
Highlights’18, Berlin, September 2018

Probabilistic Model Checking:
Advances and Applications

Dave Parker

University of Birmingham

2

Overview

• Probabilistic model checking & PRISM
− Markov decision processes (MDPs)

• Multi-objective probabilistic model checking
− examples: robot navigation; task scheduling

• Partially observable models
− POMDPs + real-time variants
− examples: robot navigation; wireless scheduling

• Stochastic (multi-player) games
− turn-based & concurrent games
− examples: energy management, investor models

3

Probabilistic model checking

• Probabilistic model checking
− formal construction/analysis of probabilistic models
− “correctness” properties expressed in temporal logic
− e.g. trigger → P≥0.999 [F≤20 deploy]
− mix of exhaustive & numerical/quantitative reasoning

• Trends and advances
− improvement in scalability to larger models
− increasingly expressive/powerful model classes
− from verification problems to control problems
− ever widening range of application domains

0.5

0.1

0.4

4

PRISM (and extensions)

• PRISM model checker: www.prismmodelchecker.org

• Wide range of probabilistic models
discrete states & probabilities: Markov chains
+ nondeterminism: Markov decision processes (MDPs)
+ real-time clocks: probabilistic timed automata (PTAs)
+ partial observability: POMDPs and POPTAs
+ multiple players: (turn-based) stochastic games
+ concurrency: concurrent stochastic games

• Expressive property specification language
− PCTL/CSL, LTL, costs/rewards, multi-objective, strategies, …

• Tool features
− modelling language, simulator, GUI, graph plotting, …

http://www.prismmodelchecker.org/

5

PRISM (and extensions)

• Various verification engines
− symbolic/explicit/hybrid, exact, parametric,

statistical model checking, abstraction refinement, …

• Open source development
− github.com/prismmodelchecker/prism
− incl. benchmark & testing suites

• Interfaces & connections
− Java API
− ModelGenerator interface: programmatic model construction
− HOAF support for automata import/export

https://github.com/prismmodelchecker/prism

6

Markov decision processes

• Example Markov decision processes (MDP)
− robot moving through terrain divided in to 3 x 2 grid
− strategies represent possible ways to navigate grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9

north

7

Example - Reachability

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Synthesise strategy satisfying:
P≥0.4 [F goal1]

or
Find optimal strategy
Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(value iteration, linear programs,
policy iteration, interval iteration)

8

Example - Reachability

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Optimal strategy:
s0 : east
s1 : south
s2 : -
s3 : -
s4 : east
s5 : -

= 0.5

Synthesise strategy satisfying:
P≥0.4 [F goal1]

or
Find optimal strategy
Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(value iteration, linear programs,
policy iteration, interval iteration)

9

MDPs – Other core properties

• Costs and rewards (expected, accumulated values)
− e.g. Rmin=? [F goal2] - "what is the minimum expected time

needed to reach goal2?"
− optimal strategies: memoryless and deterministic
− similar computation to probabilistic reachability

• Probabilistic LTL (multiple temporal operators)
− e.g. Pmax=? [(G¬hazard) ∧ (GF goal1)] – "maximum probability

of avoiding hazard and visiting goal1 infinitely often?"
− optimal strategies: finite-memory and deterministic
− build product MDP, graph analysis, probabilistic reachability

• Expected cost/reward to satisfy (co-safe) LTL formula
− e.g. Rmin=? [¬zone3 U (zone1 ∧ (F zone4))] – "minimise exp.

time to patrol zones 1 then 4, without passing through 3".

10

Overview

• Probabilistic model checking & PRISM
− Markov decision processes (MDPs)

• Multi-objective probabilistic model checking
− examples: robot navigation; task scheduling

• Partially observable models
− POMDPs + real-time variants
− examples: robot navigation; wireless scheduling

• Stochastic (multi-player) games
− turn-based & concurrent games
− examples: energy management, investor models

11

Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries: multi(P≥0.95 [F send], Rtime≥10 [C])

− e.g. “is there a strategy such that the probability of message
transmission is ≥ 0.95 and expected battery life ≥ 10 hrs?”

• Numerical queries: multi(Pmax=? [F send], Rtime≥10 [C])
− e.g. “maximum probability of message transmission,

assuming expected battery life-time is ≥ 10 hrs?”

