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Frequently BSV designers 
refine their designs
rule map(i<100);

 i <= i + 1;

 count <= count +   
f(mem.read(i));
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Refinement: Split lookup and 
modify

FIFO#(int) tempQ <- mkFIFO;

rule mapReq(i < 100);
 i <= i + 1;
 tempQ.enq(mem.read(i));

rule mapResp(True);
 count <= count +
      f(tempQ.first());
 tempQ.deq();

Pipelined! Better 
hardware, but is it 
correct? 
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Correctness depends on 
context

New design can observe partially updated state. Rest of system Can’t 
count on i and count to be in sync

If we were given the whole design can we say if this is okay?

i[0], c[0] i[1], c[1] i[2], c[2]

i[0] c[0] i[1] c[1]

…

i[2] c[2]

i[0] i[1] c[0] i[2] c[1] c[2]

…

…

rule bad(True);
 if (p(count))
  $display(i,count);

rule good(tempQ.empty);
 if (p(count))
  $display(i,count);
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Can a tool solve this?

At least for a reasonable class of 
refinements
 Convert BSV design to TRS
 Translate BSV rules in to pure 

functions
 Use functions to form queries to an 

bitvector SMT solver

Dealt with this 
before



6

First a bit more about the 
language
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Bluespec:  State and Rules 
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the 
state:

 Rule: guard  action 
Rules can manipulate state in other modules only via their 
interfaces.

interface

module

L02-7http://csg.csail.mit.edu/6.375
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Rule:  As a State Transformer

A rule may be decomposed into two 
parts π(s) and δ(s) such that

snext  =  if π(s) then δ(s)  else  s

π(s) is the guard (predicate)

δ(s) is the “state transformation” 
function, i.e., computes the next-state 
values from the current state values

L02-8http://csg.csail.mit.edu/6.375
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Execution model

Repeatedly:
Select a rule to execute 
Compute the state updates 
Make the state updates

Compilation involves deciding how we select 
rules
 Multiple rules in a cycle
 Tradeoff between parallelism and cycle-level depth
 A lot of flexibility in choice

Highly non-
deterministic

February 8, 2010 L02-9http://csg.csail.mit.edu/6.375
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Rule Traces
Rules takes us from State to State

A rule trace is a sequence of rules, 
executed in order
 run(t,s) runs trace t on initial state s
 Like rules may not be valid to apply 

guard to a state (a rule in the chain 
fails)

S S’ S’’r1 r2

[r1,r2]
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The Query

Completeness: Every 
rule trace in the Spec 
has a corresponding 
trace in the 
Implementation

Soundness: Every 
rule trace in the 
implementation has a 
corresponding trace in 
the Spec

S

I

S’

I’

f f

ruleTrace

ruleTrace

Hard to represent

Infinite traces

What is equality here?
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Handling Infinite Traces

There are an infinite # of traces
Can we just handle a finite set of finite 
traces?
 If we have a prefix of a trace, we can reduce 

the problem to solving it for the tail
 If [A,B,C] is fine, then [A,B,C,D,E] reduces to 

[D,E]
 If we have a prefix cover for all possible 

traces of sufficient size, we can always make 
progress
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Handling Infinite Traces

Still may need infinite prefix traces
 May never reach a comparable state

Show prefix is equivalent to a “safe” 
trace + a smaller prefix
 If [A,B] is safe, and we can show [A,C,D] is 

the same as [A,B,E], we reduce to [E].

