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Overview

Probabilistic model checking & PRISM
— Markov decision processes (MDPs)

with 14

- Multi-objective probabilistic model checking
| — examples: robot navigation; task scheduling

Partially observable models
— POMDPs + real-time variants
— examples: robot navigation; wireless scheduling

Stochastic (multi-player) games
— turn-based & concurrent games
— examples: energy management, investor models
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Probabilistic model checking

- Probabilistic model checking
— formal construction/analysis of probabilistic models

— “correctness” properties expressed in temporal logic
— e.g. trigger — P.g999 [ F=20 deploy ]
— mix of exhaustive & numerical/quantitative reasoning
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- Trends and advances
— improvement in scalability to larger models
— increasingly expressive/powerful model classes
— from verification problems to control problems
— ever widening range of application domains




PRISM (and extensions)

PRISM model checker: www.prismmodelchecker.org

- Wide range of probabilistic models v

discrete states & probabilities: Markov chains
+ nondeterminism: Markov decision processes (MDPs)

+ real-time clocks: probabilistic timed automata (PTASs)
+ partial observability: POMDPs and POPTAs

+ multiple players: (turn-based) stochastic games
+ concurrency: concurrent stochastic games

Expressive property specification language
— PCTL/CSL, LTL, costs/rewards, multi-objective, strategies, ...

- Tool features
— modelling language, simulator, GUI, graph plotting, ...



http://www.prismmodelchecker.org/

PRISM (and extensions)

- Various verification engines

— symbolic/explicit/hybrid, exact, parametric,
statistical model checking, abstraction refinement, ...

Open source development
— github.com/prismmodelchecker/prism

— incl. benchmark & testing suites

Interfaces & connections
— Java API
— ModelGenerator interface: programmatic model construction
— HOAF support for automata import/export


https://github.com/prismmodelchecker/prism

Markov decision processes

Example Markov decision processes (MDP)
— robot moving through terrain divided in to 3 x 2 grid
— strategies represent possible ways to navigate grid




Example - Reachability

Synthesise strategy satisfying:
P.o4 [ Fgoaly]

or

Find optimal strategy
Pmax:?[ F goah ]

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(value iteration, linear programs,
policy iteration, interval iteration)




Example - Reachability

Optimal strategy:

So -
: south

east

. east

Synthesise strategy satisfying:
P.o4 [ Fgoaly]
or

Find optimal strategy
Pmax:?[ F goaI] ] = 0.5

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(value iteration, linear programs,
policy iteration, interval iteration)



MDPs - Other core properties

- Costs and rewards (expected, accumulated values)

— e.g. Rnin=2 [ F goal; ] - "what is the minimum expected time
needed to reach goal,?"

— optimal strategies: memoryless and deterministic
— similar computation to probabilistic reachability

Probabilistic LTL (multiple temporal operators)

— e.9. Phax=2 [ (G—hazard) A (GF goal;) ] - "maximum probability
of avoiding hazard and visiting goal; infinitely often?"

— optimal strategies: finite—-memory and deterministic
— build product MDP, graph analysis, probabilistic reachability

Expected cost/reward to satisfy (co-safe) LTL formula

— e.g. Rpin=2 [ 7zones U (zone; A (F zoney)) ] - "minimise exp.
time to patrol zones 1 then 4, without passing through 3".
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- Multi-objective probabilistic model checking
¥ — examples: robot navigation; task scheduling
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Multi-objective model checking

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives
— in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: multi(P.g 95 [ F send], Rtime_,,[ C1)

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

Numerical queries: multi(Ppax_> [ F send], Rime_,,[ C1)

— e.g. “‘maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

Pareto queries: -~
o)
- mUIti(PmaXZ?[ F Seﬂd], Rtimemax=?[ C ]) © t-"&

— e.g. "Pareto curve for maximising . "
probability of transmission and o ‘\
X ry life-time” RIREE
expected battery life-time : obi; -
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Multi-objective model checking
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Example - Multi-objective

P; = G —hazard
0.4 "7a~._ W2 = GFgoal
0.3 Tl
0.1
0 —r» Vi

- Achievability query
— P.o7 [ G —hazard ] A P.g, [ GF goal, ]1? True (achievable)

Numerical query
— Pmax=2 [ GF goal; ] such that P.o; [ G —hazard ]? ~0.2278

Pareto query

— for Ppax—> [ G —hazard ], Pmax-> [ GF goal; ]? 13



Example - Multi-objective

Strategy 1
(deterministic)
Sp . east
S; : south
8D . —
Be . —
S4 : east
Ss : west

