

Automated Verification Techniques for Probabilistic Systems

Vojtěch Forejt Marta Kwiatkowska Gethin Norman Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011

EU-FP7: CONNECT

LSCITS/PSS

VERIWARE

Part 3

Markov decision processes

Overview

• Lectures 1 and 2:

- 1 Introduction
- 2 Discrete-time Markov chains
- 3 Markov decision processes
- 4 Compositional probabilistic verification
- Course materials available here:
 - <u>http://www.prismmodelchecker.org/courses/sfm11connect/</u>
 - lecture slides, reference list, tutorial chapter, lab session

Probabilistic models

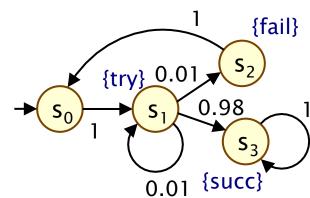
	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - **S** is a set of states and $s_{init} \in S$ is the initial state
 - $P: S \times S \rightarrow [0,1]$ is the transition probability matrix
 - L : S \rightarrow 2^{AP} labels states with atomic propositions
 - define a probability space Pr_s over paths Path_s
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send $\rightarrow P_{\geq 0.95}$ [F deliver]
 - key question: what is the probability of reaching states $T \subseteq S$ from state s?



- reduces to graph analysis + linear equation system

Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- **Concurrency** scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Unknown environments

- e.g. probabilistic security protocols - unknown adversary

Markov decision processes

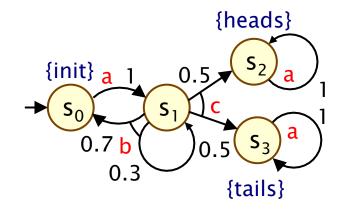
- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice

Like DTMCs:

- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps

Probabilities and nondeterminism

 in each state, a nondeterministic choice between several discrete probability distributions over successor states



Markov decision processes

{heads}

{tails}

0.5

{init} a 1

0.7 h

0.3

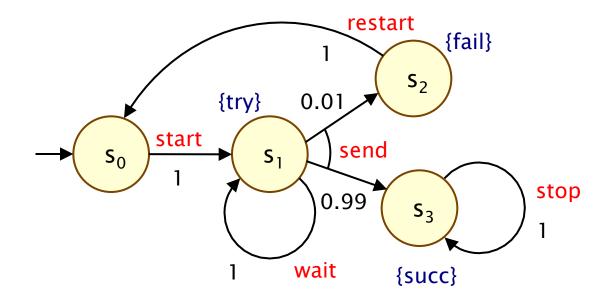
- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - α is an alphabet of action labels
 - $\delta \subseteq S \times \alpha \times Dist(S) \text{ is the transition}$ probability relation, where Dist(S) is the setof all discrete probability distributions over S

• Notes:

- we also abuse notation and use $\boldsymbol{\delta}$ as a function
- i.e. $\delta : S \rightarrow 2^{\alpha \times \text{Dist}(S)}$ where $\delta(s) = \{ (a,\mu) \mid (s,a,\mu) \in \delta \}$
- we assume δ (s) is always non-empty, i.e. no deadlocks
- MDPs, here, are identical to probabilistic automata [Segala]

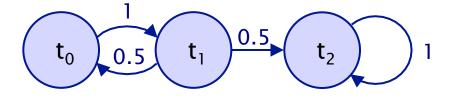
Simple MDP example

- A simple communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

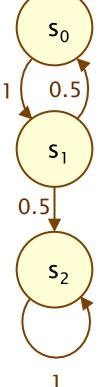


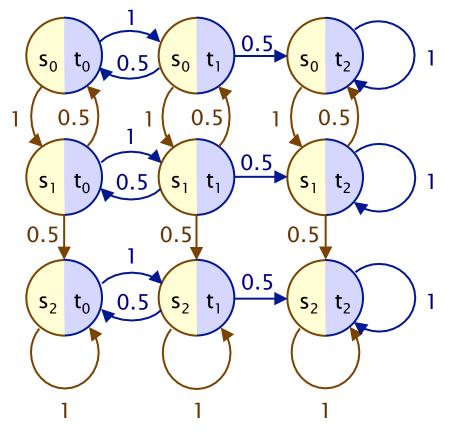
Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs



Action labels omitted here





Paths and probabilities

A (finite or infinite) path through an MDP M

- is a sequence of states and action/distribution pairs
- e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
- such that $(a_i,\mu_i)\in \delta(s_i)$ and $\mu_i(s_{i+1})>0$ for all $i{\geq}0$
- represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- note that a path resolves both types of choices: nondeterministic and probabilistic
- Path_{M,s} (or just Path_s) is the set of all infinite paths starting from state s in MDP M; the set of finite paths is PathFin_s
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ... for which we can define a probability measure over paths

