets:


-  = (all) states for which all policies reach  with probability 0 (i.e., max = 0)


-  = (some) states for which a policy reaches  with probability 1 (i.e., max = 1)


- 


• Then value iteration becomes:

S0 goal

S1 ⊇ goal goal

S? = S\(S0 ∪ S1)

23

xk
s =

1 if s ∈ S1

0 if s ∈ S0

0 if s ∈ S? and k = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

Implementation details:

• Extract optimal policy after/during:

    


• Terminate when 

• Choose order to update states s

π*(s) = argmaxa∈A(s) ∑s′￼∈S
Pa

s (s′￼) ⋅ xk−1
s′￼

||xk+1 − xk || < ε



Running example: Value iteration
• Example: MaxProb(goal1)

24

• Fix x4=x5=1 and x2=x3=0, just solve for x0, x1


• Iteration k=0: x0=x1=0


• Iteration k=1: 
 
 
 
 

• Iteration k=2: 
 
 

• Finally: x0=0.5, x1=0.5

= max(0.4·0+ 0.6·0, 0.1·0+0.5·0+0.4·1) 
= max(0, 0.4) 
= 0.4 

= max(1·0, 0.5·0+0.5·1)

= max(0, 0.5)

= 0.5 

x0 :

x1 :

= max(0.4·0.4+ 0.6·0.5, 0.1·0.5+0.5·0+0.4·1)

= max(0.46, 0.45)

= 0.46 

= 0.5 (as before) 

x0 :

x1 :

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
4 0.4936 0.5
5 0.49744 0.5
6 0.498976 0.5
7 0.4995904 0.5
8 0.49983616 0.5
9 0.499934464 0.5
10 0.4999737856 0.5

9

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

9

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

14

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north



• Optimal values can be computed using linear programming (LP):

‣  equals the solution  to:V*(s) xs
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xs ≥ Σs′￼∈S Pa
s (s′￼) ⋅ xs′￼

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ S0

xs = 1 for s ∈ S1

minimise  subject to the constraints:Σs∈S xs

Minimise x0+x1 s.t.:

x0 ≥ 0.4x0 +0.6x1

x0 ≥ 0.1x1+0.5x3+0.4x4

x1 ≥ x2

x1 ≥ 0.5x2 +0.5x4


Minimise x0+x1 s.t.:

x0 ≥ x1

x0 ≥ 0.1x1+0.4

x1 ≥ 0.5

Running example

• More
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Solving SSP for MDPs
• Value iteration: 

• Linear programming 
 

• Pre-computation:

‣ we can also use graph-based pre-computation 

to identify/collapse states and relax SSP assumptions
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xk
s =

0 if s ∈ goal

mina∈A(s) [C(s, a) + ∑s′￼∈S Pa
s (s′￼) ⋅ xk−1

s′￼ ] otherwise

xs ≤ C(s, a) + Σs′￼∈S Pa
s (s′￼) ⋅ xs′￼

xs = 0

for s ∈ S?, a ∈ A(s)

for s ∈ goal

maximise  subject to the constraints:Σs∈S xs
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MDP solution methods
• Solving MaxProb (or SSP) on MDPs (focusing on “exact” algorithms):


• Value iteration (VI)

‣ simple, and effective in practice, but care needed with convergence detection

‣ complexity unclear (depends on accuracy)


• Linear programming

‣ polynomial complexity

‣ in principle, can yield exact (arbitrary precision) optimal values; likely scales worse than VI


• Various other algorithms / optimisations

‣ Policy iteration, VI + prioritisation, topological partitioning, parallelisation, …

‣ Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), …

27



MaxProb over a finite horizon
• Finite-horizon variant solvable with value iteration (without pre-computation)


‣  where: 
 
 
 

• Running example

‣ MaxProb≤k({s4,s5})

‣ optimal policy is not memoryless

V*(s) = xk
s

28

xk
s =

1 if s ∈ goal
0 if s ∉ goal and n = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

k x0 x1

0 0 0
1 0.4 0.5
2 0.46 0.5
3 0.484 0.5
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Beyond MDPs
• How do we go beyond the assumptions made so far? 


• Full observability (of state, costs, …)

‣ partially observable MDPs, beliefs over hidden state


• Finite state spaces, action spaces

‣ continuous state/action, dynamic systems


• Full knowledge of the model

‣ epistemic uncertainty, also sampling-based models


• Fully controllable model

‣ adversarial (or collaborative) scenarios: stochastic game models

29



Summary (lecture 1)
• Introduction

‣ aleatoric vs. epistemic uncertainty


• Markov decision processes (MDPs)

‣ sequential decision making under uncertainty

‣ policies and objectives


- MaxProb, SSP, finite-horizon, temporal logic


‣ solving MDPs (optimal policy generation)

- linear programming (PTIME)


- or dynamic programming (value iteration)
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Stochastic games



Running example
• Interaction with a second robot
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Stochastic games
• MDPs model sequential decision making

‣ for a single agent, under stochastic uncertainty

‣ we may need adversarial (uncontrollable) decisions

‣ or collaborative decision making for multiple agents


• A (turn-based, two-player) stochastic game

‣ takes the form  where:


‣ states , initial state  and actions  are as for MDPs


‣  are the (disjoint) states controlled by players 1 and 2


‣ transition function  is also as for MDPs


• Another possibility: concurrent stochastic games

‣ with 

𝒢 = ({1,2}, S, ⟨S1, S2⟩, s0, A, P)
S s0 A

S1, S2 ⊆ S
P : S × A × S → [0,1]

P : S × (A1 × A2) × S → [0,1]
33
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Turn-based stochastic games
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Applications

• Example application domains (PRISM-games)

− collective decision making and team formation protocols 
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures
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Applications

• Example application domains (PRISM-games)

− collective decision making and team formation protocols 
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures
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Strategies for stochastic games
• Strategies (policies) for turn-based stochastic games

‣ a strategy for player i is a mapping 


‣ a strategy profile  defines strategies for both players


• For state  of game  and strategy profile :


