
ICAPS Summer School, June 2016

Task Scheduling and Execution
for Long-Term Autonomy

Nick Hawes Dave Parker
University of Birmingham

Part 2: Formal Guarantees for
Robotic Navigation Planning

2

Overview

• Formal verification
− probabilistic model checking

• Markov decision processes (MDPs)
− verification vs. strategy synthesis

• Linear temporal logic (LTL)
− probabilistic model checking + MDPs + LTL

• Multi-objective probabilistic model checking
− partially satisfiable task specifications

3

Formal verification

• Formal verification
− the application of rigorous, mathematics-based techniques

to check the correctness of computerised systems

• Verifying probabilistic systems…
− unreliable or unpredictable behaviour

• e.g. failures, message loss, delays,
unreliable sensors/actuators

− randomisation in algorithms/protocols
• e.g. random back-off in communication protocols

• We need to verify quantitative system properties
− “the probability of the airbag failing to deploy

within 0.02 seconds of being triggered is at most 0.001”

− not just correctness: reliability, timeliness, performance, …
− not just verification: correctness by construction

4

Probabilistic model checking

• Construction and analysis of probabilistic models
− state-transition systems labelled with probabilities

(e.g. Markov chains, Markov decision processes)
− from a description in a high-level modelling language

• Properties expressed in temporal logic, e.g. PCTL:
− trigger → P≥0.999 [F≤20 deploy]
− “the probability of the airbag deploying within

20ms of being triggered is at at least 0.999”
− properties checked against models using

exhaustive search and numerical computation

0.5
0.1

0.4

5

Probabilistic model checking

• Key benefits
− exact results: guarantees, optimality, …
− fully automated, tools available (e.g. PRISM)
− wide range of models, properties expressible

• Key challenges
− scalability! state space explosion problem
− results are only as good as the model

• Application domains
− network/communication protocols, security, biology,

power management, robotics & planning, …

6

Markov decision processes (MDPs)

• Markov decision processes (MDPs)
− model nondeterministic as well as probabilistic behaviour

• Nondeterminism for:
− control: decisions made by a controller or scheduler
− adversarial behaviour of the environment
− concurrency/scheduling: interleavings of parallel components
− abstraction, or under-specification, of unknown behaviour

s1s0

s2

s3

0.9

0.10.7

1

1

{succ}

{err}

{init}

0.3

1a

b

c
a

a

7

Strategies

• A strategy (or “policy”, “adversary”, “scheduler”)
− is a resolution of nondeterminism, based on history
− i.e. a mapping from finite paths to (distributions over) actions
− induces (infinite-state) Markov chain (and probability space)

• Classes of strategies:
− memory: memoryless, finite-memory, or infinite-memory
− randomisation: deterministic or randomised

s1s0

s2

s3

0.9

0.10.7

1

1

{succ}

{err}

{init}

0.3

1a

b

c
a

a

s0

0.9

1

s0s1s0s1s2

s0s1s0s1s30.1
s0s1

0.7
s0s1s0

s0s1s1
0.3

1 s0s1s0s1

0.9 s0s1s1s2

s0s1s1s30.1

1

1

s0s1s1s2s2

s0s1s1s3s3

a

a

a

a

aa
a

c

b

c

a

8

Verification vs. Controller synthesis

• 1. Verification
− quantify over all possible

strategies (i.e. best/worst-case)
− P≤0.1 [F err] : “the probability of an

error occurring is ≤ 0.1 for all strategies”
− applications: randomised communication

protocols, randomised distributed algorithms, security, …

• 2. Controller synthesis
− generation of "correct-by-construction" controllers
− P≤0.1 [F err] : "does there exist a strategy for which the

probability of an error occurring is ≤ 0.1?”
− applications: robotics, power management, security, …

• Two dual problems; same underlying computation:
− compute optimal (minimum or maximum) values

s1s0

s2

s3

0.9

0.10.7

1

1

{succ}

{err}

{init}

0.3

1a

b

c
a

a

9

Running example

• Example MDP
− robot moving through terrain divided in to 3 x 2 grid

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

10

Larger example

Task
scheduler

Map
generator

Motion planner

Navigation planner

11

Example - Reachability

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Verify: P≤0.6 [F goal1]
or

Synthesise for: P≥0.4 [F goal1]
⇓

Compute: Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

12

Example - Reachability

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Optimal strategy:
s0 : east
s1 : south
s2 : -
s3 : -
s4 : east
s5 : -