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "strategies" or "policies"
- Formally:
 - an adversary σ of an MDP is a function mapping every finite path $\omega = s_0(a_0,\mu_0)s_1...s_n$ to an element of $\delta(s_n)$
- Adversary σ restricts the MDP to certain paths
 - Path_s^{σ} \subseteq Path_s^{σ} and PathFin_s^{σ} \subseteq PathFin_s^{σ}
- Adversary σ induces a probability measure Pr_s^{σ} over paths
 - constructed through an infinite state DTMC (PathFin_s^{σ}, s, P_s^{σ})
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P_s^{\sigma}(\omega, \omega') = \mu(s)$ if $\omega' = \omega(a, \mu)s$ and $\sigma(\omega) = (a, \mu)$
 - $\mathbf{P}_{s}^{\sigma}(\omega,\omega')=0$ otherwise

Adversaries – Examples

Consider the simple MDP below

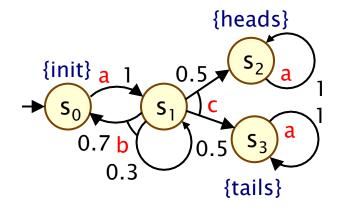
- note that s_1 is the only state for which $|\delta(s)|>1$
- i.e. s_1 is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1
- Adversary σ_1
 - picks action c the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$

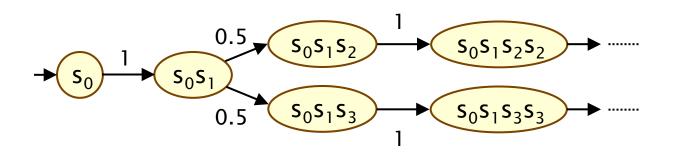
{init} a 1 0.5 s_2 a s_0 s_1 c s_2 a 0.7 b 0.5 s_3 a (tails)

- Adversary σ_2
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1) = (b,\mu_b), \ \sigma_2(s_0s_1s_1) = (c,\mu_c), \ \sigma_2(s_0s_1s_0s_1) = (c,\mu_c)$

Adversaries – Examples

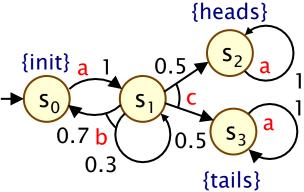
- Fragment of DTMC for adversary σ_1
 - $-\sigma_1$ picks action c the first time

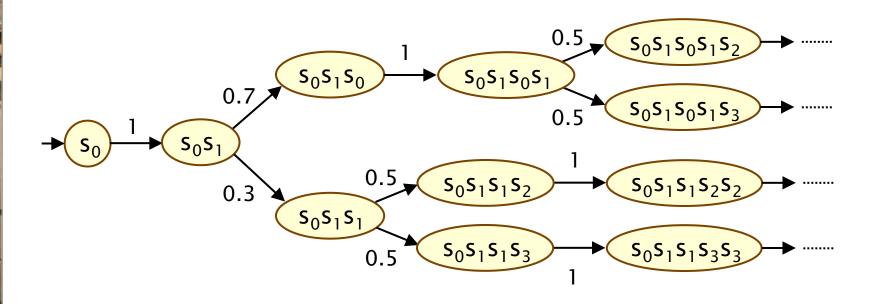




Adversaries – Examples

- σ_2 picks action b, then c





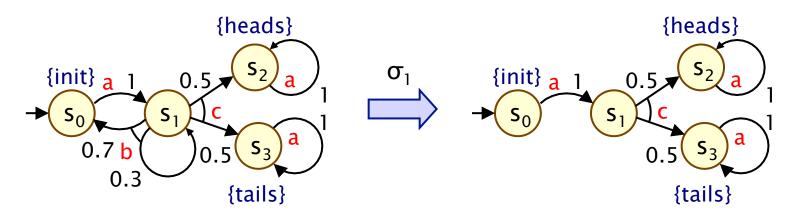
Memoryless adversaries

Memoryless adversaries always pick same choice in a state

- also known as: positional, simple, Markov
- formally, for adversary σ :
- $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
- resulting DTMC can be mapped to a |S|-state DTMC

From previous example:

- adversary σ_1 (picks c in $s_1)$ is memoryless, σ_2 is not



Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- PCTL syntax:
 - φ ::= true | a | $\varphi \land \varphi$ | $\neg \varphi$ | $P_{\sim p}$ [ψ] (state formulas)
 - $-\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
 - where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}, k \in \mathbb{N}$
 - Example: send $\rightarrow P_{\geq 0.95}$ [true U^{≤ 10} deliver]

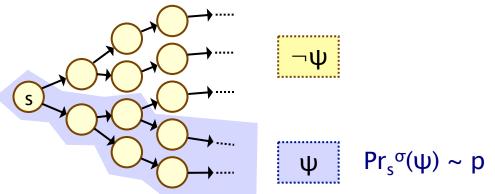
PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 s ⊨ φ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the MDP (S,s_{init}, α , δ ,L):
 - $s \vDash a \iff a \in L(s)$
 - $\ s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \ \text{and} \ s \vDash \varphi_2$
 - $s \models \neg \varphi \qquad \Leftrightarrow s \models \varphi \text{ is false}$
- Semantics of path formulas:
 - for a path $\omega = s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$ in the MDP:
 - $\omega \vDash X \varphi \qquad \Leftrightarrow s_1 \vDash \varphi$
 - $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
 - $\omega \vDash \varphi_1 \cup \varphi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\leq k} \varphi_2$