‣ we can define probability space , 
random variables  
and value functions 


• Strategies

‣ can again be deterministic / randomised or memoryless / history-dependent


‣  is the set of all strategies for player 

πi : (S × A)* × Si → Dist(A)
(π1, π2)

s 𝒢 (π1, π2)
Prπ1,π2

s
𝔼π1,π2

s (X)
Vπ1,π2(s)

Πi i ∈ {1,2}
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Objectives for stochastic games
• Objectives V1, V2 for players 1 and 2 can be distinct

‣ simple, useful scenario: zero-sum (directly opposing), i.e., V1 = -V2

‣ so we assume a single objective V which one player maximises and the other minimises


• Consider MaxProb for player 1 (other cases are similar): 

• Games are determined, i.e., for all states :


• So we define:


‣ optimal value: 


‣ optimal strategy (for player 1): 

s

V*(s) = maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s)

π* = argmaxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s0)

36

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) where  is exactly as for MDP MaxProbVπ1,π2

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) = minπ2∈Π2
maxπ1∈Π1

Vπ1,π2(s)



Solving stochastic games
• Memoryless deterministic strategies suffice (for both players)


• Complexity worse than for MDPs: NP  co-NP, rather than P

‣ LP approach does not adapt (but strategy improvement is possible)


• In practice: dynamic programming (value iteration) works well

‣ e.g., for MaxProb:

∩
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xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
maxa∈A(s) ∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

if s ∉ goal, s ∈ S1 and k > 0

mina∈A(s) ∑s′￼∈S Pa
s (s′￼) ⋅ xk−1

s′￼
if s ∉ goal, s ∈ S2 and k > 0

Running example

• More
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Running example
• Optimal player 1 strategy changes:
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Zero-sum concurrent stochastic games
• Concurrent stochastic games: strategies, value functions defined similarly

‣ games are still determined: 

‣ but optimal strategies still memoryless but now randomised


• Value iteration can be extended:


‣ where  is the value of the matrix game with payoffs:


‣ solved via the linear program 

‣  gives the probability of player 1 
picking action  in its optimal strategy

val(Z)

pa
a

39

maxπ1∈Π1
minπ2∈Π2

Vπ1,π2(s) = minπ2∈Π2
maxπ1∈Π1

Vπ1,π2(s)

xk
s =

1 if s ∈ goal
0 if s ∉ goal and k = 0
val(Z) otherwise

za,b = ∑s′￼∈S
Pa,b

s (s′￼) ⋅ xk−1
s′￼

Σa∈A1
pa = 1

pa ≥ 0 for a ∈ A1

Σa∈A1
pa ⋅ za,b ≥ v for b ∈ A2

Maximise game value  subject to:v
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Sequential decision making with stochastic games

40

• UAV road surveillance

‣ with partial human control 

(varying operator accuracy)
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Figure 4

Left: A simple TSG modelling alternating decisions between a human operator and an
autonomous robot. Right: Results from a more complex, but similar style TSG analysed in (63)
for an unmanned aerial vehicle partially controlled by a human operator.

As for MDPs, in each state s of a TSG T, there is a set of available actions denoted A(s),

which are the actions a for which �(s, a) is defined. However, in this case the choice of which

available action is taken in s is under the control of a single player: the unique player i 6 n

such that s 2 Si. If player i selects action a 2 A(s) in s, then, as for MDPs, the probability

of transitioning to state s0 equals �(s, a)(s0).

The notion of paths and reward measures are the same as for MDPs. In the case of

TSGs we do not have a single strategy, but instead a strategy for each player i of the TSG

that resolves the choice of action in each state under the control of player i, based on the

game’s execution so far. Furthermore, to reason about the behaviour of a TSG we need a

strategy for every player, called a strategy profile.

Definition 10 (TSG strategy). A strategy of a TSG T is a function �i : {⇡ 2 FPathsT |

last(⇡) 2 Si} ! Dist(A) such that, if �i(⇡)(a)>0, then a 2 A(last(⇡)). The set of all

strategies of player i 6 n is represented by ⌃i
T and a strategy profile is a tuple � = (�i)

n
i=1

where �i 2 ⌃i
T for all i 6 n.

Similarly to MDPs, for a TSG T and profile �, we denote by FPaths�T and IPaths�T the

set of finite and infinite paths of T that correspond to the choices made by the profile �.

Furthermore, for a given profile �, we can define a probability measure Prob�T over the set

of infinite paths IPaths�T and, for a random variable X : IPathsT ! R, we can define the

expected value E�
T(X) of X under �.

Example 5. Figure 4 (left) shows a fragment of a simple TSG modelling a human-robot

system. Navigation decisions (east or west) are taken by a human operator (circular states,

coloured green); then the robot decides autonomously how to follow these instructions

(square states, coloured blue), here by choosing the speed (slow or fast) with which to pro-

ceed. Figure 4 (right) shows results from probabilistic model checking of a more complex

TSG model in which an unmanned aerial vehicle performs surveillance under partial control

of a human operator (63). It shows the trade-o↵ between mission time and the likelihood

of straying into “restricted operating zones” (ROZs) as operator accuracy varies.

4.1. Property Specifications for TSGs

To specify properties of TSGs, we consider an extension of the logic presented earlier for

MDPs and POMDPs. This uses the coalition operator hhCii from alternating temporal logic

(ATL) (64) to define zero-sum formulae. An extended version of this logic was presented

as rPATL (and RPATL*) in (65).

12 Kwiatkowska et al.

• Futures market investment

‣ market is part stochastic, 

part adversarial
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Fig. 3: Robot coordination on a 3×3 grid: probabilistic choices for one pair of
action choices in the initial state. Solid lines indicate movement in the intended
direction, dotted lines where there is deviation due to obstacles.

studies (except Aloha and medium access in which the players are not symmetric),
the values can be swapped to give alternative SWNE/SCNE values.

Finally, we note that, for infinite-horizon nonzero-sum properties, we compute
the value of ε for the synthesised ε-NE and find that ε = 0 in all cases.