• Pareto queries:
− multi(Pmax=? [F send], Rtime

max=? [C])

− e.g. "Pareto curve for maximising
probability of transmission and
expected battery life-time” obj1

ob
j 2

12

Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries: multi(P>0.95 [F send], Rtime
>10 [C])

− e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

• Numerical queries: multi(Pmax=? [F send], Rtime
>10 [C])

− e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

• Pareto queries:
− multi(Pmax=? [F send], Rtime

max=? [C])

− e.g. "Pareto curve for maximising
probability of transmission and
expected battery life-time”

obj1

ob
j 2

13

Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

• Achievability query
− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ?

• Numerical query
− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ?

• Pareto query
− for Pmax=? [G ¬hazard], Pmax=? [GF goal1] ?

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

True (achievable)

~0.2278

14

Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

Strategy 1
(deterministic)

s0 : east
s1 : south

s2 : -
s3 : -

s4 : east
s5 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

15

Example – Multi-objective

Strategy 2
(deterministic)

s0 : south
s1 : south

s2 : -
s3 : -

s4 : east
s5 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

16

Example – Multi-objective

Optimal strategy:
(randomised)
s0 : 0.3226 : east

0.6774 : south
s1 : 1.0 : south
s2 : -
s3 : -
s4 : 1.0 : east
s5 : 1.0 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

17

Multi-objective model checking

• PRISM implements two distinct approaches

• 1. Linear programming
− solve dual problem to classical LP formulation

• 2. Value iteration based weighted sweep
− approximate exploration/construction of Pareto curve
− e.g. P≥r1 […] ∧ P≥r2 […] for r=(r1,r2)=(0.2,0.7)

− method 2 extends to step-bounded objectives

18

Applications – Multi-objective

• Examples of multi-objective controller synthesis with PRISM

Synthesis of
team formation

strategies

Pareto curve:
x="probability of
completing task 1";
y="probability of
completing task 2";
z="expected size of
successful team"

Synthesis of dynamic
power management

controllers

Motion planning
for service robots

using LTL

Partial task satisfaction;
task progress metrics;
efficient time bounded
probabilistic guarantees

Minimise energy
consumption, subject
to constraints on:
(i) expected job queue size;
(ii) expected num. lost jobs

19

Application: Robot navigation

• Robot navigation planning: [IROS'14,IJCAI’15,ICAPS’17,IJRR’18]

− learnt MDP models navigation
through uncertain environment

− co-safe LTL used to formally specify
tasks to be executed by robot

− synthesise finite-memory strategies
to construct plans/controllers

− ROS module based on PRISM
− 100s of hrs of autonomous deployment

Task
scheduler

Map
generator

Motion planner

Navigation planner

G4S Technology, Tewkesbury (STRANDS)

20

Application: Robot navigation

• Navigation planning MDPs
− expected timed on edges + probabilities
− learnt using data from previous explorations

• LTL-based task specification
− expected time to satisfy (one or more) co-safe LTL formulas

• Benefits of the approach
− LTL: flexible, unambiguous property specification
− efficient, fully-automated techniques

• LTL-to-automaton conversion, MDP solution

− c.f. ad-hoc reward structures, e.g. with discounting
− meaningful properties: probabilities, time, energy,…
− generates guarantees on performance

• QoS guarantees fed into task planning

Fig. 1. The robot in its environment, and the map and navigation graph used in the application example. Blue (bi-directional) edges represent possible
navigation actions between states.

where each state is labelled by an atomic proposition vi,
which corresponds to the navigation node that the state is
representing. We also take into account possible failures in
navigation. In this example, we consider that a failure occurs
when the robot fails to reach the target node of the navigation
action, for example due to an obstacle, and ends in a different
node. We model these failures by adding uncertainty to the
outcome of executing actions from some states. For example,
action goto11 from state v13 has probability 0.85 of ending
in state v11, 0.1 of ending in state v12 and 0.05 of finishing
in state v14. In order to define a cost function for the MDP,
we used the Euclidean distance between nodes.