PCTL semantics for MDPs

Semantics of the probabilistic operator P

- can only define probabilities for a specific adversary σ
- $-s \models P_{-p} [\Psi]$ means "the probability, from state s, that Ψ is true for an outgoing path satisfies ~p for all adversaries o"
- formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all adversaries σ
- where we use $\Pr_{\varsigma}^{\sigma}(\psi)$ to denote $\Pr_{\varsigma}^{\sigma} \{ \omega \in \mathsf{Path}_{\varsigma}^{\sigma} \mid \omega \vDash \psi \}$



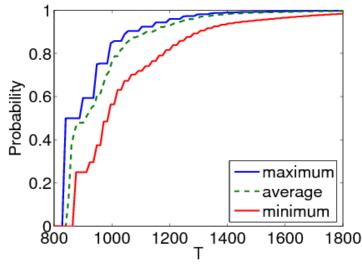
- Some equivalences:
 - $F \phi \equiv \Diamond \phi \equiv true U \phi$ (eventually, "future")
 - $G \phi \equiv \Box \phi \equiv \neg (F \neg \phi)$ (always, "globally")

Minimum and maximum probabilities

- Letting:
 - $\Pr_{s}^{\max}(\psi) = \sup_{\sigma} \Pr_{s}^{\sigma}(\psi)$
 - $\ Pr_s^{min}(\psi) = inf_{\sigma} \ Pr_s^{\sigma}(\psi)$
- We have:
 - $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash P_{\sim p} \textbf{[} \textbf{\psi} \textbf{]} \iff Pr_{s}^{min}(\textbf{\psi}) \textbf{\sim} p$
 - $\text{ if } \sim \in \{<,\le\} \text{, then } s \vDash P_{\sim p} \left[\ \psi \ \right] \ \Leftrightarrow \ Pr_s^{\max}(\psi) \sim p$
- Model checking $P_{-p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of $\boldsymbol{\psi}$ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries σ_{min} and σ_{max} for which:
 - $Pr_s^{\sigma_{min}}(\psi) = Pr_s^{min}(\psi) \text{ and } Pr_s^{\sigma_{max}}(\psi) = Pr_s^{min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv
- Only change is:
 - $\ s \vDash_{\mathsf{Adv}} P_{\mathsf{\sim p}} \left[\psi \right] \ \Leftrightarrow \ \mathsf{Pr}_{\mathsf{s}}^{\,\sigma}(\psi) \mathrel{\sim} \mathsf{p} \text{ for all adversaries } \sigma \in \mathsf{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]

Some real PCTL examples

Byzantine agreement protocol

- $P_{min=?}$ [F (agreement \land rounds \leq 2)]
- "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - P_{max=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $P_{min=?}$ [F^{$\leq t$} stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 3)

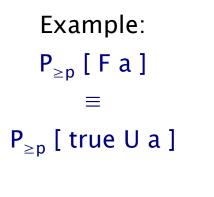
- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

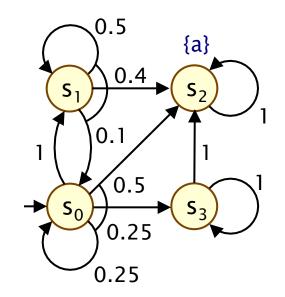
PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(φ) = { s \in S | s $\models \varphi$ } = set of states satisfying φ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ for all $s \in S$
 - dependent on whether ~ ${\boldsymbol{\mathsf{\sim}}} \in \{{\boldsymbol{\mathsf{<}}},{\boldsymbol{\mathsf{>}}}\}$ or ~ ${\boldsymbol{\mathsf{\sim}}} \in \{{\boldsymbol{\mathsf{<}}},{\boldsymbol{\mathsf{\le}}}\}$
 - these slides cover the case $Pr_s^{min}(\phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X $\varphi)$ and bounded until ($\varphi_1 \ U^{\leq k} \ \varphi_2)$ are straightforward extensions of the DTMC case

PCTL until for MDPs

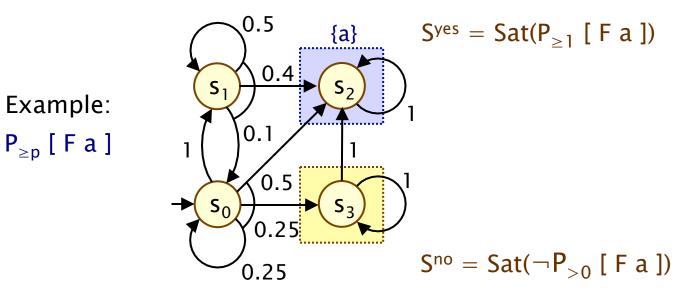
- Computation of probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration





PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\phi_1 \cup \phi_2)$ is 1 or 0
 - $\ {}^{Syes} = Sat(P_{\geq 1} \ [\ \varphi_1 \ U \ \varphi_2 \]), \ \ {}^{Sno} = Sat(\neg \ P_{>0} \ [\ \varphi_1 \ U \ \varphi_2 \])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes Sno
 - there exists an adversary for which the probability is 0