Robot Coordination. Our first case study concerns a scenario in which two robots
move concurrently over a grid of size l×l, briefly discussed in Example 5. The
robots start in diagonally opposite corners and try to reach the corner from which
the other starts. A robot can move either diagonally, horizontally or vertically
towards its goal. Obstacles which hinder the robots as they move from location
to location are modelled stochastically according to a parameter q (which we set
to 0.25): when a robot moves, there is a probability that it instead moves in an
adjacent direction, e.g., if it tries to move north west, then with probability q/2 it
will instead move north and with the same probability west.

We can model this scenario as a two-player CSG, where the players correspond
to the robots (rbt1 and rbt2), the states of the game represent their positions on the
grid. In states where a robot has not reached its goal, it can choose between actions
that move either diagonally, horizontally or vertically towards its goal (under the
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Fig. 8: Futures market: later cash-ins without (left) and with (right) fluctuations.
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Fig. 9: Futures market: normal profiles (left) and mixed profiles (right) (pbar=0.1).

– in the second month with probability ∼0.9649, if the second investor did not
cash in at the end of the first month and the shares went up;

– in the second month with probability ∼0.9540, if the second investor did not
cash in at the end of the first month and the shares went down;

– in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼4.33.

We now make the market probabilistic, where, in any month when it did not
bar the investor in the previous month (including the first), the probability that the
market bars an individual investor equals pbar . We consider nonzero-sum proper-
ties of the form 〈〈i1:i2〉〉max=?(R

profit1 [ F cashed in1 ]+R
profit2 [ F cashed in2 ]), in which

each investor tries to maximise their individual profit, for different reward struc-
tures. In Figures 9 and 10 we have plotted the results for the investors where the
profit models of the investors follow a normal profile and where the profit models
of the investors differ (‘later cash-ins’ for the first investor and ‘early cash-ins’
for second), when pbar equals 0.1 and 0.5 respectively. The results demonstrate
that, given more time and a more predictable market, i.e., when pbar is lower, the
players can collaborate to increase their profits.

Performing strategy synthesis, we find that the strategies in the mixed profiles
model are for the investor with an ‘early cash-ins’ profit model to invest as soon
as possible, i.e., it tries to invest in the first month and if this fails because it is
barred, it will be able to invest in the second. On the other hand, for the investor
with the ‘later cash-ins’ profile, the investor will delay investing until the chances
of the shares failing start to increase or they reach the month before last and then
invest (if the investor is barred in this month, they will be able to invest in the
final month).

Turn-based game too pessimistic 
(unrealistic adversary)

automatically generate a protocol (or strategy) for control-
ling the system that satisfies or optimizes the property. Over
past decades, various reactive synthesis techniques have been
developed for the design of di↵erent types of autonomous
systems. A review of such techniques can be found in [23],
while some recent advances in synthesis for probabilistic sys-
tems are presented in [4] and [13]. These techniques have
been applied to real-world case studies such as UAV mission
planning [10] and autonomous urban driving [4].

A key challenge for reactive synthesis is obtaining appropri-
ate models of a human operator’s behavior and performance
with respect to operator-autonomy interactions. Work in
this area is still limited, and available models are not nec-
essarily well suited to reactive synthesis. For instance, [15]
finds an upper bound on the number of autonomous ve-
hicles a human operator can e↵ectively supervise, and [18]
derives task queueing policies the automation can employ to
optimize operator workload. However, these models are rel-
atively abstract and do not capture the types of detailed op-
erator decision-making behaviors we would like to consider
for reactive synthesis. A class of operator decision-making
models can be found in [20], but this class is limited to
tasks in which only two choices are available. Cognitive ar-
chitectures have been used to model more complex operator
decision-making behaviors and performance characteristics
[21], but the resulting models are not expressed in a concise
mathematical framework amenable to reactive synthesis.

We therefore develop a hypothetical model of operator be-
havior and performance amenable to reactive synthesis based
on high-level trends induced from human factors literature.
For instance, data from [1] demonstrate that on a wide va-
riety of tasks, “human reliability” or rate of human error of-
ten increases with higher levels of stress and decreases with
higher levels of operator proficiency; moreover, for vigilance
tasks that require detecting simple infrequent signals over
prolonged periods of time without rest, missed detections
tend to increase over time. Similar trends can be found in
other studies. One study of vigilance tasks found declining
response rates after as little as 3 minutes of task perfor-
mance, with response rates eventually plateauing at 70-80%
of initial rates [14]. Di↵erences in task performance can
also vary between operators. For instance, a meta-analysis
of 53 studies concluded that introverts have better overall
performance than extraverts on visual detection tasks [11].
Operator performance on visual identification and classifica-
tion tasks can also vary significantly in response times and
accuracy, e.g. due to di↵erences in age or experience [8].

Though a particular operator’s behavior may be unknown at
system design time, relevant statistics can be obtained, e.g.,
via extracting possible operator behavior patterns from prior
information such as training logs. Moreover, methods such
as cognitive task analysis [6] can be applied to reveal how
an operator would respond to various events. We expect ad-
vances in data-driven modeling to help create individualized
libraries of operator models and support on-demand con-
troller synthesis as operators, missions, and vehicles change.

As an illustrative example for this paper, we consider a sim-
ple scenario involving road network surveillance by a UAV.
We first build abstractions for operator-autonomy interac-

a1 

a2 

a3 a4 
a5 

a6 

a7 
a8 

r1 

r2 

r3 
r4 

r5 

r6 

r7 
r8 

r9 

Figure 1: A road network for UAV ISR missions

(adapted from [10]).

tions based on Markov decision processes (MDPs), a widely
used model for discrete time stochastic control processes.
A (fully probabilistic) operator model is developed, taking
into account a rich set of human performance characteristics
(e.g., proficiency, workload, and fatigue), as previously men-
tioned. The operator-autonomy interaction is then modeled
as a product MDP from the composition of the operator
model and a UAV model. Given a mission objective, we can
synthesize an optimal UAV piloting plan that satisfies it via
finding a strategy in the MDP. If models for individual op-
erators are available, we may even synthesize individualized
optimal UAV piloting plans. Moreover, if there are multiple
mission objectives, we can draw Pareto curves to help opera-
tors understand trade-o↵s. We also demonstrate the impact
of operator characteristics on UAV mission performance.

