
1

Checking Modular
Refinements of Bluespec

Nirav Dave1, Michael Katelman2

Massachusetts Institute of Technology1

University of Illinois at Urbana-
Champaign2

June 3, 2008 2

Frequently BSV designers
refine their designs
rule map(i<100);

 i <= i + 1;

 count <= count +
f(mem.read(i));

Mem

F

+1

+

i

count

June 3, 2008 3

Refinement: Split lookup and
modify

FIFO#(int) tempQ <- mkFIFO;

rule mapReq(i < 100);
 i <= i + 1;
 tempQ.enq(mem.read(i));

rule mapResp(True);
 count <= count +
 f(tempQ.first());
 tempQ.deq();

Pipelined! Better
hardware, but is it
correct?

Mem

F

+1

+

i

count

June 3, 2008 4

Correctness depends on
context

New design can observe partially updated state. Rest of system Can’t
count on i and count to be in sync

If we were given the whole design can we say if this is okay?

i[0], c[0] i[1], c[1] i[2], c[2]

i[0] c[0] i[1] c[1]

…

i[2] c[2]

i[0] i[1] c[0] i[2] c[1] c[2]

…

…

rule bad(True);
 if (p(count))
 $display(i,count);

rule good(tempQ.empty);
 if (p(count))
 $display(i,count);

June 3, 2008 5

Can a tool solve this?

At least for a reasonable class of
refinements
 Convert BSV design to TRS
 Translate BSV rules in to pure

functions
 Use functions to form queries to an

bitvector SMT solver

Dealt with this
before

6

First a bit more about the
language

June 3, 2008 7

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the
state:

 Rule: guard  action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

L02-7http://csg.csail.mit.edu/6.375

June 3, 2008 8

Rule: As a State Transformer

A rule may be decomposed into two
parts π(s) and δ(s) such that

snext = if π(s) then δ(s) else s

π(s) is the guard (predicate)

δ(s) is the “state transformation”
function, i.e., computes the next-state
values from the current state values

L02-8http://csg.csail.mit.edu/6.375

June 3, 2008 9

Execution model

Repeatedly:
Select a rule to execute
Compute the state updates
Make the state updates

Compilation involves deciding how we select
rules
 Multiple rules in a cycle
 Tradeoff between parallelism and cycle-level depth
 A lot of flexibility in choice

Highly non-
deterministic

February 8, 2010 L02-9http://csg.csail.mit.edu/6.375

June 3, 2008 10

Rule Traces
Rules takes us from State to State

A rule trace is a sequence of rules,
executed in order
 run(t,s) runs trace t on initial state s
 Like rules may not be valid to apply

guard to a state (a rule in the chain
fails)

S S’ S’’r1 r2

[r1,r2]

June 3, 2008 11

The Query

Completeness: Every
rule trace in the Spec
has a corresponding
trace in the
Implementation

Soundness: Every
rule trace in the
implementation has a
corresponding trace in
the Spec

S

I

S’

I’

f f

ruleTrace

ruleTrace

Hard to represent

Infinite traces

What is equality here?

June 3, 2008 12

Handling Infinite Traces

There are an infinite # of traces
Can we just handle a finite set of finite
traces?
 If we have a prefix of a trace, we can reduce

the problem to solving it for the tail
 If [A,B,C] is fine, then [A,B,C,D,E] reduces to

[D,E]
 If we have a prefix cover for all possible

traces of sufficient size, we can always make
progress

June 3, 2008 13

Handling Infinite Traces

Still may need infinite prefix traces
 May never reach a comparable state

Show prefix is equivalent to a “safe”
trace + a smaller prefix
 If [A,B] is safe, and we can show [A,C,D] is

the same as [A,B,E], we reduce to [E].

Can get away with considering finite
traces

June 3, 2008 14

Algorithm to find prefix cover

Start with T = traces of length 1
Repeatedly:
 Remove smallest t from T
 Check if we always represent t using safe traces

(had a matching point to a spec trace)
 If not add extend t with all possible 1 rule prefix

and add to T

Bail after some size N
 Remaining traces are interesting to designers

June 3, 2008 15

Trace equality

We wanted the
traces to be
“equivalent”

For modular
refinement it’s what
we can observe
about the module
 Method calls –

existence & output

S

I

S’

I’

f f

ruleTrace

ruleTrace

June 3, 2008 16

Method Calls to State

All visible history stored in trace
 Just look at history for equivalence

Need to consider all input systems

Trace history

input

June 3, 2008 17

Relating States

Simplification: We only
add state between Spec
and Implementation

Relation from Spec to
Implementation clear
 Add new state in initial

state

Leave Implementation
to Spec partial
 Reason about longer rule

traces

S

I

S’