= 0.5

Verify: P≤0.6 [F goal1]
or

Synthesise for: P≥0.4 [F goal1]
⇓

Compute: Pmax=? [F goal1]

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

13

Linear temporal logic (LTL)

• Logic for describing properties of executions [Pnueli]

• LTL syntax:
− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Propositional logic + temporal operators:
− a is an atomic proposition (labelling a state)
− X ψ means "ψ is true in the next state"
− F ψ means “ψ is eventually true”
− G ψ means “ψ remains true forever”
− ψ1 U ψ2 means "ψ2 is true eventually and ψ1 is true until then”

• Simple examples
− G¬(critical1 ∧ critical2) - "the two processes never enter the

critical section simultaneously"
− ¬error U end - "the program terminates without any errors”

14

Linear temporal logic (LTL)

• LTL syntax:
− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Commonly used LTL formulae:
− G (a → F b) - "b always eventually follows a"
− G (a → X b) - "b always immediately follows a”
− G F a - "a is true infinitely often"
− F G a - "a becomes true and remains true forever"

• Robot task specifications in LTL
− (G¬hazard) ∧ (G F goal1) – "avoid hazard and visit goal1

infinitely often"
− ¬zone3 U (zone1 ∧ (F zone4) – "patrol zone 1 then 4, without

passing through 3".

15

LTL for robot navigation

• Probabilistic LTL on MDPs
− e.g. P>0.7 [(G¬hazard) ∧ (GF goal1)] – ”is the probability of

avoiding hazard and visiting goal1 infinitely often > 0.7?"
− e.g. Pmax=? [¬zone3 U (zone1 ∧ (F zone4)] – "max. probability

of patrolling zones 1 then 4, without passing through 3?"

• LTL + expected costs/times on MDPs
− minimise expected time to satisfy (co-safe) LTL formulas

• Benefits of the approach
− LTL: flexible, unambiguous property specification
− guarantees on performance ("correct by construction")
− meaningful properties: probabilities, time, energy,…

• c.f. ad-hoc reward structures, e.g. with discounting
− efficient, fully-automated techniques

• LTL-to-automaton conversion, MDP solution

16

Probabilistic model checking LTL

• Probabilistic model checking of LTL on MDPs
− convert LTL formula ψ to deterministic automaton Aψ

(Buchi, Rabin, finite, …)
− build/solve product MDP M⊗Aψ

(i.e. reduce to simpler problem)
− optimal strategies are deterministic, finite-memory

Det. Buchi automaton Aψ
for ψ = G¬h ∧ GF g1

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

17

Example: Product MDP construction

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q0 s5q2

s2q2

M⊗Aψ

M

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Aψ ψ = G¬h ∧ GF g

18

Example: Product MDP construction

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

M⊗Aψ

M

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Aψ ψ = G¬h ∧ GF g1

19

Co-safe LTL (and expected cost)

• Often focus on tasks completed in finite time
− can restrict to co-safe fragment(s) of LTL
− (any satisfying execution has a "good prefix")
− e.g. Pmax=? [¬zone3 U (zone1 ∧ (F zone4)]
− for simplicity, can restrict to syntactically co-safe LTL

• Expected cost/reward to satisfy (co-safe) LTL formula
− e.g. Rmin=? [¬zone3 U (zone1 ∧ (F zone4)] – "minimise exp.

time to patrol zones 1 then 4, without passing through 3".

• Solution:
− product of MDP and DFA
− expected cost to reach

accepting states in product

q0 q2

z1∧
¬z3

¬z1∧¬z3
q3

true

q1

z4∧¬z3

z3
z3

¬z4∧¬z3

20

Probabilistic model checking

• Further use of probabilistic model checking…
− (various probabilistic models, query languages)

• Nested queries
− e.g. Rmin=? [safe U (zone1 ∧ (F zone4)] – "minimise exp. time

to patrol zones 1 then 4, passing only through safe".
− where safe denotes states satisfying ⟨⟨ctrl⟩⟩ R<2 [F base] –

"there is a strategy to return to base with expected time < 2"

• Analysis of generated controllers
− expected power consumption to complete tasks?
− conditional expectation, e.g. expected time to complete task,

assuming it is completed successfully?
− more detailed timing information (not just mean time)

21

Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected costs

• Achievability queries: multi(P>0.95 [F send], Rtime>10 [C])
− e.g. “is there a strategy such that the probability of message

transmission is > 0.95 and expected battery life > 10 hrs?”

