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Overview

• Formal verification
− probabilistic model checking

• Markov decision processes (MDPs)
− verification vs. strategy synthesis

• Linear temporal logic (LTL)
− probabilistic model checking + MDPs + LTL

• Multi-objective probabilistic model checking
− partially satisfiable task specifications
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Formal verification

• Formal verification
− the application of rigorous, mathematics-based techniques

to check the correctness of computerised systems

• Verifying probabilistic systems…
− unreliable or unpredictable behaviour

• e.g. failures, message loss, delays,
unreliable sensors/actuators

− randomisation in algorithms/protocols
• e.g. random back-off in communication protocols

• We need to verify quantitative system properties
− “the probability of the airbag failing to deploy

within 0.02 seconds of being triggered is at most 0.001”

− not just correctness: reliability, timeliness, performance, …
− not just verification: correctness by construction
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Probabilistic model checking

• Construction and analysis of probabilistic models
− state-transition systems labelled with probabilities

(e.g. Markov chains, Markov decision processes)
− from a description in a high-level modelling language

• Properties expressed in temporal logic, e.g. PCTL:
− trigger → P≥0.999 [ F≤20 deploy ]
− “the probability of the airbag deploying within

20ms of being triggered is at at least 0.999”
− properties checked against models using

exhaustive search and numerical computation
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Probabilistic model checking

• Key benefits
− exact results: guarantees, optimality, …
− fully automated, tools available (e.g. PRISM)
− wide range of models, properties expressible

• Key challenges
− scalability! state space explosion problem
− results are only as good as the model

• Application domains
− network/communication protocols, security, biology,

power management, robotics & planning, …
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Markov decision processes (MDPs)

• Markov decision processes (MDPs)
− model nondeterministic as well as probabilistic behaviour

• Nondeterminism for:
− control: decisions made by a controller or scheduler
− adversarial behaviour of the environment
− concurrency/scheduling: interleavings of parallel components
− abstraction, or under-specification, of unknown behaviour
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Strategies

• A strategy (or “policy”, “adversary”, “scheduler”)
− is a resolution of nondeterminism, based on history
− i.e. a mapping from finite paths to (distributions over) actions
− induces (infinite-state) Markov chain (and probability space)

• Classes of strategies:
− memory: memoryless, finite-memory, or infinite-memory
− randomisation: deterministic or randomised
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Verification vs. Controller synthesis

• 1. Verification
− quantify over all possible

strategies (i.e. best/worst-case)
− P≤0.1 [ F err ] : “the probability of an

error occurring is ≤ 0.1 for all strategies”
− applications: randomised communication

protocols, randomised distributed algorithms, security, …

• 2. Controller synthesis
− generation of "correct-by-construction" controllers
− P≤0.1 [ F err ] : "does there exist a strategy for which the 

probability of an error occurring is ≤ 0.1?”
− applications: robotics, power management, security, …

• Two dual problems; same underlying computation:
− compute optimal (minimum or maximum) values
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Running example

• Example MDP
− robot moving through terrain divided in to 3 x 2 grid
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Larger example

Task
scheduler

Map
generator

Motion planner

Navigation planner
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Example - Reachability
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Verify: P≤0.6 [ F goal1 ]
or

Synthesise for: P≥0.4 [ F goal1 ]
⇓

Compute: Pmax=? [ F goal1 ]    

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)
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Example - Reachability
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Optimal strategy:
s0 : east
s1 : south
s2 : -
s3 : -
s4 : east
s5 : -

= 0.5

Verify: P≤0.6 [ F goal1 ]
or

Synthesise for: P≥0.4 [ F goal1 ]
⇓

Compute: Pmax=? [ F goal1 ]    

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)
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Linear temporal logic (LTL)

• Logic for describing properties of executions [Pnueli]

• LTL syntax:
− ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Propositional logic + temporal operators:
− a is an atomic proposition (labelling a state)
− X ψ means "ψ is true in the next state"
− F ψ means “ψ is eventually true”
− G ψ means “ψ remains true forever”
− ψ1 U ψ2 means "ψ2 is true eventually and ψ1 is true until then”

• Simple examples
− G¬(critical1 ∧ critical2) - "the two processes never enter the 

critical section simultaneously"
− ¬error U end - "the program terminates without any errors”
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Linear temporal logic (LTL)

• LTL syntax:
− ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Commonly used LTL formulae:
− G (a → F b) - "b always eventually follows a"
− G (a → X b) - "b always immediately follows a”
− G F a - "a is true infinitely often"
− F G a - "a becomes true and remains true forever"

• Robot task specifications in LTL
− (G¬hazard) ∧ (G F goal1) – "avoid hazard and visit goal1

infinitely often"
− ¬zone3 U (zone1 ∧ (F zone4) – "patrol zone 1 then 4, without 

passing through 3".
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LTL for robot navigation

• Probabilistic LTL on MDPs
− e.g. P>0.7 [ (G¬hazard) ∧ (GF goal1) ] – ”is the probability of 

avoiding hazard and visiting goal1 infinitely often > 0.7?"
− e.g. Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4) ] – "max. probability 

of patrolling zones 1 then 4, without passing through 3?"