It may be beneficial to add nondeterminism in the opera-
tor model, e.g., for modeling human dynamic re-tasking of
UAVs to address previously unforeseen circumstances. To
distinguish the two di↵erent sources of nondeterminism from
the operator and the UAV, we augment the MDP models to
stochastic two-player games. The goal is to synthesize a win-
ning strategy for the UAV (Player 1) against all strategies
(including the worst-case) of the operator (Player 2). This
separate role consideration is also useful in modeling design
decisions about function allocation (i.e., the assignment of
operator and autonomy to tasks). As with MDPs, we can
similarly synthesize individualized UAV strategies and ana-
lyze mission objective trade-o↵s with games. In addition, we
may guide the refinement of the admissible operating region
and provide informative feedback to operators for achieving
better mission performance.

The rest of the paper is organized as follows. We describe the
motivating example in Section 2 and introduce formal spec-
ifications and models in Section 3. We present our modeling
approach and experimental results for MDPs and stochastic
two-player games in Section 4 and Section 5, respectively.
Finally, we remark on potential future work in Section 6.

2. MOTIVATING EXAMPLE
As an illustration of synthesis for autonomous systems in-
teracting with human operators, we describe two variants of
an example in which a remotely controlled UAV is used to
perform intelligence, surveillance, and reconnaissance (ISR)

• Multi-robot control

‣ adversarial (worst-case) 

vs. collaborative

PRISM-games



Uncertain MDPs



MDPs + epistemic uncertainty
• We can use MDPs for sequential decision making under (aleatoric) uncertainty

‣ modelled here using transition probabilities (often learnt from data) 

42
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MDPs + epistemic uncertainty
• We can use MDPs for sequential decision making under (aleatoric) uncertainty

‣ modelled here using transition probabilities (often learnt from data)


• Policies can be sensitive to small perturbations in transition probabilities

‣ so “optimal” policies can in fact be sub-optimal

43

30

s0

s4s3

0.5-e

east s1

south

0.5-e/4

0.1

{goal1}

s2

s5

{hazard}

0.4+e/4

{goal2}

{goal2}

south

0.5+e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.10-0.1 0.2-0.2

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h 
go

al
1

east

south

0.2

30

s0

s4s3

0.5-e

east s1

south

0.5-e/4

0.1

{goal1}

s2

s5

{hazard}

0.4+e/4

{goal2}

{goal2}

south

0.5+e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.10-0.1 0.2-0.2

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h 
go

al
1

east

south

0.2



MDPs + epistemic uncertainty

44

• We can use MDPs for sequential decision making under (aleatoric) uncertainty

‣ modelled here using transition probabilities (often learnt from data)


• Policies can be sensitive to small perturbations in transition probabilities

‣ so “optimal” policies can in fact be sub-optimal


• Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)

‣ we focus here on uncertainty in transition probabilities

• Key questions:

‣ how to model (and solve for) epistemic uncertainty?

‣ what guarantees do we get?

‣ is it statistically accurate?

‣ how computationally efficient is it?



Uncertain MDPs
• An uncertain MDP (uMDP) takes the form  where:


‣ states , initial state  and actions  are as for MDPs


‣  is the transition function uncertainty set


- i.e., each  is a transition function 


• The uncertainty set 


‣ for each , 


‣ is 


‣ similarly:  
 

‣ (  sometimes “ambiguity sets”)

ℳ = (S, s0, A, 𝒫)
S s0 A

𝒫
P ∈ 𝒫 P : S × A × S → [0,1]

𝒫a
s ⊆ Dist(S)

s ∈ S a ∈ A(s)
𝒫a

s = {Pa
s : P ∈ 𝒫}

𝒫a = {Pa : P ∈ 𝒫}

𝒫a
s
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Uncertain MDPs
• Semantics of a uMDP 


‣  can be seen as a (usually infinite) set of MDPs: 


‣ where  is  instantiated with 


• But other views are possible

‣ dynamic, Bayesian, … 


• Some examples of uMDPs

ℳ = (S, s0, A, 𝒫)
ℳ [[ℳ]] = {ℳ[P] : P ∈ 𝒫}

ℳ[P] = (S, s0, A, P) ℳ P ∈ 𝒫
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Sampled MDPs

…

Interval MDPs (IMDPs)
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Uncertainty set dependencies
• Can we allow dependencies between uncertainty sets?

‣ implications for computational tractability and modelling accuracy


• Rectangularity

‣ transition function uncertainty set  is (s,a)-rectangular


- if we have  


- i.e., if there are no dependencies between uncertainty sets for each s, a


‣ interval MDPs are (s,a)-rectangular (“sampled MDPs” might not be)

‣ we will assume (s,a)-rectangularity for now (and later relax it)


• We can also define s-rectangularity [Wiesemann et al.]

•  where 

𝒫
𝒫 = ×(s,a)∈S×A 𝒫a

s

𝒫 = ×s∈S 𝒫s 𝒫s = {(Pa
s )a∈A : P ∈ 𝒫}
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Non-rectangular uMDPs
• When might dependences between uncertainties arise?

48

Task scheduling in the 
presence of faulty processors

Underwater vehicle control 
in unknown ocean currents



Non-rectangular uMDPs
• Example MDP (in fact, just a single policy) with parameter p


• Worst-case probability to reach ✓?

‣   


• Worst-case probability to reach ✓ under rectangularity assumptions?

‣     (too conservative)

min{p(1 − p) : p ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.4) = 0.24

min{p1(1 − p2) : p1, p2 ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.6) = 0.16
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Policies in uMDPs
• For uMDPs, as for MDPs, we can define

‣ policies , or


‣ memoryless policies 


‣ (depending on the set , some care is 
needed to make sure policies can be applied)


• For policy  and transition probabilities :


‣ we can define probability space , 
random variables  and 
value functions 


‣ which correspond to the MDP  

π : (S × A)* × S → A
πm : S → A

𝒫

π ∈ Π P ∈ 𝒫
Prπ,P

s
𝔼π,P

s (X)
Vπ,P(s)

ℳ[P]
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Robust control
• For now, we consider a robust view of uncertainty

‣ i.e., we focus on worst-case (adversarial, pessimistic) scenarios


• Robust policy evaluation:

‣ worst-case scenario for (maximising) policy , i.e.: 


• Robust control (policy optimisation):

‣ optimal worst-case value 


‣ optimal worst-case policy 


• Other cases:

‣ for a minimising objective (e.g. SPP), we use: 


‣ we may also consider optimistic scenarios, e.g. 