For the execution of the policies obtained from our
approach, we used the Markov Decision Making library2

for ROS. In Fig. 2, we depict different moments in the
execution of our algorithms for 3 co-safe LTL tasks specified
dynamically during execution. The robot starts in node v0
with the task “visit v3 and v18, in any order”, i.e., F v3^F v18.
Algorithm 1 creates a finite-memory policy for this task and
the robot executes it, navigating towards v3 first, as depicted
in Fig. 2(a). Note that we have an optimal action defined for
each state, thus the choice of first node to be visited depends
on the current state of the robot. This means that even if there
are action failures, there is no need for replanning. When the
robot reaches v3, the “mode” of the policy changes, and the
optimal actions for each state are now directed towards node
v18, as seen in Fig. 2(b). Recall that the “mode” changes are
due to a change of one of the DFA state components in the
evolution of the MDP-DFA product.

While the robot is executing action goto11 from state v9,
we add a new task: “visit v9 and afterwards visit v14”, i.e.,
F(v9 ^ F v14)3. The dynamic replanning is executed, and a
new policy is generated. This policy takes into account that
we still need to visit v18, but also incorporates the fact that
v9 needs to be visited. Since the robot is closer to v9, it turns
back to visit it. This is seen in Fig. 2(c). After v9 is visited,
the policy changes “mode” again, now taking into account

2https://github.com/larsys/markov_decision_making
3One could also make sure that v14 cannot be visited before state v9 by

changing the specification to (¬v14 U v9) ^ F v14.

the fact that v14 needs to be visited after v9, and that v18 is
still to be visited. The shortest path at this moment is moving
towards node v14, so the robot moves towards it (Fig. 2(d)).

When the robot reaches v14, we add a new task: “visit
v0, avoiding v8”, i.e., ¬v8 U v0. In practical terms, such
specifications, where given nodes are to be avoided, can be
used when it is known that a given area of the environment
is not safe, for example due to the presence of a crowd. If
this information is known beforehand it can be added to the
specification in order to prevent navigation problems that
might occur. With this new specification, a new policy is
computed. Node v0 becomes a node to be visited, and node
v8 a node to be avoided. However, given that the current
position of the robot is closer to v18, the policy drives the
robot towards it, as seen in Fig. 2(e).

Finally, when the robot reaches v18 the policy changes
“mode”, and starts driving the robot towards v0. However,
when trying to execute action goto11 from v13, an obstacle
makes the robot’s continuous navigation end on v12 instead.
Given that the optimal action from v12 is goto10, the robot
switches from its initial most expected trajectory (through
v11) to a new one, which is the optimal given the navigation
failure. After that, given that v8 is a forbidden node, the
policy makes the robot turn and avoid it, finally getting to
v0 and finishing execution, as all the LTL tasks have been
completed (Fig. 2(f)).

In Table I, we show, for the addition of each task described
above, the number of states and transitions of the current
product MDP, along with the computation time of the new
optimal policy4. We see that, for this small example, the
computation times are negligible. Furthermore, keeping track
of the current state of execution and only taking into account
the reachable fragment from the current state of the product
MDP when replanning keeps the size of the structures from
increasing greatly. To illustrate this fact, we also show the
size and computation time for the case where the initial task
is the conjunction of all 3 tasks used in the example.

4This includes building the DFA, building the product MDP, and finding
the optimal policy. All computations were performed on an Intel R� CoreTM

i7 quad-core CPU at 2.20GHz and 8GB of RAM.

21

Multi-objective: Partial satisfiability

• Partially satisfiable task specifications
− e.g. Pmax=? [¬zone3 U (room1 ∧ (F room4 ∧ F room5)] < 1

• Synthesise strategies that, in decreasing order of priority:
− maximise the probability of finishing the task;
− maximise progress towards completion, if this is not possible;
− minimise the expected time (or cost) required

• Progress function constructed from DFA
− (distance to accepting states, reward for decreasing distance)

• Encode prioritisation using multi-objective queries:
− p = Pmax=? [task]
− r = multi(Rmax=? [C], P>=p [task])
− multi(Rmin=? [task], P>=p [task] ∧ R>=r [C])

• Or alternatively, using nested value iteration

prog

time prog

22

Multi-obj: Time-bounded guarantees

• Often need probabilistic time-bounded guarantees
− e.g. "probability of completing tasks within 5 mins is >0.99"
− but verification techniques for these are less efficient/scalable
− and often needed in conjunction with secondary objectives

• Efficient generation of time-bounded guarantees [ICAPS’17]
− implemented in the PRISM model checker