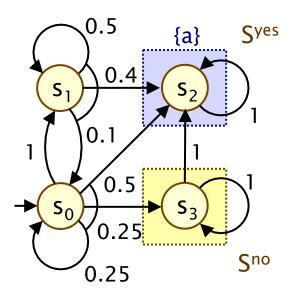


Method 1 – Linear programming

• Probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

maximize
$$\sum_{s \in S^{?}} x_s$$
 subject to the constraints:
 $x_s \leq \sum_{s' \in S^{?}} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^{?}$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut



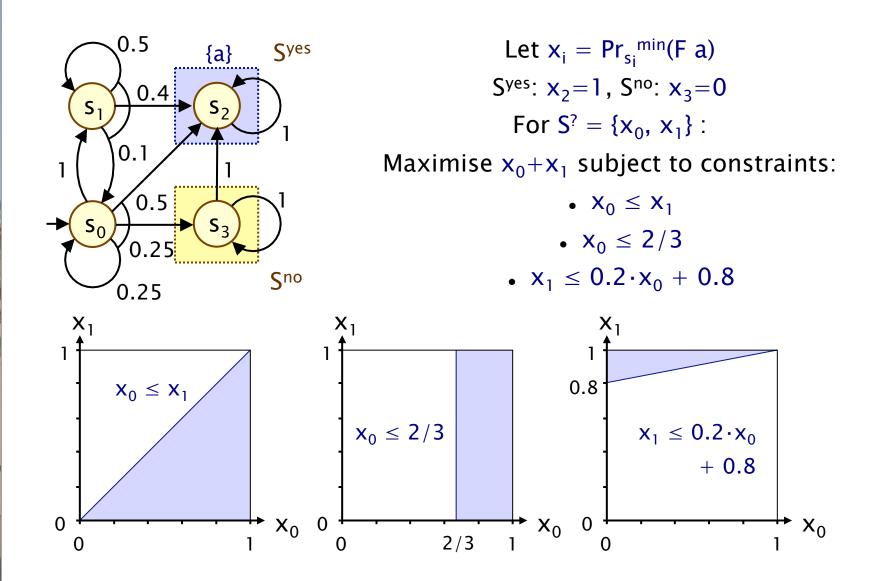
Let $x_i = Pr_{s_i}^{min}(F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$:

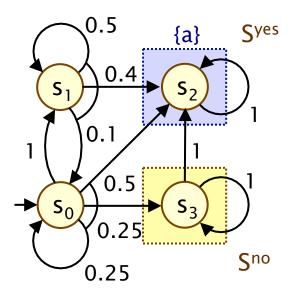
Maximise $x_0 + x_1$ subject to constraints:

• $X_0 \leq X_1$

•
$$x_0 \le 0.25 \cdot x_0 + 0.5$$

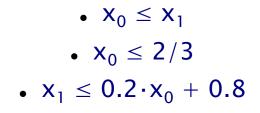
•
$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

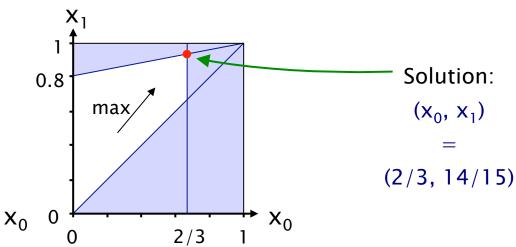


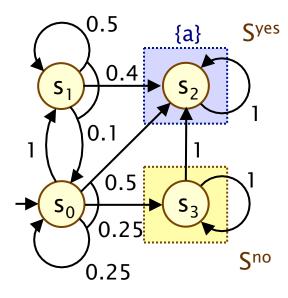


Let $x_i = Pr_{s_i}^{min}(F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:



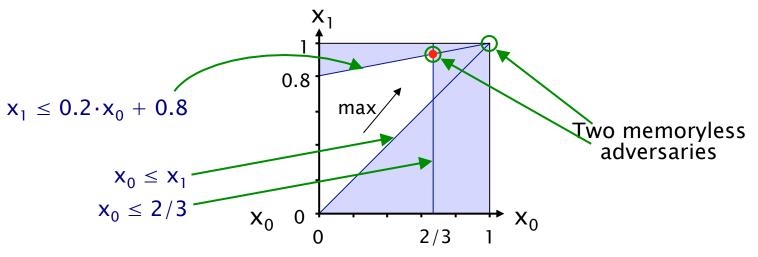




Let $x_i = Pr_{s_i}^{min}(F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

• $x_0 \le x_1$ • $x_0 \le 2/3$ • $x_1 \le 0.2 \cdot x_0 + 0.8$



Method 2 - Value iteration

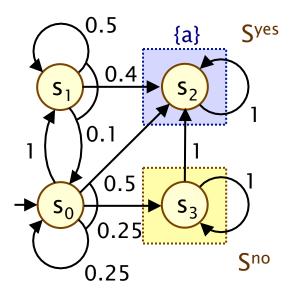
• For probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ it can be shown that:

$$-\operatorname{Pr}_{s}^{\min}(\varphi_{1} \cup \varphi_{2}) = \lim_{n \to \infty} x_{s}^{(n)} \text{ where:}$$

$$x_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^{?} \text{ and } n = 0 \\ \min_{(a,\mu)\in \operatorname{Steps}(s)} \left(\sum_{s'\in S} \mu(s') \cdot x_{s'}^{(n-1)}\right) & \text{if } s \in S^{?} \text{ and } n > 0 \end{cases}$$

- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

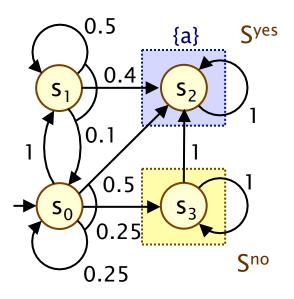
Example – PCTL until (value iteration)



Compute: $Pr_{s_i}^{min}(F a)$ S^{yes} = {x₂}, S^{no} ={x₃}, S[?] = {x₀, x₁}

- $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$ n=0: [0, 0, 1, 0] n=1: [min(0,0.25.0+0.5), 0.1.0+0.5.0+0.4, 1, 0] =[0, 0.4, 1, 0] n=2: [min(0.4,0.25.0+0.5),
 - $0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0]$ = [0.4, 0.6, 1, 0] n=3:

Example – PCTL until (value iteration)

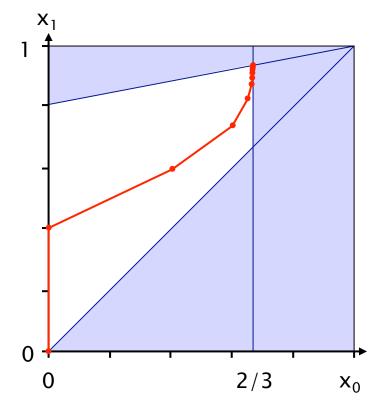


	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
n=0:	[0.000000, 0.000000, 1, 0]
n=1:	[0.000000, 0.400000, 1, 0]
n=2:	[0.400000, 0.600000, 1, 0]
n=3:	[0.600000, 0.740000, 1, 0]
n=4:	[0.650000, 0.830000, 1, 0]
n=5:	[0.662500, 0.880000, 1, 0]
n=6:	[0.665625, 0.906250, 1, 0]
n=7:	[0.666406, 0.919688, 1, 0]
n=8:	[0.666602, 0.926484, 1, 0]
n=9:	[0.666650, 0.929902, 1, 0]

n=20: [0.6666667, 0.933332, 1, 0] n=21: [0.6666667, 0.933332, 1, 0]

 \approx [2/3, 14/15, 1, 0]

Example – Value iteration + LP



	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
n=0:	[0.000000, 0.000000, 1, 0]
n=1:	[0.000000, 0.400000, 1, 0]
n=2:	[0.400000, 0.600000, 1, 0]
n=3:	[0.600000, 0.740000, 1, 0]
n=4:	[0.650000, 0.830000, 1, 0]
n=5:	[0.662500, 0.880000, 1, 0]
n=6:	[0.665625, 0.906250, 1, 0]
n=7:	[0.666406, 0.919688, 1, 0]
n=8:	[0.666602, 0.926484, 1, 0]
n=9:	[0.666650, 0.929902, 1, 0]

n=20: [0.6666667, 0.933332, 1, 0]n=21: [0.6666667, 0.933332, 1, 0]

 \approx [2/3, 14/15, 1, 0]

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries ("policies")
- + 1. Start with an arbitrary (memoryless) adversary σ
- + 2. Compute the reachability probabilities $\underline{Pr}^{\sigma}(F a)$ for σ
- 3. Improve the adversary in each state
- 4. Repeat 2/3 until no change in adversary

Termination:

- finite number of memoryless adversaries
- improvement in (minimum) probabilities each time

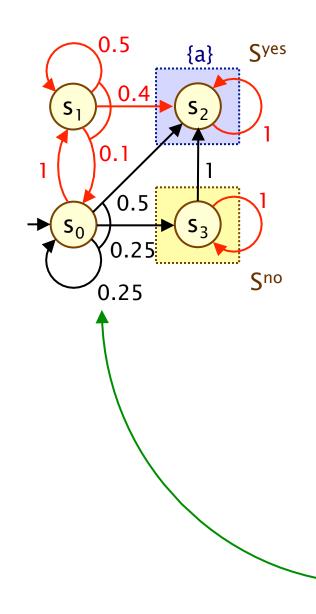
Method 3 – Policy iteration

- + 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of $\delta(s)$ for each state $s\in S$
- 2. Compute the reachability probabilities $\underline{Pr}^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

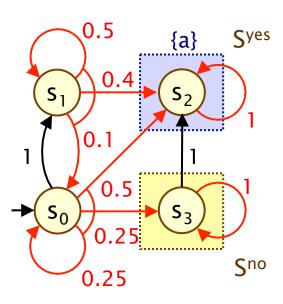
• 4. Repeat 2/3 until no change in adversary