π minP∈𝒫 Vπ,P(s)

V*(s) = maxπ∈Π minP∈𝒫 Vπ,P(s)
π* = argmaxπ∈Π minP∈𝒫 Vπ,P(s)

V*(s) = minπ∈Π maxP∈𝒫 Vπ,P(s)
V*(s) = maxπ∈Π maxP∈𝒫 Vπ,P(s)
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Running example: Robust control
• An IMDP for the robot example

‣ uncertainty added to two state-action pairs


‣ Note: the degree of uncertainty (e) 
in states s1 and s2 is correlated here 
(but the actual transition probabilities are not) 

52

•  Robust control

‣ for any e, we can pick a “robust” 

(optimal worst-case) policy


‣ and give a safe lower bound 
on its performance
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Summary (lecture 2)
• Stochastic games

‣ unknown parts of the system can be modelled adversarially

‣ zero-sum turn-based (or concurrent) stochastic games


- dynamic programming (value iteration) generalises 

• Uncertain MDPs

‣ MDPs plus epistemic uncertainty: set of transition functions


- each  is a transition function 


‣ rectangularity (dependencies)

‣ control policies + robust control

P ∈ 𝒫 P : S × A × S → [0,1]
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Uncertain MDPs
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Resolving uncertainty
• Now we consider a more dynamic approach to resolving uncertainty

‣ (which we will need to extend dynamic programming to this setting)


• An environment policy (or nature policy, or adversary) 

‣ is a mapping 


‣ such that 


‣ note: this assumes (s,a)-rectangularity!


• Policies  yield

‣ a probability space 


‣ random variables 


‣ and value functions 

τ ∈ 𝒯
τ : (S × A)* × (S × A) → Dist(S)

τ(s0, a0, …, sn, an) ∈ 𝒫a
s

π, τ
Prπ,τ

s

𝔼π,τ
s (X)
Vπ,τ
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Dynamic vs. static uncertainty
• Quantifying over environment policies  is more exhaustive

‣ than quantifying over transition probabilities 


‣ 


• Memoryless (stationary) environment policies 


‣ are mappings  such that 


‣ in this case, the semantics now coincide:


‣ 


• We call this dynamic uncertainty ( ) vs. static uncertainty ( )

‣ which to use is a modelling decision (e.g., on the timing of events) 

‣ but there are also implications for tractability

‣ similar situation to rectangularity (uncertainty set independence)

τ ∈ 𝒯
P ∈ 𝒫

{Prπ,P
s : P ∈ 𝒫} ⊆ {Prπ,τ

s : τ ∈ 𝒯}

τm ∈ 𝒯m

τm : S × A → Dist(S) τm(s, a) ∈ 𝒫a
s

{Prπ,P
s : P ∈ 𝒫} = {Prπ,τm

s : τm ∈ 𝒯m}

τ ∈ 𝒯 P ∈ 𝒫
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Robust control (revisited)
• Robust control

‣ but quantifying over policies (rather than uncertainty sets)


• Now we have

‣ optimal worst-case value 

 
 
 

‣ optimal worst-case policy 
 

• Note that we may want to quantify over mismatching sets of policies, e.g.:
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VΠ,𝒯m(s) = max
π∈Π

min
τm∈𝒯m

Vπ,τm(s) = max
π∈Π

min
P∈𝒫

Vπ,P(s)

notation for optimal value for sets of control/environment policy sets Π, 𝒯

  V*(s) = VΠ,𝒯(s) = max
π∈Π

min
τ∈𝒯

Vπ,τ(s)

π* = argmax
π∈Π

min
τ∈𝒯

Vπ,τ(s)
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uMDPs vs stochastic games
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Robust dynamic programming
• Let’s again focus on optimising MaxProb (the situation is similar for SSP)

‣ and recall: we need to assume (s,a)-rectangularity


• Memoryless policies suffice, for both the controller and the environment


• Perfect duality:


• The optimal value function satisfies the Bellman equation:

59

VΠ,𝒯(s0) = VΠm,𝒯m(s0) = VΠm,𝒯(s0) = VΠ,𝒯m(s0)

VΠ,𝒯(s0) = max
π∈Π

min
τ∈𝒯

Vπ,τ(s0) = min
τ∈𝒯

max
π∈Π

Vπ,τ(s0)

V*(s) = VΠ,𝒯(s) = {
1 if s ∈ goal
maxa∈A(s) infPa

s ∈𝒫a
s
∑s′￼∈S Pa

s (s′￼) ⋅ VΠ,𝒯(s′￼) otherwise



Robust value iteration
• Optimal values for uMDPs can be obtained using robust value iteration (robust VI)

‣ from the limit of the vector sequence defined below


‣  where: 
 
 
 
 
 
 

• Again, this Bellman operator is (i) monotonic (ii) a contraction in the L∞ norm

‣ needs (s-a)-rectangularity, but no assumptions on convexity


‣ (it suffices to take convex hull of each )

V*(s) = limk→∞ xk
s

𝒫a
s
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xk
s =

1 if s ∈ S1

0 if s ∈ S0

0 if s ∈ S? and k = 0
maxa∈A(s) infPa

s ∈𝒫a
s
∑s′￼∈S Pa

s (s′￼) ⋅ xk−1
s′￼

otherwise

We will re-use graph-based 
pre computation for MDPs



Uncertainty set representations
• The core step of robust VI comprises two nested optimisation problems: 

 
 
 
 

• Computational cost: robust VI potentially not much more expensive than VI for MDPs

‣ if the inner problem can solved efficiently


‣ note: uncertainty sets  are usually infinite


• Definition/representation of uncertainty sets?

‣ trade off statistical accuracy vs. computation efficiency?