I’

f f

ruleTrace

ruleTrace

June 3, 2008 18

More simplification

Only consider systems where break
one rule into two
 Rules in Spec: r12,r3,r4,r5, …

 Rules in Impl: r1, r2, r3’,r4’,r5’,…

r12 should correspond to {r1,r2}

Makes completeness easy to prove

June 3, 2008 19

Queries

Each question takes the form:

 I is the set of possible input
 t is trace we’re considering
 T is the set of “safe” traces we want to check against

This is easy to cast in SAT

}|),'{run(),run(

)e(isSpecStat).(,

Ttstst

siSsIi

∈∈
⇒∈∈∀

June 3, 2008 20

Reducing the number of
Queries

We can find impossible rule traces:
 Many rules cannot fire twice concurrently

(FIFOs fill up)
 e.g. [req,req,req]) is impossible

Many rule sequences are equivalent:
 e.g. Rules don’t touch same state
 Do not have to check traces T1+[A,B]+T2

since we’ll check T1+[B,A]+T21

June 3, 2008 21

Current Status

Simple simple programs : 4 rules
 Correct design: 10 seconds (N = 7)
 Added an error: 2 seconds (N = 4)

6 stage SMIPS pipeline
 refine to 7 stage (N = 14)
 Many Days of compute

June 3, 2008 22

Improvements

Trace verification is ridiculously parallel
 Parallel execution

Currently, we Represent state as a bitvector
 Does not scale (especially Memories)
 Should move to uninterpreted functions/arrays

Call SMT via file system (write file)
 Significant overhead (>50%)
 Direct interfacing significantly cheaper

June 3, 2008 23

Summary

Can answer interesting questions
about traces in BSV systems

Initial implementation seems pretty
reasonable

Efficiency improvements needed to be
practical

24

The End

June 3, 2008 25

Scheduling Flexibility
What order do we want?

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Wb < Mem < Exe < Dec < IF

I0I1I2I3I4

A cycle in

slow motion

June 3, 2008 26

Scheduling Flexibility
What if flip the order?

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

IF < Dec < Exe < Mem < Wb

I0

An in-order processor

June 3, 2008 27

Scheduling Flexibility
What happens if the user specifies:

No change in rules

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Executing 2 instructions per cycle requires more resources but is
functionally equivalent to the original design

Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF

I1 I0I3 I2I5 I4I7 I6I9 I8

A cycle in

slow motion

a superscalar processor!

June 3, 2008 28

Checking Completeness

Given our constraints this should
hold

forall s. isSpec(s) => run([R12],s)
= run([r1,r2],s)

Forall r in {r3,rN}. forall s.
isSpec(s) => run(r,s) = run(r’,s)

June 3, 2008 29

Checking Soundness

This takes a bit more work as:
 We don’t really know what traces to

compare against. R1,r3?
Can hazard some guesses (permutations?

Elisions?)
 Some implementation traces do not

end in a state the spec can reach:
Extend the sequence and try again

June 3, 2008 30

Real Question:
How much work is this?

What do we have?
 BSV Parser (from BSV-SW Compiler)
 SMT solver w/ focus on bitvectors

First step – verify scheduling properties
 BSV ATS -> Lambda Calculus -> SMT
 2 weeks of time

Okay. Maybe we this won’t be so bad

So what exactly does it mean to show things are correct?

June 3, 2008 31

Bluespec Specification

Bluespec designs are closer to
specifications
 Schedule makes it an implementation
 Guaranteed safe

Spec and Implementation in the same
language

Designers mostly do spec. refinement

June 3, 2008 32

What sort of questions can
we ask of our solver?

Convert rule R into πR and δR

Use this to ask questions about rule traces:
 [A, B] = [B,A]
 forall s. πA(s) & πB(δA(s)) =>

			π B(s) & πA(δB(s)) &

			δ A(δB(s)) = δB(δA(s))

June 3, 2008 33

Bluespec - Origins

Started from work modeling Cache
coherence engines and processors in a
Term Rewriting System (TRS) for
verification [Stoy, Shen, Arvind]

Precise enough to compile into
hardware
 TRAC compiler [Hoe]
 Bluespec Compiler [Augustsson]

June 3, 2008 34

How do we get designers to
formally verify?