Example – Policy iteration



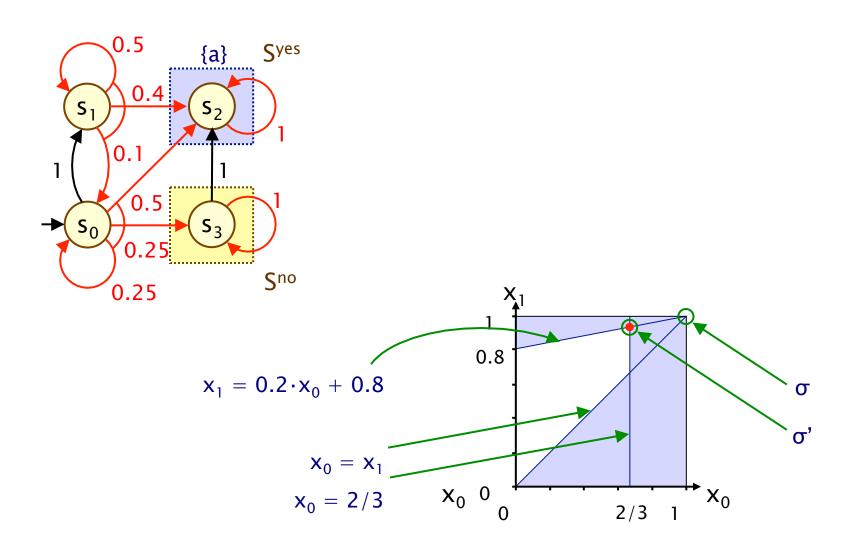
Arbitrary adversary **o**: Compute: $Pr^{\sigma}(F a)$ Let $x_i = Pr_{s_i}^{\sigma}(F a)$ $x_2 = 1$, $x_3 = 0$ and: • $x_0 = x_1$ $\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$ Solution: <u>Pr</u> $^{\sigma}(F a) = [1, 1, 1, 0]$ Refine σ in state s₀: $\min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$ $= \min\{1, 0.75\} = 0.75$

Example – Policy iteration



Refined adversary σ' : Compute: $\underline{Pr}^{\sigma'}(F a)$ Let $x_i = Pr_{s_i}^{\sigma'}(F a)$ $x_2 = 1$, $x_3 = 0$ and: • $x_0 = 0.25 \cdot x_0 + 0.5$ • $x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$ Solution: <u>Pr</u> $\sigma'(F a) = [2/3, 14/15, 1, 0]$ This is optimal

Example – Policy iteration



PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation

Probabilistic operator P:

- X Φ : one matrix-vector multiplication, O(|S|²)
- $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
- $\Phi_1 \cup \Phi_2$: linear programming problem, polynomial in |S| (assuming use of linear programming)

Complexity:

- linear in $|\Phi|$ and polynomial in |S|
- S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 as for PCTL, either R_{~r} [...], R_{min=?} [...] or R_{max=?} [...]
- Some examples:
 - $R_{min=?} [I^{=90}], R_{max=?} [C^{\leq 60}], R_{max=?} [F"end"]$
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Case study: FireWire protocol

- FireWire (IEEE 1394)
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" add/remove devices at any time

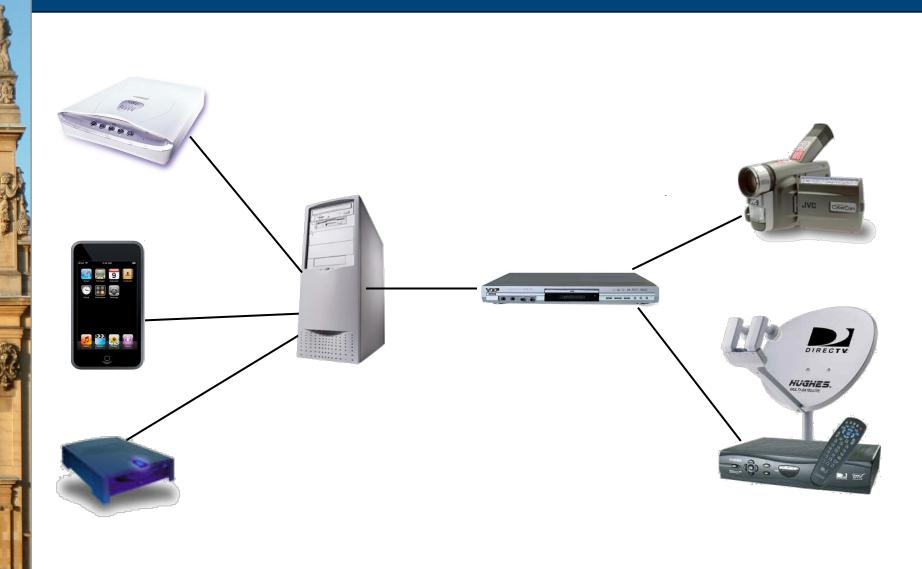
- no requirement for a single PC (need acyclic topology)