• First example: intervals, a simple uncertainty set representation

‣ which suit statistical estimates of confidence intervals for individual transition probabilities 

𝒫a
s
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where  is some vector of valuesx

 max
a∈A(s)

inf
Pa

s ∈𝒫a
s
∑
s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

• Outer problem (optimal control action)
• Inner problem (worst-case transition probabilities)

9

IMDP
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1
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s0s2 s0s2s1
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a
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Interval MDPs
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IMDP
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Interval MDPs
• An interval MDP (IMDP) is of the form  where:


‣ states , initial state  and actions  are as for MDPs


‣   gives transition probability lower bounds


‣   gives transition probability upper bounds


- such that  for all , ,  

• IMDP uncertainty sets

‣ 


- probabilities are independent (except for the need to sum to 1)


‣  


- i.e., IMDPs are (s-a)-rectangular

ℳ = (S, s0, A, P, P)
S s0 A

P : S × A × S → [0,1]
P : S × A × S → [0,1]

P(s, a, s′￼) ≤ P(s, a, s′￼) s a s′￼

𝒫a
s = {Pa

s ∈ Dist(S) | P(s, a, s′￼) ≤ Pa
s (s′￼) ≤ P(s, a, s′￼) for all s'}

𝒫 = ×(s,a)∈S×A 𝒫a
s
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IMDP uncertainty sets
• Interval uncertainty sets  are convex subsets of  

 
 
 
 
 
 
 

• We can delimit the intervals

‣ i.e., trim the interval bounds such that at least one 

possible distribution takes each extremal value


‣ e.g., 


- e.g. [0.1,0.4], [0.5,0.8]  [0.2,0.4], [0.6,0.8] 

𝒫a
s [0,1]|S|

P(s′￼) := max[P(s′￼),1 − Σs≠s′￼
P(s)]

→
64

(p1,p2) ∈ (1/2,1/2) ± (1/6,1/6)

= ([1/3,2/3], [1/3,2/3])

35

(p1,p2) = (1/2,1/2] ± [1/6,1/6]

[1/6,1/2], [1/6,1/2], [1/6,1/2]

1

1

1

1

1

([1/3,2/3], [1/3,2/3]) [p1,p2,p3] = [1/3,1/3,1/3] ± [1/6,1/6,1/6]

1

1

p1

p2

1

1

1

p1

p2

p3

35

(p1,p2) = (1/2,1/2] ± [1/6,1/6]

[1/6,1/2], [1/6,1/2], [1/6,1/2]

1

1

1

1

1

([1/3,2/3], [1/3,2/3]) [p1,p2,p3] = [1/3,1/3,1/3] ± [1/6,1/6,1/6]

1

1

p1

p2

1

1

1

p1

p2

p3

(p1,p2,p3) ∈ (1/3,1/3,1/3) ± (1/6,1/6,1/6)

= ([1/6,1/2], [1/6,1/2], [1/6,1/2])



An assumption on IMDPs
• Assumption: IMDPs have a fixed underlying transition graph

‣ i.e., for each , ,  either: 

 

• Otherwise behaviour can be qualitatively different for small changes in  
 
 
 
 

‣ For , the probability to reach goal is always 1


‣ For , the probability to reach goal can be 0 


‣ (contrast to, e.g., a finite-horizon property MaxProb≤k(goal)

s a s′￼

P(s, a, s′￼)

ε > 0
ε = 0
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(i) ; or


(ii)  

P(s, a, s′￼) > 0

P(s, a, s′￼) = P(s, a, s′￼) = 0

38

s0 s1
{goal}

b

[0.9,1-ɛ]

[ɛ,0.1]a

38

s0 s1
{goal}

b

[0.9,1-ɛ]

[ɛ,0.1]a s0 s1
{goal}

b

[1-ɛ,1]

[0,ɛ]a



Robust value iteration for IMDPs
• The inner problem for each iteration, and each  is:


• Can be solved via a linear programming problem:

‣ let  be variables for the chosen probabilities  

 
 
 

• We can also solve this more directly by sorting

‣ sort the values  into ascending order 


‣ for increasing values  assign the maximum possible value to 


‣ which is bounded by 1 - (the sum of actual/min values for other )

(s, a)

ps′￼
|S | Pa

s (s′￼)

xs′￼

xsi
psi

psj
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inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

minimise  such that:


 for all  and 

Σs′￼
ps′￼

⋅ xs′￼

Pa
s(s′￼) ≤ ps′￼

≤ Pa
s(s′￼) s′￼ Σ s′￼ps′￼

= 1

46

1

1

1

p1

p2

p3

46

1

1

1

p1

p2

p3

1

1

p1

p2



Running example: IMDPs and robust VI
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• Example: MaxProb(goal1)

39

s0

s4s3

[0.46,0.54]
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0.1±e/4

e=0.04

39

s0

s4s3

[0.46,0.54]

east s1
south
[0.49,
0.51]

[0.09,0.11]

{goal1}

s2

s5

{hazard}

[0.39,
0.41]

{goal2}

{goal2}

south
[0.46,
0.54]

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04



Running example: IMDPs and robust VI
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• Example: MaxProb(goal1)
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Running example: IMDPs and robust VI
• Fix x4=1 and x2=x3=0, just solve for x0, x1


• Iteration k=0: x0=x1=0


• Iteration k=1:
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x0 := max( subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0·0.4 + 0·0.6),

min(0·p1 + 0·p3 + 1·p4))

x1 := max(min(0·1),

min(0·p2 + 1·p4))

subject to:

0.46≤p2≤0.54

0.46≤p4≤0.54

p2+p4=1

41
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0.5±e

0.6
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s0

s4s3

east s1
south

s2
south

east

[0.46,0.54]
[0.49,
0.51]

[0.09
,0.11

]

[0.39,0.41]

[0.46,
0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]

x0=0 x1=0 x2=0

x3=0 x4=1

• Example: MaxProb(goal1)

p4 = 0.39, …
= max(0, 0.39)

= 0.39

p4 = 0.46, …
= max(0, 0.46)

= 0.46



• Iteration k=2:

Running example: IMDPs and robust VI
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x0 := max( subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0.39·0.4 + 0.46·0.6),

min(0.46·p1 + 0·p3 + 1·p4))

x1 := 0.46  (as before)

41

s0

s4s3

0.5±e

east s1
south
0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

e=0.04
s0

s4s3

east s1
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,0.11

]
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0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]

x0=0.39 x1=0.46 x2=0

x3=0 x4=1

• Example: MaxProb(goal1)

= max(0.432, 0.436)

= 0.436

p3 = 0.51 
p1 = min(0.11, 1-(0.51+0.39)) = 0.1  

p4 = 1-(0.51+0.1) = 0.39

x3=0

x1=0.46

x4=1



• Iteration k=2:

Running example: IMDPs and robust VI
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x0 := max( subject to:

0.09≤p1≤0.11

0.49≤p3≤0.51

0.39≤p4≤0.41

p1+p3+p4=1

min(0.39·0.4 + 0.46·0.6),

min(0.46·p1 + 0·p3 + 1·p4))

x1 := 0.46  (as before)

k x0 x1

0 0 0
1 0.39 0.46
2 0.436 0.46
3 0.4504 0.46
4 0.45616 0.46
5 0.458464 0.46
6 0.4593856 0.46
7 0.45975424 0.46
8 0.459901696 0.46
9 0.4599606784 0.46
10 0.45998427136 0.46

39
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min

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h 
go

al
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south
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• Example: MaxProb(goal1)

= max(0.432, 0.436)

= 0.436

p3 = 0.51 
p1 = min(0.11, 1-(0.51+0.39)) = 0.1  

p4 = 1-(0.51+0.1) = 0.39

x3=0

x1=0.46

x4=1

• Finally: x0=0.46, x1=0.46

42
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[0.46,0.54]
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]
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0.54]

[0.4,0.4]

[0.6,0.6]

[1,1]



Interval MDPs - so far…
• Robust control is computationally efficient (robust value iteration)

‣ (s,a)-rectangular and inner problem is easy to solve

‣ another possibility not discussed here: convex optimisation [Puggelli et al.’13]


• For MaxProb (and SSP), optimal policies are memoryless (and deterministic)

‣ so computed policies are optimal worst case with respect to static uncertainty 

• Intervals are a simple, natural way to model transition probability uncertainty

72

What about objectives that need memory?

How do we generate the intervals?

Are there better models of uncertainty sets?

(e.g. finite horizon, or temporal logic)



Policies with memory
• Quantifying over memoryless environment policies

‣ gives us worst-case behaviour over static uncertainty 

 
 

• But for objectives that require non-memoryless control policies

‣ computation methods typically also assume non-memoryless environment policies 

 

‣ i.e., worst-case behaviour over dynamic uncertainty

‣ which is often (but not always) unrealistic (depends on time-scales)


• This however gives a conservative bound over static uncertainty
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VΠ,𝒯m(s) = max
π∈Π

min
τm∈𝒯m

Vπ,τm(s) = max
π∈Π

min
P∈𝒫

Vπ,P(s)

VΠ,𝒯(s) = max
π∈Π

min
τm∈𝒯

Vπ,τm(s)

VΠ,𝒯(s) ≤ max
π∈Π

min
P∈𝒫

Vπ,P(s)



Memory (time dependencies)
• Objective: MaxProb=2(goal), i.e., get to goal in exactly 2 steps

‣ so we need time-dependent strategies for the controller

‣ computable via k steps of value iteration


• Worst-case probabilities (time-dependent environment strategies)

‣ “b,b”: 0.2

‣ “a,b”: 0


‣ “a,a”:  = 0.16 (too conservative)


• Worst-case probabilities (memoryless environment strategies)

‣ “b,b”: 0.2

‣ “a,b”: 0


‣ “a,a”:  = 0.24 (better bound) (now optimal)

min{p1(1 − p2) : p1, p2 ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.6)

min{p(1 − p) : p ∈ [0.4,0.6]} = 0.4 ⋅ (1 − 0.4)
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48

s0

s3s2

a s1
b

{goal}

0.2

[0.4,0.6]

b0.8

b

[0.4,0.6]

static uncertainty; may be more realistic; hard to compute

from value iteration; dynamic uncertainty; maybe unrealistic
0.2 (optimal)



Memory (temporal logic objectives)
• Temporal logic (in particular LTL) allows more complex objectives, e.g.:

‣ Pmax=? [ (G¬hazard) ∧ (GF goal1) ] - “maximise probability of avoiding hazard and also visiting 

goal 1 infinitely often”

‣ Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] - “maximise probability of patrolling zone 1 (whilst avoiding 

zone 3) then zone 4”


• For MDPs, we generate optimal policies by:

‣ converting the LTL formula to a deterministic automaton

‣ building a product of the MDP and the automaton 

‣ optimising a simpler objective (e.g. MaxProb) on the product MDP


• The techniques extend to uMDPs/IMDPs [Wolff et al.’12]

‣ but (like for MDPs), optimal policies need memory
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Automata for LTL objectives
• For co-safe LTL (satisfaction occurs 

in finite time), we use finite automata 
 
 
 
 

• For general LTL, we use e.g. Rabin automata
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(G¬hazard) ∧ (GF goal1)


(visit zone 1 (whilst avoiding 
zone 3) then zone 4)

• DFA and DBA

21

q0 q2

z3∧
¬z1

¬z1∧
¬z3

q3
true

q1
z4

¬z4

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

¬zone3 U (zone1 ∧ (F zone4))


(avoiding hazard and also 
visiting goal 1 infinitely often)

• DFA and DBA

21

q0 q2
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Optimising for LTL on a product MDP
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MDP M Automaton  for

(G¬hazard) ∧ (GF goal1)

𝒜
s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

0.1

0.5

east
south

0.8

0.1

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

{goal1}

Product MDP M ⊗ 𝒜

Optimal memoryless 
policy of  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Generating IMDP intervals
• Some examples of IMDP generation
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• Unmanned aerial vehicle

‣ robust control in turbulence


‣ continuous-space dynamical 
model with unknown noise


‣ discrete abstraction + finite 
“scenarios” of sampled noise 
yields IMDP abstraction