• Key ideas:
− optimize secondary goal wrt. guarantee
− two phase verification: initial exploration

of Pareto front on coarser untimed model
− then generate guarantee from pruned model
− significant gains in scalability

23

Application: Task-graph scheduling

• Task-graph: tasks to complete + dependencies/ordering
− e.g. for: real-time scheduling, embedded systems controllers

• Simple example: [adapted from BFLM11]

− evaluate expression
D×(C×(A+B))+((A+B)+(C×D))

− on multiple processors with
differing time/energy usage

− needs timing information
− also probabilistic:

uncertain delays + task failures

• Modelled using probabilistic timed automata (PTAs)
− optimal strategy (wrt. time or energy) synthesised in PRISM

and converted into optimal scheduling

+
task1

�
task3

�
task5

�
task2

+
task4

+
task6

D
C

B
A

C D

24

PTA model components

• Faulty processors
− third processor P3: faster, but may fail to execute task

• Probabilistic task execution times
− simple example: (deterministic) delay of 3 in processor P1

replaced by distribution: ⅓:2, ⅓:3, ⅓:4

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

25

Schedulers (with faulty processor)

• Example (energy) optimal scheduling:
− note responses to task failures (on processor P3)

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

26

Multi-objective properties

• Multi-objective controller synthesis
− explore trade-off between time/energy usagePareto Curves for Probabilistic Model Checking 15

K=2
-1.49960905 -16.5301783 1.499609053 16.53017833
-1.47516461 -16.7091907 1.475164609 16.70919067
-1.45757202 -17.0219479 1.457572016 17.02194787
-1.45183128 -17.2091907 1.451831276 17.20919067
-1.44516461 -17.8388203 1.445164609 17.8388203

K=3
-1.48187929 -16.2930956 1.481879287 16.29309556
-1.45360768 -16.5029721 1.453607682 16.50297211
-1.43237311 -16.9474166 1.432373114 16.94741655
-1.42694102 -17.3424783 1.426941015 17.34247828
-1.42694102 -19.1202561 1.426941015 19.12025606

K=5
-1.46511111 -16.0814815 1.465111111 16.08148148
-1.44311111 -16.2222222 1.443111111 16.22222222
-1.42481481 -16.4378601 1.424814815 16.43786008
-1.41866667 -16.5728395 1.418666667 16.57283951
-1.41244444 -16.9481481 1.412444444 16.94814815
-1.41051852 -20.6716049 1.410518519 20.67160494
-1.41051852 -21.2641975 1.410518519 21.26419753

K=10
-1.45206831 -15.9049383 1.452068308 15.90493827
-1.42132824 -16.1006714 1.421328237 16.10067145
-1.40943768 -16.2570447 1.409437679 16.25704467
-1.40422858 -16.4367766 1.404228578 16.43677664
-1.39577715 -20.3073502 1.395777155 20.30735018
-1.39544444 -21.023786 1.395444444 21.02378601

!"#$%

!"#"%

!"#&%

!'%

!'#(%

!'#$%

!'#"%

!'#&%

!&%

!#$$% !#$)% !#$"% !#$'% !#$&% !#$*% !#)% !#)!%

!"
#$

%&
$'

()
*
$(

!"#$%&$'($+$,-.(/01-$(

0 1 1 0
3.08E-04 0.999692421 0.999999963 1.03E-04
3.08E-04 0 0.999692421 2.05E-04

0 2.05E-04

!"

!#!!!!$"

!#!!!%"

!#!!!%$"

!#!!!&"

!#!!!&$"

!#'''&" !#'''(" !#''')" !#'''*" %"!"
#$

%&'
()
*&+
#&
,#
-.

/0
"1
&$
2&
31

(3
*)-

1&

!"#$($)*)+2&,#45#-1-+&(660457#-&6(76.13&

0.5

1

0.5

1

0.5
1

1.5
2

z

y

x

Fig. 3. Pareto curves from: (a) task-graph scheduler, K=2; (b) Zeroconf protocol,
K=2, T=10; (c) team formation protocol, N=3 (axes x/y/z = Probability of complet-
ing task 1/probability of completing task 2/expected size of successful team)

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt is also supported
by a Royal Society Newton Fellowship.