Can get away with considering finite 
traces
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Algorithm to find prefix cover

Start with T = traces of length 1
Repeatedly:
 Remove smallest t from T
 Check if we always represent t using safe traces 

(had a matching point to a spec trace) 
 If not add extend t with all possible 1 rule prefix 

and add to T

Bail after some size N
 Remaining traces are interesting to designers
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Trace equality

We wanted the 
traces to be 
“equivalent”

For modular 
refinement it’s what 
we can observe 
about the module
 Method calls – 

existence & output

S

I

S’

I’

f f

ruleTrace

ruleTrace
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Method Calls to State

All visible history stored in trace
 Just look at history for equivalence

Need to consider all input systems

Trace history

input
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Relating States

Simplification: We only 
add state between Spec 
and Implementation

Relation from Spec to 
Implementation clear
 Add new state in initial 

state

Leave Implementation 
to Spec partial
 Reason about longer rule 

traces

S

I

S’

I’

f f

ruleTrace

ruleTrace



June 3, 2008 18

More simplification

Only consider systems where break 
one rule into two
 Rules in Spec: r12,r3,r4,r5, …

 Rules in Impl: r1, r2, r3’,r4’,r5’,…

r12 should correspond to {r1,r2}

Makes completeness easy to prove
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Queries

Each question takes the form:

 I is the set of possible input
 t is trace we’re considering
 T is the set of “safe” traces we want to check against

This is easy to cast in SAT

}|),'{run(),run(

)e(isSpecStat).(,

Ttstst

siSsIi

∈∈
⇒∈∈∀
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Reducing the number of 
Queries

We can find impossible rule traces:
 Many rules cannot fire twice concurrently 

(FIFOs fill up) 
  e.g. [req,req,req]) is impossible

Many rule sequences are equivalent:
 e.g. Rules don’t touch same state
 Do not have to check traces T1+[A,B]+T2 

since we’ll check T1+[B,A]+T21
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Current Status

Simple simple programs : 4 rules
 Correct design: 10 seconds (N = 7)
 Added an error: 2 seconds (N = 4)

6 stage SMIPS pipeline
 refine to 7 stage (N = 14)
 Many Days of compute 
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Improvements

Trace verification is ridiculously parallel
 Parallel execution

Currently, we Represent state as a bitvector
 Does not scale (especially Memories)
 Should move to uninterpreted functions/arrays

Call SMT via file system (write file)
 Significant overhead (>50%)
 Direct interfacing significantly cheaper
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Summary

Can answer interesting questions 
about traces in BSV systems

Initial implementation seems pretty 
reasonable

Efficiency improvements needed to be 
practical
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The End
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Scheduling Flexibility
What order do we want?

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Wb < Mem <  Exe <  Dec < IF

I0I1I2I3I4

A cycle in 

slow motion 
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Scheduling Flexibility
What if flip the order?

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

IF < Dec < Exe < Mem < Wb

I0

An in-order processor
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Scheduling Flexibility
What happens if the user specifies:

No change in rules

RF

iMem dMem

WbIF

bI

Exe

bE

Mem

bW

Dec

bD

Executing 2 instructions per cycle requires more resources but is 
functionally equivalent to the original design

Wb < Wb < Mem < Mem < Exe < Exe < Dec < Dec < IF < IF

I1 I0I3 I2I5 I4I7 I6I9 I8

A cycle in 

slow motion 

a superscalar processor!
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Checking Completeness

Given our constraints this should 
hold

forall s. isSpec(s) => run([R12],s) 
= run([r1,r2],s)

Forall r in {r3,rN}. forall s. 
isSpec(s) => run(r,s) = run(r’,s)
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Checking Soundness

This takes a bit more work as:
 We don’t really know what traces to 

compare against. R1,r3? 
Can hazard some guesses (permutations? 

Elisions?)
 Some implementation traces do not 

end in a state the spec can reach:
Extend the sequence and try again



June 3, 2008 30

Real Question:
How much work is this?

What do we have?
 BSV Parser (from BSV-SW Compiler)
 SMT solver w/ focus on bitvectors

First step – verify scheduling properties
 BSV ATS -> Lambda Calculus -> SMT
 2 weeks of time

Okay. Maybe we this won’t be so bad

So what exactly does it mean to show things are correct?
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Bluespec Specification

Bluespec designs are closer to 
specifications
 Schedule makes it an implementation
 Guaranteed safe

Spec and Implementation in the same 
language

Designers mostly do spec. refinement
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What sort of questions can 
we ask of our solver?