Root contention protocol

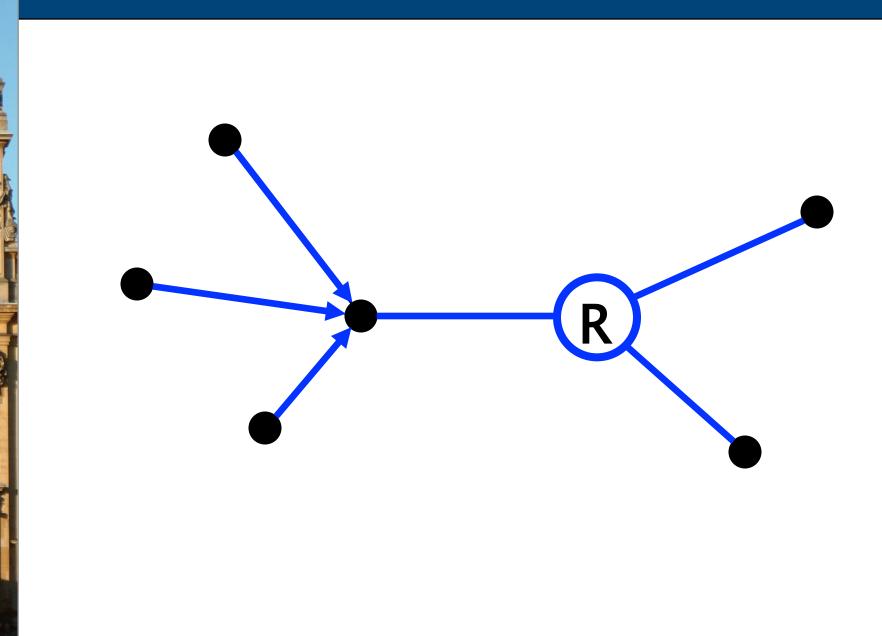
•

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses electronic coin tossing and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