References

1. Altman, E.: Constrained Markov Decision Processes. Chapman & Hall/CRC (1999)
2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA-A Platform and Program-

ming Language Independent Interface for Search Algorithms. In: EMO’03 (2003)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
4. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on

multiple mean-payo↵ objectives in Markov decision processes. In: LICS’11 (2011)
5. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-

tiple objectives. In: Proc. STACS’06. pp. 325–336. Springer (2006)
6. Cĺımaco, J. (ed.): Multicriteria Analysis. Springer (1997)
7. Coello, C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer (2007)
8. Diakonikolas, I., Yannakakis, M.: Succinct approximate convex Pareto curves. In:

Proc. SODA’08. pp. 74–83. SIAM (2008)
9. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model

checking of Markov decision processes. LMCS 4(4), 1–21 (2008)
10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-

niques for probabilistic systems. In: SFM’11. LNCS, vol. 6659. Springer (2011)
11. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-

objective verification for probabilistic systems. In: Proc. TACAS’11 (2011)
12. Forejt, V., Kwiatkowska, M., Parker, D.: http://arxiv.org/abs/1206.6295
13. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Proc. CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)
15. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification

for probabilistic systems. In: Proc. TACAS’10. pp. 23–37. Springer (2010)
16. Legriel, J., Cotton, S., Maler, O.: On universal search strategies for multi-criteria

optimization using weighted sums. In: Proc. CEC’11. pp. 2351–2358 (2011)
17. Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the Pareto front

of multi-criteria optimization problems. In: Proc. TACAS’10. pp. 69–83 (2010)
18. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-o↵s and op-

timal access of web sources. In: Proc. FOCS’00. pp. 86–92 (2000)
19. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons (1994)

27

Overview

• Probabilistic model checking & PRISM
− Markov decision processes (MDPs)

• Multi-objective probabilistic model checking
− examples: robot navigation; task scheduling

• Partially observable models
− POMDPs + real-time variants
− examples: robot navigation; wireless scheduling

• Stochastic (multi-player) games
− turn-based & concurrent games
− examples: energy management, investor models

28

Partial observability

• Partial observable Markov decision processes (POMDPs)
− limit strategies ability to view precise states of the MDP
− we assume an observation function from states to observations

• Optimal strategies
− resolve actions based on observations only
− maintain belief state about the true state of the MDP

• Motivation
− e.g. because robot can only make decisions based on sensors
− e.g. because scheduler cannot probe state of a component

29

Partial observability

• Developed as an extension of PRISM
− https://github.com/prismmodelchecker/prism-ext/tree/pomdps
− PRISM model variables declared as observable/hidden
− properties in standard PRISM logic

• Implementation on top of PRISM’s explicit engine
− (basic problem is undecidable)
− computes lower/upper bounds for optimal values and a

(possibly sub-optimal) strategy with grid-based
approximations

− applied to a range of case studies (POMDPs up to 60k states)

• Also extended to partially observable PTAs
− PTA models with hidden (non-clock) variables

https://github.com/prismmodelchecker/prism-ext/tree/pomdps

30

Example: Robot maze

• Robot placed uniformly at random in a maze
− i.e. uncertainty about start state (and subsequent states)
− 4 actions: north/south/east/west
− aim to reach target state (10)

• Partial observability
− the robot cannot see its current

location, only surrounding walls
− e.g. locations 5,6,7 yield the same

observation and are equivalent

• Controller synthesis for Rsteps
min=? [C])

− optimal (minimum) expected num. steps to reach target is 4.3
− for the fully observable model (i.e., an MDP), it is 3.9

5

1 2 3 4

5 6 7

8 9

0

10

31

POMDP/POPTA Case studies

• Task graph scheduling
− processors have different speeds and energy consumption
− scheduler cannot observe if a process is sleeping or idling
− synthesize optimal schedulers

• again, minimising expected
execution time or energy usage

• Wireless network scheduling
− schedule traffic to number of users/channels
− packets have hard deadlines (packets not sent by their

deadline are dropped) and priorities
− status of channels is not available (unobservable)
− generate optimal scheduling of packets, maximising priorities

and minimising dropped packets
− demonstrates that idling is sometimes the optimal choice

+
task1

�

task3

�

task5

�
task2

+
task4

+
task6

D
C

B
A

C D

32

Overview

• Probabilistic model checking & PRISM
− Markov decision processes (MDPs)

• Multi-objective probabilistic model checking
− examples: robot navigation; task scheduling