¥,

0.51 P, = G —hazard

0a] T ~<_ W2=GFgoal

0.3 - I

0.2_ ........................................... t -~

0.1 - I

0 : —r»> U

T T T T T T 1
0O 0.2 04 06 08 1 14




Example - Multi-objective

Strategy 2
(deterministic)
So . south
S; : south
8D . —
Be . —
S4 . east
Ss . west

P,

0.51 P, = G —hazard

0a] T ~<_ W2=GFgoal

0.3- \\\\\

0.2_ ........................................... t -~

0.14 - °

0 —r»> U

T T T T T T 1
0O 0.2 04 06 08 1 15




Example - Multi-objective

¥,
0_51 P, = G —hazard

0.4
0.3 4
0.2 4
0.1 4

“~~._ Wy =GF goal,

0

T T T T T T 1
0O 0.2 04 06 08 1

Optimal strategy:

(randomised)

Sp . 0.3226 : east
0.6774 : south

s; : 1.0 : south

Sy 1 -

S3 -

S4: 1.0 : east

Ss . 1.0 : west
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Multi-objective model checking

- PRISM implements two distinct approaches

- 1. Linear programming
— solve dual problem to classical LP formulation

- 2. Value iteration based weighted sweep
— approximate exploration/construction of Pareto curve
—e.g.Poq[...1 AP [...]forr=(ry,r;)=(0.2,0.7)

1 7. 1 - ’ 1 : I : P
081 05 il os S os Y
0.6 - fald —l? 0.6 - A 4 0.6 - _‘__—}-_ 0.6 1 +
0.4 - 0.4 1 0.4 04
0.2 - 0.2 - 0.2 0.2 -

) T T T T 0 T T T T O T T r O T T T |
0O 0.1 0.2 0.3 04 0O 0.1 0.2 0304 0O 0.1 0.2 0.3 04 0O 0.1 0.2 0.3 04

— method 2 extends to step-bounded objectives .
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min power consumption

Applications - Multi-objective

- Examples of multi-objective controller synthesis with PRISM

Synthesis of dynamic
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power management
controllers

Minimise energy
consumption, subject

to constraints on:

(i) expected job queue size;
(ii) expected num. lost jobs

Motion planning
for service robots
using LTL

Partial task satisfaction;
task progress metrics;
efficient time bounded
probabilistic guarantees

Synthesis of
team formation
strategies

Ay

Pareto curve:
x="probability of
completing task 1";
y="probability of
completing task 2";
z="expected size of
successful team" 18
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Application: Robot navigation

- Robot navigation planning: [IROS'14,JCAI'15,ICAPS’17,IJRR’1 8]

G4S Technology, Tewkesbury (STRANDS)

learnt MDP models navigation
through uncertain environment

co-safe LTL used to formally specify
tasks to be executed by robot

synthesise finite—-memory strategies
to construct plans/controllers

ROS module based on PRISM

100s of hrs of autonomous deployment

Task Map
cheduler enerator

Navigation planner




Application: Robot navigation

Navigation planning MDPs
— expected timed on edges + probabilities
— learnt using data from previous explorations

LTL-based task specification
— expected time to satisfy (one or more) co-safe LTL formulas

Benefits of the approach
— LTL: flexible, unambiguous property specification
— efficient, fully-automated techniques
. LTL-to-automaton conversion, MDP solution
— c.f. ad-hoc reward structures, e.g. with discounting
— meaningful properties: probabilities, time, energy,...
— generates guarantees on performance

- QoS guarantees fed into task planning 50




Multi-objective: Partial satisfiability

Partially satisfiable task specifications
— e.9g. Pmax=2> [ mzones U (room; A (F room4 A F rooms) ] < 1

- Synthesise strategies that, in decreasing order of priority:
— maximise the probability of finishing the task;

— maximise progress towards completion, if this is not possible;
— minimise the expected time (or cost) required

Progress function constructed from DFA
— (distance to accepting states, reward for decreasing distance)

Encode prioritisation using multi-objective queries:
—p= Pmax:? [ taSk]
— 1 = multi(Rhyay— [ C1, Po_, [ task )

time prog

— multi(Rmin=z [ task ], P._p [task ] AR, [C])

- Or alternatively, using nested value iteration 21



Multi-obj: Time-bounded guarantees

- Often need probabilistic time-bounded guarantees
— e.g. "probability of completing tasks within 5 mins is >0.99"

— but verification techniques for these are less efficient/scalable
— and often needed in conjunction with secondary objectives

- Efficient generation of time-bounded guarantees [ICAPS’17]
— implemented in the PRISM model checker

- Key ideas:
— optimize secondary goal wrt. guarantee &

— two phase verification: initial exploration =
of Pareto front on coarser untimed model