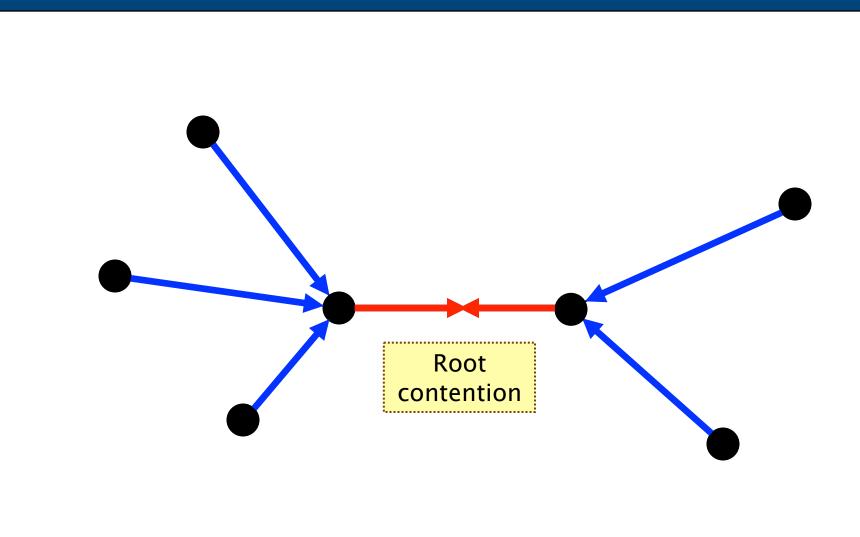
FireWire example



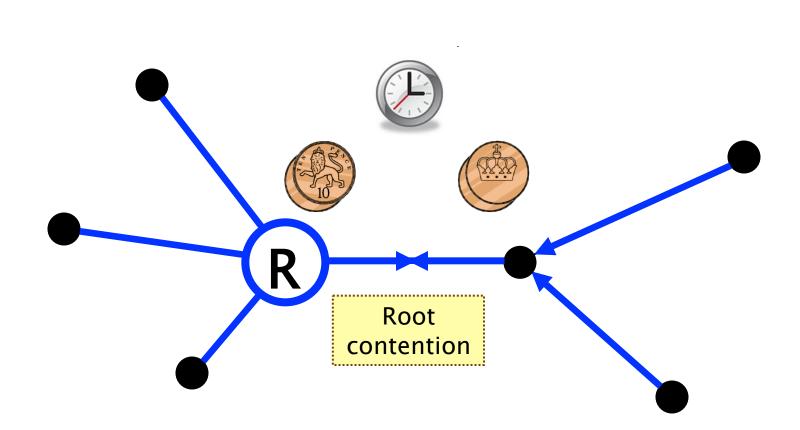
FireWire leader election



FireWire root contention



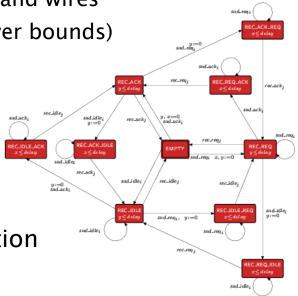
FireWire root contention

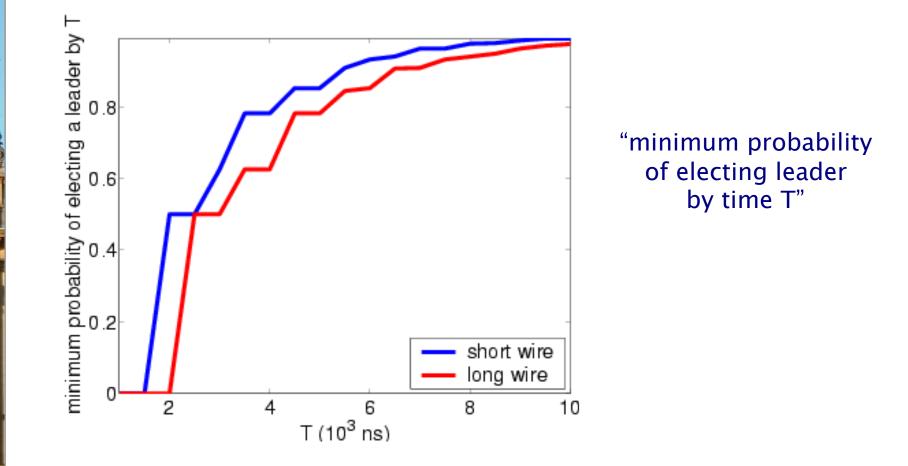


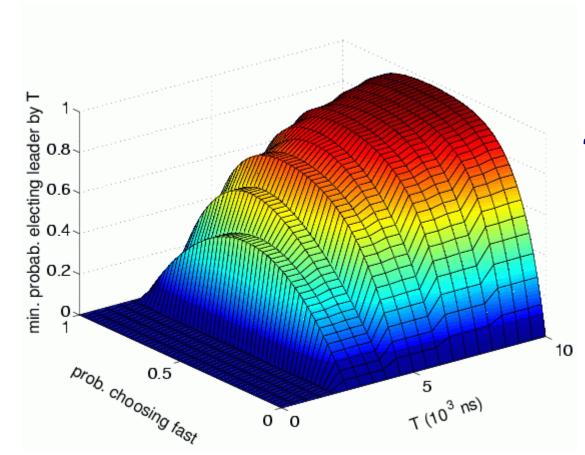
FireWire analysis

- Probabilistic model checking
 - model constructed and analysed using PRISM
 - timing delays taken from standard
 - model includes:
 - concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
 - max. model size: 170 million states
- Analysis:
 - verified that root contention always resolved with probability 1
 - investigated time taken for leader election
 - and the effect of using biased coin
 - $\cdot\,$ based on a conjecture by Stoelinga





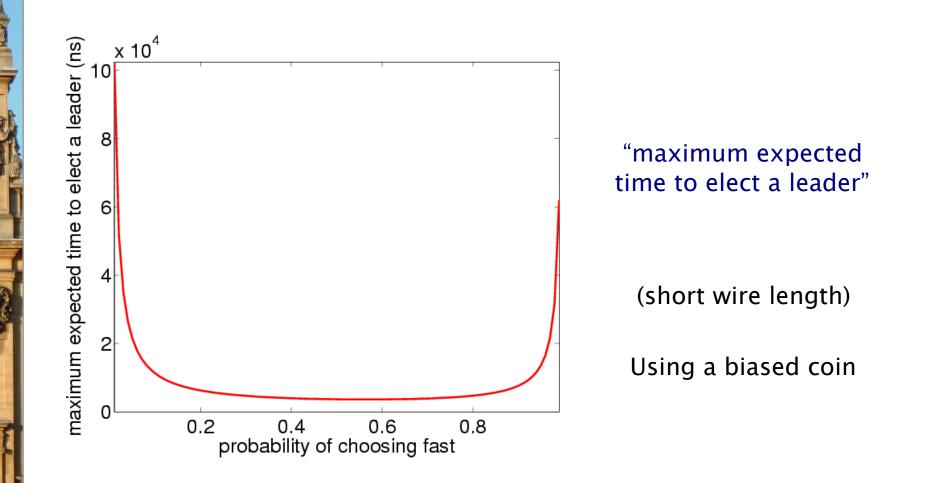


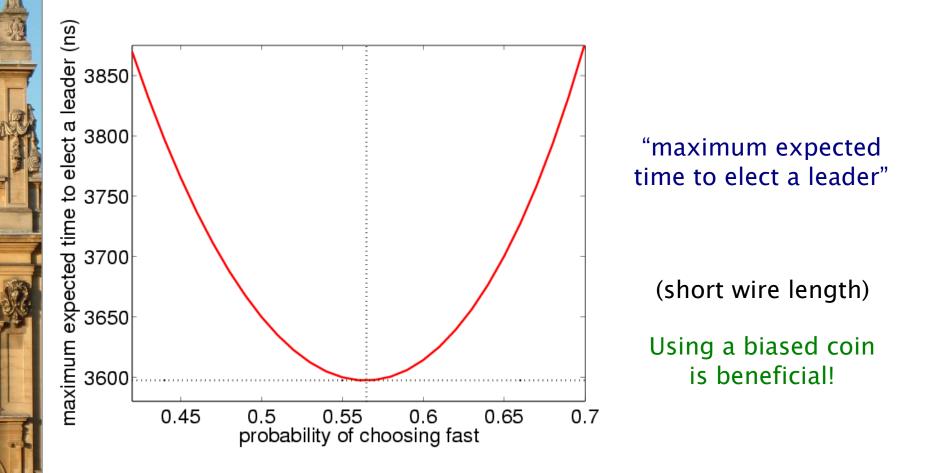


"minimum probability of electing leader by time T"

(short wire length)

Using a biased coin





Summary (Part 3)

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- Adversaries resolve nondeterminism in an MDP
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all adversaries
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Next: Compositional probabilistic verification