[Badings et al.’23]

1.0

0.25

0.0

0.5

0.75

Fig. 1: Sampled policy probabilities for one action in an abstract state (left)
and the template polyhedra partition generated through refinement (right).

then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeo↵. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing candidate directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set �
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S̃ be the set of sampled points and Ỹs denote the true probability of
choosing action a in each point s 2 S̃, as extracted from the probabilistic policy.
For a direction �, we project all points in S̃ onto � and sort them accordingly,
i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and index i is sorted by h�, sii.
We determine the optimal boundary for splitting in direction � by finding the
optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we
first define the function Y

k,�
i classifying the ith point according to this split:

Y
k,�
i =

⇢
1 if i 6 k

0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k,�
, Ỹ ) = � 1

m

Xm

i=1

⇣
Y

k,�
i log(Ỹsi) + (1� Y

k,�
i ) log(1� Ỹsi)

⌘
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• Deep reinforcement learning

‣ worst-case analysis of 

abstractions of probabilistic 
policies for neural networks


‣ intervals between IMDP 
abstract states constructed 
by sampling the policy


[Bacci&Parker’20]

• Robust anytime MDP learning

‣ sampled MDP trajectories


‣ IMDPs constructed and solved 
periodically to yield robust 
predictions on current model


‣ PAC or Bayesian interval learning


[Suilen et al.’22]



Learning IMDP intervals
• One approach: sampling from the (fixed, but unknown) “true” MDP

‣ generate sample paths and keep separate counts of transition frequencies


• Gives confidence intervals around point estimates for transition probabilities 

‣ using probably approximately correct (PAC) guarantees


‣ we fix an error rate  and compute an error 


‣ standard method of maximum a-posteriori probability (MAP) estimation 
to infer point estimates of probabilities


• For each state , we have sample counts  and 


‣ point estimate of the transition probability  is: 


‣ confidence interval for the transition probability:  where 


‣ then we have: 

Pa
s (si)

γ δ

s N = #(s, a) ki = #(s, a, si)
Pa

s (si) P̃a
s(si) ≈ ki/N

P̃a
s(si) ± δ δ = log(2/γ)/2N

Pr(Pa
s (si) ∈ P̃a

s(si) ± δ) ≥ 1 − γ
79

(via Hoeffding’s inequality)
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IMDP
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Learning IMDP intervals
• If desired, we can lift the PAC guarantee from individual transitions to the uMDP


• Distribute the chosen error rate  across all transitions:

‣ 


‣ where  
is the set of successor states of each  
with more than one successor 


• To construct the IMDP, we use:


‣ 


‣ 


• Then we have:  

γ
γP = γ/(Σ(s, a) ∈ S × A |Succ>1(s, a) | )

Succ>1(s, a) = {s ∈ S : 0 < Pa
s (s′￼) < 1}

(s, a)

Pa
s(si) = max(ε, P̃a

s(si) − δP)

Pa
s(si) = min(P̃a

s(si) + δP,1)

Pr(P ∈ 𝒫) ≥ 1 − γ
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[Suilen et al.’22]



Likelihood uncertainty sets
• Likelihood models suit experimentally determined transition probabilities

‣ and are less conservative than interval representations


• Uncertainty sets are :

‣ are derived from empirical frequencies  of a transition to  after action  in state 


‣ are described by likelihood regions: 


‣ where  is the uncertainty level (can be estimated for a desired confidence level)


‣  where  is the optimal log-likelihood


• Inner optimisation problems

‣ can be solved (approximately) using a bisection algorithm


‣ to within an accuracy  in time  where  is the maximum value in vector 

Fa
s (s′￼) s′￼ a s

𝒫a
s = {Pa

s ∈ Dist(S) | ∑s′￼

Fa
s (s′￼)log(Pa

s (s′￼)) ≥ βa
s )}

βa
s

βa
s < βa

s, max βa
s, max = ∑s′￼

Fa
s (s′￼)log(Fa

s (s′￼))

δ O(log(xmax/δ)) xmax x
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inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼

[Nilim&Ghaoui’05]



Uncertainty set models - Summary
• Intervals & likelihood models

‣ both quite computationally tractable and statistically meaningful

‣ interval models are more conservative (sometimes projected to as an estimate)


• Finite scenarios (“sampled”): 


‣ inner optimisation is simple (min over finite set)

‣ but worst-case choice can be very conservative


• Many other possibilities, e.g.:

‣ maximum a posteriori models, entropy models, ellipsoidal models, …

‣ most have similar (approximate) optimisation approaches to likelihood models

‣ see: [Nilim&Ghaoui’05] for details

𝒫a
s = {Pa

s,1, …, Pa
s,k}
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inf
Pa

s ∈𝒫a
s
∑s′￼∈S

Pa
s (s′￼) ⋅ xs′￼



Tool support: PRISM
• PRISM: probabilistic model checking tool

‣ formal modelling and analysis (using temporal logic properties) of:


- Markov chains, Markov decision processes,


- interval Markov chains, interval Markov decision processes,


- stochastic games (via PRISM-games), and much more…


• See:


‣ download, documentation, tutorials, papers, case studies, … 

• Supporting files for ESSAI examples here:
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PRISM

www.prismmodelchecker.org

www.prismmodelchecker.org/courses/essai23/

Running example
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east s1
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0.1
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0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

https://www.prismmodelchecker.org/
https://www.prismmodelchecker.org/courses/essai23/


Summary (lecture 3)
• Uncertain MDPs

‣ environment policies - static vs dynamic uncertainty

‣ robust value iteration (robust dynamic programming)

‣ implementation with interval MDPs (IMDPs)

‣ non-memoryless policies (static uncertainty)

‣ generating / learning intervals

‣ uncertainty set representations

‣ tool support: PRISM 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Advertisement
• ERC-funded project FUN2MODEL, based at Oxford

‣ lead by Marta Kwiatkowska

‣ model-based reasoning for learning and uncertainty


• Postdoc position available now

‣ http://www.fun2model.org/ 

‣ http://www.prismmodelchecker.org/news.php
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