 Reason in the design language
 Inputs and Results have to be natural

 Low burden
 Cannot ask for complex properties
 Simple predicates / statements

Fast feedback
 Useful in testing

June 3, 2008 35

Correctness depends on the
context

We’ve broken the atomicity
invariant
 i and count are no longer in sync

rule unsafeRead(True);
 if (p(count))
 $display(i, count);

rule safeRead(i==100 &&
 tempQ.first);
 if (p(count))
 $display(i, count);

Okay Not Okay

Can we verify such changes are safe?

June 3, 2008 36

June 3, 2008 37

Example: modifying memory

Mem mem <- mkMemory;

Reg#(int) i <- mkReg(0);

Reg#(int) count <- mkReg(0);

rule map(i<100);

 i <= i + 1;

 count <= count + f(mem.read(i));

June 3, 2008 38

What does it mean for two
modules to be equivalent?

 Bisimularity:
 Every rule trace in A has a corresponding rule

trace in B which has the same “observable”
effects and vice versa

Observations – Method calls
 Existence + output value

June 3, 2008 39

Split lookup and modify

Mem mem <- mkMem;
Reg#(int) i <- mkReg(0);
Reg#(int) count <- mkReg(0);
FIFO#(int) tempQ <- mkFIFO;

Rule mapReq(i < 100);
 i <= i + 1;
 tempQ.enq(mem.read(i));

rule mapResp(True);
 count <= count + f(tempQ.first());
 tempQ.deq();

June 3, 2008 40

But!

We also have the following rule in
the system:

rule checkRunningTotal(True);

 if (p(count))

 $display(i, count);

Now possible to see count and i out-
of-sync

June 3, 2008 41

June 3, 2008 42

What refinement do we want
to see?

Pic: One rule cloud to two then
three
 Splitting is key.
 Merging also.
 Microsteps.

June 3, 2008 43

Asking Questions of BSV

Grab compiler dump after static evaluation
 TRS of bitvectors and Actions

Convert rules into functions:
 π(s) :: State -> Bool
 δ(s) :: State -> State

Use this to form SAT queries about rule execution
traces

i.e. Does A followed by B behave like B followed by A?

June 3, 2008 44

Example:
Reg#(int) x <- mkReg(0);
Reg#(int) y <- mkReg(0);

rule swap(x!=0 && x < y);
 x <= y-x; y <= x;
endrule
method req(nx,ny)
 when (x==0);
 x <= nx; y <= ny;
endmethod
method result
 when(x==0);
 return y;
endmethod

Rl_swap_guard(s0) =
 reg$Rd(getX(s0))!=0 &&
 reg$Rd(getX(s0))<reg$Rd(getY(s0))
Rl_swap_body(s0) = let
 xv=reg$Rd(getX(s))
 yv=reg$Rd(getY(s))
 s1=updX(s0,reg$Wr(yv-xv,getX(s0))
 s2=updY(s1,reg$Wr(xv,getY(s1)))
 in s2
meth_req_guard(s0) =
 reg$Rd(getX(s0)) == 0
meth_req_body(nx,ny,s0) = let
 s1=updX(s0,reg$Wr(yv-xv,getX(s0))
 s2=updY(s1,reg$Wr(xv,getY(s1)))
 in s2

June 3, 2008 45

Designing Bluespec

Language aimed at rapid design
 Emphasis on refinement
 A lot of work

Large designs:
 H.264
 AirBlue – WiFi baseband

	Checking Modular Refinements of Bluespec
	Frequently BSV designers refine their designs
	Refinement: Split lookup and modify
	Correctness depends on context
	Can a tool solve this?
	First a bit more about the language
	Bluespec: State and Rules organized into modules
	Rule: As a State Transformer
	Execution model
	Rule Traces
	The Query
	Handling Infinite Traces
	Slide 13
	Algorithm to find prefix cover
	Trace equality
	Method Calls to State
	Relating States
	More simplification
	Queries
	Reducing the number of Queries
	Current Status
	Improvements
	Summary
	The End
	Scheduling Flexibility
	Slide 26
	Slide 27
	Checking Completeness
	Checking Soundness
	Real Question: How much work is this?
	Bluespec Specification
	What sort of questions can we ask of our solver?
	Bluespec - Origins
	How do we get designers to formally verify?
	Correctness depends on the context
	Slide 36
	Example: modifying memory
	What does it mean for two modules to be equivalent?
	Split lookup and modify
	But!
	Slide 41
	What refinement do we want to see?
	Asking Questions of BSV
	Example:
	Designing Bluespec