Convert rule R into πR and δR

Use this to ask questions about rule traces:
 [A, B] = [B,A]
 forall s. πA(s) & πB(δA(s)) => 

			π B(s) & πA(δB(s)) &

			δ A(δB(s)) = δB(δA(s))



June 3, 2008 33

Bluespec - Origins

Started from work modeling Cache 
coherence engines and processors in a 
Term Rewriting System (TRS) for 
verification [Stoy, Shen, Arvind]

Precise enough to compile into 
hardware
 TRAC compiler [Hoe]
 Bluespec Compiler [Augustsson]
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How do we get designers to 
formally verify?

 Reason in the design language
 Inputs and Results have to be natural

 Low burden
 Cannot ask for complex properties
 Simple predicates / statements

Fast feedback
 Useful in testing
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Correctness depends on the 
context

We’ve broken the atomicity 
invariant
 i and count are no longer in sync

rule unsafeRead(True);
  if (p(count))
      $display(i, count);

rule safeRead(i==100 && 
              tempQ.first);
  if (p(count))
     $display(i, count);

Okay Not Okay

Can we verify such changes are safe?
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Example: modifying memory

Mem  mem        <- mkMemory;

Reg#(int) i     <- mkReg(0);

Reg#(int) count <- mkReg(0);

rule map(i<100);

   i <= i + 1;

   count <= count + f(mem.read(i));
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What does it mean for two 
modules to be equivalent?

 Bisimularity:
 Every rule trace in A has a corresponding rule 

trace in B which has the same “observable” 
effects and vice versa

Observations – Method calls
 Existence + output value
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Split lookup and modify

Mem         mem   <- mkMem;
Reg#(int) i  <- mkReg(0);
Reg#(int) count <- mkReg(0);
FIFO#(int) tempQ <- mkFIFO;

Rule mapReq(i < 100);
   i <= i + 1;
   tempQ.enq(mem.read(i));

rule mapResp(True);
   count <= count + f(tempQ.first());
   tempQ.deq();
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But!

We also have the following rule in 
the system:

rule checkRunningTotal(True);

  if (p(count))

      $display(i, count);

Now possible to see count and i out-
of-sync
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What refinement do we want 
to see?

Pic: One rule cloud to two then 
three
 Splitting is key. 
 Merging also. 
 Microsteps.
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Asking Questions of BSV

Grab compiler dump after static evaluation
 TRS of bitvectors and Actions

Convert rules into functions:
 π(s) :: State -> Bool
 δ(s) :: State -> State

Use this to form SAT queries about rule execution 
traces

i.e. Does A followed by B behave like B followed by A? 
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Example:
Reg#(int) x <- mkReg(0);
Reg#(int) y <- mkReg(0);

rule swap(x!=0 && x < y);
  x <= y-x; y <= x;
endrule
method req(nx,ny)
         when (x==0);
  x <= nx; y <= ny;
endmethod
method result 
         when(x==0);
   return y;
endmethod

Rl_swap_guard(s0) =
 reg$Rd(getX(s0))!=0 &&
 reg$Rd(getX(s0))<reg$Rd(getY(s0))
Rl_swap_body(s0) = let
 xv=reg$Rd(getX(s))
 yv=reg$Rd(getY(s))
 s1=updX(s0,reg$Wr(yv-xv,getX(s0))
 s2=updY(s1,reg$Wr(xv,getY(s1)))
 in s2
meth_req_guard(s0) = 
 reg$Rd(getX(s0)) == 0
meth_req_body(nx,ny,s0) = let
 s1=updX(s0,reg$Wr(yv-xv,getX(s0))
 s2=updY(s1,reg$Wr(xv,getY(s1)))
 in s2
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Designing Bluespec

Language aimed at rapid design
 Emphasis on refinement
 A lot of work

Large designs:
 H.264
 AirBlue – WiFi baseband
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