• Numerical queries: multi(Pmax=? [F send], Rtime>10 [C])
− e.g. “maximum probability of message transmission,

assuming expected battery life-time is > 10 hrs?”

• Pareto queries:
− multi(Pmax=? [F send], Rtimemax=? [C])
− e.g. "Pareto curve for maximising

probability of transmission and
expected battery life-time” obj1

ob
j 2

22

Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries: multi(P>0.95 [F send], Rtime>10 [C])
− e.g. “is there a strategy such that the probability of message

transmission is > 0.95 and expected battery life > 10 hrs?”

• Numerical queries: multi(Pmax=? [F send], Rtime>10 [C])
− e.g. “maximum probability of message transmission,

assuming expected battery life-time is > 10 hrs?”

• Pareto queries:
− multi(Pmax=? [F send], Rtimemax=? [C])
− e.g. "Pareto curve for maximising

probability of transmission and
expected battery life-time”

obj1

ob
j 2

23

Multi-objective model checking

• Optimal strategies:
− usually finite-memory (e.g. when using LTL formulae)
− may also need to be randomised

• Computation:
− construct a product MDP (with several automata),

then reduces to linear programming [TACAS'07,TACAS'11]
− can be approximated using iterative numerical methods,

via approximation of the Pareto curve [ATVA'12]

• Extensions [ATVA'12]
− arbitrary Boolean combinations of objectives

• e.g. ψ1⟹ψ2 (all strategies satisfying ψ1 also satisfy ψ2)
• (e.g. for assume-guarantee reasoning)

− time-bounded (finite-horizon) properties

24

Example – Multi-objective

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

• Achievability query
− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ?

• Numerical query
− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ?

• Pareto query
− for Pmax=? [G ¬hazard] ∧ Pmax=? [GF goal1] ?

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

True (achievable)

~0.2278

25

Example – Multi-objective

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

Strategy 1
(deterministic)
s0 : east
s1 : south
s2 : -
s3 : -
s4 : east
s5 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

26

Example – Multi-objective

Strategy 2
(deterministic)
s0 : south
s1 : south
s2 : -
s3 : -
s4 : east
s5 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

27

Example – Multi-objective

Optimal strategy:
(randomised)
s0 : 0.3226 : east

0.6774 : south
s1 : 1.0 : south
s2 : -
s3 : -
s4 : 1.0 : east
s5 : 1.0 : west

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6west

west

east 0.1

0.9
north

28

Application: Partially satisfiable tasks

• Partially satisfiable task specifications
− via multi-objective probabilistic model checking [IJCAI'15]
− e.g. Pmax=? [¬zone3 U (room1 ∧ (F room4 ∧ F room5)] < 1

• Synthesise strategies that, in decreasing order of priority:
− maximise the probability of finishing the task;
− maximise progress towards completion, if this is not possible;
− minimise the expected time (or cost) required

• Progress metric constructed from DFA
− (distance to accepting states, reward for decreasing distance)

• Encode prioritisation using multi-objective queries:
− p = Pmax=? [task]
− r = multi(Rmax=? [C], P>=p [task])
− multi(Rmin=? [task], P>=p [task] ∧ R>=r [C])

prog

time prog

29

Conclusion

• Rigorous probabilistic guarantees for robot navigation
− formal verification + probabilistic model checking
− Markov decision processes (MDPs)
− linear temporal logic (LTL)
− multi-objective model checking

• More details
− Lacerda/Parker/Hawes. Optimal & Dynamic Planning for Markov

Decision Processes with Co-Safe LTL Specifications, IROS'14
− Lacerda/Parker/Hawes. Optimal Policy Generation for Partially

Satisfiable Co-Safe LTL Specifications, IJCAI'15
− PRISM: www.prismmodelchecker.org