— then generate guarantee from pruned model
— significant gains in scalability

22




Application: Task-graph scheduling

- Task-graph: tasks to complete + dependencies/ordering
— e.g. for: real-time scheduling, embedded systems controllers

- Simple example: [adapted from BFLM11]

— evaluate expression task; tasks tasks
D><(C><(,_A+B))+((A+B)+(C>I<D)) é:: T > % > %

— on multiple processors with C D
differing time/energy usage

— needs timing information [C):ﬂ Xf——» +—» +

— also probabilistic: task; tasky taskg

uncertain delays + task failures

Modelled using probabilistic timed automata (PTAS)

— optimal strategy (wrt. time or energy) synthesised in PRISM
and converted into optimal scheduling

23




qTAY

PTA model components

- Faulty processors
— third processor P3: faster, but may fail to execute task

a_fail
x=0

pli_fail

a_suc
x=0

x=0

_ add
=2 x<2

pl_done

pl_add
x:=0

stby
true

- Probabilistic task execution times

— simple example: (deterministic) delay of 3 in processor P;
replaced by distribution: 14:2, 1:3, 14:4

stby

true

24



Schedulers (with faulty processor)

- Example (energy) optimal scheduling:
— note responses to task failures (on processor P3)

[tme [1[2[3[4[5][6]7[8[9]10] 11 [12][13]14]15][16]17 18] 19]20 ]
LA [ [ [ | wkd | | [ [ [ | [ [ [ ke [ | | [ |
| P | task2 | task5 | | | | | | |
(A wki TP | | G P T T T T T T T T ]
[Gime [T [ 2 [ 344 [5[6[ 78010 [ 121314 ][15]16]17[18]19]20]
| A | | | | taskl | task3 | task3 | | task6 | | | | | | |
L P | task2 | taskd I N A I
task] L[] - r r r rrr
[ime [ 1 [2 [ 3 [4[5]6] 780 10411 [12] 1314 [15]16]17 18] 19]20]
LA [ [ | @k [ | | [ | taskd | [ | tske | [ | [ |
| P ] task2 | task5 | | | | | | |
L P | taskl | | | | N N I I I

25




Multi-objective properties

Multi-objective controller synthesis

— explore t

wikh L

18

17.8

4 17.6
17.4
17.2
17
16.8
16.6
16.4

Expected time

AN

rade-off between time/energy usage

\

144 145 146 147 148 149 15 151

Expected energy usage
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Overview

with 14
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Partially observable models
— POMDPs + real-time variants
— examples: robot navigation; wireless scheduling

qTAY
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Partial observability

- Partial observable Markov decision processes (POMDPs)
— limit strategies ability to view precise states of the MDP

— we assume an observation function from states to observations

- Optimal strategies
— resolve actions based on observations only
— maintain belief state about the true state of the MDP

- Motivation

— e.g. because robot can only make decisions based on sensors
— e.g. because scheduler cannot probe state of a component

28




Partial observability

Developed as an extension of PRISM
— https://github.com/prismmodelchecker/prism-ext/tree/pomdps
— PRISM model variables declared as observable/hidden
— properties in standard PRISM logic

Implementation on top of PRISM’s explicit engine
— (basic problem is undecidable)

— computes lower/upper bounds for optimal values and a
(possibly sub-optimal) strategy with grid-based
approximations

— applied to a range of case studies (POMDPs up to 60k states)

- Also extended to partially observable PTAs

— PTA models with hidden (non-clock) variables

29


https://github.com/prismmodelchecker/prism-ext/tree/pomdps

Example: Robot maze

Robot placed uniformly at random in a maze
— i.e. uncertainty about start state (and subsequent states)
— 4 actions: north/south/east/west

— aim to reach target state (10)

Partial observability
— the robot cannot see its current 5 6 /

location, only surrounding walls
— e.g. locations 5,6,7 yield the same 8 10 9

observation and are equivalent

Controller synthesis for Rstepes .. [ C])
— optimal (minimum) expected num. steps to reach target is 4.3
— for the fully observable model (i.e., an MDP), it is 3.9

30



POMDP/POPTA Case studies

- Task graph scheduling
— processors have different speeds and energy consumption

— scheduler cannot observe if a process is sleeping or idling

— synthesize optimal schedulers a2k tasks tasks
. again, minimising expected B:U ] C; b X
execution time or energy usage \
SE—I0
- Wireless network scheduling task, tasks taske

— schedule traffic to number of users/channels

— packets have hard deadlines (packets not sent by their
deadline are dropped) and priorities

— status of channels is not available (unobservable)

— generate optimal scheduling of packets, maximising priorities
and minimising dropped packets

— demonstrates that idling is sometimes the optimal choice
31




Overview

with 14

Stochastic (multi-player) games
— turn-based & concurrent games
— examples: energy management, investor models

qTAY
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Stochastic multi-player games (SMGs)

- Stochastic multi-player games a
— competitive/collaborative + stochastic behaviour

1

— for now: turn-based (players control states)

— applications: security (system vs. attacker),
controller synthesis (controller vs. environment),
distributed algorithms/protocols, ...