• LTL + expected costs/times on MDPs
− minimise expected time to satisfy (co-safe) LTL formulas

• Benefits of the approach
− LTL: flexible, unambiguous property specification
− guarantees on performance ("correct by construction") 
− meaningful properties: probabilities, time, energy,…

• c.f. ad-hoc reward structures, e.g. with discounting
− efficient, fully-automated techniques

• LTL-to-automaton conversion, MDP solution
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Probabilistic model checking LTL

• Probabilistic model checking of LTL on MDPs
− convert LTL formula ψ to deterministic automaton Aψ

(Buchi, Rabin, finite, …)
− build/solve product MDP M⊗Aψ

(i.e. reduce to simpler problem)
− optimal strategies are deterministic, finite-memory

Det. Buchi automaton Aψ
for ψ = G¬h ∧ GF g1
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Example: Product MDP construction
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Example: Product MDP construction
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Co-safe LTL (and expected cost)

• Often focus on tasks completed in finite time
− can restrict to co-safe fragment(s) of LTL
− (any satisfying execution has a "good prefix")
− e.g. Pmax=? [ ¬zone3 U (zone1 ∧ (F zone4) ]
− for simplicity, can restrict to syntactically co-safe LTL

• Expected cost/reward to satisfy (co-safe) LTL formula
− e.g. Rmin=? [ ¬zone3 U (zone1 ∧ (F zone4) ] – "minimise exp. 

time to patrol zones 1 then 4, without passing through 3".

• Solution:
− product of MDP and DFA
− expected cost to reach

accepting states in product
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Probabilistic model checking

• Further use of probabilistic model checking…
− (various probabilistic models, query languages)

• Nested queries
− e.g. Rmin=? [ safe U (zone1 ∧ (F zone4) ] – "minimise exp. time 

to patrol zones 1 then 4, passing only through safe".
− where safe denotes states satisfying ⟨⟨ctrl⟩⟩ R<2 [ F base ] –

"there is a strategy to return to base with expected time < 2"

• Analysis of generated controllers
− expected power consumption to complete tasks?
− conditional expectation, e.g. expected time to complete task, 

assuming it is completed successfully?
− more detailed timing information (not just mean time)
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Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected costs

• Achievability queries: multi(P>0.95 [ F send ], Rtime>10 [ C ])
− e.g. “is there a strategy such that the probability of message 

transmission is > 0.95 and expected battery life > 10 hrs?”

• Numerical queries: multi(Pmax=? [ F send ], Rtime>10 [ C ])
− e.g. “maximum probability of message transmission, 

assuming expected battery life-time is > 10 hrs?”

• Pareto queries:
− multi(Pmax=? [ F send ], Rtimemax=? [ C ])
− e.g. "Pareto curve for maximising

probability of transmission and
expected battery life-time” obj1

ob
j 2
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Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries: multi(P>0.95 [ F send ], Rtime>10 [ C ])
− e.g. “is there a strategy such that the probability of message 

transmission is > 0.95 and expected battery life > 10 hrs?”

• Numerical queries: multi(Pmax=? [ F send ], Rtime>10 [ C ])
− e.g. “maximum probability of message transmission, 

assuming expected battery life-time is > 10 hrs?”

• Pareto queries:
− multi(Pmax=? [ F send ], Rtimemax=? [ C ])
− e.g. "Pareto curve for maximising

probability of transmission and
expected battery life-time”

obj1

ob
j 2
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Multi-objective model checking

• Optimal strategies:
− usually finite-memory (e.g. when using LTL formulae)
− may also need to be randomised

• Computation:
− construct a product MDP (with several automata),

then reduces to linear programming [TACAS'07,TACAS'11]
− can be approximated using iterative numerical methods,

via approximation of the Pareto curve [ATVA'12]

• Extensions [ATVA'12]
− arbitrary Boolean combinations of objectives

• e.g. ψ1⟹ψ2 (all strategies satisfying ψ1 also satisfy ψ2)
• (e.g. for assume-guarantee reasoning)

− time-bounded (finite-horizon) properties
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Example – Multi-objective
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• Achievability query
− P≥0.7 [ G ¬hazard ] ∧ P≥0.2 [ GF goal1 ] ?

• Numerical query
− Pmax=? [ GF goal1 ] such that P≥0.7 [ G ¬hazard ] ? 

• Pareto query
− for Pmax=? [ G ¬hazard ] ∧ Pmax=? [ GF goal1 ] ?
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Example – Multi-objective
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Strategy 1
(deterministic)
s0 : east
s1 : south
s2 : -
s3 : -
s4 : east
s5 : west
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Example – Multi-objective

Strategy 2
(deterministic)
s0 : south
s1 : south
s2 : -
s3 : -
s4 : east
s5 : west
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Example – Multi-objective

Optimal strategy:
(randomised)
s0 : 0.3226 : east

0.6774 : south
s1 : 1.0 : south
s2 : -
s3 : -
s4 : 1.0 : east
s5 : 1.0 : west
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Application: Partially satisfiable tasks

• Partially satisfiable task specifications
− via multi-objective probabilistic model checking [IJCAI'15]
− e.g. Pmax=? [ ¬zone3 U (room1 ∧ (F room4 ∧ F room5)  ] < 1

• Synthesise strategies that, in decreasing order of priority:
− maximise the probability of finishing the task;
− maximise progress towards completion, if this is not possible; 
− minimise the expected time (or cost) required

• Progress metric constructed from DFA
− (distance to accepting states, reward for decreasing distance)

• Encode prioritisation using multi-objective queries:
− p = Pmax=? [ task ]
− r = multi(Rmax=? [ C ], P>=p [ task ])
− multi(Rmin=? [ task ], P>=p [ task ] ∧ R>=r [ C ])

prog

time prog
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Conclusion

• Rigorous probabilistic guarantees for robot navigation
− formal verification + probabilistic model checking
− Markov decision processes (MDPs)
− linear temporal logic (LTL)
− multi-objective model checking

• More details
− Lacerda/Parker/Hawes. Optimal & Dynamic Planning for Markov 

Decision Processes with Co-Safe LTL Specifications, IROS'14
− Lacerda/Parker/Hawes. Optimal Policy Generation for Partially 

Satisfiable Co-Safe LTL Specifications, IJCAI'15
− PRISM: www.prismmodelchecker.org