• Partially observable models
− POMDPs + real-time variants
− examples: robot navigation; wireless scheduling

• Stochastic (multi-player) games
− turn-based & concurrent games
− examples: energy management, investor models

33

Stochastic multi-player games (SMGs)

• Stochastic multi-player games
− competitive/collaborative + stochastic behaviour
− for now: turn-based (players control states)
− applications: security (system vs. attacker),

controller synthesis (controller vs. environment),
distributed algorithms/protocols, …

• Property specifications: rPATL
− ⟨⟨{1,2}⟩⟩ P≥0.95 [F≤45 done] : "can nodes 1,2 collaborate so that

the probability of the protocol terminating within 45 seconds
is at least 0.95, whatever nodes 3,4 do?"

− formally: ⟨⟨C⟩⟩ψ : do there exist strategies for players in C
such that, for all strategies of other players, property ψ holds?

• Model checking
− zero sum properties: analysis reduces to 2-player games
− PRISM-games: www.prismmodelchecker.org/games

b

a ¼
¼
¼

½

¼
1

1
½

1
a

b

1 a

b

http://www.prismmodelchecker.org/games

34

Example – Stochastic games

• Two players: 1 (robot controller), 2 (environment)
− probability of s1-south→s4 is in [p,q] = [0.5-Δ, 0.5+Δ]

s0

s4

s3

p

east

s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

1-p

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9

north

s6
q

1-q

si Player 1 Player 2sj

35

Example – Stochastic games

• Two players: 1 (robot controller), 2 (environment)
− probability of s1-south→s4 is in [p,q] = [0.5-Δ, 0.5+Δ]

s0

s4

s3

p

east

s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

1-p

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 q

1-q

rPATL: ⟨⟨{1}⟩⟩ Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation

si Player 1 Player 2sj

36

Example – Stochastic games

• Two players: 1 (robot controller), 2 (environment)
− probability of s1-south→s4 is in [p,q] = [0.5-Δ, 0.5+Δ]

s0

s4

s3

p

east

s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

1-p

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 q

1-q

rPATL: ⟨⟨{1}⟩⟩ Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation

si Player 1 Player 2sj
0.40.30.2 0.50.10

0

0.2

0.4
0.5

0.3

0.1
ΔM

ax
. p

ro
b.

 F
 g

oa
l 1

east

south

37

Application: Energy management

• Energy management protocol for Microgrid
− randomised demand management protocol
− random back-off when demand is high

• Original analysis [Hildmann/Saffre'11]
− protocol increases "value" for clients
− simulation-based, clients are honest

• Our analysis
− stochastic multi-player game model
− clients can cheat (and cooperate)
− model checking: PRISM-games
− exposes protocol weakness (incentive

for clients to act selfishly
− propose/verify simple fix using penalties

38

Results: Competitive behaviour

• Expected total value V per household
− in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C|
− where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate

39

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism
− distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

40

Concurrent stochastic games

• Concurrent stochastic games (CSGs) [QEST’18]
− players choose actions concurrently
− jointly determines (probabilistic) successor state
− δ : S×(A1×…×An) → Dist(S), rather than δi : Si×Ai→ Dist(S)

• Modelling & verification implemented in PRISM-games
− modelling language assumes that each variable is under the

control of exactly one module

• Model checking for (variant of) rPATL logic
− reduces to finding optimal values of 2-player CSGs
− basic problem is known to be PSPACE
− we use value iteration + solution of matrix game for each

state (LP problem of size |A|, where A = action set)
− again, need randomised strategies for optimality

41

Application: CSGs

• Example: futures market investor
− two investors i1, i2, operating in a (stochastic) market
− market (third player) decides whether to bar investors

• Results (investors maximizing joint profit)
− with (left) and without (right) fluctuations

• Other applications: intrusion detection, network protocols

42

Conclusions

• Probabilistic model checking & PRISM
− Markov decision processes & related models

• Recent extensions
− multi-objective model checking
− partially observable MDPs
− stochastic games

• Challenges & directions
− managing model uncertainty + integration with learning
− partial information/observability: greater efficiency
− scalability, e.g. symbolic methods, abstraction
− stochastic games: multi-objective, equilibria, richer logics

More info here:
www.prismmodelchecker.org

Thanks for your attention