Property specifications: rPATL

— (({1,2})) P=g.9s[ F=*> done] : "can nodes 1,2 collaborate so that
the probability of the protocol terminating within 45 seconds
is at least 0.95, whatever nodes 3,4 do?"

— formally: ((C)Y : do there exist strategies for players in C
such that, for all strategies of other players, property Y holds?

Model checking
— zero sum properties: analysis reduces to 2-player games
— PRISM-games: www.prismmodelchecker.org/games 33



http://www.prismmodelchecker.org/games

Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s;—south—s4 is in [p,gq] = [0.5-A, 0.5+A]

{hazard}

Pl ] Sj | Player 2
©) riert [6] .




Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s;—south—s4 is in [p,q] = [0.5-A, 0.5+A]

{hazard}
rPATL: ((“ }» Pmax:?[ F goah ]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation

@ Player 1 Sj | Player 2 .



Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s;—south—s4 is in [p,q] = [0.5-A, 0.5+A]

{hazard}
rPATL: ((“ }» Pmax:?[ F goah ]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation

—>

east

F goal,
o
Ui

0.4 +

south

Max. prob
© oo
— N W
] ] ]

@ Player 1 Sj | Player 2 0 — 7> A
0 0.10.20.30.40.5




Application: Energy management

- Energy management protocol for Microgrid
— randomised demand management protocol

— random back-off when demand is high

- Original analysis [Hildmann/Saffre'1 1]

— protocol increases "value" for clients
— simulation-based, clients are honest

- Our analysis
— stochastic multi-player game model
— clients can cheat (and cooperate)
— model checking: PRISM-games

— exposes protocol weakness (incentive -
for clients to act selfishly D e et e day ey

— propose/verify simple fix using penalties
37




Results: Competitive behaviour

- Expected total value V per household
— in rPATL: ((C))R"Cprax—> [FO time=max time] / |C]
— where rc is combined rewards for coalition C

with 14

20
s
= Strong All follow alg.
§ deviate = e
2 No use of alg.
8 _
o 10 _—
% g Deviations of
? e varying size
S5 T l l I 1 T )

1 2 3 4 5 6 7 8

Number of households 38



Results: Competitive behaviour

.+ Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

with 14

20 -
s

: 4 L]
© Better to
S 15 - - collaborate All follow alg.
L / (with all) _
Q _
z
§_ Deviations of
o 10 - varying size
«
=

= @

3 o

5 | |

1 2 3 4 5 6 7 8
Number of households 39



Concurrent stochastic games

- Concurrent stochastic games (CSGs) [QEST’ 18]

— players choose actions concurrently
— jointly determines (probabilistic) successor state
— 0 : SX(A;X...xA,) — Dist(S), rather than o, : S;xA; — Dist(S)

Modelling & verification implemented in PRISM-games

— modelling language assumes that each variable is under the
control of exactly one module

Model checking for (variant of) rPATL logic
— reduces to finding optimal values of 2-player CSGs
— basic problem is known to be PSPACE

— we use value iteration + solution of matrix game for each
state (LP problem of size |A|, where A = action set)

— again, need randomised strategies for optimality

40



Application: CSGs

- Example: futures market investor
— two investors iy, i, operating in a (stochastic) market
— market (third player) decides whether to bar investors

- Results (investors maximizing joint profit)
— with (left) and without (right) fluctuations

16
15
14

25

22.5
13 -

12
11

20

17.5

10 -
9

15

—m— CSG ((i1, i2))
—e— TSG ((il,i2))

—m— CSG ((il,
—e— TSG (i1, i2))

Max combined profit
Max combined profit

12.5

1 2 3 4 5 6 7 8 9 9

Number of months

1 2 3 4 5 6 7 8 9

Number of months

- Other applications: intrusion detection, network protocols4]




Conclusions

Probabilistic model checking & PRISM
— Markov decision processes & related models

Recent extensions
— multi-objective model checking
— partially observable MDPs
— stochastic games

Challenges & directions
— managing model uncertainty + integration with learning
— partial information/observability: greater efficiency
— scalability, e.g. symbolic methods, abstraction
— stochastic games: multi-objective, equilibria, richer logics

42




Thanks for your attention

More info here:
www.prismmodelchecker.org




